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Adiabatic measurements, followed by feedback and erasure protocols, have often been considered as
a model to embody Maxwell’s Demon paradox and to study the interplay between thermodynamics
and information processing. Such studies have led to the conclusion, now widely accepted in the
community, that Maxwell’s Demon and the second law of thermodynamics can peacefully coexist
because any gain provided by the demon must be offset by the cost of performing the measurement
and resetting the demon’s memory to its initial state. Statements of this kind are collectively referred to
as second laws of information thermodynamics and have recently been extended to include quantum
theoretical scenarios. However, previous studies in this direction have made several assumptions,
particularly about the feedback process and the demon’s memory readout, and thus arrived at
statements that are not universally applicable and whose range of validity is not clear. In this work, we
fill this gap by precisely characterizing the full range of quantum feedback control and erasure
protocols that are overall consistent with the second law of thermodynamics. This leads us to
conclude that the second law of information thermodynamics is indeed universal: it must hold for any
quantum feedback control and erasure protocol, regardless of the measurement process involved, as
long as the protocol is overall compatible with thermodynamics. Our comprehensive analysis not only
encompasses new scenarios but also retrieves previous ones, doing so with fewer assumptions. This

simplification contributes to a clearer understanding of the theory.

The problem of consistency between the second law of thermodynamics
and information processing has been at the center of one of the longest
running debates in the history of modern physics, ever since Maxwell
conjured up his famous demon'. A widely accepted solution to Maxwell’s
paradox is that consistency with the second law of thermodynamics is
recovered by taking into account the work cost for measurement and era-
sure, i.e., the resetting of the demon’s memory to its initial state™. These
ideas, bridging thermodynamics with information theory, are nowadays
collectively referred to as information thermodynamics™".

In this context, and including a quantum theoretical scenario, Sagawa
and Ueda, in a series of celebrated papers'' ™", derived an achievable upper
bound for the work extracted by feedback control and showed that the
conventional second law can, in general, be violated from the viewpoint of
the system alone, but such a violation is exactly compensated by the cost of
implementing the controlling measurement and resetting the memory.

Such a tradeoff relation is what they call the second law of information
thermodynamics (ITh).

Unfortunately, despite their importance, the balance equations estab-
lished in refs. 11-13 rely on several mutually inconsistent assumptions that
lack a direct operational interpretation. Moreover, these works only discuss
sufficient conditions for the validity of such balance equations. While some
generalizations and refinements have been proposed'*?, the demon’s
memory readout process is always limited to ideal projective measurements.
Besides being unrealistic in practice, such an assumption is problematic in
principle: since the demon’s memory enters directly into the thermo-
dynamic balance, the process acting on it must be treated in full generality,
lest we obtain statements of limited scope. As a result, a comprehensive
characterization of the validity range of the second law of ITh remains
elusive, and it is unclear under what conditions the second law of ITh holds.
In fact, at the time of writing, it is not even clear whether the second law of
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ITh should be considered a universal law or not, and what its logical status is
with respect to the conventional second law of thermodynamics.

Our paper addresses this gap by adopting a top-down approach.
Instead of attempting to derive the second law from assumptions with
unclear logical necessity, we initiate from a purely information-theoretic
framework and obtain balance equations that hold for any measurement
and isothermal feedback process, in particular including any readout
mechanism, and subsequently impose the second law of phenomenological
thermodynamics as a constraint. This approach, which follows that used by
von Neumann to derive his entropy’s equation***, allows us to determine
exactly (in terms of sufficient and necessary conditions) how far feedback
control and erasure protocols can be generalized while remaining overall
consistent with the second law. We are then able to demonstrate the uni-
versal validity of the second law of ITh in general feedback control and
erasure protocols: as long as such a protocol is compatible with the second
law of phenomenological thermodynamics, it must also satisfy the second
law of ITh, regardless of the measurement and feedback process involved.

A quantity that plays a crucial role in our analysis is the
Groenewold-Ozawa information gain®”*: while previous works'*"*%**
have also provided it with a thermodynamic interpretation—even
in situations when it takes negative values—our balance equations show that
such interpretation holds in complete generality.

Results

The minimum scenario required to discuss Maxwell’s paradox and feedback
control protocols in full generality, but without oversimplifications, com-
prises five systems, as shown in Fig. 1: the physical system (i.e., the gas) being
measured, denoted by 4; the controller’s (i.e., the demon’s) internal state M
(where the letter “M” stands for “Maxwell”, “measurement apparatus” or
“memory”); a classical register K recording the measurement’s outcomes;
and two independent baths B; and B, (one used during the feedback control
stage, the other used for the final erasure of the measurement), which are
assumed to be at the same finite temperature. This means that the overall
process is assumed to be isothermal.

Without any feedback control, for isothermal processes, the second law
of thermodynamics is equivalent to the statement that the work extracted
from the system A can reach but not exceed the change in the free ener-
gy(These and other key concepts will be rigorously introduced and dis-
cussed in what follows. The purpose of these first few paragraphs is simply to
provide a relatively informal overview of our main findings). of the system—
in formula, W4 < — AFA. The main contribution of ref. 11 was to show that
if feedback control is allowed instead, the work extracted can go all the way
up to W4, = —AF* + B~ 'I 4, where Ioc is a non-negative term quanti-
fying the amount of information collected by the measurement used to

Fig. 1 | The systems appearing in our setup. the target system A, the controller
(demon) consisting of an internal state M and a classical register K, and two baths B,
and B, at the same inverse temperature .

guide the subsequent feedback control protocol. In this sense, Maxwell’s
demon can indeed violate the second law of thermodynamics, but this
conclusion should come as no surprise, since the demon is not yet included
in the global thermodynamic balance at this point.

Indeed, once the demon itself is embodied in a physical system, such a
violation of the second law turns out to be only a local violation, which is
perfectly possible as long as it is compensated for elsewhere. According to
Landauer’s principle, such a compensation should be identified with the cost
of performing the measurement and resetting the measurement apparatus
and register at the end of the protocol, so that they are ready for use in the
next round. Following this narrative, refs. 12,13 list a number of assump-
tions about the quantum feedback protocol so that, as one would expect, the
work cost of implementing the measurement and performing its erasure is
lower bounded as WMK>B7'] qc» thus guaranteeing that the total net
work extracted W, := WA — WMK< — AFA is still within the limits of
the second law of thermodynamics.

Our analysis begins by removing all assumptions from the consistency
argument above. We argue that this is not just for the sake of mathematical
generality, but is necessary for two reasons. The first reason is that, speci-
fically in relation to refs. 11-13, some of the assumptions made therein are,
as we will show in what follows, extremely restrictive—so stringent, in fact,
that they are inconsistent in most cases, constraining the analysis to trivial
situations. The second reason is a matter of principle: if certain assumptions
are required to restore the validity of the second law, the consistency
between thermodynamics and quantum information processing cannot be
considered universal, contrary to what folklore claims.

We then show that, when all assumptions about the mathematical
form of the quantum feedback protocol are removed, the work extracted
from the target system is upper bounded as

WaS — AFy, + B o, 1

while the work cost of implementing the measurement and its erasure is
now lower bounded as

Wg\ufK 2 ﬁfl[ASAMK + IGO]7 (2)

where AS*¥ denotes the entropy change of the entire compound AMK due
to the measurement process and Igo is the Groenewold-Ozawa information
gain™*°. Note that while the bound (1) looks similar to the one given in'', the
information quantity I5o appearing in our bounds is different from the one
used in refs. 11-13: in general, Igo § Inc. But while Igc does not provide the
correct bounds in general, Igo does and, moreover, gives the same
numerical values as Inc in all cases considered in''~". Further, Egs. (1) and
(2) together imply that the net work extracted in general is bounded as

= w4

ext

Wt — WMKL — AFA — BT ASAME (3)
In other words, even if the final erasure is implemented in accordance
with Landauer’s principle, the second law may still be violated whenever
AS*™X<0.Egs. (1) and (2) constitute the main technical contributions of this
work: their formal statement is given as Theorem 1 below.

