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Quantification of the heavy-hole–light-hole mixing in two-dimensional hole gases
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We theoretically investigate heavy-hole–light-hole mixing in two-dimensional hole gases (2DHG). We restrict
our analysis to the zone center, appropriate for the low-density regime, which leads to a simple description,
analytical results, and physical insights. We identify two different types of hole-Hamiltonian terms concerning
mixing. The first type changes the direction of the pure spinors, without admixing light-hole components. It is
efficient for Rabi driving the heavy-hole spin. The second type induces mixing and changes the eigenvalues of the
g tensor. We analyze several measures that characterize the mixing quantitatively in Ge, Si, and GaAs, namely
the g factor, the light-hole weight in the wave function, the off-diagonal matrix elements in the Hamiltonian,
and the strength of the induced spin-orbit interaction. We identify the canonical coordinate frame associated
with a generic spin-3/2 Hamiltonian with time-reversal symmetry (TRS). In this coordinate frame, the mixing
is quantified by a single parameter, the mixing angle ϑ . We interpret it as the canonical (coordinate-frame
and Hamiltonian-basis independent) measure of the heavy-hole–light-hole mixing. All the investigated mixing
measures are simple functions of ϑ . As an illustration, we use our model to analyze heavy-hole spin qubit
g-tensor, dephasing, relaxation, and Rabi frequencies, interpreting the arising effects as due to rotations of
canonical frame and changes of the mixing angle ϑ .

DOI: 10.1103/PhysRevB.111.115301

I. INTRODUCTION

Holes in group-IV materials germanium (Ge) [1] and sili-
con (Si) [2] are currently among the prime candidates to host
spin qubits [3,4]. They show excellent performance overall
[5] and even set the current state-of-the-art benchmarks for
operation speed [6], operation fidelity [7], and qubit size [8,9].
Holes avoid the valley-degeneracy issue of the conduction
band, couple weakly to nuclear spins [10], and alleviate the
use of micromagnets thanks to their strong spin-orbit interac-
tions (SOIs) [11].

The qualitative difference between electrons and holes
as spin carriers originates in the band structure at the �

point of the zinc-blende and diamond semiconductors [12,13].
The higher (fourfold) degeneracy of the valence band makes
holes anisotropic and much more responsive to electric and
magnetic fields [14–19], as well as strain [20,21]. Judicious
design of the wafer, device, and control fields can exploit
this anisotropy to obtain well-performing [22,23] and tunable
hole-spin qubits [24–31]. There are many variants, stem-
ming from qubits in clean Ge/SiGe heterostructures [32–34],
through high-speed and tunable ones in Ge hut [35–37]
and selective-area growth [38] wires, Ge/Si core-shell wires
[39–41], to industry-compatible Si finFET [42–44] and MOS
(metal-oxide-semiconductor) structures [45–48], to name just
the main families.

*Contact author: peter.stano@riken.jp

Despite the large variety of actual structures, the under-
standing of hole spin qubits starts with the following simple
picture [49]. Consider a heterostructure quantum well (or
an MOS epilayer surface) grown along the crystallographic
[001] direction, denoted as the z axis. The confinement splits
the fourfold degenerate hole band [50] into two subbands,
the heavy-hole (HH) and light-hole (LH) one, each with a
twofold spin (or Kramers) degeneracy. This splitting can be
understood from the Luttinger model (given below), as the
quantization energy of the quantum-well confinement. At the
(Brillouin) “zone center,” meaning putting the in-plane mo-
menta to zero, kx = 0 = ky, the Luttinger Hamiltonian in the
spin space reduces to −J2

z . Its eigenspinors are (1, 0, 0, 0)T

and (0, 0, 0, 1)T with eigenvalue −9/4, and (0, 1, 0, 0)T and
(0, 0, 1, 0)T with eigenvalue −1/4.1 The holes with the above
spinors are sometimes referred to as “pure heavy holes.”2

The notable property of pure heavy holes is that the in-
plane spin operators Jx and Jy do not couple them. Introducing
s = σ/2, with σ the Pauli matrices, as the pseudo-spin-

1J is the (vector of operators of) total angular momentum of the
Bloch wave function at the � point, called in further “spin.” The basis
to which the four-component spinors refer is the four Bloch wave
functions with total angular momentum 3/2, 1/2, −1/2, and −3/2.
See, for example, Table C1 on p. 208 in Ref. [51].

2The nomenclature is not firmly established. For example, the
authors of Ref. [52] (see their Appendix A) call the superpositions
(1/

√
2, 0, 0, ±1/

√
2)T also “pure heavy holes.”
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1/2 operators in the two-dimensional subspace spanning the
heavy-hole spinors, one has the projection rule

Jx
hh→ 0, Jy

hh→ 0, Jz
hh→ 3sz. (1)

This rule is the basis for anisotropy of various spin-related
properties. For example, the bulk Zeeman interaction 2μBκ J ·
B projects to 6μBκszBz, so that pure heavy holes have strongly
anisotropic g factors (6κ out of the plane, zero in the plane).
Essentially the same argument gives similarly anisotropic hy-
perfine interaction, szIz, between the hole and nuclear spin I.
Or, pure heavy holes should have cubic-in-momenta spin-orbit
interaction (SOI) [14,53], since the bulk linear-in-momenta
interactions (such as Rashba) that contain Jx and Jy operators
are projected to zero.

Going beyond the above simplistic model, the spinors of
heavy holes deviate from the pure ones. This is called “heavy-
hole–light-hole mixing” and can arise in various ways. On
the one hand, there is mixing even at the zone center (that
is, still with kx = 0 = ky) if the growth direction is deflected
away from [001] [54], if there is strain [2,49], or from het-
erostructure interfaces [55]. On the other hand, even without
strain or low-symmetry confinement, mixing arises upon go-
ing away from the zone center, once the in-plane momenta
become appreciable. Heavy holes might still be close to being
pure in lateral quantum dots if kx ∼ ky � kz, while the pure-
heavy-hole picture breaks down completely in quantum wires
[18] for which the momentum hierarchy is kx � ky ∼ kz. The
spinor structure of holes then depends sensitively on the wire
cross section [56,57].

In a typical gated spin-qubit device, all these mixing
sources are present and result in holes with complex and
versatile spin character. In this article, we analyze the heavy-
hole–light-hole mixing3 arising from strain or from the
two-dimensional hole gas (2DHG) normal being deflected
from the [001] direction. We use a simple model appropriate
for kz � kx, ky (we call it “zone-center model,” see below),
as a minimal extension of the above pure-heavy-hole model
applicable to 2DHG (at low density) and nanostructures based
in it, such as lateral quantum dots in the single-hole regime.

Our contribution is in investigating the quantitative degree
of some mixing measures that are motivated by experiments
and theory. Namely, we analyze (i) the heavy-hole g factor,
(ii) pure light-hole admixture in the spinor wave function, (iii)
the sum of the squares of the off-diagonal elements of the
Hamiltonian matrix, and (iv) the degree of breaking the pro-
jection rule Jx, Jy

hh→ 0 resulting in appearance of the spin-orbit
interactions. Interestingly, we find that a simple additional
requirement of coordinate-frame independence results in mea-
sures (i), (ii), and (iii) to pick the same coordinate frame. We
interpret it as the canonical coordinate frame associated with
a spin-3/2 Hamiltonian with time-reversal symmetry (TRS).
It defines a single heavy-hole–light-hole mixing parameter,
which we express as an angle ϑ ∈ [0, π/2].4 All four investi-
gated measures are simple functions of this mixing angle ϑ .

3For conciseness, we will often say “mixing,” dropping the “heavy-
hole–light-hole” quantifier. Upon mixing, the hole spinors cease to be
“pure.”

4The domain can be restricted to ϑ ∈ [0, π/6], see below (page 4).

The proposal of ϑ as the canonical mixing parameter is
our main result. Two more points are worth adding here.
First, concerning mixing, not all terms in the Hamiltonian are
equally efficient: the terms JzJ± give much less mixing than
terms J2

±. The reason is that the dominant effect of the former
ones is only a rotation of the canonical frame. In this frame,
the spinors remain pure and the projection rule Jx, Jy → 0
still holds. Second, the mixing is more efficient in inducing
the SOI, quantified by m4, which is linear in ϑ , than for the
effects quantified by m1, m2, and m3, which are quadratic in
ϑ . The difference is pronounced at small mixing: heavy holes
which are as much as 95–98% “pure,” if considering the pure
heavy-hole content or the g-factor difference to 3/2, can have
effective Rashba SOI

α3D
r Ez(Jxky − Jykx )

hh→ α2D
r Ez(sxky − sykx ),

with the strength comparable to the bulk SOI strength
α2D

r = O(α3D
r ).5 This property holds for the mixing of any

source. Converting to numerical values for strain as an ex-
ample, in a quantum dot where the heavy-hole–light-hole
splitting is dominated by an in-plane compressive strain, such
as the Ge/Si0.2Ge0.8 quantum well, the off-diagonal εxy strain
components an order of magnitude smaller than the built-in
strain εxx ≈ −0.6% [58,59] will also result in a heavy-hole
Rashba SOI strength comparable to its value in bulk.

We now proceed to derivations and quantitative details.
While our analysis applies to holes in generic crystals with
zinc-blende or diamond structure, in the main text we present
results for silicon and germanium. For completeness, in some
figures we include GaAs.

II. THE PURE HEAVY-HOLE LIMIT

We start with the Luttinger Hamiltonian describing the
bulk top valence band, the spin-3/2 hole band [60]

HL =
(

γ1 + 5

2
γ2

)
h̄2k2

2m0
− γ2

h̄2

m0

(
k2

x J2
x + c.p.

)
− γ3

h̄2

2m0
({kx, ky}{Jx, Jy} + c.p.). (2)

Here, γi are the Luttinger parameters, kα are Cartesian com-
ponents of the momentum operator in crystallographic coordi-
nates α ∈ {x = [100], y = [010], z = [001]}, Jα are spin-3/2
operator Cartesian components, {A, B} = AB + BA is the an-
ticommutator, and c.p. stands for cyclic permutations (of
Cartesian components). We take the hole band facing up, so
that higher excited states have higher energies.

We now consider the effects of confinement V (z), say
a quantum well, along the growth direction z. Aiming at a
simple model, we assume that the arising quantization of
the momentum along z dominates the in-plane quantization

5The difference can be seen from Fig. 1.
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kx, ky � kz.6 Accordingly, we put kx = 0 = ky in Eq. (2),7 and
get

H0 = HL(zone center) + V (z)

= h̄2k2
z

2m0

(
γ1 + 5

2
γ2 − 2γ2J2

z

)
+ V (z). (3)

In further, we will refer to the approximation k‖ = (kx, ky) = 0
as the “zone center model,” for simplicity. One advantage of
restricting the analysis to the zone center is that the spinor
structure does not depend on the confinement potential and
the associated orbital energies. We can thus focus on the spin
operator in the kinetic energy, which we denote by HS , and
ignore the orbital degrees of freedom. In Eq. (3), the operator
is

HS = γ1 + 5

2
γ2 − 2γ2J2

z , (4)

and its eigenstates are∣∣	pure
+3/2

〉 = (1, 0, 0, 0)T∣∣	pure
−3/2

〉 = (0, 0, 0, 1)T

}
pure heavy holes, (5a)

E±3/2 = γ1 + 5
2γ2 − 9

2γ2, (5b)∣∣	pure
+1/2

〉 = (0, 1, 0, 0)T∣∣	pure
−1/2

〉 = (0, 0, 1, 0)T

}
pure light holes, (5c)

E±1/2 = γ1 + 5
2γ2 − 1

2γ2. (5d)

We will call the difference of the energies,


 = E±1/2 − E±3/2 = 4γ2, (5e)

the heavy-hole–light-hole splitting. Even though this is not
precise,8 
 is the important parameter for the spin structure
of holes, our focus.

