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In the quest for robust and universal quantum devices, the notion of sim-
ulation plays a crucial role, both from a theoretical and from an applied per-
spective. In this work, we go beyond the simulation of quantum channels
and quantum measurements, studying what it means to simulate a collection
of measurements, which we call a multimeter. To this end, we first explic-
itly characterize the completely positive transformations between multimeters.
However, not all of these transformations correspond to valid simulations, as
otherwise we could create any resource from nothing. For example, the set of
transformations includes maps that always prepare the same multimeter re-
gardless of the input, which we call trash-and-prepare. From the perspective
of an experimenter with a given multimeter as part of a complicated setup,
having to discard the multimeter and using a different one instead is undesir-
able. We give a new definition of multimeter simulations as transformations
that are triviality-preserving, i.e., when given a multimeter consisting of triv-
ial measurements they can only produce another trivial multimeter. In the
absence of a quantum ancilla, we then characterize the transformations that
are triviality-preserving and the transformations that are trash-and-prepare.
Finally, we use these characterizations to compare our new definition of mul-
timeter simulation to three existing ones: classical simulations, compression of
multimeters, and compatibility-preserving simulations.
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1 Introduction
One of the most important goals in the development of quantum computers is the simu-
lation of quantum systems of interest, both in an analogue and digital fashion [1]. Mea-
surements play an important role in this effort, as they are the only way for us to access
the information of a quantum system. Therefore, in this work we focus on the simulation
of measurements (or meters) and in particular simulation of collections of measurements,
which we call multimeters. An extreme case of such a simulation are compatible measure-
ments. Measurements are compatible if there exists a joint measurement one can perform
instead and obtain the measurement statistics from classical postprocessing, possibly us-
ing randomness, of its outcomes [2, 3]. In that sense, the joint measurements simulate
the compatible measurements, such that it makes more sense to implement the joint mea-
surement than all of the compatible ones. A striking feature of quantum mechanics which
distinguishes it from classical mechanics is the existence of incompatible measurements
[4, 5], for example projective measurements with non-commuting elements. Therefore,
measurement compatibility does not capture the full picture of what it means to simulate
a multimeter.

Several different notions have been proposed in the literature for the simulation of
multimeters, all of them generalizing measurement compatibility in different ways. The
first way in which multimeters can simulate other multimeters is by classical means, see
e.g. [6, 7, 8, 9]. In these works, a collection of measurements can be classically simu-
lated by other measurements by randomly selecting measurements from the simulating set
and then classically postprocessing their outcomes. Thus, one can for example ask the
question whether a given collection of measurements can be performed using a smaller
number of measurements or measurements with less outcomes, thereby simplifying the
task. Compatible measurements are then the measurements which can be simulated from
one measurement alone and are in a sense as simple as possible. We call this scenario
classical simulation of multimeters.

Instead of using postprocessing, we can instead consider a simulation in which the
quantum state to be measured can be preprocessed with the help of a quantum instru-
ment to reduce the dimension of the quantum input, partially converting it to classical
information. The original collection of measurements one would like to perform is then
simulated by performing measurements on this smaller quantum system, possibly using
the classical side information in the process. We call this scenario the compression sce-
nario. It has recently been considered in [10, 11, 12]. Again, compatible measurements
represent an extreme case of this procedure: instead of conserving any quantum system,
the joint measurement is performed on the quantum input, thereby destroying it com-
pletely. The simulation now consists of classical postprocessing of the outputs of the joint
measurements, thereby obtaining the desired output statistics. The simulation of compat-
ible measurements is therefore also in this framework as simple as possible. In addition
to generalizing compatibility, compressibility (also called high-dimensional simulability) is
shown to be equivalent to high-dimensional steering [11].

Finally, we can combine pre- and postprocessing in order to simulate multimeters.
This has been done in [13]. Here, the authors argue that a simulation should preserve the
compatibility of measurements, i.e., a multimeter consisting of compatible measurements
can only be used to simulate compatible measurements. Note that although the simulation
scheme put forward in [13] preserves compatibility, the authors do not claim that it is the
most general scheme which has this property. We call their setup compatibility-preserving
simulation.
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As we have demonstrated, there is no single agreed-upon notion of what it means
to simulate a multimeter by another one. The first two notions of simulations are clearly
incomparable, as one is only interested in the number of measurements and the classical in-
formation resulting from them, whereas the other focuses on the dimension of the quantum
input, treating the classical information practically as free. One way of unifying them could
be to simply combine them, using compression of the quantum input and classical post-
processing of the output to simulate. In some sense, this is what compatibility-preserving
simulation does, but one can imagine even broader notions of multimeter simulation.

Therefore, our aim is to find the most general definition possible of what it means to
simulate a multimeter by another multimeter. Our article is organized as follows. In Sec.
2, we present the main results of our work. In Sec. 3 we collect the necessary preliminar-
ies concerning states, measurements and channels in quantum mechanics and set up our
framework to study multimeters. Next, in Sec. 4, we characterize the transformations be-
tween multimeters as quantum supermaps. In order to understand these transformations
better, we discuss in Sec. 5 which kind of operations are encompassed by these trans-
formation between multimeters, including different notions of multimeter simulation that
have been proposed in previous work. Subsequently, we give in Sec. 6 our new definition of
which transformations should be allowed for a non-trivial notion of multimeter simulation,
arguing that multimeter simulations should be the triviality-preserving transformations.
In the absence of a quantum ancilla, we characterize the triviality-preserving transforma-
tions and the transformations which act as trash-and-prepare maps, i.e., which always
simulate the same multimeter. We conclude the section by comparing our results to the
previous notions of multimeter simulation. Finally, we end with an outlook in Sec. 7.