Finally, by means of explicit counterexamples, we show that the axioms
of quantum theory by themselves are perfectly consistent with a measure-
ment process that decreases the total entropy of the system-memory-
register compound, implying a violation of the second law according to
Eq. (3). This leads us to the main conceptual contribution of this work, i.e.
the conclusion that—contrary to some cursory accounts—in a quantum
mechanical feedback process it is not enough to eventually perform an
erasure process, as stipulated by Landauer’s principle, to guarantee the
validity of the second law. In other words, the second law of thermodynamics
is logically independent of the axioms of quantum theory, and its role is to
constrain the set of possible measurement processes from the outset. Any
attempt to prove the second law from within quantum theory is doomed to
result in pure tautology™*.
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Fig. 2 | The circuit representation of a general quantum feedback control and
erasure protocol. Interaction step (ty — t;): system A and memory M interact by a
unitary channel . Readout step (t; — t,): an instrument M is applied on the
memory M and the outcome k is written on the classical register K. The interaction
step and the readout step together are referred to as the measurement step. Feedback
control step (t, — t3): a controlled unitary channel F is applied on the compound of
system A and thermal bath B; depending on the outcome k. Erasure step (t; — t;): a
unitary channel V is applied on the compound of MK and thermal bath B,, so as to
return the state of MK to its initial configuration. The total compound system is
assumed to evolve adiabatically during the entire protocol, that is, no heat is
exchanged with any outside source.

Framework

Consider a quantum system Y associated with a finite-dimensional Hilbert
space 1. The algebra of linear operators L' on H” will be denoted as
L(HY), 1" and O" denoting the unit and null operators, respectively. States
on Y are represented by unit-trace positive operators, i.e., py>®y, Tr[p'] =
1. A thermodynamic systemY is defined as the tuple (p"; H'; ), where H" is
the Hamiltonian and f3: = 1/kgT> 0 is the inverse temperature of an external
thermal bath, with kp Boltzmann’s constant. Throughout, we shall only
consider the case where the thermal bath has a constant temperature, and so
for notational simplicity we will abbreviate the thermodynamic system as
(p"; H"). When the system is in thermal equilibrium, the thermal state or
Gibbs state is defined as y¥ := e PH" /2", where Z" := Tr[ePH"] is the
partition function.

The generalized quantum feedback control and erasure protocols we
shall consider will comprise of five discrete time steps ¢;, i =0, 1, 2, 3, 4. The
total system is composed of a target system A, a controller consisting of a
memory M and a classical register K, and two thermal baths B;, B,, both of
which have the same inverse temperature 8 > 0, as depicted in Figure 1. For
notational simplicity, we shall omit superscripts when denoting any quan-
tity pertaining to the entire compound B;AMKB,, reserving their use only
when discussing subsystems; for example, the state of subsystem AMK at
time step ¢; will be denoted as pMK := Trp p,[p;]; etc. In particular, we shall
assume that the Hamiltonian at time step f; reads
H; = H® + HA + HMK  HP_ That is, at each time step we assume that
there are no interaction terms between the different subsystems, and only
the Hamiltonian of the target system A may change. The protocol is
represented schematically in Figure 2; below we shall describe each step in
detail.

The preparation step. At the initial time ¢ = ,, the compound system is
prepared in the state

po =Y ®@py ®p ®10)(0" ®y™ )

where p# and p}! are arbitrary states on A and M, respectively, while [0)*
represents the idle state of the classical register(Note that the memory
considered in ref. 12 is described by a Hilbert space with a direct sum
structure. Here we describe the degrees of freedom of the labels of the blocks
and the internal states of the memory using different quantum systems. In

the context of our paper, the two pictures are clearly equivalent.), and
yB1, yB: are the thermal states of the baths, with respect to the same inverse
temperature f3. Note that a common assumption is that the initial state of the
memory p)! is thermal at the same inverse temperature 3 as the two baths:
while such an assumption is very reasonable from a physical point of view,
and in particular facilitates the discussion of the erasure step (see below), for
the sake of generality we keep p} arbitrary.

The measurement step. This step comprises an interaction step and a
readout step. The interaction or pre-measurement step (from t = t, to
t = t;) represents the interaction between A and M, described by a unitary
channel (-) := U(-)U" acting in AM. The readout or pointer objectifi-
cation step (from t = t, to t = t,) is represented as a CP-instrument”' acting
in M, namely, a family M := {M : k € K} of completely positive linear
maps M, : L(HM) — L(H™), labeled by the measurement outcomes
k € KC, such that their sum M. := >, M, is trace-preserving, i.e., a
channel. The instrument M is associated with a unique positive
operator-valued measure (POVM) M := {M, : k € K}, with elements
defined using the “Heisenberg picture” dual of M, as M, := M (1").
Since the POVM M acts in the memory, it is referred to as the pointer
observable. After M is measured by the instrument M, the observed
outcome k is recorded in the classical register. Such classical readouts are
assumed to be all perfectly distinguishable, and thus are represented,
following a common convention in quantum information theory”, by
orthogonal pure states kK.
Accordingly, at t = t, the state of the compound system reads

p=7"® (Z(idA ® MUl @ p)] @ |k><k|’<> ® " =) Pipak

ke kek
)
where id* denotes the identity channel acting in A, and
P =" © poi ® ) @y,
with

e (id @ MU @ ph)]
Prk = P

whenever the probability of obtaining outcome k satisfies

Pr = Tr{(idA ® M,) [M(POA ® Péw ] }>O’

otherwise p5%! can be defined arbitrarily.

We note that a fixed tuple (K, Py, U, M) defines a measurement
process or measurement scheme for an instrument A := {A; : k € K}
acting in the target system A, with the operations reading

A) = Try {(id* @ M[U(-@p)]} = Try [1 @ M U(- @ pf)]. (6)

In particular, we stress that an instrument on the target system A := {4, :
k € K} can be realized by means of infinitely many different measurement
processes. One of the results of this work will be to show that the laws of
thermodynamics constrain the latter, not the former.

Remark. The formalism of CP-instruments provides the most general
readout (i.e., pointer objectification) procedure allowed by quantum theory.
While general instruments in the target system A have been considered
before, all previous works have focused on a restricted class of instruments
acting in the memory M, namely, Liiders instruments compatible with a
projection-valued measure (PVM), also known as “ideal projective
measurements”> %, M is a PVM if the effects M, are mutually orthogonal
projections, and the operations of the corresponding M-compatible Liiders
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instrument read M (-) := M,(-)M,. As shown by Ozawa®, every instru-
ment acting in A admits a canonical measurement scheme, where p}! is
chosen to be pure and the pointer observable is chosen to be a PVM. But we
stress that the pointer observable in a given measurement process need not
be a PVM; and, even if it is, the instrument measuring it need not be of the
Liiders form. In fact, it is well known that every observable M admits
infinitely many M-compatible instruments.

The feedback control step. From ¢ = ¢, to t = 3, a feedback control
protocol is performed. This is implemented by coupling the compound
AK with the thermal bath B, by a unitary channel F(-) := F(-)FT, defined
by the unitary operator (Note that unitarity of F implicitly assumes that K
is represented by a Hilbert space HX of dimension equal to the number of
measurement outcomes, i.e, dim(’HK) =|K|.).

Fi=) F,® kK"

keK

Here, F are umtary operators on B;A, which induce the unitary channel
Fi() = Fi(- )F conditional on the classical register having recorded
outcome k. At time step t = £, the state of the compound reads

ps = (FX @id")(p) = > ppsys @)
ke
where
i =pri @K @y
Here, ,o3 k = (F, Bt @ idM P ® p’;”;f ). We shall say that the feedback

process is pure unitary if we choose F, = 1% ® F2, so that for each out-
come the target system undergoes an isolated unitary evolution. In other
words, a pure unitary feedback process does not involve the thermal bath.
This is the case considered in, e.g., refs. 11-13. However, since Szilard®
onward, the traditional formulation typically considers a feedback protocol
that is done in contact with a thermal bath, as we do here.

The erasure step. Lastly, the erasure process from t = t; to t = t, is
modeled by coupling MK with the thermal bath B, by a unitary channel
V() := V(-)V'. We naturally assume that H4 = H4, since the target
system A remains dormant. At time step 4, the state of the compound
system will read

py 1= (4 & V) (o). )

such that, by definition of “erasure”, pMK = pMK = pM & |0)(0[¥. That is,
the interaction between MK and the bath B, returns the local state of MK
back to its initial configuration. Such a setting appears in the context of
Landauer’s  principle™>'. If, in addition, it holds that
pAMK — pd @ pM ® |0) (0]%, ie., if the correlations between A and MK are
also erased, then we say that the erasure is perfect. Otherwise, we call the
erasure partial. While in principle perfect erasure can always be achieved if a
suitable bath is provided, it is a non-trivial problem to determine whether
such a unitary erasure process always exists for a given bath. To alleviate this
problem, we also consider here protocols that include partial erasure. As
mentioned above when discussing the preparation step, a conceptually
simpler situation occurs when the initial state of the memory is thermal at
the same bath temperature, so that the erasure process can be intuitively
understood as a thermalization process.