Going beyond the model in Eq. (3), the hole spinors will
not be equal to the pure hole spinors in Eq. (5). We de-
note these general spinors by 	±3/2, 	±1/2. We define the
vector of heavy-hole pseudo-spin-1/2 operators (Pauli matri-
ces) σ = {σx, σy, σz}, and alternatively s = σ/2, to act in the
two-dimensional subspace spanned by {	+3/2, 	−3/2 } with
the pseudo-spin “up” corresponding to 	+3/2 and “down” to
	−3/2.

III. THE MEASURES OF MIXING

With a growth direction other than a high-symmetry axis,
or upon including strain or finite in-plane momenta, the

6We momentarily treat ki as c numbers, even though they are
operators in Eq. (2). A more precise statement (applicable for 2DHG,
where kx and ky can be treated as c numbers), would be kxlz, kylz � 1,
with lz the confinement length defined by V (z).

7We note that by this step we remove also the so-called “direct
Rashba SOI” [15] from our model. This type of SOI originates from
the mixed terms of HL , such as {kx, kz}{Jx, Jz}, and from an electric
field that breaks inversion symmetry [15,18,25].

8The energy splitting of the eigenstates of Eq. (3) is not given as

 times an orbital energy scale. It becomes so only upon neglecting
the influence of the last term in the bracket in Eq. (3) on the particle
mass.

spinor-defining operator becomes more complicated than J2
z

and its eigenstates differ from the pure hole spinors in Eq. (5).9

We are interested in having a measure for this difference.

A. Some plausible measures of mixing

Let us consider the following definition10

m1(	±3/2) = 1 − 2
3 max

n,α,β

〈
	

αβ

hh

∣∣J · n
∣∣	αβ

hh

〉
, (6)

where n is a real unit vector, α and β fulfilling |α|2 + |β|2 = 1
are complex numbers, and∣∣	αβ

hh

〉 = α|	+3/2〉 + β|	−3/2〉, (7)

is a normalized spinor within the heavy-hole subspace.11

The mixing is measured as the minimal possible decrease of
the expectation value of the spin from its maximum 3/2, if one
can choose any suitable direction for the axis along which the
spin is measured and any suitable spinor from the heavy-hole
subspace. In this way, the quantity 1 − m1 gives the maximal
g factor [due to the linear Zeeman term, Eq. (32)] that can
be measured in a state from the heavy-hole subspace. Such
a quantity can be accessed experimentally by measuring the g
factor as a function of the orientation of the magnetic field of a
fixed modulus. Thus, the choice of m1 is motivated by current
experimental techniques.

We next examine the following option

m2(	±3/2) = 1 − 1
2 max

n
Tr

[
ρ±3/2ρ

pure
±3/2(n)

]
, (8)

where ρ±3/2 = |	+3/2〉〈	+3/2| + |	−3/2〉〈	−3/2| is the pro-
jector to the heavy-hole subspace. The projector ρ

pure
±3/2 is

analogous, but using pure heavy-hole spinors, Eq. (5), defined
by choosing their “z” axis along a unit vector n. The value of
m2 is obtained upon finding the direction n that defines a pure
basis with the maximal overlap with the exact spinors. This
choice suits analytics and numerics where the spinor wave
functions are available.

As the third example, we consider a measure based on the
Hamiltonian, rather than its explicit eigenstates. We define the
4 × 4 matrix hn as the Hamiltonian evaluated in a basis of pure
spinors that are defined by an arbitrary vector n defining the
“z” axis. The sum

m3(H ) = 1


2
min

n

∑
i �= j

∣∣hn
i j

∣∣2
(9)

9Using the Broido-Sham transformation [61–63], one can obtain
analytical eigenspinors for all Hamiltonians considered in this paper.
However, we do not find the resulting formulas helpful for physical
insight and do not pursue this direction.

10Throughout this paper, we assume that the heavy-hole subspace
is identified using a Hamiltonian that has time-reversal symmetry
(TRS). In this case, an alternative definition 1 + (2/3)min · · · is
equivalent to the expression 1 − (2/3)max · · · given in Eq. (6).

11The maximization over coefficients α and β can be replaced by
evaluating the eigenvalues of the 2 × 2 matrix of the projection of
J · n to the subspace spanned by 	±3/2. Due to TRS, the eigenvalues
come in pairs ±ε and the coefficients {α, β} maximizing the expec-
tation value correspond to the eigenvector with the eigenvalue +ε.
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evaluates the minimal sum of absolute squares of the off-
diagonal elements of the Hamiltonian. We normalize it by
dividing it by the available energy scale 
.

1. Canonical reference frame

The examples suggest that one can come up with many
variants of a “mixing measure,” with preference depending on
the application. Nevertheless, there are certain natural require-
ments. First, if the pure heavy-hole spinors are the system
eigenstates, the mixing should be zero, m = 0. Second, the
measure should be independent of the coordinate system in
which the spinors or the Hamiltonian are evaluated. Third,
the measure should be invariant under unitary rotations of
the basis within the heavy-hole spinor subspace. All three
measures, mi, i = 1, 2, 3, fulfill these minimal requirements.

In addition, and perhaps surprisingly, all measures mi select
the same vector n. We delegate the details and proofs to
Appendix A and give the summary here. In the coordinate
frame with the “z” axis along the vector n, the spinor-defining
Hamiltonian HS evaluated in the basis composed of pure
spinors takes the following form (up to an additive constant
and an overall multiplicative factor):

+3/2

+1/2

−1/2

−3/2

⎛
⎜⎜⎝

−1 0 α 0
0 1 0 α

α∗ 0 1 0
0 α∗ 0 −1

⎞
⎟⎟⎠. (10)

There is a single nontrivial matrix element α off the diagonal,
which can be parametrized by two real numbers. We will use
two angles, ϑ ∈ [0, π/2] and ϕ ∈ [0, 2π ], introducing

α = e−iϕ tan ϑ. (11)

The measures mi can be expressed as simple functions of the
parameter ϑ ,

m1 = sin2(ϑ/2), ϑ � π/2, (12a)

m2 = 2 sin2(ϑ/2), ϑ � π/3, (12b)

m3 = tan2 ϑ, ϑ � π/6. (12c)

We interpret these findings as follows. For every spin-3/2
Hamiltonian with time-reversal symmetry, there is a canonical
coordinate frame, defined by the vector n as the frame “z”
axis, and the inherent heavy-hole–light-hole mixing angle ϑ .
The quantities n and ϑ are well defined in the sense that they
are independent of the original coordinate frame, Hamiltonian
basis, or the chosen measure mi to obtain them. In the canon-
ical coordinate frame, the Hamiltonian is (in a certain sense)
the simplest possible, the g factor of the heavy-hole spinor
is maximal possible with the magnetic field along the frame
preferred axis, and the exact spinor has maximal possible
overlap with a pure heavy-hole spinor, the latter defined along
the preferred axis.

2. Canonical mixing measure

The above results also suggest to consider α or, more
specifically, the angle ϑ as the canonical mixing measure. We
call ϑ the mixing angle. Indeed, all considered measures mi,
including msoi given below, are simple monotonic functions
of the mixing angle. The mixing angle refers to the canonical

FIG. 1. Plot of the four measures m1, m2, m3, msoi, quantifying
the mixing of heavy holes with light holes, as function of the mixing
angle ϑ . The range 0 � ϑ � π/6 corresponds to a system with the
heavy-hole ground state perturbed by the heavy-hole–light-hole mix-
ing. For larger ϑ (shaded area of the plot), a more fitting description
of the system would be to take a light-hole subspace as the ground
state perturbed by mixing (we do not pursue such analysis in this
article). The measure m3 features a kink at the transition. There is a
similar kink for m2 at ϑ = π/3 (not shown).

frame and thus fulfills the invariance requirements discussed
above.

The results of the investigations of the measures mi im-
ply the following clarification of the definition range of the
mixing angle. In Eq. (10), the parameter α can be arbitrary,
giving a valid time-reversal-symmetric spin-3/2 Hamiltonian.
Correspondingly, we defined the mixing angle on the inter-
val ϑ ∈ [0, π/2] in Eq. (11). However, while the canonical
reference frame is uniquely defined by that Hamiltonian, the
value of parameter α can be changed by renaming the axes
of the canonical frame. With such a renaming, one can map
a problem with ϑ > π/3 to a problem with ϑ < π/3, with
the explicit mapping ϑ → 2π/3 − ϑ , see Eq. (A29). This
availability can be noticed by studying m2, which displays a
kink at ϑ = π/3. Similarly, m3 reveals a kink at ϑ = π/6,
reflecting yet another reordering of the canonical frame axes.
With this third choice, the diagonal part of the Hamiltonian
becomes +J2

z′′ and describes a system with light holes as
the ground state. Converting Eq. (10) to such a form im-
plies a transformation ϑ → π/3 − ϑ . We thus conclude that
a TR-symmetric spin-3/2 Hamiltonian, which can always be
brought to the form given in Eq. (10), can be interpreted
as a system where the heavy-hole ground state is perturbed
by the heavy-hole–light-hole mixing only for |α| � 1/

√
3,

corresponding to ϑ � π/6.
We plot the four investigated measures in Fig. 1 for the

mixing-angle range corresponding to such weakly perturbed
heavy-hole systems.

B. Mixing measure related to SOI

We now introduce one more mixing measure of a different
type, quantified and motivated as follows. We assume that
there is a linear-in-J and linear-in-k SOI in the bulk, taken
as Rashba SOI for concreteness,

H 3D
r = α3D

r E · (J × k). (13)

115301-4
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Assuming that the electric field E is along the growth direction
z and using Eq. (5), one finds that for pure heavy holes this
interaction is projected to zero within the subspace defined by
pure heavy-hole spinors. However, with mixing, SOIs appear
within the heavy-hole subspace [64,65]. Though not exclu-
sively (see below), typically they take the form analogous to
the bulk form,12

H 2D
r = α2D

r E · (s × k). (14)

Our third measure is the ratio of the two constants,

msoi(	±3/2) = α2D
r

α3D
r

. (15)

We do not define this measure through a minimization proce-
dure. Instead, we evaluate it in the canonical frame and find
[see Eq. (30)] that it also is a simple function of the mixing
angle

msoi =
√

3 tan ϑ. (16)

Next, we evaluate the mixing in specific scenarios.