2 Main results
In this section, we present the main results of this work. The objects we are concerned
with are collections of measurements, called multimeters. A multimeter M is therefore a
(finite) set tM¨|xuxPrgs of positive operator-valued measures (POVMs) M¨|x “ tMa|xuaPrks.
A multimeter can be seen as a quantum channel where all the classical information about
the measurements involved and their outcomes can be embedded in suitable quantum
systems.

Our first result is a characterization of transformations between multimeters as quan-
tum channels. The transformations we allow are completely positive maps that map Choi
matrices of multimeters to Choi matrices of other multimeters. The informal version of
our result is the following (see Thm. 4.1 for the formal version):

Theorem. For any transformation Ψ which maps multimeters of g POVMs each with
k outcomes on a d-dimensional quantum system to multimeters of r POVMs each with
l outcomes on an n-dimensional quantum system, there exist an ancillary system Cs,
completely positive maps Λx|y which form an instrument for any choice of y, and a set of
POVMs B “ tB¨|a,x,yuaPrks,xPrgs,yPrrs such that Ψ maps

pM, yq ÞÑ

g
ÿ

x“1

k
ÿ

a“1
Λ˚

x|ypMa|x b B¨|a,x,yq .

In the Schrödinger picture, this means that the simulated POVMs tN¨|yuyPrrs arise from
M as

Tr
“

Nb|yϱ
‰

“

g
ÿ

x“1

k
ÿ

a“1
Tr

“

Bb|a,x,y TrCdrpMa|x b 1sqΛx|ypϱqs
‰
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for all quantum states ϱ.
That is, to simulate the multimeter N on an input state, first a conditional instrument

tΛx|yu is performed on the state that might depend on the measurement y to be simulated.
The choice of y means that the multimeter N performs the measurement tN¨|yu on the
input state. The instrument has a classical outcome x and outputs a quantum system.
Depending on its outcome x, the measurement M¨|x is performed on part of the quantum
output of the instrument, giving classical outcome a. Finally, another measurement B¨|a,x,y

is performed on the remaining quantum system, which can depend on all the available
classical information. We have illustrated this in Fig. 1.

Mx
y

a

Λ
B

b
Ψ(M)y

b
=

ancilla

Figure 1: A multimeter M is transformed using instruments Λ¨|y and a postprocessing B¨|a,x,y. Quantum
systems are depicted by solid lines, while classical systems are represented by dotted wires. Note the
quantum ancilla wire connecting the multi-instrument Λ and the multimeter B.

However, not every transformation between multimeters can be considered a simulation
of one multimeter by another. The choice of which transformations one would like to rule
out depends on the application one has in mind. In this work, we take the perspective of an
experimenter who has a multimeter at her disposal and wonders which other multimeters
she can implement with it. Therefore, she wants to use at least some part of the simulating
devices in the simulation process instead of just ignoring them. Hence, the transformations
we want to rule out are the ones in which any multimeter is replaced by the same fixed
multimeter. We call such transformations trash-and-prepare, because they just throw
away the multimeter and replace it by another. In the case when the ancilla in Fig. 1
is classical, we can characterize these trash-and-prepare transformations. In this case,
the instrument has another classical output λ and the measurements B¨|a,x,y are just a
collection of probability distributions ν “ tν¨|a,x,y,λua,x,y,λ. We have depicted this in Fig.
2.

Mx
y

a

Λ
ν b

y
b

=N

λ

Figure 2: The simulation of multimeter N by the multimeter M admits a realization with a classical
ancilla represented by λ P rss. Compare with the general case in Fig. 1, and notice that in this case
the postprocessing ν and the ancilla λ are classical.

We find in Thm. 6.8:

Theorem. Let us consider a quantum superchannel Ψ between multimeters that admits
a realization ps, Λ, ν̃q with a classical ancilla. Then Ψ is trash-and-prepare if and only
there exists a possibly different realization ps, Λ, νq such that all the conditional probability
distributions in ν “ tν¨|a,x,y,λua,x,y,λ are independent of a. If s “ 1 (there is not even a
classical ancilla), we can take ν “ ν̃.

Accepted in Quantum 2025-01-06, click title to verify. Published under CC-BY 4.0. 4



Our result can be intuitively illustrated: a transformation Ψ (that admits a realization
with a classical ancilla) is trash-and-prepare if and only if there exists a realization as in
Fig. 2 such that the classical wire a between M and ν can be cut without changing the
map. If this is the case the outcome a of the multimeter M can be simply discarded and
the postprocessing ν is not affected by a. Thus, in the end a fixed multimeter is applied
irrespective of the input multimeter M . We note that our result is constructive so that it
also gives the recipe for the (possibly different) postprocessing ν.

Finally, we introduce in our article our definition of what it means to simulate a
multimeter by another one. To this end, we consider multimeters of trivial measurements
which do not depend on the input quantum states, i.e., where Ma|x “ pa|x1 for some
probability distributions p¨|x. We want to call a simulation a transformation that cannot
map trivial multimeters to non-trivial ones. Our reasoning is that trivial multimeters
discard the quantum state without measuring it. Hence if a transformation maps trivial
to non-trivial multimeters, it means that at least one additional device that extracts
information from the quantum state is needed. This argument is similar to the idea
behind compatibility-preserving simulations, but the property of the multimeters we seek
to preserve is much more basic.

Definition (Simulation of multimeters). A simulation of multimeters is a transformation
between multimeters, i.e., a quantum superchannel between multimeters, that is triviality-
preserving in the sense that whenever the input multimeter consists of only trivial POVMs,
then the multimeter simulated by Ψ corresponds to a multimeter that only consists of trivial
POVMs as well.