Aboutinjected and extracted work, and the assumption of overall
adiabaticity

The internal energy of a thermodynamic system is E(p"; H"): =Tr[p"H'],and
the non-equilibrium free energy™* is F(p"; H"): = E(p"; H) — 'S(Y),,
where S(Y), := —Tr[p" Inp"] is the von Neumann entropy”. When a

thermodynamic system transforms from ¢t = f to t = t as
(pf;H > (ij; H ].Y), we denote the increase in internal energy E, none-
quilibrium free energy F, and entropy S as follows:

sl = x(pfiH) —x(pliH) G=EFS).©)

Definition 1. Consider a thermodynamic system which transforms as
(pY;H > (ij; HJ.Y). The transformation is defined as adiabatic if it does
not involve an exchange of heat with an external bath. In such a case, by the
first law of thermodynamics, the work injected into (resp., extracted from)
the system is defined as the increase (resp., decrease) in internal energy, i.e.,

wl=-w! :=AE]

i

In our formalism, all thermal baths (i.e., the systems B; and B,) are
treated as internal and so there are no external baths with which heat is
exchanged. Moreover, following a well-established convention dating back
to Szilard® and von Neumann®, and routinely adopted until these
days'"'"*'*", we assume that the pointer objectification implemented by
the instrument M is also adiabatic, although it is obviously non-unitary.
This may be justified if, for example, the objectification process is sufficiently
fast with respect to the time scale required for heat to dissipate*’. Concerning
the rest, i.e., during the premeasurement, feedback, and erasure steps of the
protocol, the total compound transforms by a global unitary channel which,
by definition, does not involve an interaction with any external system, and
so clearly no heat is exchanged here either. In conclusion, while the sub-
system AMK exchanges heat with B; and B, during the feedback and erasure
steps, respectively, we treat the total compound B;AMKB, as transforming
adiabatically during the entire protocol.

Since the total process is adiabatic, the net extracted work is identified
with the decrease in internal energy of the entire compound, that is, W, = —
AE,_.4. Now we wish to split the contribution to the total work as that
originating from the target system A and that originating from the controller
MK. To this end, we note that the target system is involved only during the
measurement and feedback steps, the controller is involved only during the
measurement and erasure steps, the thermal bath B, is involved only during
the feedback step, and the thermal bath B, is involved only during the
erasure step. As such, we may write (see Methods, Section IV A)

Wtot = _AEO—>4
= —AE,,, —AE, 5 — AE3_>4 10
= —AE} , — AEYK, — AE;™, — AEYSR (10
= 02 0—2 2—>3 34
= Wee = Wi,
where
Wiy = —AE), — AE, 5 = —AE; , — AE§f3 (1)
is the work extracted from the target system, and
WMK .— AEMK 4+ AE, ., = AEYX, 4+ AE)"%: (12)

is the work injected into the controller.

General work bounds

Before providing general bounds for the work defined in Egs. (11) and (12),
let us first introduce some useful information-theoretic quantities. For any
state p* and a positive operator ¢* such that msupp(p*) C msupp(c*), the
Umegaki quantum relative entropy is defined by
D(p* || ¢*) := Tr[p*(Inp* — In6*)] > 0", which is non-negative due to
Klein’s inequality”*”’, and vanishes if and only if p* = o®. The quantum
mutual information of a bipartite state p*” is defined as I(A : B),: = S(A), +
S(B), — S(AB), = D(p"*||p" ® p”) > 0, with equality if and only if p** = p* ®
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p". On the other hand, the conditional quantum entropy of a bipartite state
p*? is defined as S(A|B),: = S(AB), — S(B),» which can be negative. The
conditional quantum mutual information of a tripartite state p"*“ is defined
asI(A : C|B),: = S(A|B), + S(C|B), — S(AC|B), > 0, where the non-negativity
follows from the strong subadditivity of the von Neumann entropy (see, e.g.,
ref. 32). Finally, we introduce the following information measure related to
the measurement process on the target system:
Definition 2. The Groenewold-Ozawa information gain®>*°
system’s measurement process is defined as:

of the target

Io = S(A),, — S(AIK),, . (13)
where the entropy of the post-measurement state of the target system
conditioned by the classical register, S(A|K),, , can equivalently be written as

> kPeS(p4 s ie., the average entropy of the posterior states of A.

Remark. Note that I is determined entirely by the prior system state p
and the instrument A acting in A as defined in Eq. (6). The
Groenewold-Ozawa information gain is guaranteed to be non-negative for
all prior states p# if and only if the instrument A is quasi-complete; A is
called quasi-complete if for all pure prior states p3, the posterior states
ph k= = A(p2)/p, are also pure. An example of a quasi-complete instru-
ment is an efficient instrument, whereby each operation can be written with
a single Kraus operator, i.e., A, (-) = Li(: )L In general, therefore, Igo can
be negative™.

The following proposition gives universally valid expressions for the
work associated with feedback control and erasure protocols with a general
quantum measurement process, independent of thermodynamics and from
a purely information-theoretic point of view.

Proposition 1. In the generalized quantum feedback control and erasure
protocol (Fig. 2), the extracted work from the system is

Wi = —AF, + B [leo = 1A K), —Sh] . (9)
and the work needed to run the controller is
WK = RSP + B [Tgo + 1A : MIK), +S3] . (15)
where
Sis = Zpk<I(A B, +D<pf}k I yBl)) >0,

kel
Stz :=I(MK : B,), +D(py’ || y*) >0

denote the irreversible entropy production associated with the isothermal
feedback and erasure steps.

See Methods, Section IV B, for the proof. We immediately see that Eq.
(14) contains, besides the usual free energy change, a correction term that
arises from the specific implementation of measurement and feedback
protocol. Similarly, Eq. (15) contains additional correction terms to the
usual entropy change of target system and controller.

We note that an equality similar to Eq. (14) was obtained in ref. 14,
except that there the entropy production S as well as the mutual
information I(A : K) b, Was missing. The term I(A : K),, = = S(p3) —
> kexcPrSps o) corresponds to the Holevo information of the conditional
states of A after feedback™’, which is non-negative and vanishes if and only if
pit. = p4 forall k. Reference * also derives a similar equality, but it uses the
QC-mutual  information, and not the Groenewold-Ozawa
information gain.

From Proposition 1, by discarding terms that are always either positive
or negative,we obtain universally valid bounds for injected and extracted

work in quantum feedback control and erasure protocols, as well as
necessary and sufficient conditions for their saturation.

Theorem 1. In the generalized quantum feedback control and erasure
protocol (Fig. 2), the work extracted from the target system is upper
bounded as

Wes =

AF) 4B g0, (16)

where the equality holds if and only if I(A : K), = Si = 0.The work cost
to run the controller is lower bounded as ’

WK > B AS?ME + Igo] 17)

=s&=o.

rr

where the equality holds if and only if I(A : M 1K),

Remark. Let us discuss, by means of examples, the conditions under which
the bounds in the above theorem can be saturated. A necessary condition for
the equality in Eq. (16) is for the entropy production during the feedback
step, Sﬁ;, to vanish. This will trivially be achieved if the feedback process is
chosen to be pure unitary, i.e., so that for each outcome the target system
undergoes an isolated unitary evolution, as assumed in''. However, note that
in general this alone will not guarantee the other necessary condition for the
equality in Eq. (16), i.e., a vanishing Holevo 1nformatron I(A : K),,. Recall
that thls quantlty vanishes if and only if pf, = p for all , whrch implies
that pf, = p5p for all k, K. But if the feedback process is pure unitary, then
p3 .= F¢ (pA k)F . Since unitary channels leave the von Neumann entropy
invariant, and two states are identical only if their entropies are identical, it
clearly follows that a necessary condition for a vanishing Holevo informa-
tion given a pure unitary feedback process is for all the posterior states after
measurement, pg 1 to have the same entropy. While this can be achieved if,
for example, the system undergoes a von Neumann measurement of a non-
degenerate observable, for general measurement processes this is not the
case. This is why in physically relevant situations, in order to saturate Eq.
(16) a feedback process that exchanges entropy with a thermal bath is
required, thus going beyond the paradigm of pure unitary feedback pro-
cesses employed in".

Remark. Similarly as above, a necessary condmon for the equality in Eq.
(17) is for the entropy production during erasure, Slri, to vanish. The other

necessary condition, however, is given by a vanishing conditional mutual

information I(A : M|K), = cp (A : M), Clearly, such a quantity
Vanishes if and only it pyy = p‘ZA‘ B ‘® Y % Given that
P =id* @ MU} ® pi)]/pi» @ sufficient  condition  for

IA:M |K) to vamsh is if the instrument M is nuclear (also known as
measure- and -prepare*® or Gordon-Louisell type”). That is, if it holds that

M, () = TrM, ()]} for all k, where {0}!} is a fixed family of states on M.
It is clear that a nuclear instrument acting in M will destroy the correlations
between A and M for each outcome k. Every POVM admits a nuclear
instrument and, as shown in Corollary 1 of** (see also Theorem 2 of ), if
the pointer observable measured by M is rank-1, ie., if all the effects
M, = MZ(HM ) are proportional to a rank-1 projection, then M is neces-
sarily nuclear. Consequently, by choosing a rank-1 pointer observable, we
can guarantee that the term I(A : M|K) b, vanishes.