IV. MIXING DUE TO A DEFLECTED 2DHG NORMAL

We now consider a 2DHG with normal deflected from
the high-symmetry direction [001]. First of all, it describes a
2DHG implemented in heterostructures with nominal growth
direction different from [001]. However, we are addition-
ally motivated by experiments where the holes are trapped
by confinement that is appreciably modulated by gates and
interfaces. Unlike in heterostructures buried deep below the
surface with the gate-stack layers, in this scenario, the nominal
growth direction of the crystal can be different from the nor-
mal of the effective plane confining the 2DHG. The examples
include MOS structures with gates (and impurities) very close
to the 2DHG and finFET structures where the holes are pushed
against a surface that is not planar [44,47]. To stress this
interpretation, we will use “(effective) 2DHG normal” instead
of “growth direction.” The name refers to the effective 2DHG
confinement at the location of a quantum dot, rather than the
nominal growth direction of the bulk crystal.

With the 2DHG normal deflected from [001], the mixing
arises even at the band center [67]. We first consider the
2DHG normal along a general direction [klh]. We define ro-
tated coordinates x′, y′, z′ by⎛

⎜⎝x
y
z

⎞
⎟⎠ = R[φ, θ, φ′]

⎛
⎜⎝x′

y′

z′

⎞
⎟⎠, (17a)

12On going from Eq. (13) to Eq. (14), our simple procedure in-
cludes only the homogeneous electric field. Rather than a quantitative
theory of SOI in 2DHG, our focus is to size up the effects of mixing.
The quantitative theory of SOI requires a more elaborate approach,
due to the appearance of additional contributions from the quantum
well interfaces. While the bands discontinuities arising at the inter-
faces can be viewed as electric fields, they cannot be simply added to
E since they are band dependent. This is a well-known issue and the
nature of E in Eq. (14) has been discussed at length elsewhere, see,
for example, p. 99 in Ref. [66].

where the rotation is parametrized by three Euler angles

R[φ, θ, φ′] =
⎛
⎝cθcφcφ′ − sφsφ′ −cθ cφsφ′ − sφcφ′ cφsθ

cθ sφcφ′ + cφsφ′ −cθ sφsφ′ + cφcφ′ sφsθ

−sθcφ′ sθ sφ′ cθ

⎞
⎠,

(17b)

with su ≡ sin u and cu ≡ cos u. In this parametrization, the
2DHG normal (the z′ axis) is along the unit vector with
nonprimed (crystallographic) coordinates given by the last
column of the Euler rotation matrix R.

A. Growth directions [llh] and [0lh]

In rotated coordinates, the zone-center spinor-defining
Hamiltonian is still bilinear in the spin operators,

H [klh]
S =

∑
i, j∈x′,y′,z′

ci j

2
{Ji, Jj}, (18a)

with the coefficients ci j being functions of the Euler an-
gles and Luttinger parameters, and the factor 2 is introduced
for later convenience. Since the most general case leads to
unwieldy expressions and figures, we exemplify it by two
specific scenarios with a single rotation parameter. First, we
consider rotations around m = [110] by an arbitrary angle
θ . It corresponds to φ = π/4 and φ′ = −π/4 in Eq. (17).
The choice covers the most typical cases, [001] for θ = 0,
[111] for θ = arctan(

√
2), and [110] for θ = π/2, as well

as the generic [llh] direction investigated at length both
experimentally and theoretically.13 The Hamiltonian is (a
spin-independent constant is omitted)

H [llh]
S =

(
−2γ̄ − γδ

5 − 12 cos 2θ − 9 cos 4θ

8

)
J2

z′

− γδ sin θ
5 cos θ + 3 cos 3θ

2
√

2
{Jx′ + Jy′ , Jz′ }

+ γδ sin2 θ (3 cos 2θ + 1){Jx′ , Jy′ }, (18b)

where we introduce γ̄ = (γ3 + γ2)/2 and γδ = (γ3 − γ2)/2.14

The second scenario is a rotation around m = [100]. This
corresponds to Eq. (17) with φ = π/2 and φ′ = −π/2, and
includes [001] for θ = 0 and [011] for θ = π/4, as well as a
generic direction [0lh] investigated, for example, in Ref. [71].
The Hamiltonian is (constant omitted)

H [0lh]
S = (−2γ̄ + γδ (1 + cos 4θ ))J2

z′

− 2γδ sin θ (cos θ + cos 3θ ){Jy′ , Jz′ }
+ 2γδ sin2(2θ )J2

y′ . (18c)

The amplitudes of the terms from Eqs. (18b) and (18c) are
plotted in Figs. 2(a) and (b), respectively. In both scenarios, J2

z′
dominates for any direction of the 2DHG normal in Ge, and
marginally so in Si. In any case, further spin-dependent terms

13See, for example, Ref. [54] and the references in the introductions
of Refs. [63,68].

14Our definition of γ̄ is in line with Refs. [61,63,69–71]. Unfortu-
nately, there is no agreed-on convention for γ3 − γ2. For example,
Ref. [63] uses δ = (γ3 − γ2)/γ1, Refs. [61,70] use μ = (γ3 − γ2)/2,
Ref. [63] uses γδ = (γ3 − γ2)/2, Ref. [54] uses γδ = (γ3 − γ2), and
Ref. [71] uses γ3 − γ2 without giving it a name.
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FIG. 2. The zone-center Hamiltonian. The amplitudes of the
spin-dependent terms in (a) Eq. (18b) and (b) Eq. (18c) as a function
of the angle θ defining the 2DHG normal direction. Several high-
symmetry directions are denoted by points with boxes. Solid lines
are for the parameters of Ge, dashed for Si. For the direction [llh],
the strength of the terms {Jx′ , Jz′ } and {Jy′ , Jz′ } are the same; only one
is plotted. The insets show the coordinate axes: the crystallographic
axes are in black, the rotated coordinate system with z′ the 2DHG
normal is in blue, and the canonical coordinate frame z′′ axis is in
red. The orientations of z′ and z′′ are to scale for the parameters of Si
for θ ≈ 16◦.

appear unless the 2DHG normal is along a high-symmetry
axis ([001] or [111] or their equivalents) [68,72]. These ad-
ditional terms will induce mixing, which we examine next.

B. Approximately pure spinors

One of the upshots of the technical analysis presented in
Appendix A is that the terms appearing in Eq. (18) are of two
different types:

{Jx′ , Jz′ }
{Jy′ , Jz′ }

}
spinor rotation, Hrot, (19a)

{Jx′ , Jy′ }
J2

x′ − J2
y′

}
spinor mixing, Hmix. (19b)

When their amplitudes are small and in leading order, the
terms in Eq. (19a) keep the hole spinors pure, in a conve-
niently redefined coordinate frame. On the other hand, the
terms in Eq. (19b) cannot be accommodated as a reference
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FIG. 3. The mixing angle and the deflection angle for (a) Si:[llh],
(b) Si:[0lh], (c) Ge:[llh], (d) Si:[0lh]. The mixing angle ϑ (blue)
is defined in Eq. (11) and the deflection angle (black) is calculated
according to Eq. (A43). The horizontal axis shows the angle θ , which
parametrizes the 2DHG normal orientation as described in Sec. IV A.

frame rotation and they directly (in leading order) decrease
the spinor pureness, quantified using any of the measures mi.
The rotation effect of the first type of terms can be understood
as a simple procedure of “completing the square,”

J2
z′ + ε{Jx′ , Jz′ } = (cos θ+Jz′ + sin θ+Jx′ )2 + O(ε2), (20)

where sin θ+ ∼ ε. With this interpretation, the parameter θ+ is
the angle by which the direction of the closest pure spinor de-
flects from the 2DHG normal, and we call it “spinor deflection
angle.”

More precisely (see Appendix A), the procedure in Eq. (20)
corresponds to finding a coordinate frame where there are
no rotation terms Hrot. We find that in both [llh] and [0lh]
scenarios the “z” axis of such suitably rotated coordinate
frame, denoted by z′′, lies in the plane of rotation z → z′ and
can thus be parametrized simply.15 With the 2DHG normal
parametrized by the last column of R for angles φ, θ, φ′ as
described by Eq. (17), the axis z′′ is the last column of R
for angles φ, θ + θ+, φ

′. Solving Eq. (20) for Eq. (18b) and
Eq. (18c), we get analytical approximations

for [llh] : sin θ+ = γδ

8γ
(2 sin 2θ + 3 sin 4θ ), (21a)

for [0lh] : sin θ+ = γδ

2γ
sin 4θ. (21b)

To arrive at these simple forms, we have neglected the angular
dependences of the strength of the J2

z′ term by putting γδ = 0
for it.16 The formulas in Eq. (21) give good approximation
for the direction that can be interpreted as either: (i) the

15This property does not hold in general, where one needs two
parameters to specify the deflected axis direction. The simplification
is another motivation for considering [llh] and [0lh] scenarios.

16Since we consider the zone-center Hamiltonian, all results de-
rived from it should be understood as qualitative. Working with
simplified analytical formulas is then justified. We give exact for-
mulas in Appendix A 3, see Eq. (A43).
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direction17 of pure spinors 	
pure
±3/2 that are “closest” to the

actual heavy-hole spinor subspace, or (ii) the direction of the
actual spinors 	±3/2. This interpretation is supported by the
definitions of the measures m1 and m2.

C. Mixing degree

The mixing and deflection angles are plotted in Fig. 3.
Starting with the [llh] scenario and Si parameters, Fig. 3(a),
we observe that as the 2DHG normal rotates, the mixing angle
varies between 0 and 20◦, the maximum achieved at θ = π/2
corresponding to [110]. The deflection angle varies by similar
magnitudes, though it is not specified uniquely by the mixing
strength: while both go to zero at high-symmetry growth di-
rections such as [001] and [111], the deflection angle is zero
also at [110] where the mixing is maximal. In this case, the
Hamiltonian does not contain any deflection-generating terms
{Jx′/y′ , Jz′ }, but only the purely mixing term {Jx′ , Jy′ }. Looking
at the [0lh] scenario shown in Fig. 3(b), one can see that
while the curves have different shapes, the overall magnitude
of the effects is similar. Turning next to germanium, plotted in
Figs. 3(c)–3(d), the curves have shapes qualitatively similar to
those for silicon, except for the overall magnitude. In Ge, both
angles are much smaller. The difference can be traced back to
a much stronger dominance of the term −J2

z′ in Ge than in Si
(compare the black solid versus dashed lines in Fig. 2).18

V. THE FORM AND STRENGTH OF THE GENERATED SOI

We now turn to msoi, motivated by an important practical
question: Assuming that there is Rashba SOI in the bulk,
Eq. (13), what is the emerging SOI in the heavy-hole subband?
Apart from being expected in Si and Ge, the form of Eq. (13)
is beneficial due to its rotational symmetry.19 We will find that
the SOI generated in the heavy-hole subband consists of two
terms,

H 2D
r = H 2D

r,def + H 2D
r,mix, (22)

induced, respectively, by the coordinate frame deflection and
the heavy-hole–light-hole mixing. We next explain the origin
of these two terms.

A. SOI generated by deflection terms

In the previous section, we have explained that terms in
Eq. (19a) can be removed from the Hamiltonian by a suitable
coordinate rotation. In this rotated frame, the leading-order
term in the spinor Hamiltonian is −J2

z′′ . On the other hand,
the electric field E inducing the bulk Rashba SOI is along the
2DHG normal z′.20 The deflection of these two axes, by angle

17Here, by “direction of the spinor” we mean the direction defining
the “z” axis in Eqs. (3)–(5).

18We note in passing that a different energy distance to the split-off
valence band leads to additional differences of silicon versus ger-
manium concerning the spin structure of the valence band [73,74].
The split-off band is not included in our model, which then does not
contain these effects.