In the case where the transformation Ψ has an ancilla-free realization (i.e., s “ 1), we
can characterize the transformations that are simulations of multimeters in the sense of
this new definition. The following result can be found as part of Thm. 6.3:

Theorem. Let us consider a quantum superchannel Ψ between multimeters that admits
an ancilla-free realization pΛ̃, νq. Then Ψ is triviality-preserving if and only if Ψ admits
a possibly different ancilla-free realization pΛ, νq such that Λx|y “ πx|yΦx,y for all x, y for
some conditional probability distribution π “ pπ¨|yqy and a family of quantum channels
tΦx,yux,y.

Λ =

π

Φ

y
x

y
x

Figure 3: A multi-instrument Λ that factorises and induces a triviality-preserving multimeter transfor-
mation Ψ.

Our result is intuitively illustrated in Fig. 3: a tranformation Ψ (that admits an ancilla-
free realization) is triviality-preserving if and only if there exists a realization pΛ, νq such
that the preprocessing part Λ factorizes as in Fig. 3 into just probabilistically applying
some set of channels instead of some general instruments.

In conclusion, we have introduced the triviality-preserving transformations between
multimeters as the most general reasonable definition of quantum simulation and fully
characterized such simulations in the ancilla-free case. This article is therefore the starting
point for the further exploration of such simulations of multimeters, especially when we
allow a quantum ancilla.
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3 Fundamental quantum devices
Quantum theory is an operational theory meaning that it can be described by its primitives
which are physical devices: state preparators, measurement devices and transformations.
Together they can be used to conduct physical experiments giving information about the
systems described by the theory. We will start by recalling the mathematical description
of these primitives in quantum theory. See [14, 15] for a more detailed introduction to the
formalism.

3.1 States, measurements, transformations
Let d P N and let us denote rds :“ t1, . . . , du. We denote the set of complex dˆd matrices by
MpCqd and its subset of self-adjoint (Hermitian) matrices by MpCqsa

d . The states SpCdq

of a d-dimensional quantum system are represented by the set of positive-semidefinite
matrices in MpCqsa

d with trace one, i.e.,

SpCdq :“ tϱ P MpCqsa
d : ϱ ě 0, Trrϱs “ 1u . (1)

The elements in SpCdq are also called density matrices.
A transformation between two quantum systems with density matrices SpCdq and

SpCnq, respectively, is described by a (quantum) channel Φ which is taken to be a com-
pletely positive (CP) and trace-preserving (TP) linear map Φ : MpCqd Ñ MpCqn meaning
that Φ b idd1 : MpCqd b MpCqd1 Ñ MpCqn b MpCqd1 is positive for all d1 P N (CP) and
that TrrΦpXqs “ TrrXs for all X P MpCqd (TP). The set of quantum channels be-
tween systems SpCdq and SpCnq is denoted by CpCd,Cnq. A completely positive map
Ψ : MpCqd Ñ MpCqn that is not trace-preserving but only trace-nonincreasing (TNI),
i.e. TrrΨpXqs ď TrrXs for all X P MpCqd, is called a (quantum) operation and is inter-
preted as a probabilistic transformation where the transformation probability of a state
ϱ P SpCdq is given by TrrΨpϱqs.

Measurements on a d-dimensional quantum system can be described by using effect
operators, i.e., positive elements in MpCqsa

d bounded above by the identity matrix 1d so
that the set of effects EpCdq is then

EpCdq :“ tE P MpCqsa
d : 0 ď E ď 1du . (2)

A measurement (or a meter) with k P N outcomes (where we assume that k ă 8 for
simplicity) now corresponds to a positive operator-valued measure (POVM) M : j ÞÑ Mj

from rks to the set of effects EpCdq such that
řk

j“1 Mj “ 1d. The set of k-outcome POVMs

on SpCdq is denoted by Mpk,Cdq and the set of all POVMs (with finite outcomes) on
SpCdq is denoted by MpCdq. The probability that an outcome j P rks is obtained in a
measurement of a POVM M P Mpk,Cdq on a quantum system in state ϱ P SpCdq is given
by the Born rule as TrrMjϱs.

If we consider several measurements, usually not all of them can be measured at the
same time, for example, if the effects consist of projections which do not commute. If
simultaneous measurement is possible, the measurements are called compatible or jointly
measurable (see [2] and [3] for reviews on joint measurability).

Definition 3.1. Let tE¨|xuxPrgs Ă Mpk,Cdq form a collection of POVMs. These POVMs
are compatible or jointly measurable if there is some Λ P N and a POVM M P MpΛ,Cdq

such that

Ea|x “

Λ
ÿ

λ“1
pa|x,λMλ
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ρ Φ M Λ

Figure 4: Pictorial representation of quantum devices. From left to right: a quantum state (preparator),
a quantum channel, a measurement, and an instrument. Diagrams are to be read from left to right.
Quantum systems are depicted by solid lines, while classical systems are represented by dotted lines.

for all x P rgs, a P rks and some conditional probability distribution p :“ pp¨|x,λqxPrgs,λPrΛs

on rks.

The interpretation behind compatibility as performing a joint measurement comes from
the concept of postprocessing:

Definition 3.2. A POVM N P Mpl,Cdq is said to be a postprocessing of a POVM
M P Mpk,Cdq if there exists a conditional probability distribution µ :“ pµ¨|aqaPrks on rls

such that Nb “
řk

a“1 µb|aMa for all b P rls. In this case we denote that N “ µ ˝ M .

