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We study Heisenberg’s uncertainty relation relative to a quantum reference frame (QRF). We introduce the
QRF as a covariant phase space observable, show that when described relative to it, position and momentum
appear compatible, and derive novel, frame-relative uncertainty relations. This is achieved by constructing a
joint observable for position and momentum, and calculating the variances of its margins. We then verify that
in the classical limit of the QRF, the standard uncertainty relations are recovered, fortifying claims that standard
quantum theory must be understood relative to an external, classical frame. These results may open up new
research directions at the interface between QRFs and incompatibility.
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Introduction. A fundamental aspect of our description of
the physical world is that certain basic properties, such as the
position or momentum of an object, must be specified relative
to a reference system, or frame. In a world composed of only
quantum systems, such reference bodies are called quantum
reference frames (QRFs). Crucially, the explicit incorporation
of QRFs into the physical description allows for quantum me-
chanical observables to attain a form invariant under a given
symmetry group. With this observation in mind, we revisit one
of the cornerstones of quantum theory: the Heisenberg uncer-
tainty relation �(Q)�(P) � 1/2 [1] (we work throughout in
units in which h̄ = 1). At first sight, this relation either does
not reflect Galilei invariance, since it is built on the “absolute,”
rather than relative, position and momentum/velocity, or is not
consistent with the universality of quantum theory, relying on
some external, classical frame. We resolve this tension by in-
troducing a QRF for position and momentum jointly, thereby
restoring invariance when system and frame have equal mass,
and derive new uncertainty relations which take into account
the presence of the frame.

A general goal in the study of QRFs is to understand how
to describe quantum states, observables, and measurements
relative to a QRF. A new wave of research was initiated in
[2] and generalized in [3], dedicated to understanding how to
transform between “perspectives” given by different frames,
with interesting results arising when the quantum property of
superpositions of frame states is considered. In the present
paper, another quantum property of the frame is investigated:
the incompatibility of position and momentum. We follow
the operational framework introduced in [4–6] and developed
further in, e.g., [7–9], described below. We find that relative
to a joint frame for position and momentum, these quanti-
ties “appear” compatible, and we derive novel frame-relative
uncertainty relations, which in a classical limit of the QRF, re-
cover the original relations, reinforcing the view that standard
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quantum mechanics is drawn up relative to a classical external
frame. Our work contrasts other work on QRFs, phase space,
and uncertainty relations (e.g., [10–13]) in the use of covariant
phase space observables, and the resulting interplay between
frame-relative and standard uncertainty relations, which has
not been addressed to date.

Background
Notation. Given a complex Hilbert space H with bounded

operators B(H), an observable is a normalized positive
operator-valued measure (POVM) E : B(�) → B(H) (e.g.
[14]) acting on the Borel σ -algebra B(�) of a topological
space �, understood as representing the outcomes of some
experiment.

The standard description in which observables are repre-
sented by self-adjoint operators is recovered via the spectral
theorem when � = R and each E(X ) is a projection (E is then
called a spectral measure). Such an observable will be called
sharp, and all others unsharp. We will refer to both POVMs
and self-adjoint operators as observables, as context demands.

The state space S (H) is given by the positive trace-class
operators of unit trace, with the pure states as the rank-1
projections (or occasionally unit vectors that define them).
The pairing of a state ρ and an observable E gives rise to
a probability measure λE

ρ on �, given through the Born rule
trace expression

λE
ρ (X ) := Tr[ρE(X )]. (1)

If E (on R) is sharp, its expectation value in a state ρ takes the
form 〈E〉ρ = ∫

R xdλE
ρ (x). We will be primarily interested in

the sharp position and momentum observables—respectively
Q [with spectral measure Q : B(R) → B(L2(R))] and P
(spectral measure P), acting in (a dense domain of) L2(R).
We freely oscillate between mathematicians’ and physicists’
notation, e.g.,

Q =
∫
R

x dQ(x) =
∫
R

x |x〉〈x| dx, (2)

with the spectral measure as usual obtained through
Q(X ) = χX (Q) = ∫

X dQ(x) = ∫
X |x〉〈x| dx.
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Quantum reference frames. QRFs are quantum systems,
relative to which other systems may be described. The subject
has a long history (see, e.g., [10,15–17] for the early work and
[18] for a review of the state of the field, from an information-
theoretic viewpoint, up to 2007), and various frameworks
now exist, catering to different needs and physical situations;
for example, the perspective-neutral approach [12,19] most
naturally arises in the study of constrained systems.