19Invariance with respect to rotating all three vectors E, J, and k.
20For us, this is actually the definition of the 2DHG normal: The

2DHG plane is the plane perpendicular to the value of the defining
confinement field E at the location of the quantum dot.

θ+, induces SOI in the heavy-hole subband. Indeed, using
the pure-hole spinor projection rules Eq. (1) in the deflected
coordinate system one has (see Appendix C)

H 2D
r,def = α3D

r sin(θ+) Ez′ sz′′ (k · m), (23)

where we recall that m is a unit vector that lies in the x′y′
plane and is perpendicular to the plane z′z′′. We thus conclude
that the deflection results in a SOI in the first order of θ+,
in turn in the first order of the rotation-inducing strengths
in Eq. (19a). The SOI is of unusual form, with an (almost)
out-of-plane pseudospin operator sz′′ . Also, since it contains
a single pseudospin component, the SOI field direction does
not depend on the momentum direction. Such SOI generates
a persistent (pseudo-) spin helix [75–79].

B. SOI generated by mixing

Since the Luttinger Hamiltonian is bilinear in spin op-
erators, after removing the rotation-generating terms, there
are only two remaining possibilities, given in Eq. (19b).21

Assuming that such terms are present (or generated by the
rotation into the canonical coordinate frame in second order in
γδ), we are interested in the degree of mixing that they result
in, if quantified by the measure proposed in Eq. (15).

With this goal, we derive the effective SOI in the heavy-
hole subspace that is induced by the bulk Rashba SOI,
Eq. (13), and the heavy-hole–light-hole mixing terms in
Eq. (19b) denoted as Hmix. We assume that both of these
terms are small so that we can treat them perturbatively. Using
quasidegenerate perturbation theory,22 we get the effective
Hamiltonian23

H 2D
r = Phh

(
H 3D

r −
{
H 3D

r , Hmix
}




)
Phh + O

(
H2

mix

)
. (24)

Here, Phh is the projector to the heavy-hole subspace [equal to
ρ±3/2 defined below Eq. (8)] and the two terms in the bracket
give the zeroth and first-order perturbation in Hmix. The first
term inside the large brackets in Eq. (24) embodies the pure
heavy-hole limit. Relying on the projection rules given in
Eq. (1), without any deflection there is no SOI induced in
the heavy-hole subspace. A finite deflection generates the
expression given in Eq. (23). The second term in the large
brackets in Eq. (24) induces finite matrix elements of the
in-plane spin operators, as O(Hmix) corrections to Eq. (1). The
explicit formulas are listed in Table I.

The form and strength of the SOI in the heavy-hole
subband induced by the bulk Rashba SOI and light-hole–
heavy-hole mixing can now be read off from Table I. Assume

21In further derivations it is beneficial to use alternative combina-
tions J2

± = (J2
x′ − J2

y′ ± i{Jx′ , Jy′ })/2, where the raising and lowering

operators are defined by J± = (Jx ± iJy )/
√

2.
22See Footnote 1 in Ref. [80] for the nomenclature.
23The simple form of the effective interaction is yet another ad-

vantage of adopting the zone-center approximation. Aiming at an
effective Hamiltonian in the first order in H 3D

r , we are effectively
evaluating the matrix elements of the operators J in the subspace
of the two heavy-hole spinors. These spinors are given solely by HS ,
the orbital degrees of freedom in Eq. (3) are irrelevant.

115301-7



PETER STANO AND DANIEL LOSS PHYSICAL REVIEW B 111, 115301 (2025)

TABLE I. Bulk-hole spin to heavy-hole pseudospin projec-
tion rules. With heavy-hole–light-hole mixing-inducing terms Hmix

present in the Hamiltonian, the bulk spin operator given in the first
column induces finite matrix elements within the heavy-hole sub-
space, expressed using an effective pseudospin operator s given in
the corresponding table entry. The coefficients ci j are the strengths
of the terms in Hmix, as defined in Eq. (18). The given projections
are valid in any coordinate frame where the bulk hole Hamiltonian is
czz J2

z + Hmix. In the text, this frame is denoted with doubly primed
coordinates x′′, y′′, z′′. However, we omit the primes in the table to
ease the notation.

Hmix

H 3D
r none cxy

2 {Jx, Jy} cxx−cyy

2 (J2
x − J2

y )

Jx
hh→ 0 − 3cxy



× sy − 3(cxx−cyy )



× sx

Jy 0 3cxy



× sx − 3(cxx−cyy )



× sy

Jz 3sz 0 0

that only one type of mixing term is present, and start with
Hmix ∝ J2

x′′ − J2
y′′ . Using the last column of the table, one sees

that the projection preserves the bulk SOI form with a renor-
malized strength24

H 2D
r,mix = −3

cx′′x′′ − cy′′y′′



Ez′ (sx′′ky′ − sy′′kx′ ). (25)

For the other mixing term, Hmix ∝ {Jx′′ , Jy′′ }, the middle col-
umn of Table I gives

H 2D
r,mix = −3

cx′′y′′



Ez′ (sx′′kx′ + sy′′ky′ ). (26)

While this form looks nonstandard, it is unitarily equivalent to
Eq. (25) upon rotating the pseudospin axes by −π/2 around
z′′. When both mixing terms are present, their action in induc-
ing terms in the effective Hamiltonian is additive, as follows
from Eq. (24). The resulting interaction is a sum of the terms
in Eq. (25) and Eq. (26). Due to the −π/2 rotation in the
second equation, the two SOI fields are orthogonal and adding
them will result in an interaction that is unitarily equivalent to
the standard Rashba SOI

H 2D
r,mix = −msoi × Uϕα3DEz′ (sx′′ky′ − sy′′kx′ )U †

ϕ , (27)

with the pseudospin rotation dependent on the strengths of the
mixing terms,

Uϕ = exp(−isz′′ϕ), (28a)

sin ϕ

cos ϕ
= cx′′y′′

cx′′x′′ − cy′′y′′
, (28b)

24We state the result mixing the singly and doubly primed coordi-
nate frames: while the singly primed ones are the natural frame for
vectors E and k, being the coordinate system of the confinement,
the doubly primed ones are natural for the spin. In Eq. (25), one can
replace sx′′ → sx′ and sy′′ → sy′ . Within the precision of these formu-
las, set by the perturbation order O(Hmix), the two sets of operators
do not differ. See Appendix C for the derivation and comments.

0 45 90 135 180

(a)

0 45 90 135 180

(b)

exact simplified

0 45 90 135 180

(c)

0 45 90 135 180

(d)

FIG. 4. Generated SOI strength. The mixing strength msoi for Si
(upper row) and Ge (bottom row) for [llh] (left column) and [0lh]
(right column). The black curves give Eq. (30), the blue curves show
the approximation in Eq. (31).

and the strength renormalization25

|msoi| = 3

√
(cx′′x′′ − cy′′y′′ )2 + c2

x′′y′′



. (29)

Inserting 
 = −2cz′′z′′ and using the definitions in Ap-
pendix A, we finally get

|msoi| =
√

3 tan ϑ. (30)

The last equation, the strength of the induced Rashba SOI in
the heavy-hole subband appearing upon mixing, is the main
result of this section. In a simple expression, it embodies the
measure for the heavy-hole–light-hole mixing effects on SOI.

We also provide simplified formulas for the SOI strength
using the Hamiltonian expressed in the 2DHG coordinate
frame. They follow from Eq. (29) by putting ci′′ j′′ ≈ ci′ j′ and

 ≈ −2cz′z′ ≈ 4γ . For our two scenarios, we read off the
coefficients ci′ j′ from Eq. (18) and get26

for [llh] : |msoi| = 2γδ sin2 θ (3 cos 2θ + 1)



, (31a)

for [0lh] : |msoi| = γδ sin2(2θ )



. (31b)

We plot msoi in Fig. 4. The exact results are in black, the sim-
plified ones in blue. Again, the leading-order approximations
are excellent for Ge, while somewhat larger discrepancies are
visible for Si. In Si, the strength of the induced SOI can reach

25With the definitions in Eq. (28) and Eq. (29), the sign of the
measure msoi is ambiguous, as a negative sign can be traded for a
π shift in the angle ϕ. When plotting Fig. 4, we opt for a smooth
curve, allowing msoi to change sign, while keeping the function ϕ(θ )
continuous, without any jumps by π .

26For the [0lh] scenario, the same angular dependence as in
Eq. (31b) was derived in Ref. [71] for a spin-orbit interaction induced
by a discontinuity of Luttinger parameters at the heterostructure
interfaces.
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above 50% of the bulk interaction strength, while in Ge, the
ratio can be up to 20%.

VI. APPLICATIONS

Our results allow for a qualitative understanding of the
spin structure of holes in quasi-two-dimensional confinement
and structures derived from it, such as split-gate QPC or
planar quantum dots.27 We demonstrate the applications of
the results with two examples. First, we look at the effective
Hamiltonian that describes a heavy-hole spin in a finite mag-
netic field and analyze the associated g tensor. Second, we
consider the effects of strain and its gradients.

A. Zeeman interaction and g tensor

We now consider the case where a magnetic field B is
applied.28 We ignore the orbital effects and neglect the small
cubic Zeeman term.29 The corresponding bulk Hamiltonian is

H 3D
z = 2μBκB · J, (32)

where μB is the Bohr magneton, κ is the g factor. The bulk
interaction induces an effective Hamiltonian within the heavy-
hole subspace. We can get it from Eq. (24) by the substitution
H 3D

r → H 3D
z . Together with Table I, one immediately gets30

H 2D
z = μBB · gUϕsU †

ϕ , (33)

where Uϕ is defined in Eq. (28) and g is the g tensor. Applying
Table I means we have derived the preceding equation in
the doubly primed coordinate system. Here, the g tensor is
diagonal with the following components

g|x′′y′′z′′ = diag(2κ msoi, 2κ msoi, 6κ ). (34)

In this convenient coordinate system (the canonical frame),
the effects of the heavy-hole–light-hole mixing on the g tensor
are simple. At zero mixing, the g tensor components in the
x′′y′′ plane are zero. Nonzero mixing induces nonzero and
isotropic g tensor in this plane. This simplicity is obscured by
the fact that the normal of this plane is rotated with respect to

27We remind that our approach only grasps the effects included
in the zone-center Hamiltonian. Especially, influences from the
quantum-dot in-plane confinement (quantum-dot shape, squeezing,
driving, and similar), will induce additional effects through the
in-plane momenta part of the Luttinger Hamiltonian that we have
neglected by adopting Eq. (3).

28While this term breaks the TRS, we include it perturbatively. The
heavy-hole subspace is defined from a TRS-preserving Hamiltonian,
as pointed out in Footnote 10.

29We give the matrix elements of the cubic Zeeman term in Ap-
pendix E for completeness.

30A notation-related comment: we do not use any explicit sign for
the multiplication of vectors and matrices. The vectors, such as B or
J are column vectors. They become row vectors upon transpose, for
example, BT or JT . The only explicit sign concerning tensor products
that we use is the scalar product sign ·, which removes the need for a
transpose, for example, B · J ≡ BT J. It has lower precedence than a
tensor multiplication without a sign; the right-hand sign of Eq. (33)
with the operator precedence made explicit by brackets is (μBB) ·
(gUϕsU †

ϕ ).