The interpretation of postprocessing is that if we measure M and obtain an outcome a
then µb|a describes the probability of assigning an outcome b instead. Thus, postprocess-
ing describes a classical manipulation of measurement outcomes including merging and
splitting different outcomes. Hence, for compatible POVMs tE¨|xuxPrgs Ă Mpk,Cdq we can

always find a joint POVM M P MpΛ,Cdq for some Λ P N from which every POVM E¨|x

can be postprocessed with the conditional probability distributions ppxq :“ pp¨|x,λqλPΛ so

that Ea|x “ pppxq ˝ Mqa for all x P rgs and a P rks.
A measurement device which does not only produce a classical measurement out-

come (as measurements described by POVMs do) but also includes the description of
the transformation of the measured state is described by a (quantum) instrument. A k-
outcome quantum instrument between SpCdq and SpCnq is an operation-valued measure
Λ : j ÞÑ Λj from rks to the set of quantum operations between SpCdq and SpCnq such

that ΦΛ :“
řk

j“1 Λj is a quantum channel in CpCd,Cnq. If the system is initially in a

state ϱ P SpCdq, then the (unnormalized) conditional postmeasurement state is Λjpϱq,
where j is the outcome obtained in the measurement of the induced POVM MΛ defined
as Tr

“

MΛ
j ϱ

‰

“ TrrΛjpϱqs for all ϱ P SpCdq. Thus, MΛ
j “ Λ˚

j p1nq, where Λ˚
j is the dual

map of Λj . The set of instruments from SpCdq to SpCnq with k outcomes is denoted by
Ipk,Cd,Cnq.

3.2 Quantum devices as channels
All of the previously discussed quantum devices have some number of classical and quan-
tum inputs and outputs: a state preparator is a device with no inputs and one quantum
output, a channel is a device with one quantum input and output, the measurement of a
POVM corresponds to a device with quantum input and a classical output and an instru-
ment takes a quantum input and produces both a quantum and a classical output. These
are depicted in Fig. 4.

For our purposes it is convenient to consider all of them as channels where the addi-
tional knowledge that some of the inputs or outputs are classical gives us more constraints
on the specific structure of the channel. In order to keep the mathematical treatment sim-
ilar for all of the devices, we consider the classical systems to be embedded in a quantum
system in the usual way: if rks is the classical set of indices, then the classical input/output
j P rks can be described by |jyxj| P SpCkq, where now t|jyuk

j“1 is some orthonormal basis
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in Ck. By possibility of probabilistic mixing, the set of classical states must be convex and
thus the most general description of a classical state δ P SpCkq is δ “ ϱq :“

řk
j“1 qj |jyxj|

for some probability distribution q :“ pqjqk
j“1 on rks.

When we apply this to the previously introduced devices which have classical outputs,
namely POVMs and instruments, we have the following correspondence: we identify a
POVM M P Mpk,Cdq with its related quantum-classical (q-c) channel ΦM P CpCd,Ckq

defined as

ΦM pϱq :“
k

ÿ

j“1
TrrMjϱs |jyxj| (3)

for all ϱ P SpCdq, and similarly an instrument Λ P Ipk,Cd,Cnq with the related block-
diagonal channel ΨΛ P CpCd,Cknq defined as

ΨΛpϱq :“
k

ÿ

j“1
|jyxj| b Λjpϱq (4)

for all ϱ P SpCdq, where in both cases the classical information can be read by measuring
the classical part of the system in the fixed basis t|jyuk

j“1.

3.2.1 Multimeters as quantum channels

Previously we have described the most fundamental physical devices in quantum theory.
However, in the setting of physical experiments we sometimes also want to describe sce-
narios where we are using different collections of these devices. In this case we can include
into the standard description of some collection of devices an additional classical input
which can be used to determine which device from the collection is to be used. In partic-
ular, we are interested in measurement devices described by a collection of POVMs such
that by providing the device with a classical input, the device determines which POVM
from the collection is measured in each round of the experiment. We call these devices
multimeters. Formally, a multimeter is just a collection M “ tM¨|iu

g
i“1 Ă Mpk,Cdq of g

POVMs each with k outcomes on a d-dimensional quantum system.
Similarly as before we want to embed this additional classical system as well as the

output, which is a classical measurement outcome, in the corresponding quantum systems.
Thus, as we represented a measurement described by a POVM as a quantum-classical
channel, now we wish to consider this kind of multimeter as a channel which quantum and
classical input and classical output (a (qc)-c channel).

Motivated by this, we make the following definition:

Definition 3.3. For a set of POVMs M “ tM¨|iu
g
i“1 Ă Mpk,Cdq for some g, k P N we

define the related multimeter channel ΦM P CpCdg,Ckq by setting

ΦM pσq “

g
ÿ

i“1

k
ÿ

j“1
Tr

“

pMj|i b |iyxi|qpσq
‰

|jyxj| (5)

for all σ P SpCdgq.

Then ΦM pϱ b |iyxi|q “
řk

j“1 Tr
“

Mj|iϱ
‰

|jyxj| “ ΦM¨|i
pϱq for all i P rgs and ϱ P SpCdq,

which means that the measurements corresponding to ΦM are uniquely defined. Moreover,
a mixture of the POVMs tM¨|iu

g
i“1 can be measured by providing the multimeter channel

with an input of the form ϱ b ϱp “ ϱ b p
řg

i“1 pi |iyxi|q for some probability distribution
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p “ ppiq
g
i“1 on rgs so that ΦM pϱ b ϱpq “

řk
j“1 Tr

“
řg

i“1 piMj|iϱ
‰

|jyxj| “ Φř

i piM¨|i
pϱq for

all ϱ P SpCdq. We denote the set of multimeter channels with g P N POVMs each with
k P N outcomes on a quantum system of dimension d P N by MMpg, k, dq Ď CpCdg,Ckq.
If we would like to consider measurements with different numbers of outcomes, we can
just choose k to be the highest number of outcomes and pad the measurements with less
outcomes with zero effects. We note that from now on we will use the term multimeter to
reference both a collection of POVMs and their related multimeter channels.

More useful, additional properties of quantum channels and instruments (such as the
Choi–Jamio lkowski isomorphism and the Stinesping dilation) can be found in Appendix
A.