The point of departure here is the principle that “true”
observables are invariant under relevant symmetry trans-
formations; QRFs may be used to construct invariants as
described shortly. Following [7]:

Definition 1. Let · : G × � → � denote a continuous
transitive left action. A quantum reference frame is a system
of covariance R := (HR,UR, ER), where HR is a Hilbert
space carrying a (strongly continuous, projective) unitary rep-
resentation UR of G, and the POVM ER : B(�) → B(HR) is
covariant:

UR(g)ER(X )UR(g)∗ = ER(g · X ). (3)

There are various classes of QRFs; if UR is the left regular
representation in L2(G) and ER(X ) f = χX f , where χX is the
set indicator function, this is an example of an ideal frame, so
named so as to reflect various desirable properties. When G is
identified with �, the frame is called principal. Here the main
frames of interest will be principal, but not ideal.

Example 1. For the group of spatial translations, G =
(R,+), we may fix a QRF (L2(R),UR, QR). Here QR
is the position observable of the reference system, and
UR(q) = e−iqPR , where q ∈ R and the translation generator
PR is the momentum operator. The covariance condition now
reads

e−iqPRQR(X )eiqPR = QR(X + q) (4)

or e−iqPRQReiqPR = QR − q1R for the corresponding self-
adjoint operator.

A quantum system S combined with a QRF R is described
by the Hilbert space HS ⊗ HR, with (projective) unitary
representation U := US ⊗ UR : G → B(HS ⊗ HR). We may
obtain relativized observables, which are invariant under U
(by conjugation), as follows:

Definition 2. Let (HR,UR, ER) be a principal QRF for
G. The relativization map Y=ER : B(HS ) → B(HS ⊗ HR) is
given by

Y=ER (A) =
∫

G
US (g)AUS (g)∗ ⊗ dER(g). (5)

POVMs can also be relativized via
(Y=ER ◦ ES )(X ) = Y=ER[ES (X )]. It is readily verified
that U (g)Y=ER (A)U (g)∗ = Y=ER (A) for all g ∈ G, i.e.,
relativization yields an observable that is invariant under
the given representation of G. Relativization Y=ER is a
quantum channel (a unital completely positive map) (see,
e.g., [6] for further properties, [9,20] for generalizations to
some homogeneous spaces of G and [21] for a categorical
analysis).

Example 2. Using the QRF from Example 1, the relativiza-
tion map applied to the spectral measure QS of the system’s

position operator QS yields

Y=QR[QS (X )] =
∫∫

R2
χX (x − y)dQS (x) ⊗ dQR(y). (6)

This is the spectral measure of the relative position
Qrel := QS ⊗ 1R − 1S ⊗ QR, which can be seen by noting
that χX (Qrel ) = Qrel(X ), and writing

Qrel =
∫∫

R2
(x − y)dQS (x) ⊗ dQR(y) (7a)

=
∫∫

R2
(x − y) |x, y〉〈x, y| dx dy, (7b)

where |x, y〉 := |x〉S ⊗ |y〉R. Therefore, we may write

Y=QR (QS ) = QS ⊗ 1R − 1S ⊗ QR = Qrel. (8)

The relative momentum PS ⊗ 1R − 1S ⊗ PR is obtained
by choosing the frame observable to be the spectral measure of
momentum, which is covariant under momentum translations.
We note, however, that this is a different representation of R,

given by VR(p) = eipQR , under which QR is invariant. The
purpose of this paper is to construct a QRF that is covariant
under translations in both position and momentum, to which
we will soon turn.