FIG. 5. g factor as a function of the magnetic field direction B =
B(cos α sin β, sin α sin β, cos β ) varied over a semicircle in three
orthogonal planes as denoted by the legend: x′y′ means β = π/2 and
α is varied, y′z′ means α = 0 and β is varied, and z′x′ means α = π/2
and β is varied. The varied angle is on the horizontal axis of the
figure. We took the parameters for Si, scenario [0lh] with θ = 30◦,
and evaluated the g factor as g = |BT g|/B using Eqs. (21), (34), and
(35).

the 2DHG normal. The g-tensor matrix for the magnetic-field
components evaluated in the other two coordinate systems is

g|x′y′z′ = R[φ, θ+,−φ] g|x′′y′′z′′ , (35a)

g|xyz = R[φ, θ,−φ] g|x′y′z′ , (35b)

with φ = π/4 for [llh] and φ = π/2 for [0lh].31

As an illustration, we plot the g factor, defined as the norm
of the vector BT g/B, calculated using Eq. (34), (35), and the
simplified expression for the msoi, Eq. (21), in Fig. 5. We find it
remarkable that our simple model shows g-factor dependences
qualitatively similar to those observed experimentally in an
MOS Si quantum dot as well as in much more elaborate
simulations [24].32

B. Spin qubit: dephasing and Rabi driving

The g tensor derived in the previous section can be used to
analyze a heavy-hole spin qubit. We start by rewriting Eq. (33)
as

Hq = μB[Rϕ (BT g)] · s ≡ μBBq · s, (36)

where Rϕ induces the same rotation (around z′′ by angle ϕ)
on three-dimensional vectors as Uϕ induces on spinors [see
Eq. (A15)]. We have also introduced the effective magnetic
field Bq coupled to the pseudospin s.

Several standard performance metrics, including the qubit
dephasing, lifetime, or Rabi frequency, can be extracted from

31We remark that g tensors in 2DHG with arbitrary growth direc-
tions were investigated in Ref. [81].

32For example, we notice the nonsinusoidal shape (sharper minima
versus broader maxima) of some of the curves in Fig. 5 and in
Ref. [24]. Qualitatively similar curves have been obtained in a Si
finFET quantum dot, in measurements accompanying Ref. [44] (L.
Camenzind and A. Kuhlmann, private communication; and Fig. 5.1
and Fig. A.21 in Ref. [82]).
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the effective spin-qubit Hamiltonian in Eq. (36). They fol-
low from its dependence on electric and magnetic fields,
either controlled or fluctuating due to noise. We will not go
into quantitative details since our model omits details of the
quantum-dot confinement. However, we can use Eq. (36) to
elucidate the physical origins of some of these effects. To
this end, we emulate confinement changes as changes of the
parameter θ . We recall the discussion in the first paragraph
of Sec. IV, that the 2DHG normal is influenced by gates, for
example, by pulling the confined hole against an interface or
an impurity.

With this interpretation of θ , we start by the examination
of “sweet spots,” which are directions of the magnetic field
B where the g factor achieves its extremum with respect to
variations in θ . Since θ is an angle, the g-factor curve must
be periodic in it and there will be at least two sweet spots (in
θ ) for any fixed B. Translating into equations, one would look
for solutions of the following requirement:

maximal T∗
2 : min

B
|Bq · ∂θBq|. (37a)

Similarly, the qubit relaxation is mediated through the trans-
verse matrix element of the effective magnetic field,

maximal T1 : min
B

|Bq × ∂θBq|. (37b)

Since usually the relaxation is slow and not of concern, instead
of minimizing this matrix element to minimize the relaxation
rate, one is interested in finding its maximum, as the same ma-
trix element mediates qubit Rabi rotations (oscillations) under
resonant excitation. To describe such a situation, one needs
to include the effects which originate in the time dependence
of the frame in which the effective Hamiltonians, Eqs. (24),
(27), (33) were derived. As we show in Appendix D, the time
dependence generates an additional effective time-dependent
magnetic field

BU = −m
h̄

2κμB
∂t (θ + θ+). (37c)

Upon adding BU to Bq, one can, for example, search for the
maximum of the right-hand side of Eq. (37b). As stated, we
could straightforwardly plot any of these matrix elements in
the same way as the g factor in Fig. 5 and examine the extrema.
However, since there have been several recent works that do
such an analysis [25,30,83,84], instead of repeating it, we
comment on the sources of Rabi oscillations appearing in our
model.

We consider that an oscillating gate potential induces small
oscillations in θ . The corresponding time-dependent effective
Hamiltonian is

Hq = μB(B + BU ) · gUϕsU †
ϕ . (38)

Varying θ will induce (i) changes of the g-tensor “in-plane”
components through changing the value of msoi, (ii) changes
of the value of the angle ϕ defining the “in-plane” axes in
the pseudospin space, (iii) a fictitious magnetic field BU with
an oscillatory magnitude and fixed direction (along m) due
to the time-dependent frame rotation, and (iv) oscillations
of B [small harmonic displacements δB(t ) ∝ B × m], also
due to the time dependence of the new reference frame. To
draw analogies to the existing results for holes and electrons,

we note that with the magnetic field applied in the 2DHG
plane, the arising Hamiltonian terms are (approximately, ne-
glecting here the deflection angle θ+) purely longitudinal in
(i) and purely transverse in (ii,iii,iv).33 The latter channels
will, therefore, be more efficient in inducing Rabi oscillations.
Loosely speaking, channel (i) corresponds to the modulation
of the g-tensor eigenvalues and (ii)–(iv) its eigenvectors (“iso-
Zeeman” in the nomenclature of Ref. [17]). We point out that
the Rabi oscillations associated with Hq do not rely on the SOI
terms in Eq. (22). Adding them to the effective Hamiltonian
and promoting the in-plane momenta to c numbers oscillating
in time, (v) an additional channel to induce Rabi oscillation
arises [85]. Since the linear-in-momenta SOI terms can be
viewed, in the lowest order of the dot size over the SOI length,
as a gauge transformation [86–89], this channel is similar
in spirit to the fictitious magnetic field BU induced by the
time-dependent frame. In a given device all five channels will
interfere in inducing Rabi oscillations.

C. Strain and SOI

We now look at strain, as it profoundly affects holes
[2,20,51,90]. The strain in the device is parametrized by a
symmetric strain tensor εi j . Its elements generate additional
terms in the bulk hole Hamiltonian [90]

HBP = − 2
3 Du

(
εxxJ2

x + c.p.
)

− 2
3 D′

u(εxy{Jx, Jy} + c.p.), (39)

where the deformation potentials Du and D′
u are material

parameters. Different from previous sections, we do not con-
sider rotations of the 2DHG normal. Instead, we consider
various forms of the strain tensor, perhaps due to nearby
gates, with consequences analogous to rotations. We assume
a fixed 2DHG normal [001] and consider in-plane strain
εxx = εyy = ε|| < 0 relevant, for example, for lattice-matched
heterostructures. The in-plane compression induces out-of-
plane expansion εzz = −2ε||c12/c11, with material-dependent
elastic constants c11 and c12. Inserting this form of the diag-
onal strain-tensor components into Eq. (39), we get (constant
omitted)

HBP = − 2
3 DuJ2

z (εzz − ε||)

− 2
3 D′

u(εxy{Jx, Jy} + εyz{Jy, Jz} + εzx{Jz, Jx}). (40)

The Hamiltonian is analogous to Eq. (18). The term in the first
line sets the unperturbed system with the pure spinors given
in Eq. (5) as its eigenstates and providing for the heavy-hole–
light-hole splitting34


 = 4
3 Du(εzz − ε||). (41)

The second line of Eq. (40) contains the perturbing terms.
Classifying them using Eq. (19), the last two terms induce

33For channels (iii) and (iv), this is so if the in-plane field B is
applied perpendicular to m, in which case the (fictitious) magnetic
fields BU and δB(t ) are both perpendicular to B.

34It also means that with εxx = εyy and without any off-diagonal
strain components, the strain does not induce heavy-hole–light-hole
mixing [62].
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FIG. 6. Strain-generated mixing and deflection angle. Referring
to the left y axis and the parameter εxy on the horizontal axis, the
curves show Eq. (44), the mixing measure msoi. Referring to the right
y axis and the parameter εrot on the horizontal axis, the same curves
show Eq. (42), the deflection angle θ+. We use ε|| = −0.61%, inspired
by values appropriate for Ge/Ge0.8Si0.2 heterostructures [59].

deflection of the spinor axis away from the 2DHG normal,
here equal to the crystal axis z′ = z. In analogy to Eq. (21),
these off-diagonal strain components, quantified by ε2

rot =
ε2

zx + ε2
yz, generate a deflection angle

sin θ+ = D′
u

Du

εrot

εzz − ε||
. (42)

Neglecting the small contribution from this deflection, the
heavy-hole–light-hole mixing is given by the first term in the
second line of Eq. (40),35

cx′′y′′ ≈ cx′y′ = cxy = − 4
3 D′

uεxy. (43)

Using Eq. (41), we can evaluate Eq. (15):

msoi = 3
D′

u

Du

εxy

εzz − ε||
. (44)

The two quantities characterizing the perturbing terms, the
mixing msoi and the deflection angle θ+, are plotted in Fig. 6.
Once again, one can see a substantial SOI (measured by
msoi; the left y axis) arises already at relatively small strains.
It is generated primarily by the in-plane off-diagonal strain
components εxy. With strains as small as a few times 10−4

(expected in typical devices [91]), the SOI that is generated in
the heavy-hole subband has strength comparable to its value
in the bulk (msoi of order 1). The off-diagonal out-of-plane
strain-tensor elements, on the other hand, induce primarily a
deflection of the pure spinor direction. The values denoted on
the right y axis convert msoi to the corresponding deflection
angle θ+. In the range plotted, the right-hand side of Eq. (42)
is small, the deflection angle θ+ is linear in the off-diagonal
strain components, and the two quantities are proportional.

35In writing Eqs. (41), (43), and (44), we are considering the strain
effects in isolation from the orbital effects, neglecting the latter here.
In reality, both orbital and strain effects contribute. For example, the
heavy-hole–light-hole splitting is a sum of Eq. (5e) (supplemented
by the proper orbital-energy scale) and Eq. (41).

D. Strain gradients and Rabi driving

Elaborate numerical and analytical analysis of Ref. [58]
considered strain gradients, which together with periodically
displacing a Ge quantum-dot hole in space induce Rabi os-
cillations. It was found that strain components εxz and εyz

are most effective in inducing Rabi oscillations. We can pro-
vide a simple explanation based on our analysis. According
to Eq. (40), the associated spin operators belong to Hrot in
Eq (19). Such operators lead, predominantly, to a rotation of
the heavy-hole spinor (a “deflection” in our nomenclature).
The corresponding rotation of the reference frame (see Ap-
pendix D) induces Rabi oscillations through the last term in
Eq. (38), which is linear in ∂tθ+, in turn linear in εrot accord-
ing to Eq. (42). The requirement for resonance means the
frequency of driving equals the Zeeman energy |μBBq|. On
the other hand, the term εxy{Jx, Jy} belongs to Hmix, meaning
θ+ ≈ 0, and enters into Eq. (38) in the second order, the second
term in the bracket in Eq. (24). Its contribution to Rabi driving
is thus expected to be smaller.