4 Transformations between multimeters
4.1 Quantum superchannels
Let us briefly summarize the notion of a (quantum) superchannel (for more details see
e.g. [16, 17, 18]). By a quantum superchannel we mean a CP map that maps quan-
tum channels to quantum channels. More specifically, a quantum superchannel between
channels in CpCd,Cnq and channels in CpCd1

,Cn1

q is a CP map Ψ : MpCqnd Ñ MpCqn1d1

such that Ψ
`

J pCndq
˘

Ď J pCn1d1

q. Then by the Choi–Jamio lkowski isomorphism quan-
tum superchannels Ψ : MpCqnd Ñ MpCqn1d1 are in one-to-one correspondence between
CP maps Ψ̂ that map linear maps from MpCqd to MpCqn to linear maps from MpCqd1 to
MpCqn1 such that Ψ̂pCpCd,Cnqq Ď CpCd1

,Cn1

q. It is known that any such map Ψ̂ corre-
sponding to a quantum superchannel Ψ can be realized as Ψ̂pΦq “ Ψpost ˝ pΦ b idsq ˝ Ψpre

for all channels Φ P CpCd,Cnq for some preprocessing channel Ψpre P CpCd1

,Cdsq and a
postprocessing channel Ψpost P CpCns,Cn1

q for some ancillary system Cs for some s P N.
Furthermore, the Choi matrices of quantum superchannels are also called 2-combs and for
a superchannel Ψ with prep- and postprocessing channels Ψpre and Ψpost it can be shown
that JΨ “ JΨpost ˚ JΨpre and JΨ̂pΦq

“ JΨ ˚ JΦ “ JΨpost ˚ JΦ ˚ JΨpre for all Φ P CpCd,Cnq,
where ˚ denotes the link product of Choi matrices.

Next we will take a closer look on the structure of superchannels that map multimeters
to multimeters.

4.2 Channels between multimeters
In this section we want to characterize all possible transformations between multimeters.
Since we can represent multimeters as a particular type of quantum channels as in Def.
3.3, we are in particular interested in transformations between quantum channels that
describe multimeters. As was explained at the beginning of this section, these type of
transformations are represented by quantum superchannels. We will now proceed to give
an elementary realization results for these superchannels on multimeters. A comparison
to previous realization results is considered in Remark 4.2.

We recall that the set of multimeters (as defined in Def. 3.3) with g P N POVMs
each with k P N outcomes on a quantum system of dimension d P N is denoted by
MMpg, k, dq Ď CpCdg,Ckq. Thus, we want to look at transformations between MMpg, k, dq

and MMpr, l, nq for some fixed d, n, g, r, k, l P N. Such transformations are represented by
CP maps Ψ̂ which map linear maps from MpCqdg to MpCqk to linear maps from MpCqnr

to MpCql such that Ψ̂pMMpg, k, dqq Ď MMpr, l, nq. Let us denote the Choi matrices
of multimeters in MMpg, k, dq by J pMMpg, k, dqq. Because of the Choi-Jamio lkowski
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isomorphism, such maps Ψ̂ correspond to CP maps Ψ : MpCqkdg Ñ MpCqlnr such that
ΨpJ pMMpg, k, dqqq Ď J pMMpr, l, nqq, where the correspondence is given by

Ψ̂pΦq “ EΨpJΦq, ΨpJΦq “ JΨ̂pΦq
(6)

for all Φ : MpCqdg Ñ MpCqk, where JΦ is the Choi matrix of map Φ and EJ is the inverse
map defined by a Choi matrix J (see Appendix A, Eqs. (29) and (30)).

Now we can show the following realization theorem (the proof can be found in Appendix
B):

Theorem 4.1. Let Ψ : MpCqkdg Ñ MpCqlnr be a CP map such that ΨpJ pMMpg, k, dqqq Ď

J pMMpr, l, nqq. Then Ψ has a realization pCs, Λ, Bq, i.e., there exist an ancillary system
Cs for some s P N, CP maps Λ˚

x|y : MpCqds Ñ MpCqn such that Λ˚
y :“

ř

xPrgs Λ˚
x|y is a

unital CP (UCP) map for all y P rrs, and a set of POVMs B “ tB¨|a,x,yuaPrks,xPrgs,yPrrs Ă

Mpl,Csq such that

Ψ
˜

JΦ
tM¨|xu

xPrgs

¸

“ JΦ"

řg
x“1

řk
a“1 Λ˚

x|y
pMa|xbB¨|a,x,yq

*

yPrrs

, (7)

where
!

řg
x“1

řk
a“1 Λ˚

x|ypMa|x b B¨|a,x,yq

)

yPrrs
Ă Mpl,Cnq is a set of POVMs for all

tM¨|xuxPrgs Ă Mpk,Cdq.

If now Ψ : MpCqkdg Ñ MpCqlnr is a CP map characterized by the previous theorem,

then translating back to the CP map Ψ̂ given by Eq. (6) which maps linear maps from
MpCqdg to MpCqk to linear maps from MpCqnr to MpCql we have that for σ P MpCqnr,

Ψ̂
ˆ

ΦtM¨|xu
xPrgs

˙

pσq “ E
Ψ

¨

˝JΦ
tM¨|xu

xPrgs

˛

‚

pσq “ EJΦ"

řg
x“1

řk
a“1 Λ˚

x|y
pMa|xbB¨|a,x,yq

*

yPrrs

pσq

“ TrCnr

«

`

1l b σT
˘

JΦ"

řg
x“1

řk
a“1 Λ˚

x|y
pMa|xbB¨|a,x,yq

*

yPrrs

ff

“ TrCnr

«

`

1l b σT
˘

˜

l
ÿ

b“1

r
ÿ

y“1
|byxb| b

˜

g
ÿ

x“1

k
ÿ

a“1
Λ˚

x|ypMa|x b Bb|a,x,yq

¸T

b |yyxy|

¸ff

“

l
ÿ

b“1

r
ÿ

y“1
Tr

»

–σT

¨

˝

˜

g
ÿ

x“1

k
ÿ

a“1
Λ˚

x|ypMa|x b Bb|a,x,yq

¸T

b |yyxy|

˛

‚

fi

fl |byxb|

“

l
ÿ

b“1

r
ÿ

y“1
Tr

«˜˜

g
ÿ

x“1

k
ÿ

a“1
Λ˚

x|ypMa|x b Bb|a,x,yq

¸

b |yyxy|

¸

σ

ff

|byxb|

“ Φ!