It is also important to describe the system relative to the
frame prepared in some state ω; this is done through the
restriction map 	ω : B(HS ⊗ HR) → B(HS ),

Tr[	ω(
)ρ] = Tr[(ρ ⊗ ω)
], (9)

where the above holds for all system states ρ and any

 ∈ B(HS ⊗ HR). For each state ω of the frame, 	ω is a
quantum channel, known as a conditional expectation [22],
and gives a description of the system contingent on the frame
preparation ω; here the frame is viewed as being externalized.

Relativization combined with restriction gives rise to the
frame-conditioning map Y=ER

ω : B(HS ) → B(HS ) given by

Y=ER
ω := 	ω ◦ Y=ER , (10a)

Y=ER
ω (A) =

∫
G

US (g)AUS (g)∗dλER
ω (g), (10b)

where the measure λER
ω on G is the Born rule measure (1), i.e.,

λER
ω (X ) = Tr[ωER(X )]. The frame-conditioning map there-

fore realizes an arbitrary system observable relative to the
given frame as an invariant, and then externalizes the frame,
given a particular frame state.

Example 3. Choose the frame as in Examples 1 and 2, with
ω = |ψ〉〈ψ |R . We find

Y=QR
ψ [QS (X )] =

∫
R

QS (X + y) dλ
QR
ψ (y)

=
∫
R

QS (X + y) |ψ (y)|2dy= (λQR
ψ � QS )(X ),

(11)

where “�” denotes convolution. Equivalently, the above may
be written Y=QR

ψ [QS (X )] = (χX � |ψ |2)(QS ). Since |ψ |2 is
never a delta for any vector ψ ∈ L2(R), the frame-conditioned
position is strictly never equal to the sharp position of the
system, but can be made arbitrarily close by taking the frame’s
wave function ψ to be very tightly peaked around x = 0.
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This highlights a general observation: The tightness of the
localization of λER

ω around the identity of G dictates the qual-
ity of approximation of Y=ER

ω (A) by A [5–7], with arbitrarily
good approximation being achieved when λER

ω is close to
a delta at the identity. Y=ER (A) is understood as the “true,”
relative and invariant quantity, and the frame-conditioned ob-
servable Y=ER

ω (A) is understood as representing such a quantity
conditioned on the frame preparation ω.

It has been shown in [6,7] for ideal frames that all ob-
servables can be recovered for a sufficiently localized frame
state in the above sense (actually, one can weaken the ideality
somewhat, and use POVMs with the norm-1 property [23]).
The fact that the description in terms of the system alone
has had such empirical success is likely due to the ubiquity
of “good” quantum frames; indeed, this may be an essential
feature of how we experience the “classical world.” The un-
certainty relation prohibits good localization for position and
momentum together, and this observation will form the basis
of the frame-relative uncertainty bounds derived later.

The structure that emerged above—the convolution of an
operator measure with a scalar measure or density—is a
generic means by which to add noise to an observable, as
made precise in the following definition.

Definition 3. Let μ : B(R) → [0, 1] be an absolutely con-
tinuous (probability) measure on R. A smearing Eμ of the
observable E : B(R) → B(H) by μ is an observable given by

Eμ(X ) := (μ � E)(X ) =
∫
R

μ(x + X )dE(x). (12)

The absolute continuity means we may write
μ(X ) = ∫

X e(x)dx for some density e, as in Example 3
with e = |ψ |2. Our main interest is in smeared position and
momentum observables Qμ, Pν , which are approximations of
Q, P in the sense that they are covariant (under position and
momentum translations) and have finite error relative to Q, P
[24].

Covariant phase space observables. As emphasized in
[25], Heisenberg’s classic result—usually viewed in the neg-
ative as a limitation on preparation and measurement—can
be understood in a positive light as delineating possibilities
of joint measurements of position and momentum, provided
appropriate approximations are made. This point can be made
systematically through the use of POVMs and a more general,
operational notion of compatibility than is afforded by the
usual statement on commuting self-adjoint operators.