VII. CONCLUSIONS

We have analyzed the heavy-hole–light-hole mixing in
2DHG. This mixing is central to many spin effects in devices
based on holes in 2DHG. Particularly, it is responsible for the
response of the hole spin to electric fields. We have identi-
fied a canonical coordinate reference frame and a canonical
mixing measure, the heavy-hole–light-hole mixing angle ϑ .
We have examined several derived measures of the mixing
motivated by experiments and theory and quantified their re-
lations to the mixing angle. We find that the measures based
on the pure light-hole content in the wave function somewhat
underestimate the efficiency of mixing in inducing the SOI:
with a pure light-hole content that might be considered
“small,” 36 the arising SOI is essentially of the same strength
as the one in the bulk.

We have adopted the quasi-two-dimensional and zone-
center approximation, which amounts to neglecting the
in-plane momenta kx′ = 0 = ky′ . The approximation allows
one to derive analytical results and get physical insight into
various aspects of heavy-hole spins. Within this calculation
scheme, we could identify different types of terms in the hole
kinetic energy and strain Hamiltonians. Terms of the first type
induce a rotation of the direction of spinors while keeping
them pure. These terms are most efficient in inducing Rabi
oscillations, acting analogously to Rashba or Dresselhaus
SOIs inducing Rabi rotations in the conduction band through
EDSR. They also preserve the “z” eigenvalues. Terms of the
second type admix the pure light-hole components. They are
less efficient for Rabi driving and more profoundly change the
g tensor. They are responsible for the g-tensor finite in-plane
components.

The zone-center description provides a simple analytical
model with which the basic characteristics of a spin qubit

36For example, Ref. [92] considers a 90% content of heavy-hole as
“small” heavy-hole–light-hole mixing. Similarly, Ref. [68] considers
a 10% light-hole admixture as “small.”
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can be investigated without any sophisticated numerics or
simulations. We have exemplified it by plotting the hole g
factor and gave formulas from which matrix elements respon-
sible for hole spin dephasing, relaxation, or Rabi frequency
can be obtained straightforwardly. An interesting extension
of our work would be to include the in-plane orbital degrees
of freedom perturbatively and analyze to which extent the
simple scheme presented here can be used semiquantitatively.
We leave the establishment of such a connection to elaborate
numerical models for the future.

As a final comment, though we focus here on 2DHG, the
assignment of the canonical coordinate system and the mixing
angle apply to any spin-3/2 Hamiltonian with TRS. Thus,
the mixing quantification can be applied, for example, to the
effective Hamiltonian of a spin qubit that was obtained by
integrating out the orbital degrees of freedom. While such an
effective model is usually derived only for the ground state,
that is, 2 × 2 Hamiltonian, the calculations could be extended
to cover the lowest 4 × 4 space. With this proviso, our results
are applicable to a broader class of systems, to characterize
the mixing of two Kramers-partner pairs.
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APPENDIX A: TRS HAMILTONIAN FOR SPIN 3/2
IN A SIMPLE FORM

Here, we examine the meaning of the matrix C of Hamilto-
nian coefficients ci j defined in Eq. (18a) and its relation to the
task of finding the eigenstates of the spin-3/2 Hamiltonian.
We also elucidate the meaning of orthogonal transformations
of the matrix C.

We consider a spin-3/2 Hamiltonian with the time-reversal
symmetry (TRS). It is a four-by-four matrix that can be built
from the following six linearly independent operators,

1, J2
z′ , J2

x′ − J2
y′ , {Jx′ , Jy′ }, {Jy′ , Jz′ }, {Jz′ , Jx′ }. (A1)

The basis choice implies the parametrization

H = c1′1 + JT C′J, (A2)

that is, the constant c1′ and a real symmetric matrix C′

Jx′

Jy′

Jz′

⎛
⎝cx′x′ cx′y′ cx′z′

cx′y′ cy′y′ cy′z′

cx′z′ cy′z′ cz′z′

⎞
⎠. (A3)

We remark here that Eq. (A2) contains a gauge degree of free-
dom, due to the relation J · J = const. If the matrix C′ encodes
only the nonconstant terms from the basis in Eq. (A1), the
diagonal elements have to fulfill cx′x′ + cy′y′ = 0. A generic

matrix C′ can be brought to this form by subtracting (cx′x′ +
cy′y′ )/2 from the diagonal and assigning this constant to c1′ .
We adopt this definition of c1′ (the gauge choice).

In the main text, we claim that it is beneficial to choose a
coordinate system in which the Hamiltonian does not contain
the last two terms of Eq. (A1). We first show that such a
Hamiltonian can be easily diagonalized. Omitting the constant
and dividing the Hamiltonian by the factor −cz′′z′′ , we obtain
(H = −HS/cz′′z′′ )

H = −J2
z′′ + A

(
J2

x′′ − J2
y′′

) + B{Jx′′ , Jy′′ }, (A4)

where the real constants are A = (cy′′y′′ − cx′′x′′ )/2cz′′z′′ , B =
−cx′′y′′/2cz′′z′′ . Using the ladder operators (see footnote 21),
we write this as

H = −J2
z′′ + α√

3
J2
+′′ + α∗

√
3

J2
−′′ , (A5)

where we introduced another (complex) constant α =√
3(A − iB). In the basis of pure heavy- and light-hole states,

Eq. (5), the Hamiltonian is block diagonal and has a single
nontrivial matrix element〈

	
pure
+3/2

∣∣H∣∣	pure
−1/2

〉 = α = 〈
	

pure
+1/2

∣∣H∣∣	pure
−3/2

〉
. (A6)

Subtracting the constant −5/4, the four-by-four matrix of the
Hamiltonian H is

+3/2

+1/2

−1/2

−3/2

⎛
⎜⎜⎝

−1 0 α 0
0 1 0 α

α∗ 0 1 0
0 α∗ 0 −1

⎞
⎟⎟⎠. (A7)

It is composed of two isolated two-by-two blocks, mapping to
each other by the TRS,

+3/2

−1/2

(−1 α

α∗ 1

)
T RS←→ −3/2

+1/2

(−1 α∗
α 1

)
. (A8)

Correspondingly, the Hamiltonian eigenstates come in pairs
mapping to each other by the TRS. The pair with the higher
eigenvalue,

ε =
√

1 + |α|2, (A9)

is

|	+1/2〉 = (sin ϑ/2, 0, eiϕ cos ϑ/2, 0)T ,

|	−1/2〉 = (0, e−iϕ cos ϑ/2, 0, sin ϑ/2)T , (A10a)

and the pair with the lower eigenvalue, −ε, is

|	+3/2〉 = (cos ϑ/2, 0,−eiϕ sin ϑ/2, 0)T ,

|	−3/2〉 = (0,−e−iϕ sin ϑ/2, 0, cos ϑ/2)T . (A10b)

In these equations,

cos ϑ = 1√
1 + |α|2

, (A10c)

sin ϑ = |α|√
1 + |α|2

, (A10d)

tan ϕ = − Im(α)

Re(α)
, (A10e)
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so that ϑ ∈ [0, π/2] and ϕ ∈ [0, 2π ] for a general complex
number α. The definition in Eq. (A10e) is consistent with the
definition in Eq. (28).

1. Orthogonal transformations of matrix C

Since the matrix C′ elements are the coefficients of a rank-
two tensor [see Eq. (A2)], they transform under coordinate
rotations according to, essentially, Eq. (17):

ci′ j′ = RikR jl ck′′l ′′ . (A11)

In the matrix notation, we can write

C′ = RC′′RT . (A12)

The orthogonal transformations of C′, and among them, the
process of diagonalization of C′, can therefore be interpreted
as changing the Cartesian coordinate frame for the spin oper-
ators J. The matrix C′ can be diagonalized by an orthogonal
transformation R[φ, θ+, φ′] parametrized by three Euler an-
gles. These three free parameters are needed to zero the
three off-diagonal entries, cx′z′ , cy′z′ , cx′y′ . Alternatively, one
can bring the matrix into an “almost-diagonal form,”⎛

⎝cx′′x′′ cx′′y′′ 0
cx′′y′′ cy′′y′′ 0

0 0 cz′′z′′

⎞
⎠, (A13)

with only two free parameters, using Euler matrix R[φ, θ+, 0].
It is easy to diagonalize C′ in Eq. (A13) by an additional
rotation within the x′′y′′ plane. We have not considered this last
rotation in the main text, since it does not change the direction
of the axis z′′ and is immaterial for the Hamiltonian form given
in Eq. (A7): the rotation changes only the phase of α.

We now recall the following identity of rotations of spinors
and vectors

J · Rn = UJU † · n, (A14)

where n is a unit vector, J is a three-component vector of spin-
3/2 operators, R is a three-by-three matrix implementing a
rotation in the Cartesian space, and U is the corresponding
rotation in the spin space,

R = exp(−im · lγ ) ←→ U = exp(−im · Jγ ), (A15)

with m the rotation axis and γ the rotation angle, and l a three-
component vector of rotation generators in three-dimensional
space (three by three matrices). Upon a coordinate rotation
R, the two corresponding forms of the Hamiltonian change as
follows

JT · RT C′R︸ ︷︷ ︸
C′′

·J = U †JT · C′ · JU︸ ︷︷ ︸
H ′′

, (A16)

with the corresponding operators given in Eq. (A15).
We conclude that one way to diagonalize a spin-3/2 Hamil-

tonian with TRS is the following two-step procedure. The first
step is equivalent to finding a suitable coordinate frame: One
simplifies the matrix C′, bringing it to the form in Eq. (A13).
The Hamiltonian expressed in pure heavy- and light-hole
states then takes the form of Eq. (A7). The latter (four-by-
four) matrix cannot be diagonalized further within the class
of considered transformations U , being the one in Eq. (A15).
While the Hamiltonian can be diagonalized [the result given

in Eq. (A10)], the unitary transformation implementing it is
not a Cartesian coordinate rotation, as can be inferred from
Eq. (A5).

2. Physical meaning of the canonical coordinate frame

Here we show that the canonical coordinate frame in which
the Hamiltonian is “simple,” taking the form of Eq. (A7),
has a physical meaning. That is, it is not just an arbitrary
frame suitable for some calculations, but it can be identified
as a solution to well-posed physical problems. Specifically, we
show that the direction z′′ is (i) the direction of the vector n in
Eq. (6) that minimizes m1 (thus, maximizes the g factor), and
simultaneously (ii) the direction of the vector n in Eq. (8) that
minimizes m2 (thus, maximizes the pure heavy-hole wave-
function components), and simultaneously (iii) the “z” axis
of a coordinate frame in which the Hamiltonian matrix in
Eq. (A7) has the smallest possible sum of off-diagonal ele-
ments squared. We now prove these three properties.