Comparison between the second law of thermodynamics and the
second law of ITh
Our analysis so far has been independent of ther modynamics, but hence-
forth we will explore the consequences derived by combining the results of
Proposition 1 with the second law of thermodynamics. Before doing so,
however, we introduce two types of second laws of thermodynamics in this
section, and show how they are related.

According to ref. 36, when a thermodynamic system Y transforms as
(pf; H > (ij; HY) by an isothermal processes, i.e., a process involving
thermal baths with the same temperature, the second law can be formulated
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as the following inequality:
Y
Wl<—AF] . (18)

Notice that the nonequilibrium free energy change in the right-hand side
can be replaced by the change in equilibrium free energy F.,(H 7=

—B'InZ" = F(y"; HY) whenever the initial state of Y is assumed to be in
thermal equilibrium—this is a consequence of the implication®

AFY

sz = yY = _AFL]'\ eq,i—j* (19)
The above inequality will be useful when connecting our analysis to
previous ones.

The feedback control and erasure protocol we consider consists of the
subsystem AMK interacting with baths B; and B,, which are assumed to be
of the same temperature so that the total process is isothermal. This is to
ensure that our analysis falls within the domain of applicability of the second
law as formulated in Eq. (18). As such, the feedback control and erasure
protocol is consistent with the second law of phenomenological thermo-
dynamics, or the overall second law, when the net extracted work given in
Eq. (10) and the change in free energy of the compound AMK obey the
relation in Eq. (18), i.e.,

A FAMK

Wtot< - 0—4 * (20)
We remark again that the above inequality embodies the second law of
thermodynamics when considered from the beginning (time #,) to the end
(time t,) of the protocol, regardless of what happens in the intermediate
steps. On the other hand, the feedback control and erasure protocol is
consistent with the second law of ITh, as formulated in'>, when the net
extracted work given in Eq. (10) is bounded by the change in free energy of

the target system alone, i.e.,

WS —AFy . (21)

Since the memory and register are erased, the free energy change
AFYX , is zero. Naively, one would be led to expect that AFSMX = AF3 | as
a result thus suggesting that Egs. (20) and (21) are equivalent. However, as
the following proposition (proved in Methods, Section IV C) shows, they
coincide if and only if erasure is perfect.

Proposition 2. The generalized quantum feedback control and erasure
protocol (Figure 2) is consistent with the overall second law of thermo-
dynamics, i.e., Eq. (20), if and only if

AMK
ASO*)Z

I(A: MK), —I(A: MIK), —I(A:K), — Sy — Sz, (22)
Instead, the protocol is consistent with the generalized second law of I'Th,

ie, Eq. (21), if and only if

AMK
SO—> 2 Z

_SBI_ 2
irr :

—I(A: MIK), —I(A:K),, B2 (23)
Since I(A : MK), >0, Eq. (22) always implies Eq. (23) : consistency with the
second law of thermodynamics implies consistency with the second law of
ITh. The converse implication holds if and only if erasure is perfect,
ie, piMK = pt ® pif ®10)(0]".

In summary: a feedback control and erasure protocol that is consistent
with the second law of phenomenological thermodynamics is guaranteed to
also be consistent with the second law of ITh. However, if erasure is partial so
that I(A : MK), > 0, then it may be the case that the protocol is consistent
with the second faw of ITh, but violates the second law of thermodynamics

proper, allowing for work extraction beyond the Clausius bound.

When is a quantum measurement process compatible with the
second law?

Proposition 2 above provides necessary and sufficient conditions for a given
feedback control and erasure protocol to be consistent with the second law
—be it the overall second law, or the second law of ITh. But now recall that a
feedback control and erasure protocol is implemented by first performing a
measurement, and subsequently performing feedback and erasure. It follows
that, in order for a particular measurement process itself to be consistent
with the second law(s), then all possible feedback control and erasure
protocols that utilize that same measurement process must be consistent
with the second law(s). This leads us to the following definition:

Definition 3. A given quantum measurement process

Py ® pi' @ 10)(01 > > (id" ® M) [Ulpy @ pi")] @ k) (kIK
ke

is compatible with the overall second law of thermodynamic whenever Eq.
(22) holds for all possible subsequent isothermal feedback and erasure
processes. Similarly, the measurement process is compatible with the second
law of ITh whenever Eq. (23) holds for all possible subsequent feedback and
erasure processes.

We shall begin from a sufficient condition for a given measurement
process to be compatible with the second law(s). As explicitly shown in
Methods, Section IV D, we observe that the right hand side of Eq. (22) in
Proposition 2 is never strictly positive, allowing us to obtain the following:

Proposition 3. A measurement process that does not decrease the total
entropy, i.e,, such that ASt™K > 0, is guaranteed to be compatible with the
overall second law and, hence, also with the second law of ITh. Moreover, a
sufficient condition for ASSX >0 to hold is if the instrument M
responsible for pointer objectification implements a bistochastic channel,
i.e,, a CP linear map that preserves both the trace and the unit.

A consequence of Proposition 3 is that a feedback control and erasure
protocol may violate the second law(s) only if it includes a measurement
process that decreases the total entropy. However, it does not follow that any
measuring process that decreases the entropy will always violate the second
law(s). To this end, we obtain the following necessary condition for a
measurement process to be compatible with the second law(s), proven in
Methods, Section IV E:

Theorem 2. The measurement process is compatible with the second law
of ITh if and only if

ASEME > —I(A - MIK),, (24)
or, equivalently,
H{p)) = 1o + o> (25)

where #({p;}) := —> jexcPi Inpy is the Shannon entropy of the mea-
surement outcomes probability distribution, and Jgo := S(M), —
S(MIK),,, is the Groenewold-Ozawa information gain of the memory.

Moreover, the above inequalities are necessary conditions for the
measurement process to be compatible with the overall second law.

Eq. (24) states that even if the measurement process decreases the
entropy, as long as the target system and memory are left in a sufficiently
correlated state, then all possible feedback and erasure processes built on it
will still be consistent with the second law of ITh. Such a condition is
equivalently reformulated in Eq. (25) as a tradeoff between the information
gains of the target system and the memory: if a given measurement process is
compatible with the second law of ITh, then the information gain of the
target system and that of the memory cannot be both arbitrarily large at
the same time, but their sum must remain below the Shannon entropy of the
measurement outcomes distribution.

npj Quantum Information | (2025)11:18


www.nature.com/npjqi

https://doi.org/10.1038/s41534-024-00922-w

Article

Note that, in Theorem 2, it is the entropy of the compoundAMK that
matters, not the entropy of the system A alone, which may well decrease as a
result of the action of the effective instrument {4, : k € K} in Eq. (6). In
other words, the second law puts a restriction on how a particular instru-
ment is realized on the compound, not on the instrument itself.

Remark. As stated in Proposition 3, if the instrument responsible for
pointer objectification implements a bistochastic channel, then the entropy
of the compound AMK is guaranteed not to decrease™, thereby ensuring
compatibility with the second law. A paradigmatic example of an objecti-
fication process that satisfies this condition is given by the Liders instru-
ment. But for any pointer observable M acting in the memory, there
are M-compatible instruments which do not implement a bistochastic
channel—for example, a nuclear instrument which prepares the memory in
the same pure state for all outcomes. Additionally, let us recall that such an
instrument will always destroy the correlations between system and
memory, so that I(A : M|K), = 0, whereby a decrease in entropy is suf-
ficient for the violation of the second law for some feedback and erasure
process. In Methods, Section IV F, we explicitly construct such a feedback
control and erasure protocol so that ASAYK s strictly negative, and which
violates both the overall second law of thermodynamics, as well as the
second law of ITh.

As a consequence of the above, we see that the choice of the mea-
surement process, in particular, of the objectification process, while not
affecting the dynamics of the target system alone—which depends only on
the pointer observable M, not on the choice of M implementing it, see
Eq. (6) —instead has a non-trivial thermodynamic implication, since the
state change of the memory enters directly into the thermodynamic balance.
In fact, the common assumption that the pointer objectification is imple-
mented by a Liiders instrument'*** obscures the role that the bistochasticity
of such instruments plays in ensuring consistency with the second law,
leading to the erroneous conclusion that the laws of quantum theory alone
are sufficient to ensure compatibility with the second law. Here instead we
have shown that, in order to obtain a full understanding of how the pointer
objectification relates to the second law, the instrument Mmust be treated as
arbitrary, as we have done, lest one obtain statements of limited scope.