Definition 4. Let A and B be POVMs on �A and �B re-
spectively. A and B are called compatible/jointly measurable
if there is a POVM M on �A × �B which has A and B as
marginals, i.e., A(X ) = M(X × �B) and B(Y ) = M(�A × Y )
for all measurable subsets X ⊆ �A and Y ⊆ �B. Else, they
are incompatible.

Equivalently, A and B are compatible if and only if they
have joint probability distributions in all states. Joint measur-
ability of A and B is equivalent to their commutativity (i.e.,
[A(X ), B(Y )] = 0 for all X,Y ) when at least one of them is
sharp. Position and momentum are of course incompatible,
but by adding noise through smearing as in Definition 3, it is
possible to obtain jointly measurable unsharp approximators
Qμ, Pν .

The question of how much smearing is needed to make Qμ

and Pν compatible is answered with covariant phase space ob-
servables (e.g., [26]). Writing U (q) := e−iqP, which effects a
spatial translation by q ∈ R, and V (p) := eipQ for the transla-
tions by momentum p ∈ R, the Weyl operators are defined by
W (q, p) := ei qp

2 U (q)V (p). W is an irreducible projective uni-
tary representation of R2 acting in L2(R), with multiplication

W (q, p)W (q′, p′) = e
−i(qp′−q′ p)

2 W (q + q′, p + p′). A covariant
phase space observable GT : B(R2) → B(L2(R)) is then de-
fined as

GT (Z ) := 1

2π

∫
Z

W (q, p)TW (q, p)∗dq d p, (13)

where T is a density operator acting in L2(R). For instance,
T may be the vacuum of a single mode optical field, in which
case the integrand is a set of coherent states labeled by q and
p [27] (see [12] for a treatment of this case in the perspective-
neutral approach). For any T , such an observable is indeed
covariant under phase space translations:

W (q, p)GT (Z )W (q, p)∗ = GT [Z + (q, p)]. (14)

Any covariant phase space observable G is of the form GT

for some unique state T [26,28–30]. The margins of GT are
smeared position and momentum observables

GT (X × R) = (μT � Q)(X ) = QμT (X ), (15a)

GT (R × Y ) = (νT � P)(Y ) = PνT (Y ), (15b)

where

μT (X ) = Tr[�T � Q(X )], (16a)

νT (Y ) = Tr[�T � P(Y )]. (16b)

Here � is the parity operator, i.e., (� f )(x) = f (−x) for
f ∈ L2(R). The following fact [25,31,32] is of fundamental
importance:

Theorem 1. Qμ and Pν are jointly measurable if and only
if there is a T such that μ = μT and ν = νT as in Eqs. (16).

Hence, smeared position and momentum observables are
compatible exactly when there is a state T such that their
smearing measures are of the form (16). GT therefore dictates
which smeared position and momentum may be observed in
an approximate joint measurement. We note that since the
phase space observable GT is completely determined by T ,
we view T not as a particular state preparation of the system
being described, but as an intrinsic attribute of the measuring
apparatus pertaining to GT .

Quantum reference frames in phase space. We now let the
(necessarily nonideal) QRF be defined by a covariant phase
space observable GT ′

R (we will typically use the prime for the
frame). For any A ∈ B(HS ), the relativized observable

Y=T ′
(A) :=

∫∫
R2

WS (q, p)AWS (q, p)∗ ⊗ dGT ′
R(q, p) (17)

is invariant under translations in phase space. We have used

the shorthand Y=T ′
:= Y=GT ′

R to indicate the choice of covariant
phase space observable appearing in the integral. We note that
momentum translation invariance would only be expected un-
der Galilei symmetry in the case of system and frame having
equal mass, and hence if imposing Galilei symmetry, such a
stipulation is required.
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Proposition 1. Let GT
S be a covariant phase space observ-

able of the system. For X,Y ∈ B(R), the margins of Y=T ′ ◦ GT
S

give rise to smeared relative position and momentum observ-
ables:

(Y=T ′ ◦ GT
S )(X × R) = (μT � μT ′ � Qrel )(X )

= Y=T ′[
QμT

S (X )
]
, (18a)

(Y=T ′ ◦ GT
S )(R × Y ) = (νT � νT ′ � Prel )(Y )

= Y=T ′[
PνT
S (Y )

]
. (18b)

The quality of the approximation is dictated by the spread
of the smearing measures; this can be captured by the standard
deviation � or the variance �2 (though other measures of
spread are better, e.g. the overall width; see, e.g., [26]). For
instance, for any state σ ,

�2(μT � μT ′ � Qrel, σ ) = �2(μT ) + �2(μT ′ ) + �2(Qrel, σ ).

(19)

The observables in Eqs. (18) are always unsharp, but, e.g.,
the smeared relative position can be made arbitrarily close
to the sharp relative position by taking T and T ′ in (18a)
highly peaked in position [or for momentum in (18b)]. We
may compose the relativization with the restriction, yielding
frame-conditioned observables

Y=T ′
ω (A) =

∫∫
R2

WS (q, p)AWS (q, p)∗dλ
GT ′

R
ω (q, p), (20)

where we use again the shorthand Y=T
ω := Y=GT

R
ω and recall

that the integration measure is obtained through the Born

rule λ
GT ′

R
ω (Z ) = Tr[ωGT ′

R(Z )] for any reference state ω and
measurable Z ⊂ R2. For the sharp position and momentum,
this gives (

Y=T ′
ω ◦ QS

)
(X ) = (

λ
QR
ω,T ′ � QS

)
(X ), (21a)

(
Y=T ′

ω ◦ PS
)
(Y ) = (

λ
PR
ω,T ′ � PS

)
(Y ), (21b)

where the measure

λ
QR
ω,T ′ (X ) := Tr

[
ω QμT ′

R (X )
] = (

μT ′ � λQR
ω

)
(X ), (22a)

λ
PR
ω,T ′ (Y ) := Tr

[
ω PνT ′

R (Y )
] = (

μT ′ � λPR
ω

)
(Y ), (22b)

Therefore, the frame-conditioned sharp position (and momen-
tum) is never sharp, and the quality of approximation depends
again on the frame preparation ω, and on T ′. The restrictions
of the observables given in Eqs. (18) yield(

Y=T ′
ω ◦ GT

S
)
(X × R) = (

λ
QR
ω,T ′ � μT � QS

)
(X )

= Y=T ′
ω

[
QμT

S (X )
]
, (23a)(

Y=T ′
ω ◦ GT

S
)
(R × Y ) = (

λ
PR
ω,T ′ � νT � PS

)
(Y )

= Y=T ′
ω

[
PνT
S (Y )

]
. (23b)

Thus, the margins of a frame-conditioned covariant phase
space observable are smeared positions and momenta, co-
inciding with the frame-conditioned compatible smeared
positions and momenta. The contributions to the (in)accuracy
of the approximation to their sharp counterparts come
from T and T ′—internal features of the system and frame
respectively—and from the frame preparation ω.

Breaking incompatibility of position and momentum. It
is well known (e.g. [33]) that given a set I = {A1, . . . , An}
of compatible observables in B(H), and any channel
� : B(H) → B(K), the observables in �(I ) are also com-
patible. On the other hand, if some observables in I are
incompatible, the question whether those in �(I ) are compat-
ible is nontrivial and motivates the following definition [33]:

Definition 5. Let I be a set of observables as above, not all
of which are compatible, and let � be a channel. Then � is
incompatibility-breaking for I if all the observables in �(I )
are compatible.