To prove (i), we consider

m1 = 3
2 − max

n
〈	3/2|n · J|	3/2〉. (A17)

Since the maximum is searched over all directions, we can
consider the doubly-primed coordinate system

m1 = 3
2 − max

n′′
〈	3/2|n′′ · J′′|	3/2〉. (A18)

In this coordinate frame, the exact eigenspinor is simple,

|	3/2〉 = cos ϑ/2
∣∣	pure

3/2

〉 − eiϕ sin ϑ/2
∣∣	pure

−1/2

〉
. (A19)

Since the operator n · J is linear in J±, the cross terms are zero
and the expression simplifies to

m1 = 3
2 − max

n′′
〈	3/2| cos2(ϑ/2)nz′′Jz′′ |	3/2〉

+ 〈	−1/2| sin2(ϑ/2)nz′′Jz′′ |	−1/2〉
= 3

2 − max
n′′

nz′′
(

3
2 cos2(ϑ/2) − 1

2 sin2(ϑ/2)
)
. (A20)

Since the factor in brackets is non-negative for any ϑ within
its domain, ϑ ∈ [0, π/2], the maximum is reached for n′′ =
(0, 0, 1), where

m1 = 2 sin2(ϑ/2). (A21)

That is, the maximal g factor is achieved with the magnetic
field along the “z” axis of the canonical frame.

To prove (ii), we start with the definition

m2 = 1 − 1
2 max

U
Trρ3/2Uρ0

3/2U
†, (A22)

and exploit the canonical coordinate frame ρ3/2 = V ρ
simple
3/2 V †,

where V implements the transformation into the canonical
coordinate frame, and ρ

simple
3/2 is the projector on the subspace

of eigenstates given in Eq. (A10b). Since the set over which
the right-hand side is minimized is invariant with respect to a
fixed coordinate rotation V , we get

m2 = 1 − 1
2 max

W
Trρsimple

3/2 W ρ0
3/2W

†. (A23)

We now insert the definition given below Eq. (8), ρ0
3/2 =

diag(1, 0, 0, 1) and parametrize the searched-for rotation by
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two Euler angles, W = exp[−iv(Jx′′ cos u + Jy′′ sin u)], ex-
ploiting the fact that the third rotation, along the resulting z′′,
leaves the projector ρ0

3/2 invariant. By explicit evaluation and
some algebraic manipulations, we got the expression

m2 = 1 − 1
8 max

u,v
{4 + cos ϑ + 3 cos ϑ cos 2v

+ 2
√

3 sin ϑ sin2 v cos(2u − ϕ)}. (A24)

Here, the angles ϑ and ϕ appear from having expressed ρ
simple
3/2

using Eq. (A10b), and the two angles u, v are parameters
over which the expression is maximized. Since the first three
terms in the curly brackets add to a non-negative number,
the expression will be maximal if the last term is the largest
positive possible. The condition selects 2u − ϕ = 0 mod 2π .
The expression becomes

m2 = 1 − 1
2 max

v
{1 + cos ϑ

− 1
2 sin2 v(3 cos ϑ −

√
3 sin ϑ )}, (A25)

which simplifies to

m2 = 1 − cos ϑ

2
+ 1

4
min

v
{sin2 v(3 cos ϑ −

√
3 sin ϑ )}.

(A26)
The expression in the round bracket is positive for ϑ ∈
[0, π/3] and negative for ϑ ∈ [π/3, π/2]. In the first case,
we get the maximum at v = 0 mod π with value

m2 = sin2(ϑ/2), if ϑ � π

3
. (A27)

The second case gives v = π/2 mod π and

m2 = 1

4
(2 + cos ϑ −

√
3 sin ϑ ), if ϑ � π

3
. (A28)

Thus, if the mixing angle is not large, ϑ � π
3 , the measure m2

is maximized for n in Eq. (8) being along the canonical frame
z′′ axis.

The crossover (a qualitative change) at α = √
3 corre-

sponding to ϑ = π/3 that m2 displays can be understood
by looking at the matrix C in the canonical frame, where
this matrix is diagonal. For small mixing, the matrix is C′′ =
diag(A,−A,−1), with A = ±|α|/√3 small. At the crossover,
when |α| = √

3, the value of A reaches ±1. For even larger
|α|, the component cz′′z′′ is not anymore the dominant one. One
should rename the axes, taking y′′ (or x′′, depending on the
sign of A) as the new “z” axis. This axes renaming converts
a C′′ matrix with |α| >

√
3 to a matrix with |α| �

√
3. The

explicit mapping is

|α| →
√

3 + |α|√
3|α| − 1

, (A29)

which translates to ϑ → 2π/3 − ϑ . Considering the avail-
ability of this mapping, the mixing parameter values larger
than π/3 are not relevant.

To prove (iii), we consider the four-by-four matrix H in
Eq. (A2) and the expression in Eq. (9),

m3 = 1


2
min

n

∑
i �= j

∣∣hn
i j

∣∣2
. (A30)

We aim to prove that n along z′′ minimizes m3. To this end, let
us take the sum of all matrix elements squared∑

i j

|hi j |2 =
∑

i j

hi jh
∗
i j =

∑
i j

(H )i j (H
†) ji = Tr(HH†).

(A31)

This expression is invariant with respect to unitary transfor-
mations of H (thus, also to Cartesian coordinate rotations).
Indeed,

Tr(HH†) = Tr(UHU †UHU †) = Tr(H ′H ′†). (A32)

Since the sum of all elements squared is a constant, the mini-
mization of the sum of off-diagonal elements is equivalent to
the maximization of the sum of the on-diagonal elements.

From the six operators constituting a basis for H given in
Eq. (A1), only 1 and J2

z̃ have matrix elements on the diagonal.
The sum of the squared off-diagonal elements of H then is

m3 = 
−2Tr(H2) − 
−2 max
ñ

{
2
(

15
4 c1̃ + 9

4 cz̃z̃
)2

+ 2
(

15
4 c1̃ + 1

4 cz̃z̃
)2

}
,

(A33)

where the tilde means ñ is an arbitrary unit vector, not related
to any of the considered coordinate frames in any special way.

We now consider a Hamiltonian expressed in the
canonical frame with a diagonal associated matrix C′′ =
diag(cx′′x′′ , cy′′y′′ , cz′′z′′ ), and examine how does the sum of the
diagonal elements squared behave upon adopting a different
coordinate frame. That is, we evaluate Eq. (A33) for a trans-
formed matrix

C̃ = R[u, v, u′]T C′′R[u, v, u′], (A34)

for arbitrary angles u, v, u′. Here, it is the only place in this
paper where one needs to pay attention to the gauge freedom
explained below Eq. (A3). The constraint cy′′y′′ + cx′′x′′ = 0 is
not preserved by Eq. (A34). We assume c1′′ = 0 and assign
c1̃ = (cx̃x̃ + cỹỹ)/2 as explained below Eq. (A3). With these
definitions, we explicitly evaluate Eq. (A34) and after some
algebraic manipulations we obtain

c1̃ = 1
2 sin2 v(cz′′z′′ − cx′′x′′ cos 2u), (A35a)

cz̃z̃ = cz′′z′′ cos2 v − 1
2 sin2 v(cz′′z′′ − 3cx′′x′′ cos 2u),

(A35b)

and finally

m3 = 
−2Tr(H2) − max
v,u

c2
z′′z′′


2

(
41

4
− 4y + y2

)
, (A36)

where

y = sin2 v(3 +
√

3 tan ϑ cos 2u). (A37)

The expression in the second bracket in Eq. (A36), a function
of y, has a maximum at y = 0 for 0 � y � 4. This solution
means the sum of the squared off-diagonal elements is mini-
mal for sin v = 0, meaning in the canonical frame, as long as
the mixing is not large, specifically, ϑ � π/6. In this range,
the value of m3 is

m3 = tan2 ϑ, (A38)
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what we obtained by evaluating the trace using H in the
canonical frame, Eq. (A7) and putting 
 = −2cz′′z′′ , arriv-
ing at Eq. (12c). For ϑ > π/6, the minimum is reached for
sin v = 1, cos 2u = 1 and has the value

m3 = 1
4 (

√
3 − tan ϑ )2. (A39)

The crossover at ϑ = π/6 that m3 displays has the follow-
ing meaning. At the crossover at ϑ = π/3, discussed around
Eq. (A29), there is an alternative axes renaming. Namely,
upon subtracting a constant, the Hamiltonian is proportional
to +J2

x and describes a system where the pure light holes are
the ground state. Irrespective of the light-hole or heavy-hole
character, for m3 the important fact is that such Hamiltonian
is diagonal (that is, the axes can be chosen such that α = 0). It
is this choice of axes that m3 selects as the one minimizing the
off-diagonal elements for ϑ > π/6. Concerning the form of
the Hamiltonian, adopting this choice means taking Eq. (A7)
with inverted signs on the diagonal, and mapping the mixing
angle ϑ → π/3 − ϑ .

As a final comment, we mention that the canonical frame
also minimizes the count of the nonzero off-diagonal ele-
ments. This minimal count is four, stemming from a single
nonzero off-diagonal matrix element appearing in two copies
required by the matrix hermiticity and further doubled by
TRS, resulting in the form given in Eq. (A7). Thus, the canon-
ical frame minimizes both the count as well as the total sum
of the squares of the off-diagonal elements of H .

3. Exact formulas

Here we give exact formulas for the deflection angle θ+
and the measure msoi for the scenarios considered in the main
text. We first give the solution to a standard form of the
Hamiltonian, and then list transformations that convert each
scenario to the standard form.

By the standard form, we mean that the matrix parametriz-
ing the Hamiltonian has been converted to the following form

C̃ =
⎛
⎝ cx̃x̃ 0 cx̃z̃/2

0 cỹỹ 0
cx̃z̃/2 0 cz̃z̃

⎞
⎠. (A40)

It can be brought to a diagonal form C′′ = diag(cx′′x′′ ,

cy′′y′′ , cz′′z′′ ) with

cx′′x′′ = 1
2 (cx̃x̃ + cz̃z̃ ) + 1

2

√
(cx̃x̃ − cz̃z̃ )2 + c2

x̃z̃, (A41a)

cy′′y′′ = cỹỹ, (A41b)

cz′′z′′ = 1
2 (cx̃x̃ + cz̃z̃ ) − 1

2

√
(cx̃x̃ − cz̃z̃ )2 + c2

x̃z̃, (A41c)

by

C′′ = R[0, θ+, 0]T C̃R[0, θ+, 0], (A42)

with R the Euler rotation matrix and the angle

θ+ = 1
2 arctan(cx̃x̃ − cỹỹ,−cx̃z̃ ). (A43)

The heavy-hole–light-hole splitting defined by C′′ is


 = 3

2

√
(cx̃x̃ − cz̃z̃ )2 + c2

x̃z̃ − cz̃z̃ + cx̃x̃

2
+ cỹỹ. (A44)

TABLE II. The information needed to obtain the matrix C̃ in
Eq. (A40) for the four cases (given in the header line) considered
in the main text. For “scenario [llh],” the matrix C has nonzero
entries cz′z′ , cx′z′ = cy′z′ , cx′y′ as given in Eq. (18b). For “scenario
[0lh],” the matrix C has nonzero entries cz′z′ , cy′z′ , cy′y′ , as given in
Eq. (18c). For “strain εxy,” the matrix C has nonzero entries given in
Eq. (40) putting εyz = 0 = εzx , namely cz′z′ = − 2

3 Du(εzz − ε||), and
cx′y′ = − 2

3 D′
uεxy. For “strain εxz,” the matrix C has nonzero entries

given in Eq. (40) putting εxy = 0 = εyz, namely cz′z′ = − 2
3 Du(εzz −

ε||), cx′z′ = − 2
3 D′

uεxz.

scenario strain

[llh] [0lh] εx′y′ εx′z′

φ π/4 π/2 π/4 0
cx̃x̃ cy′y′ cy′y′ cx′y′/2 0
cỹỹ 0 0 −cx′y′/2 0
cz̃z̃ cz′z′ cz′z′ cz′z′ cz′z′

cx̃z̃ cy′z′ cy′z′ 0 cx′z′

After presenting this generic case, we now give explicit
formulas for transformations of each scenario into Eq. (A40).
In all these specific scenarios, the transformation from the
x′y′z′ coordinate frame to the above considered x̃ỹz̃ frame is
implemented by

C̃ = R[φ, 0, 0]T C′R[φ, 0, 0]. (A45)

The angle φ as well as the matrix elements of C are given in
Table II.