řg
x“1

řk
a“1 Λ˚

x|y
pMa|xbB¨|a,x,yq

)

yPrrs
looooooooooooooooooooomooooooooooooooooooooon

PMMpr,n,lq

pσq

for all tM¨|xuxPrgs Ă Mpk,Cdq.
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From the Schrödinger picture we get a clear recipe of how to measure the transformed

POVMs
!

N¨|y :“
řg

x“1
řk

a“1 Λ˚
x|ypMa|x b B¨|a,x,yq

)

yPrrs
given by Ψ:

Tr
“

Nb|yϱ
‰

“ Tr
«

g
ÿ

x“1

k
ÿ

a“1
Λ˚

x|ypMa|x b Bb|a,x,yqϱ

ff

“

g
ÿ

x“1

k
ÿ

a“1
Tr

“

pMa|x b Bb|a,x,yqΛx|ypϱq
‰

“

g
ÿ

x“1

k
ÿ

a“1
Tr

“

Bb|a,x,y TrCdrpMa|x b 1sqΛx|ypϱqs
‰

for all ϱ P SpCnq for all b P rls and y P rrs.
The interpretation is then as follows: given a state ϱ P SpCnq if we want to measure

the transformed POVM N¨|y given by the label y, we first apply the quantum instrument

Λy P Ipg,Cn,Cdsq (which is defined by the quantum operations Λx|y) from which we obtain

an outcome x and the conditional postmeasurement state Λx|ypϱq of the system Cd b Cs.

Given x, we now measure the POVM M¨|x on the system Cd and obtain an outcome a while
simultaneously leaving the system Cs untouched (by just applying the identity channel
on that part of the system). Now finally given the classical inputs and outputs y, x, a we
measure the system Cs with a POVM B¨|a,x,y and obtain the final outcome b which we
report as the outcome of the transformed measurement N¨|y; see Fig. 5 for a graphical
depiction of this procedure.

Mx
y

a

Λ
B

b
Ψ(M)y

b
=

ancilla

Figure 5: A multimeter M is transformed using instruments Λ¨|y and a postprocessing B¨|a,x,y. Quantum
systems are depicted by solid lines, while classical systems are represented by dotted wires. Note the
quantum ancilla wire connecting the multi-instrument Λ and the multimeter B.

Remark 4.2. Let us comment on how Thm. 4.1 compares to previous results about su-
permaps from [16, 19]. One can start from the general setting of quantum supermaps
(transforming quantum channels into quantum channels) and impose that some of the
quantum systems appearing as inputs and/or outputs are classical. Following [16], this
would yield a realization as in Fig. 6. Note that the formulation in Thm. 4.1 and Fig. 5
can be mapped into this off-the-shelf form, by encapsulating all the classical systems de-
noted by the letters y, x into the quantum ancilla between the pre- and post-processing
operations Λ and B. Our precise formulation in Thm. 4.1 has the benefit of keeping sep-
arate the classical and the quantum ancillae; this will be useful later when considering
simulations that do not use a quantum ancilla. Very recently, after the appearance of this
work, in [20] the authors generalized this formulation to any finite number of classical and
quantum inputs and outputs.

The next example shows that the realization given by Thm. 4.1 is in general not unique.

Example 4.3. Let us consider a transformation Ψ : MpCqkdg Ñ MpCqln (here r “

1) which maps any input multimeter M “ tM¨|xuxPrgs Ă Mpk,Cdq as ΨpJΦM
q “ JΦN

where N P Mpl,Cnq is a fixed trivial POVM defined by some probability distribution p
on rls as Nb “ pb1 for all b P rls. Let us define a conditional probability distibution
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M
E FΨ(M) =

Figure 6: A general simulation of a multimeter M using the supermap formalism from [16, 19]. The sim-
ulation is performed by a quantum pre-processing operation E , followed by a quantum post-processing
operation F that is also connected to E by a quantum ancilla system. Compare to Fig. 5, where the
classical ancillae are explicit.

ν “ pν¨|a,xqaPrks,xPrgs as νb|a,x “ pb for all b P rls, a P rks and x P rgs. It is clear that
pC, Λ, νq is a realization of Ψ for any Λ P Ipg,Cn,Cdq: Indeed, we have

g
ÿ

x“1

k
ÿ

a“1
νb|a,xΛ˚

xpMa|xq “

g
ÿ

x“1

k
ÿ

a“1
pbΛ˚

xpMa|xq “ pb

g
ÿ

x“1
Λ˚

xp1q “ pb1 “ Nb

for all b P rls and all multimeters M “ tM¨|xuxPrgs Ă Mpk,Cdq. We note that in the
case of s “ 1 the realization given by Thm. 4.1 indeed is of the form of the LHS in the
previous equation since in that case it is evident that any POVM A P Mpl,Csq is actually
just a probability distribution A “ pAbql

b“1 on rls, so that in particular the set of POVMs
B “ tB¨|a,xuaPrks,xPrgs Ă Mpl,Csq are just conditional probability distributions on rls which
we labeled by ν. Since we can choose any instrument Λ, this shows that the realization of
the map Ψ is not unique.