Discussion
Here, we compare the work inequalities presented in Theorem 1 with those
previously obtained by Sagawa and Ueda''"". According to"', the achievable
upper bound on the amount of work extracted by feedback control from the
target system A, assumed to be initially in equilibrium, is

WA <

ext AFeq 0—4 + ﬁilIQC ’ (26)

where Ioc is a nonnegative quantity named the QC-mutual information'.
This quantity, in some particular situations, can be interpreted as a measure
of the information gained by the measurement performed by the controller
on the target system. Thus Eq. (26) implies that the second law (18) for
system A can be violated in a feedback control protocol by an amount that is
directly proportional to the information that the controller is able to obtain
about the target system. Then, in a subsequent paper"’, the same authors
showed that the quantity f~'Iqc, under suitable assumptions, provides a
tight lower bound on the work cost for measurement and erasure:

— -1
Wneas + Weras = Win' 2 B e 27)

Recalling that W, = WA — WK, one thus obtains
Wlot\ AFeq 0—4> (28)

which ref. 12 refers to as the second law of ITh.

However, in order to be valid, the analysis presented by Sagawa and
Ueda in refs. 11-13 requires the following assumptions on the quantum
feedback control and erasure protocol:

Assumption 1. (A-1)" The pointer objectification must be implemented by
a Liiders instrument M() := M,(-)M, compatible with a projection
valued measure M acting in M. That is, for each measurement outcome k, it
must hold that

@ MUp; © )1 @My
Pr

a
Pox =

Assumption 2. (A-2)"'"": The instrument acting in the target system 4, i.e.,
A = TrM{(idA ® M) [U(- ® pih)] }, must be efficient. That is, every
operation .4, must be expressible with only one Kraus operator.

Assumption 3. (A-3)"": The target system A must be initially prepared in the
Gibbs state, that is, p = y4.

Assumption 4. (A-4)": At time step ¢ = t,, the target system and memory
must be in a product state for each outcome k, i.e., p5¥ = p2, @ pM,.

Assumption 5. (A-5)"": The feedback process must be pure unitary. That is,
for each outcome k it must hold that pf, = Fjl(p5 k)F

Assumption 6. (A-6)"*: The memory s Hilbert space and Hamiltonian
possess a direct sum structure, e, = @, H and HY = @} 0H M,
where N = |K| is the number of measurement outcomes, and HMx are
Hamiltonians on the sector 7. Denoting the Gibbs states for each sector
HM« as yMr, it must hold that: (i) the initial state of the memory satisfies
pht = yMo, and (ii) the conditional states of the memory before erasure are
thermal in the respective sectors, i.e., p];’k = pM,

Note that none of the above assumptions need be satisfied by a general
measurement and feedback process like that we consider. In fact, they are
generally incompatible, except in trivial cases, as we discuss in the following
remark.

Remark. First, assumptions (A-1) and (A-4) are typically incompatible,
since given a Luders-type pointer objectification, the post-measurement
states pA! will in general be correlated. There are two cases in which (A-4)
will be guaranteed to hold given (A-1): (i) if M, are rank-1 projections,
which is both necessary and sufficient for the M-compatible Liders
instrument M" to be nuclear, then measurement of M by M is guaranteed
to destroy the correlations between A and M; (ii) if the premeasurement
unitary channel is local, ie, U = U* @ UM, then it trivially holds that
Pt = p UM (py) @ MUM (p)")M.. But in such a case the measurement
process does not extract any information at all, as it implements a trivial
observable in A, namely, a POVM whose elements are all proportional to
14, Second, whenever the elements of the POVM measured by the
instrument A in the target system are linearly independent (for example, if
the observable is projection valued) then (A-1), (A-2), and (A-6) are com-
patible only if dim(H )N~} ZLI dim(H*). This follows from the fact
that Gibbs states have full rank, and so the rank of p}! = y™ equals
dim(H™), together with the fact that an efficient instrument compatible
with an observable with linearly independent effects is extremal®>. See
Methods, Section IV G, for the proof. In particular, since M, are projections
onto the subspaces H™¥, then if M, are rank-1 projections, which is
necessary to guarantee compatibility of (A-1) and (A-4) discussed above,
then H™» must also be 1-dimensional. In other words, in order to guarantee
compatibility between assumptions (A-1), (A-2), (A-4), and (A-6), the
initial state of the memory, p}!, must be pure. This is a phy51cally unrealistic
assumption due to the third law of thermodynamics™.

On the other hand, as a consequence of our analysis, one easily sees that
in fact Assumption (A-1) alone is already sufficient to obtain Eq. (21) which,
under Assumption (A-3) and Eq. (19), directly implies Eq. (28). This is
because Liiders channels are bistochastic, so that by Proposition 3 AS] i“z{ >0
is guaranteed to hold, which implies consistency with both second laws.
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Thus, Egs. (16) and (17) constitute a strict extension of Sagawa and
Ueda’s relations (26) and (27). This is because:

1. When the pointer objectification is implemented by a projective
measurement on the memory, i.e., under (A-1), it holds that AS; Y% >0.
Moreover, if AS;¥X>0, Eq. (17) is a more refined inequality than Eq.
(27), and while the former can be saturated, the latter cannot.

2. When the instrument acting in A is assumed to be efficient, i.e., under
(A-2), then the Groenewold-Ozawa information gain Io coincides
with the QC-mutual information I, as shown in ref. 54; in all other
situations, the two quantities are unrelated, i.e., Igo § Iqc but the one
that retains its role in thermodynamic relations is I;o.

3. When the target system is initialized in a Gibbs state, i.e., under (A-3),

then —AF} < — Aqu,(H 4 because of Eq. (19).In particular, we
conclude that the correct information measure that remains valid for
general measurement processes is Io, not Inc. Although I has been
considered also in some previous works"", these still imposed
assumption (A-1). Our analysis shows that I is the right quantity to
consider even when (A-1) is not satisfied.

Summarizing, in this paper, we have shown that the consistency
between the second law of thermodynamics and information processing is
not guaranteed by the laws of quantum theory simpliciter. Instead, the
second law must be taken as a primitive principle which imposes constraints
on the physically valid quantum information processing protocols. In order
to precisely characterize such constraints, we formulated quantum feedback
control and erasure protocols with general isothermal feedback and general
measurement processes. In particular, we did not assume that the pointer
objectification step of the measurement process is implemented by a Liiders
instrument, as was done in previous studies. We then provided necessary
and sufficient conditions for such protocols to be consistent with the second
law (Proposition 2). More generally, we provided necessary and sufficient
conditions for a given measurement process to be consistent with the second
laws for all subsequent feedback control and erasure processes (Proposition
3 and Theorem 2). These results show that while the second law is neces-
sarily obeyed if the pointer objectification process is bistochastic—as is the
case for Liiders instruments—the second law can be violated if the pointer
objectification decreases the entropy, which is permitted by quantum theory
alone. In this very sense, then, quantum theory alone is not a guarantee of
compatibility with the second law.

Along the way, we derived expressions for the work extracted by
feedback control and the work required for measurement and erasure
(Proposition 1 and Theorem 1) which, unlike those presented in previous
studies''™'*'**’, are universally valid in the sense that we did not impose any
assumptions on the feedback process, the measurement (including the
pointer readout), or the initial state of the system. Of course, our equations
recover those presented in previous studies' ™", but are able to do so with
fewer assumptions. As our other main result, we then show that the gen-
eralized second law of ITh presented here is guaranteed to hold for any
quantum feedback control and erasure protocol that is consistent with the
second law of thermodynamics proper, and that the two laws become
equivalent in the case of perfect erasure of the demon’s memory
(Proposition 2).

This resolves the problem of the scope of the second law of I'Th, which
was unclear from previous studies, but can now be considered a universally
valid law of physics. That is to say, since the conjunction of the second law
and the laws of quantum theory implies that the second law of ITh will hold
by logical necessity, as long as the second law and quantum theory are
regarded as universally valid laws of physics, then so too must the second law
of ITh be. Our results also contribute to the debate regarding the operational
interpretation of the Groenewold—Ozawa information gain, which has been
generally considered problematic, especially in those situations where it
takes negative values; we have seen that this quantifies the amount by which
the extractable work by measurement-plus-feedback exceeds the reduction
in free energy'*", for all possible measurement and feedback processes.