We apply this to I = {QS , PS} and the channel
Y=T ′

ω : B(HS ) → B(HS ) [we recall that HR = HS = L2(R)].
Theorem 2. For any states ω, T ′ ∈ S (HR), the channel

Y=T ′
ω breaks the incompatibility of {QS , PS}.
To prove the claim, we need to demonstrate the existence

of a joint observable that has Y=T ′
ω ◦ QS and Y=T ′

ω ◦ PS as
marginals. This can be done by direct construction: set

MT ′,ω
S := (

λQR
ω × λPR

ω

)
� GT ′

S . (24)

This indeed has margins (21):

MT ′,ω
S (X × R) = (

λ
QR
ω,T ′ � QS

)
(X ) = (

Y=T ′
ω ◦ QS

)
(X ),

(25a)

MT ′,ω
S (R × Y ) = (

λ
PR
ω,T ′ � PS

)
(Y ) = (

Y=T ′
ω ◦ PS

)
(Y ).

(25b)

Thus, relative to a covariant phase space frame, the incompat-
ible QS and PS “appear” compatible, as might be expected,
since position and momentum cannot be defined more sharply
than the frame with respect to which they are described
(see also [6]).

Uncertainty relations. The uncertainty relation

�(Q, ρ)�(P, ρ) � 1/2 (26)

for the standard deviation of position and momentum of a
system in state ρ is one of the most iconic in (quantum)
physics, taken to express the incompatibility of position and
momentum as sharp observables. However, the inequality (26)
does not include a QRF and therefore should be reconsidered
using the ideas developed thus far.

The uncertainty principle is typically understood to con-
tain two conceptually distinct impossibility statements: that
expressed in (26), which demonstrates that no state can be
prepared that is jointly sharply localized with respect to Q
and P, and, second, that Q and P cannot be jointly measured.
Thus, (26) may be called a preparation uncertainty relation.
Now, noting that a compatible smeared pair QμT = μT � Q
and PνT = νT � P obey a more restrictive bound [25] than
their sharp counterparts in (26), namely,

�(QμT , ρ)�(PνT , ρ) � 1, (27)

leads to the subject of measurement uncertainty relations
[26,34–37]: that is, the degree of approximation error that
must be accommodated in order to allow for a joint measure-
ment, which in this case can be given by the trade-off relation
on the standard deviations of the smearing measures:

�(μT )�(νT ) � 1/2. (28)
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In what follows, we explore preparation and measurement
uncertainty relative to a quantum reference frame. We use the
following, which we state without proof:

Proposition 2. Let a, b, c, d be measures, and
x, y � 0. If �(a)�(b) � x and �(c)�(d ) � y, then
�(a � c)�(b � d ) � x + y.

We now consider frame-conditioned uncertainty relations,
all of which are tight. We begin by relativizing the sharp po-
sition and momentum observables with respect to a covariant
phase space observable of the frame, yielding

�
(
Y=T ′

ω ◦ QS , ρ
)
�

(
Y=T ′

ω ◦ PS , ρ
)

� 3/2. (29)

Since �2(Y=T ′
ω ◦ QS , ρ) = �2(μT ′ )+�2(λQR

ω )+�2(QS , ρ),
in order to make this quantity small, it is necessary that
�(λQR

ω ) = �(QR, ω) is small, in which case �(PR, ω) is
large, making explicit the intuition that a frame preparation
ω cannot provide a good origin for position and momentum
simultaneously. We also observe that the inequality (29)
comprises both preparation and measurement uncertainty. A
version that also incorporates measurement uncertainty for
the system is obtained by relativizing a smeared compatible
pair QμT

S and PνT
S , giving

�
(
Y=T ′

ω ◦ QμT

S , ρ
)
�

(
Y=T ′

ω ◦ PνT
S , ρ

)
� 2. (30)

We note that this inequality corresponds exactly, via Eqs. (23),
to the case that one covariant phase space observable is rela-
tivized with respect to another, and then the relevant margins
are taken. That the bound is twice that of (27) reflects the
uncertainty present in the frame.