APPENDIX B: DERIVATION OF TABLE I

Expressing the mixing terms through operators J± defined
in footnote 21, it is straightforward to derive the following
table:

Hmix

H 3D
r {Jx, Jy} J2

x − J2
y

J+
{.,Hmix}−−−−−→ 2J3

+/i 2J3
+

J− −2J3
−/i 2J3

−

. (B1)

The body of the table gives the anticommutator {H 3D
r , Hmix},

dropping the terms that are zero upon projecting them to
the heavy-hole subspace by Phh · Phh, for two alternatives
for Hmix and two alternatives for H 3D

r as given in the table
row and column headers. Evaluating a single matrix element
〈	pure

3/2 |J3
+|	pure

−3/2〉 = 3/
√

2, the remaining matrix elements be-
ing zero, we get

J3
±

hh→ PhhJ3
±Phh = 3s±. (B2)

With this, the table for projections becomes

Hmix

Hr {Jx, Jy} J2
x − J2

y

J+
Phh{.,Hmix}Phh−−−−−→ 6s+/i 6s+

J− −6s−/i 6s−

. (B3)
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To get Table I in the main text, each entry should be multiplied
by −1/
 and the rows should be linearly combined to switch
back to the Cartesian-index operators Jx and Jy.

APPENDIX C: DERIVATIONS OF THE SOI PROJECTIONS

Here we show how to derive results such as Eqs. (23),
(25), and (26) using the projection rules given in Table I. The
rules (for going from the bulk spin operators J to heavy-hole
pseudospin operators s) are simple in the canonical coordi-
nate frame x′′y′′z′′. However, in going from the bulk to the
two-dimensional hole gas, we are implicitly applying further
“rules” for the momentum operators, namely kz′

2D→ 0. One
can also interpret the fact that the electric field is along
the 2DHG normal as yet another rule, Ex′

2D→ 0 and Ey′
2D→ 0.

Therefore, the projection for the spin operators and for the
momentum and electric field vectors are simplest in different
coordinate frames. The relative rotation between these two
frames will complicate the resulting expressions, in principle.
However, here we show that the resulting differences are of
order O(θ2

+) = O(γ 2
d ) and can be thus neglected within the

precision that we work with, set by the perturbation order
included in Eq. (24).

To show it, we first note that the relative rotation be-
tween the singly and doubly primed coordinates is given by
Eq. (17b) with θ → θ+ and the angles φ′ = −φ as speci-
fied for the two scenarios. This simplification is due to the
choice φ′ = −φ. The elements of matrix R then give overlaps
between axes unit vectors in the two coordinate frames. We
note that x′′ · x′ = 1 + O(θ2

+ ), the same for the alignment of
the y axes, and x′′ · y′ = O(θ2

+ ). Therefore, to precision O(θ2
+ ),

the axes x and y are aligned in both coordinate systems.
We now turn to Eq. (23). Starting with the bulk Rashba

SOI, Eq. (13), stripped of the overall constant, we apply the
leading-order (Table I for Hmix = none) projection rule for the
spin operators in the doubly primed coordinate system:

J · (k × E)
hh→ sz′′z′′ · (k × E). (C1)

Next, we use the cyclic property of the cross product

sz′′k · (E × z′′), (C2)

and use the “rule” for the electric field vector to get

Ez′sz′′k · (z′ × z′′). (C3)

As the angle between the z axes in the two coordinate systems
is θ+, we arrive at Eq. (23).

We now retrace these steps for the first-order corrections.
Let us consider the mixing term J2

x′′ − J2
y′′ , corresponding to

the last column of Table I and omit the numerical factor
−3(cx′′x′′ − cy′′y′′ )/
, so that the projection rule is Jx′′

hh→ sx′′ ,

Jy′′
hh→ sy′′ , Jz′′

hh→ 0. We have

J · (k × E)
hh→ (sx′′x′′ + sy′′y′′) · Ez′ (ky′x′ − kx′y′), (C4)

where to get the second bracket, we used that E = Ez′z′.
Neglecting the O(θ2

+ ) terms in the dot products of the axes
vectors of the two coordinate frames, we get

Ez′ (sx′′ky′ − sy′′kx′ ), (C5)

which is Eq. (25). With the other mixing term, the result in
Eq. (26) follows analogously.

APPENDIX D: TIME-DEPENDENT EFFECTIVE
2DHG NORMAL

Here we elucidate the effective heavy-hole Hamiltonian
describing the system when the angle θ is time dependent. We
remind that the angle parametrizes the effective confinement
direction, that is, the normal of a surface against which the
confinement presses the hole. Apart from the heterostructure,
the gates and environmental electric noise also contribute to
the confinement potential. Considering the time-dependent
value of θ is then reasonable, though its changes will typically
be small.

Before generalizing to a time-dependent case, we summa-
rize the derivation presented in the main text for constant θ .
We start with a band-center Hamiltonian

H = H0(J, J) + Hrot (J, J) + Hmix(J, J) + H 3D(J · A). (D1)

With the last term, we include a generic bulk Hamiltonian with
an unspecified vector A, covering both the SOI and Zeeman
terms considered in the main text. The arguments in brackets
denote that the first three terms are quadratic, and the last
term is linear in the spin operators J. The terms are defined
in Eqs. (18) and classified into parts in Eq. (19). We have also
used H0(J, J) = −(
/2)(J · z′)2.

We write the quadratic terms as three-by-three matrices C,

H = J′ · (C′
0 + C′

rot + C′
mix)J′ + H 3D(J′ · A′), (D2)

and note that their elements, if taken from Eq. (18), corre-
spond to the coordinate system x′y′z′. We have denoted this
using a prime on all quantities. Our central point in the main
text was that upon finding a suitable direction parametrized by
z′′, the bilinear terms can be written with the form given in the
previous equation with C′′

rot = 0,

H = J′′ · (C′′
0 + C′′

mix)J′′ + H 3D(J′ · A′). (D3)

Although the elements of C matrices might have changed
values, their form (which elements are zero) is fixed by the
definition in Eq. (19).37 Particularly, C′′

0 is still a matrix with a
single nonzero element, corresponding to a projector |z′′〉〈z′′|.
The transformation from Eq. (D2) to (D3) is a change of the
basis of the three-dimensional space, that is, a rotation. We
make this rotation explicit,

H = J′ · Rθ+ (C′′
0 + C′′

mix)RT
θ+J′ + H 3D(J′ · A′), (D4)

with RT
θ+ being the rotation taking the axis z′ to z′′, that is Rθ+ =

R[φ, θ+,−φ] given in Eq. (17).
We now trade the three-component vector rotation for

a corresponding spinor rotation Uθ+ , using the identity in
Eq. (A14),

H = Uθ+[J′ · (C′′
0 + C′′

mix)J′]U †
θ+ + H 3D(J′ · A′). (D5)

37The simplified formulas in Eq. (21) are derived neglecting the
O(θ 2

+ ) difference between the values of the entries in C′′
mix and C′

mix.
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Next, we move the last term inside the unitaries,

H = Uθ+[J′ · (C′′
0 + C′′

mix)J′ + H 3D(J′ · A′′)]U †
θ+, (D6)

where we used RT
θ+A′ = A′′. This Hamiltonian makes explicit

the frame that has been implicit in the derivations in the main
text. As the final step towards an effective Hamiltonian valid
for a time-dependent frame, we switch to a time-independent
frame for the spin operator. We choose the crystallographic
coordinates for such a frame, even though doubly primed
axes corresponding to an arbitrary fixed value of θ0 would be
equally suitable. In analogy with the above, it results in the
replacement θ+ → θ + θ+ and removing primes from the spin
operators in the previous equation,

H = Uθ+θ+ [J · (C′′
0 + C′′

mix)J + H 3D(J · A′′)]U †
θ+θ+ . (D7)

We can describe the system with a time-dependent 2DHG
normal with this result. The reference frame depends on time
and generates an additional Hamiltonian term

HU = −ih̄U †
θ+θ+∂tUθ+θ+ . (D8)

Inserting the definition of the rotation operator, we get

HU = −h̄J · m ∂t (θ + θ+). (D9)

This term should be added to H 3D in Eq. (24). We con-
clude that, apart from making the vector A′′ = RT

θ+θ+A time
dependent, in general, going to the time-dependent frame
transformation induces a fictitious time-dependent magnetic
field BU , defined by

2κμBBU = −m h̄∂t (θ + θ+), (D10)

where m = z′ × z′′ is a unit vector.

APPENDIX E: CUBIC ZEEMAN

In the crystallographic coordinates, the cubic Zeeman term
is

H3D
z3 = 2μBqB · {

J3
x , J3

y , J3
z

}
. (E1)

Unlike the linear Zeeman term, the in-plane components of
the magnetic field do induce nonzero matrix elements within
the pure heavy-hole spinor subspace. The projection rules
analogous to those given in Table I as the zeroth order in
Hmix are

J3
x

hh→ 3
2 sx, J3

y
hh→ − 3

2 sy, J3
z

hh→ 27
4 sz.

However, since the expression in Eq. (E1) is not a scalar,
it does not translate easily to rotated coordinate frames. For
completeness, we evaluate the matrix elements of Eq. (E1)
in the heavy-hole spinor subspace (in the lowest order), and
arrive to

H2D
z3 = 2μBqB · g s, (E2)

with the g tensor

g|xyz =
⎛
⎝ g1 −g2 −g3

g2 −g1 −g3

−g4 g4 g5

⎞
⎠, (E3a)

with

g1 = 3

8
cos2(�/2)(8 cos � − cos 2� − 3), (E3b)

g2 = 3

8
sin2(�/2)(8 cos � + cos 2� + 3), (E3c)

g3 = 3

8
√

2
sin �(15 − cos 2�), (E3d)

g4 = 3

2
√

2
sin3 �, (E3e)

g5 = 3

8
(17 cos � + cos 3�), (E3f)

for the [llh] scenario and

g|xyz =
⎛
⎝g1 0 0

0 −g2 −g3

0 −g4 g5

⎞
⎠, (E4a)

with

g1 = 3
2 , (E4b)

g2 = 3
2 cos3 �, (E4c)

g3 = 3
4 sin �(8 − cos 2�), (E4d)

g4 = 3
2 sin3 �, (E4e)

g5 = 3
8 (17 cos � + cos 3�), (E4f)

for the [0lh] scenario. In these equations, we have used
� = θ + θ+. Also, the components of the magnetic field B in
Eq. (E2) are supposed to be evaluated in the crystallographic
frame, whereas the operator s refers to the heavy-hole spinors
in the canonical frame, in line with conventions of Sec. VI A.
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