An interesting direction to follow will be to look for applications of our
approach to other formulations of the second law such as fluctuation

theorems'>* . In the same way, another possible line for future research is
to bring our analysis to the one-shot case™®, possibly beyond quantum
theory”****, and to introduce insights from the thermodynamic reverse
bound™, retrodiction®®”*>* and the theory of approximate recoverability®’.
Finally, an interesting line of future investigation will be to see how the
second law of ITh interplays with the first and third laws of thermo-
dynamics: the first law demands that the interaction between system and
memory of the measuring device must be constrained so as to conserve the
total energy, whereby the Wigner—Araki-Yanase theorem will impose
limitations on the measurements one may perform®”*. On the other hand,
the third law will prohibit the memory from being initialized in a pure state,
which has also been shown to impose fundamental constraints on
measurements’>””. While we have seen that the second law alone imposes
no constraints on the measurements we can make on the target system—any
instrument acting in the target system allows for a bistochastic measurement
process that does not reduce the total entropy of the compound—it may be
the case that, in conjunction with the other laws of thermodynamics, further
constraints must be imposed on the quantum measurements that can be
performed.

Methods

Preliminaries

Here, we introduce some preliminary concepts which will be used in the
technical proofs appearing throughout the rest of the manuscript.

Definition 4. Consider a thermodynamic system (p*; H*). The internal
energy is defined as

E(pA;HA) =Tr LDAHA]7
and the nonequilibrium free energy’™ is defined as

Fp"; HY) := E(p"; HY) — B7'S(A), = Foo(H") + B'D(p" 19",

where Feq(HA) = —f'Inz* = F(y*; HY) is the equilibrium (Helm-
holtz) free energy.

Lemma 1. Consider a bipartite thermodynamic system (p*% H*?).
Assume that the Hamiltonian is additive, ie,
HY = g4 + H? .= H* ® 1° + 1* ® HP. It holds that

E(pAB;HAB) _ E(PA;HA) +E(pB;HB)
and

F(p H*") = F(p"; H*) + F(p"s H") + B~'I(A4 - B),.

Proof. Note that by the definition of the partial trace, it holds that
Tr[p*PLA ® 1°] = Tr[p* L*] for all L* and p**. The additivity of the internal
energy follows trivially from the additivity of the Hamiltonian. Now note
that F(p*; H**) = E(p*"; H*") — B~'S(AB),,. Observing that S(AB), = S(A),, +
S(B), — I(A: B), completes the proof. =

Operations provide the most general description for how a quantum
system may transform. In the Schrédinger picture, an operation acting in a
system A is defined as a completely positive (CP), trace non-increasing
linear map @ : £(HA) — L(H*). We shall denote the consecutive appli-
cation of operations @; followed by @, as ©,o®;. For each operation, there
exists a Heisenberg picture dual @', defined by the trace duality Tr[®"(L*)p"]
=Tr[L*®(p")] for all p* and L* @" is a sub-unital CP linear map, ie.
@*(1*)<1*. Among the operations are channels, which preserve the trace,
and if @ is a channel, then @ is unital, i.e., ®*( llA) = 1*. We shall denote
the identity channel acting in A as id*, which satisfies id*(L*) = L* for all L*.
An operation acting in a composite system AB is local if it can be written as
@ =" @ O° such that O(IL* ® LP) = (L") ® OP(LP) for all L* and L. As

npj Quantum Information | (2025)11:18


www.nature.com/npjqi

https://doi.org/10.1038/s41534-024-00922-w

Article

such, @* ® id"” is an operation that acts locally and non-trivially only in
subsystem A.

Lemma 2. Consider a bipartite thermodynamic system which transforms
as (pB ; HAB)— (pAB HAB) such that pAB o4 @ id? (p?B), where ¢* isa
channel acting in ‘A and id”® is the 1dent1ty channel acting in B. The fol-
lowing hold:

i pt = @*(p) and p} = pP’.
i If HP=H!+H’ for k = i j then AEY =
AE},; = Tr{®*(p)H}'] — Trlpf H}'].
Proof.

i : For all L* and L it holds that

Tr[pf L] = Tr[0* @ id®(p!*) (14 ® 1°)] = Tr[pP 4 @ id*(14 ® 1°)]
_ Tr[ AB(DA*(LA)® 1 ] r[p A*(LA)] Tr[q)A(P?)LAL

Tr [ BLB] = Tr[04 @ id®(p2%)(1* @ LP)] = Tr[pAfot* @ id®(14 @ LP)]

=Tr[p*1* ® L*] = Tr[pL"].

Here, we have used the definition of the partial trace, the trace duality, and
the fact that @*" is unital while id®(L®) = L® for all L. Since Tr[p*L*]
=Tr[o"L*] for all L* if and only if p* = 0" completes the proof.
ii. This follows from item (i), together with the additivity of the Hamil-
tonian, Lemma 1, and the fact that H? = H]B =HE:[

Lemma 3. Consider a system Y and a thermal bath B, which transform as
(pY%; H®)> (pYB H®). Assume that p/® := p! ® y%, and that pYB

(pYB) with (D( ): = U(-)U" a unitary channel, and that H} 8 .= HY + HE
for k = i, j. Then the extracted work from system Y will read

Wi = —AE", = —AF - 7S,
where
Siw = 1(Y : B), +D(p] [ ") >
is the irreversible entropy production, vanishing if and only
if p/” = p/ ®y".

Proof.. Since unitary evolution is adiabatic, then by Definition 1 the
extracted work from the compound YB will equal the decrease in internal
energy, and so by Definition 4 it holds that
WE = —AE[S, = —AF5, — B7ASYE, = —AF)®, with the last step
following from the fact that unitary evolutlon does not change the von
Neumann entropy. Now note that by the first law of thermodynamics,
it holds that WeYXt = —AE,.Y_, — QY, where szt is the work extracted
from system Y, and QY := AEiBﬁj is the heat that flows to the bath B.
By the additivity of the Hamiltonian and Lemma 1, it follows that

Wl = AE,’;J AEiJ =—AE® = = : WYB. We may therefore write
WY, = —AF?,
= —AF) - AF? — BHI(Y : B),
= AR - 1Y B), +D(p;.3 I y3>]

In the second line we have used Lemma 1 and the additivity of the
Hamiltonian, together with the fact that system and bath are uncorrelated at
initial time, and so I(Y : B), = 0. In the third line we use the fact that the
bath is initially in thermal equilibrium, i.e., p% = P, together with Defini-
tion 4 and the fact that the bath Hamiltonian, and hence the bath equili-
brium free energy, does not change. Finally, we recall that the mutual
information I(Y : B)p} is non-negative and vanishes if and only if

p] = p ® p whereas the relative entropy D(p] [l ®) is non-negative
and vanishes if and only if pf = yP*. =

Proof of Proposition 1
We shall first prove Eq. (14). Given that feedback is implemented by a global
unitary channel p,i>p, = F ® id""(p,), the extracted work will read

Wiisos = —AEy 3 = Tr[Pz Hz} - Tr[]:® idMBz(Pz)Hs}
=T [pf‘A(HB‘ + Hg)] —Tr {pg‘A(HB‘ + H;‘)}
= S p(e[y @b+ D] - T F (0 @) (17 o+ )]
— B, A
= *&Pk(AFﬂs.k +8 I[I(A “By),. +D(p3.k Il y® )])
(29)
Here, the second line follows from Lemma 2 and the fact that F acts
locally in B;AK, and that the Hamiltonian at t,, t; is additive with
only the Hamiltonian of A changing in time, and that the state
of K does not change. The third line follows from Eq. (5) and Eq. (7).

The final line follows from Lemma 3. Now let us note that we may
write

= T pAF = 5 (Trlph] = Te[plis] + 67 Sk - S8 )
= Telpi ] — Trlptrd] + 57 5 s (o) — (o) ]
(Tt o) + (T o)
+ 87" [Tao + S(68) = (o) — 14+ K, |
= BB}, — AR, + B [Ioo — (A K, |
= AE}, — AFA, + B! [I(,O “IA: K)PB]
(30)
In the second line we use the fact that >, _-p; pix = pi*. The third line is

obtained by adding and subtracting Tr[pAHA] B7'S(pd), and B S(pd),

and noting that Igo = S(p5) — D kexcPeS(P ) and
I(A: Kzf = S(p3) D ke kaS(p3 .)- The final line is obtained by noting
that AF;_ , = AFy_, + AF4,, and that AF4 ,, = 0 since both the state
and Hamlltoman of system A do not change between time step t; and t,.
Finally, since WA , , = —AE{ ,, then by Eq. (29) and Eq. (30) we have

that
A _ A A
Wext - Wext.0—>2 + Wext,2—>3

=—AF)  +p7 (IGO —I(A:K), — kXI:Cpk [I(A (B, T+ D(P?fk Iy™ )]>,

and so we obtain Eq. (14).
Next, we show Eq. (15). Since the erasure step is implemented by the
global unitary channel p,+—p, = id* ® V(p,), we have

WK, = AE,_, = Trfid"* @ V(p,)H,] — Tr[p,H,]
— Tr[V(pMK ® yBZ)(HMK + HBZ)} _ Tr[Pg/IK ® sz(HMK + HBZ)]
= AFYK, 4 B~ [I(MK :B,), +D(py" | sz)]

—ARYK, + B [IMK : By), + DS 1| v%).