The above cases correspond to the setting that the frame
observable contains compatible smearings of position and
momentum as margins, and therefore those observables could
be measured together in a single experiment. This contrasts
the case in which the system observables are separately
relativized with respect to the frame’s sharp position and
momentum observables, as in

�
(
Y=QR

ω ◦ QS , ρ
)
�

(
Y=PR

ω ◦ PS , ρ
)

� 1, (31)

or for a compatible smeared pair of the system,

�
(
Y=QR

ω ◦ QμT

S , ρ
)
�

(
Y=PR

ω ◦ PνT
S , ρ

)
� 3/2. (32)

We notice the symmetry here with (29), which captures the
idea that the overall indeterminacy is a relational property of
system and frame—it is operationally equivalent to describe a
smeared, compatible pair of system position and momentum
relative to a frame defined by sharp position and momentum
observables respectively, or to describe sharp position and
momentum observables relative to a frame which contains
a compatible smeared pair as marginals. There is, however,
a conceptual distinction, in that the two situations represent
different experimental arrangements.

Classical limit of the QRF. We have seen that if we stipulate
only translation invariance, tight localization of the state of the
QRF at x = 0 allows for the recovery (to arbitrary accuracy)
of the standard description of the quantum system in terms of
the usual observables and states. In this sense the frame may
be viewed as having been externalized, or as is commonly

understood, classical. However, in the phase space setting,
a choice must be made regarding whether the frame state is
well localized in position, or momentum, given the associated
uncertainty trade-off: here the reduced description is always
“fuzzy” in comparison to the standard setup.

We wish to identify the features of a genuinely classical
frame in the phase space setting, which in contrast to the case
of only translation invariance cannot be attained within the
formalism of quantum mechanics. We take the view that the
hallmark of classical physics is the joint measurability of all
observables and the existence of states with zero uncertainty
with respect to position and momentum (and all other sharp
observables). Therefore, we examine the frame-dependent un-
certainty relations in the setting that we declare, by fiat, that
the frame state ω is the phase space point (0,0) [or equiv-
alently, the Dirac measure at (0,0)], i.e., is a classical pure
state, perfectly localized in phase space. Of course, this is
not consistent with quantum mechanics, but we expect that
it corresponds to a rigorous classical limit in the small h̄
regime of the reference frame [38]. We write ω0 and T ′

0 for the
classical states localized at (0,0). Then (29) and (30) become

�
(
Y=T ′

0
ω0 ◦ QS , ρ

)
�

(
Y=T ′

0
ω0 ◦ PS , ρ

)
� 1/2, (33)

�
(
Y=T ′

0
ω0 ◦ QμT

S , ρ
)
�

(
Y=T ′

0
ω0 ◦ PνT

S , ρ
)

� 1 (34)

from which we obtain the bounds given in Eqs. (26) and (27),
respectively. These correspond to the standard uncertainty
relations, formulated without a frame. Thus, we may conclude
that the standard uncertainty relations appear to be drawn up
relative to an external, classical reference frame. The question
of experimentally distinguishing if the bounds (33) and (34),
rather than (29) and (30), are realized in nature, is open.

Conclusions. In this paper we have introduced a (non-
ideal) quantum reference frame as a covariant phase space
observable, shown that these give rise to an incompatibility-
breaking channel for position and momentum, and derived a
number of uncertainty relations which depend on both sys-
tem and frame. Through the classical limit, our observations
lend credence to the view that standard quantum mechanics
has an external, classical frame in the background—a view
widely held but never before demonstrated in this context.
Further work includes analyzing frame changes in the sense
of [2,3,12,19,39,40] and particularly [7] where informational
completeness of covariant phase space observables [41] may
play an interesting role.

Note added. Recently we became aware of a treatment
by Suleymanov, Carmi, and Cohen of (among other things)
the frame dependence of uncertainty relations given in the
perspective-neutral framework [42]. Comparing the approach
given here with theirs is work for the future.
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