5 Previously considered simulation schemes
One of the main motiviations behind this work is that there are several versions of simula-
tion of measurements in the literature, but they are in general incomparable. Our aim is
therefore to find the most general notion of simulability of multimeters that encompasses
all the existing definitions. Our starting point is that a simulation of any kind of devices
(in our case multimeters) is a process that takes some existing device and transforms it to
some other device. Thus, we will consider a simulation to be a (specific type of) transfor-
mation between multimeters which were characterized in Thm. 4.1. Before we move on to
considering more general simulations let us first review the previously considered notions
of simulations of measurements.

5.1 Realizations with a classical ancilla
In what follows we will see that although the existing definitions of simulability are dif-
ferent in their nature they do share one common property as transformations between
multimeters: none of them actually utilize the quantum ancilla in the realization scheme
in Thm. 4.1 (see Fig. 5). If this is the case we call the realization of the transformation
a realization with a classical ancilla so that classical information is still allowed to be
utilized. We note that this only addresses a particular realization of the supermap.

Thus, as we want to allow for a classical ancilla but not a quantum ancilla, what we
want to consider a realization with a classical ancilla is a map as in Fig. 5 but where the
solid wire for quantum ancilla is replaced by a classical dotted wire. Formally we can do
it as follows: In Thm. 4.1 for the realization pCs, Λ, Bq of a map Ψ : MpCqkdg Ñ MpCqlnr

that transforms multimeters into multimeters we now take s to represent the size of the
classical ancilla system such that the classical ancilla is embedded in the quantum system
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of dimension s. Thus, we assume that only classical information is carried and measured on
this ancilla. In particular, this means that the multimeter B “ tB¨|a,x,yuaPrks,xPrgs,yPrrs Ă

Mpl,Csq can only be a classical measurement so that it must be just a postprocessing of
a measurement that distinguishes the s different classical (pure) states. Hence, if we fix
an orthonormal basis t|λyus

λ“1 of Cs correspoding to the s different classical pure states,
then we have that B¨|a,x,y “

řs
λ“1 ν¨|a,x,y,λ |λyxλ| for all a P rks, x P rgs and y P rrs for

some conditional probability distribution ν “ pν¨|a,x,y,λqaPrks,xPrgs,yPrrs,λPrss on rls. Here, ν
then represents the postprocessing of the basis measurement related to the basis t|λyus

λ“1
which tranforms it into the multimeter B. If we plug in this form of B in the realization
pCs, Λ, Bq given by Thm. 4.1 we get that the transformed multimeter takes the form

g
ÿ

x“1

k
ÿ

a“1
Λ˚

x|ypMa|x b B¨|a,x,yq “

g
ÿ

x“1

k
ÿ

a“1

s
ÿ

λ“1
ν¨|a,x,y,λΛ˚

x|ypMa|x b |λyxλ|q

for all y P rrs and M “ tM¨|xuxPrgs Ă Mpk,Cdq. We can now consider another set of

instruments which we also label by Λ by defining Λ “ tΛ¨,¨|yuyPrrs Ă Ipg ¨ s,Cn,Cdq, where

we have set Λ˚
x,λ|ypAq :“ Λ˚

x|ypA b |λyxλ|q for all x P rgs, y P rrs, λ P rss and A P SpCdq.
Now we get that the transformed multimeter takes the form

Nb “

g
ÿ

x“1

k
ÿ

a“1

s
ÿ

λ“1
ν¨|a,x,y,λΛ˚

x,λ|ypMa|xq Ă Mpl,Cnq (8)

for all y P rrs and M “ tM¨|xuxPrgs Ă Mpk,Cdq. Based on this we make the following
definition:

Definition 5.1. A map Ψ : MpCqkdg Ñ MpCqlnr that transforms multimeters into mul-
timeters has a realization with a classical ancilla if there exists s P N, a set of instru-
ments Λ “ tΛ¨,¨|yuyPrrs Ă Ipg ¨ s,Cn,Cdq and a conditional probability distribution ν “

pν¨|a,x,y,λqaPrks,xPrgs,yPrrs,λPrss on rls such that the transformed multimeters corresponding to
the Choi matrix ΨpJΦM

q take the form of Eq. (8) for all M “ tM¨|xuxPrgs Ă Mpk,Cdq. We
denote this realization by ps, Λ, νq or simply pΛ, νq in the special case when s “ 1.

The transformation process goes as follows: Given a state ϱ P SpCnq and a label y for
the resulting measurement, we measure the state with an instrument Λ¨,¨|y P Ipg¨s,Cn,Cdq,
obtain outcomes x P rgs and λ P rss. After the measurement we also get a conditional
output state Λx,λ|ypϱq, which we then measure by using the POVM M¨|x and obtain an
outcome a P rks. Lastly, given the input y and outcomes x and λ, we postprocess the
obtained outcome a to an outcome b with probability νb|a,x,y,λ and report this as the
final outcome of the measurement corresponding to label y. Hence, we may identify the
instruments Λ as the preprocessing part of the transformation and similarly the conditional
probabilities ν as the postprocessing part. We note that here the role of the classical ancilla
is just to relay the classical side-information λ given by the preprocessing Λ and which
affects the postprocessing ν. See Fig. 7 for an illustration of this process.

Note that there are multimeter transformations which do require a quantum ancilla,
as it is demonstrated in the following example.

Example 5.2. In this example, we shall present a POVM transformation that requires a
quantum ancilla. To this end, consider a transformation M ÞÑ N , which takes a POVM
M P Mpk,Cdq to a POVM N P Mpl,Cnq, that is given by

@b P rls : Nb “

k
ÿ

a“1

TrrMas

d
Bb|a,
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Mx
y

a

Λ
ν b

y
b

=N

λ

Figure 7: The simulation of multimeter N by the multimeter M admits a realization with a classical
ancilla. Compare with the general case in Fig. 5, and notice that in this case the postprocessing ν and
the ancilla λ are classical.

where tB¨|auaPrks Ă Mpl,Cnq is a collection of incompatible POVMs; see Fig. 8 for a
graphical representation of this transformation.