The second line follows from Lemma 2 and the fact that V' acts locally in
MKB,, and the fact that the Hamiltonian at f3, t, is additive while the
Hamiltonians of MK and B, do not change. The third line follows from
Lemma 3. The final line follows from the assumption of erasure, ie.,
MK = pMK g0 that AFYX, = —AFYK,  together with the fact that both the
state and Hamiltonian of MK do not change between time steps t, and 3, so

that —AFYK, = —AFMK, — AFMK, = —AFYK, Given  that
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= AEYX

MK
Wi 0—2

in,0—2

= AF{;”K2 + [J’flASS/[fz, we have that

—

+ Wi

MK _ MK
Win =W in,3—>4

in,0—2

= AR, + B ASYS, — AR, + B [IMK : By), + D" I v*)]

= B! [AS)X, + IOMK < By, + DS 1 )],

€Y
Now note that in general, the following relationship holds:
I(A : MIK), := S(AIK), + S(M|K), — S(AM|K),,
= S(AIK),, — S(A),, + S(A), + S(MK),,
— S(MK), + S(MK),, — S(AMK),, o)

= S(AIK),, — S(A),, + S(MK),,
— S(MK),, + S(AMK), — S(AMK),,

=—Igo+ ASQ’IEZ - AsoAﬁg{ .
The second line is obtained by adding and subtracting S(A) oy and S(MK) oy
together with the definition S(AM|K), := S(AMK), — S(K), and
S(M |K)p2 = S(MK)pZ - S(K)PZ. The third line is obtained by noting the
fact that pfMX = p& @ p}® so that S(A)p0 + S(MK)pO = S(AMK)FO. By
combining Eq. (32) and Eq. (31), we obtain the desired equality Eq. (15).

Proof of Proposition 2
By combining Egs. (14) and (15), we obtain

Wtot = Wg(t - W{ZK
= —AFA (Asgiﬂ; +I(A: MIK), +I(A: K), + S+ sﬁ;).

(33)

Recall that the protocol is consistent with the overall second law of ther-
modynamics if and only if W, < — AF5MX_ But now note that

—AFYY = —AFg,

= —AFj

0—4

A
<7AF0*>4’

— AFY, — B'I(A : MK),,

— (A : MK),, (34)

where the first equality holds because of Lemma 1 and I(A : MK), =0,
the second equality follows from the erasure condition p}® = pMK, and the
inequality follows from the non-negativity of the mutual information. Then
by Eq. (33), the protocol is consistent with the overall second law if and only
if

ASPMS + I(A : MIK), +I(A : K), + Spt + S

— irr

>I(A: MK), . (35

By rearranging the above, we obtain Eq. (22). Now recall that the protocol is
consistent with the second law of ITh if and only if W, ,< — AF4 . By the
same arguments as before, only replacing I(A : MK), in the righthand side
of Eq. (35) with 0, we obtain Eq. (23).

It is clear that Eq. (22) and Eq. (23) are equivalent if and only if erasure
is perfect, that is, p{MK = pi ® pMK = p4 @ pM ®10)(0|¥, so that
I(A: MK)M = 0. But since in general I(A : MK)P‘1 >0, while Eq. (22)
always implies Eq. (23), the converse implication does not always hold.

Proof of Proposition 3

To show that ASGM5>0 is sufficient for compatibility of the measurement
process with the overall second law, we must show that the right hand side of
Eq. (22) is never strictly positive. Given the non-negativity of the irreversible
entropy production terms st s it suffices to show that

irr > Virr>

I(A: MK), — I(A : M|K), —I(A : K), <0.

To this end, let us note that
I(A:MIK), = > pl(A: M),
kek ’
=3 PkD(P%[ I p3i ® Pzz\,dk)
kel
> 5 (8@ dE) | A @i (o, @ p1l)
€

= 5 nD(pH 1 ot @)
kek

= > p(A: M), = I(A: M|K)p3.
keK ’

(36)

Here, Ay(-) := Trg [F +(¥P1 ® -)] are the conditional channels acting in A
during feedback, the third line follows from the data processing inequality’®,
and the fourth line follows from item (i) of Lemma 2. Note that if feedback is
pure unitary, so that A (-) = F?(-)F‘:T, then the inequality above becomes
an equality.

Now notice that the following equality holds from the chain rule:

I(A: MIK), +I(A:K), =I(A: MK), . (37)

By Eq. (36) and Eq. (37), it follows that

I(A: MK), —I(A: M|K), —I(A: K), <I(A: MK), —I(A: MI|K), —I(A:K),
=I(A: MK), —I(A: MK),,
= Dpi™™ 1l pi; ® pi™) — D(p5™™ Il p5f © p5™)
= D(id"* @ D(p*X) | id" ® D(p} ® piiX))
=DM |l p5 @ p5™)
<0.

Here, O(-) := Try V(- ® yB2)] is the erasure channel acting in MK, the
fourth line follows from item (i) of Lemma 2, and the final line follows from
the data processing inequality.

Now, recall from Proposition 2 that if a feedback control and erasure
protocol is consistent with the overall second law, then it will necessarily also
be consistent with the second law of ITh. Therefore, a measurement process
satisfying ASAYX>0 is guaranteed to be compatible with the second
law of ITh.

Finally, we wish to show that if the instrument M := {M, : k € K}
that is responsible for pointer objectification implements a bistochastic
channel—a CP linear map that preserves both the trace and the unit—then
ASAMK >0 will necessarily hold. Note that the channel implemented by M,
ie, My() := > o M(-), is bistochastic if M(1M) = 1M,

Recall that ppMK = 3™ . p, pox @ 1K) (k[¥. Since the classical register
K is not entangled with AM, it follows that S(K|AM) b, >0. Thus, we have

ASPMS = S(AMK), — S(AMK),,
= S(AM),, + S(K|AM), — S(AM),,
> S(AM),, — S(AM),, .

Given that unitary channels are bistochastic, then so long as the channel
My is also bistochastic, then so too is the composition
0 := (id* ® M)U. Now note that we may equivalently write the von
Neumann entropy as S(4), = —D(p? | 1). As such, we have that

ASME > S(AM),, — S(AM),,
= D(pp™ || 1*™) — D(pp™ || 14
= D(pf ® p! || 1**) — D(@(pf ® pi1) II 1)
= D(py ® pi || 1'™) — D(@(p ® pi!) || ©(1*))
> 0.
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Here, in the fourth line we have used the bistochasticity of ©, and the final
line follows from the data processing inequality.

A paradigmatic example of an objectification process that is bis-
tochastic is given by the Liiders instrument. For any observable M, the
operations of the corresponding M-compatible Liiders instrument read
M£(~) = M(-)m. These are also known as “square-root mea-
surements”. It is clear that the channel implemented by a Liiders instru-
ment is bistochastic, since M&(1") = 37, M, = 1*. However, every
observable admits instruments that are not of the Liiders type, but which
nonetheless implement a bistochastic channel—for example, the instru-
ment with operations M), := ®MF, where @ is some arbitrary bis-
tochastic channel.

Proof of Theorem 2

Let us note that the only term on the right hand side of Eq. (23) that is
fixed by the measurement process alone is —I(A : M|K), . Therefore, the
right hand side of this equation, given a fixed measurement process but
for all possible subsequent feedback and erasure processes, is upper
bounded as

—I(A: MIK), —I(A: K), — it — S<— I(A - MIK),.

irr T 1rr\

(38)

This follows from the non-negativity of the mutual information and the
entropy production terms. Imposing that the inequality in Eq. (23) must be
satisfied even when the right hand side obtains the upper bound above, we
thus arrive at Eq. (24). Note that the upper bound of Eq. (38) i is ach1evable in
the limit where feedback and erasure are quasistatic, so that Slr; =8§:=0,
and such that for all measurement outcomes the feedback process
transforms the target system to the same final state, i.., p5, = p4 for all
k, so that I(A : K),,

To show that Eq (24) is equivalent to Eq. (25), let us note that

ASHME = S(AMK), — S(AMK),
= S(AMIK),, + S(K), — S(AMK),
= S(AMIK), + A ({p}) — S(A),, —

(39)
S(M),,.

In the second line we use the definition of the conditional entropy, whereas
in the final line we use the fact that pX =", p,[k) (kX and that
PEMK = pd @ pM ® ]0)(0]¥. Moreover, let us note that by the definition of
the conditional mutual information, it holds that

—I(A: MIK), = —=S(AIK), — S(MIK), + S(AMIK), . (40)
By inserting Eqs. (39) and (40) in Eq. (24) gives us Eq. (25).

Finally, we shall show that Eq. (24) is also necessary for the compa-
tiblity of the measurement process with the overall second law. To this end,
let us consider a feedback control and erasure protocol, and assume that the
measurement  process violates Eq. (24), ie, assume that
ASIMK < —T(A:M |K) but such that the protocol is consistent with the
overall second law, i.e., Eq (22). This gives us the inequality

ASPMS > ASGME

+ I(A: MK), — I(A:K), — Sh — S

r”
Assume also that the feedback and erasure processes are ideal and quasi-
static, so that I(A : K), Sﬁ; = ﬁi =0. In such a case the above
inequality becomes

ASYME > ASME + (A : MK), .
But by the non-negativity of the mutual information, this inequality cannot
be satisfied. As such, if a measurement process violates Eq. (24), then it will
necessarily violate Eq. (22) for some feedback and erasure process. It follows
that Eq. (24) is necessary for compatibility of the measurement process with
the overall second law.

A measurement process that is incompatible with the

second laws

Recall from Proposition 3 that a necessary condition for the incompatibility
of the measurement process with the second laws is that pointer objectifi-
cation must not be bistochastic. This is always possible; for example,
measure and prepare instrument M,(-) = Tr[M,()]ly) <1//| , where
|u/> is a fixed, arbltrary pure state of M. It is trivial that M. is not
bistochastic, since M -( 1) =Tl ]|1(/><1//| M21M We shall now use a
measurement process utilizing just such a pointer objectification, demon-
strating that it is incompatible with the second laws.

Let (KM, pM U, M) be a measurement process for a Liiders instru-
ment Ai () :== AL()A,, compatible with a projection valued measure A,
acting in the target system. Here, we choose M to be compatible with a
projection valued measure M, and we choose p}! to be a mixed state, albeit of
sufficiently low rank so that our model is in accordance with Proposition 4.
Recall that any instrument M that is compatible with the same POVM will
realize the same instrument acting in the target system. Therefore, let us
choose this 1nstrument to be nuclear, with the operations

M (1) = Tr[M,] |1//> <1//| , where |1//> is a fixed, arbitrary pure state of M.
Now let us choose one particular outcome k = h, and choose the input state
of the target system so that it has support only in the eigenvalue-1 eigenspace
of the effect A, i.e, Agpst = &) ;pf. In such a case, it will hold that py = &,
and so H({p,}) == —> jexPrInp, = 0. Moreover, we have that
p2 x = Op 14> so that Igo = 0. But, given the ch01ce of instrument M actlng
in the memory, it holds that p)f = &, h|1//><1//| »so that Jgo = S(M),, >
Our protocol therefore gives the inequality

H(ppD) <Igo +Jgos

which contradicts Eq. (25) and so, by Theorem 2, violates the second law of
ITh and the overall second law for some feedback and erasure processes.
Indeed, note also that in this model, we have
paME = ptt @ |y) <1//|M ® |h) (h|X, where the lack of correlations between
A and M follows from the fact that M is a nuclear instrument. In such a case,

it holds that ASHMK — —S(M) p, <05 whereas
—I(A: MIK), = —I(A: M), = 0.It follows that

ASM5< — (A : MIK), ,
which contradicts Eq. (24).
Efficient instruments

Proposition 4. Let (1™, p}, 1/, M) be a measurement scheme for an
instrument 4 compatible with an observable A := {A, : k=0,...,N}
acting in A, where N is the number of distinct measurement outcomes, and
where Ay = O" is a null effect. Assume that M is compatible with a
projection valued measure M := {M; : k = 0,..., N} acting in M, and
denote HM+ := supp(M,). Assume that the effects of A, excluding the null
effect A, are linearly independent. Then A is efficient only if

dim(HMr) dim(HM )
rank(po) Zk ! N < N

with the second inequality becoming an equality if and only if M, = O™.

Proof. Note that Assumption (A-6) assumes that the outcome associated
with projecting M onto the subspace 1™ is (statistically) never observed,
i.e,, it is observed with probability zero. For this reason, in what follows, we
need to introduce the effect M, of the pointer observable, associated with a
null effect A, = O” for the system observable, which makes the pre-
sentation a little cumbersome.

To prove the claim, we first note that an efficient instrument compa-
tible with an observable with linearly independent effects is extremal’’; given
the instruments A, A, A”, all with the same value space K, A is extremal if

npj Quantum Information | (2025)11:18

11


www.nature.com/npjqi

https://doi.org/10.1038/s41534-024-00922-w

Article

for any A € (0, 1), we may write A,(-) = AA'(-) + (1 — 1).A"(-) only if
A= A = A”. Thatis, an instrument A4 is extremal if it cannot be written
as a convex combination of distinct instruments. As such, we shall first
obtain necessary conditions on the rank of p}! that must be satisfied for the
measurement scheme to implement a general extremal instrument A.

Let us write p)! = "7, q;|¢;)(¢;l, where |¢;) are mutually ortho-
gonal unit vectors, {g} is a probability distribution, and r = rank(p}!). By
linearity, for each 7 it holds that (H™, ¢, > U, M) is a measurement scheme
for an instrument A®, such that > q,A(')( -) = Ai() for all k. Note that
since outcome k = 0 of the pointer observable i 1s associated with the null
effect A, = O%, then it holds that Ay(-) = A(-) = O*. Denoting the
(prOJectlon) effects of the pointer observable M as Mk = Z [V ) Vil
where { |1//k‘ } is an orthonormal basis that spans H, then for eachiandk,
by Eq. (6) we may write

AD() = Try[(1* @ MYU(- ® I¢,) (¢:)U] = ZL(” oLy,

where the Kraus operators read
@& _ yt
L’W = VW UV¢I.

Here, V, tHAY - HA @ HY, |€)—[€) ® |p) arelinear isometries defined
by the unlt vector |¢) € H™M, which satisfy
AM _ /A Ay, T qA ’
VIIMy, = (ploh 1%, V14V =14 ®p)(9'|.
I\}Iloting that Zk_”|1//kvy> <1//k44| = 1™, it follows that for every i # j, it holds
that

Z L(l)’r L(])

Let{L,|v=1, ..., R} be a minimal Kraus representation for the operation
A ie, where Ly, are hnearly independent and Ry is the Kraus-rank of A,.
Note that since A; = O”, then L,, = O*. Now assume that A is an
extremal instrument. This implies that A, = A() for all i and k. As shown
in”, for each i there exists an isometry [ufﬂ, € C] such that

= Z u(l) Lk 121 Z u/(;): Lt)u =

By Eq. (41), Eq. (42), and orthonormality of {|y; , > }, we may thus write for
every i # j the following:

ot Ayt =yvi1My —
kz: V¢t U V‘I’k.y] V‘/’k.y UV¢j - V¢:1 V¢J =0. (41)
M

()
Lk,/,t (42)

0=X L(ITL(I) w Vi Vi)

k!
= Z (Z uyl);/kLT > <Z u‘l(zj’),u’Lk,v’) <ll/k,‘u|ll/k,‘u’>
Z L Lkl/ 1//(1) W/ku’)

(43)
kopu!

where

|V/k 1,> = Z ul) |‘/’k,4> € supp(My) = H".
14

(44)
As shown in”', A is an extremal instrument if and only if the set

(L Ly lk=1,... ,Niw,v/ =1,... Ry}
is linearly inde (?endent. As such, the equality condition in Eq. (43) holds
only if 1//(') =0forallk>0,r,v/,and i # j. Now, by Eq. (42) and

Eq. (44), together with the fact that (y |y ) = &6, it is easily

verified that (wi’)uh//(') ) = 810, for every i. Indeed, since for every i,
|w§:4)y € HMx_ then it also holds that (lp(k')yh//k/ .} = 0 whenever k=k'. It
follows that

{ v,) e @Hka_1

must be a set of mutually orthogonal vectors. The cardinality of the above set
is easily computed to be rank (p}!) 3", Ry. But since @,_, H* can only
contain at most dim(@),_, H**) = 3"}, dim(H+) mutually orthogonal
vectors, then A is extremal only if

.,Rk;i:I,...,rank(pg/[)}

S ldlm(HMk)
Zk 1Rk

Now assume that A is an efficient instrument. It holds that R, = 1 for each k,
and A is an extremal instrument if and only if{Lsz =Alk=1,...,N},
i.e, the non-trivial effects of the measured observable A in A, are linearly
independent. This completes the proof. []

rank (pg') <
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