M
a

Λ

BN
b

=N
b

=

quantum ancilla

b

1d/d

Figure 8: A POVM transformation that requires a quantum ancilla. The quantum system is passed as
an input to an incompatible multimeter B that is controlled by the measurement outcome of the input
POVM M when presented with a maximally mixed state.

To show that this transformation requires a quantum ancilla, let us assume one can
realize it only using a classical ancilla (see Fig. 9) as in Eq. (8):

@b P rls :
k

ÿ

a“1

TrrMas

d
Bb|a “

k
ÿ

a“1

s
ÿ

λ“1
Λ˚

λpMaqνb|a,λ.

For all a P rks consider now the trivial POVMs M paq P Mpk,Cdq with effect 1d for the
outcome a and effect 0 for all the other outcomes a1 ‰ a. We have:

@a P rks, b P rls : Bb|a “

s
ÿ

λ“1
Λ˚

λp1dqνb|a,λ.

This implies that the POVMs on the LHS of the equation above are postprocessings of the
POVM Λ˚

¨ p1dq P Mps,Cnq showing that they are compatible, which is a contradiction.

M
a

Λ
b

N
b

=N
b

=

λ

ν

Figure 9: An (impossible) realization of the POVM transformation from Fig. 8 using only a classical
ancilla λ.

Later we will also consider an example showing that in some cases although a quantum
ancilla may not be needed still a classical ancilla is required for the realization (see Example
6.12).
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5.2 Pre- and postprocessings
In the simplest cases we can consider separately transformations where we either just
preprocess or just postprocess. These lead to generic type of transformations that can be
considered as simulations in the literature. We will consider the simplest cases without
even a classical ancilla (s “ 1).

5.2.1 Quantum preprocessings

As a first simple example which could be considered a simulation is the case when we
have a realization pΛ, νq without even a classical ancilla for the quantum supermap Ψ :
MpCqkdg Ñ MpCqlnr such that l “ k, r “ g, νb|a,x,y “ 1a“b for all a, b P rks and x, y P rgs,

and Λ˚
x|y “ 1x“yΩ˚ for some fixed channel Ω P CpCn,Cdq. In this case the transformed

POVMs take the form

g
ÿ

x“1

k
ÿ

a“1
ν¨|a,x,yΛ˚

x|ypMa|xq “ Ω˚pM¨|yq P Mpk,Cnq (9)

for all y P rgs all sets of POVMs M “ tM¨|xuxPrgs Ă Mpk,Cdq. Thus, in this simulation
scheme, given an input y, the measurement M¨|y is chosen and it is mapped to a POVM
Ω˚pM¨|yq. In the Schrödinger picture the recipe for doing this is just mapping the state

ϱ P SpCnq which we wish to measure by the channel Ω resulting in a state Ωpϱq P SpCdq

and then just perform the measurement M¨|y on this transformed system.
A preprocessing scheme with slightly more structure can be obtained when we choose

l “ k, νb|a,x,y “ 1a“b, and Λ˚
x|y “ Ω˚

x|y for all a, b P rks, x P rgs and y P rrs for some fixed

set of instruments Ω “ tΩ¨|yuyPrrs Ă Ipg,Cn,Cdq. In this case the transformed POVMs
take the form

g
ÿ

x“1

k
ÿ

a“1
ν¨|a,x,yΛ˚

x|ypMa|xq “

g
ÿ

x“1
Ω˚

x|ypM¨|xq P Mpk,Cnq (10)

for all y P rrs for all sets of POVMs M “ tM¨|xuxPrgs Ă Mpk,Cdq. Thus, in this simulation
scheme, a measurement with a label y is obtained first by measuring the input state
ϱ P SpCnq by the instrument Ω¨|y, obtaining an outcome x and bringing the system into a
conditional output state Ωx|ypϱq, which is then measured by the POVM M¨|x from which
an outcome a is obtained and then reported as the final outcome of the transformed
measurement with a label y. Something similar to this type of preprocessing is considered
further in Sec. 5.4. Both types of preprocessing simulations discussed above are represented
pictorially in Fig. 10.

y

M=N
Ωb b

y

M=N Ω
y y

b b

Figure 10: Preprocessing a multimeter M by a quantum device Ω. In the top panel, the device does
not depend on the choice of measurement y, while in the bottom panel, it can.

Accepted in Quantum 2025-01-06, click title to verify. Published under CC-BY 4.0. 15



M=N
p ν

y
b

y x
a

b

Figure 11: Classical pre- and post- processing of a multimeter M . Both devices used in the simulation
(p and ν) are classical.

5.2.2 Classical preprocessings and postprocessings

Another simple special case of a realization pΛ, νq without even a classical ancilla is when
we do not consider the preprocessing to be quantum at all, i.e., we set n “ d and Λ˚

x|y “

px|yidd for some conditional probability distribution p “ pp¨|yqyPrrs on rgs. While we
examine the most general case of this later in Sec. 5.3, in the special case when ν¨|a,x,y “

ν¨|a,x1,y for all a P rks, x, x1 P rgs and y P rrs, we see that the transformed POVMs are of
the form

g
ÿ

x“1

k
ÿ

a“1
ν¨|a,x,yΛ˚

x|ypMa|xq “

k
ÿ

a“1
ν¨|a,y

˜

g
ÿ

x“1
px|yMa|x

¸

P Mpl,Cnq (11)

for all y P rrs. Thus, in this simulation scheme, a measurement with a label y is obtained
first by measuring the input state ϱ P SpCnq with the POVM M¨|x, where x is first obtained
by the conditional probability distribution p¨|y, after which an outcome a is obtained from
the measurement and then it is postprocessed to an outcome b with probability νb|a,y and
then reported as the final outcome of the transformed measurement with a label y; this
type of simulation is depicted in Fig. 11. As an important special case we can now obtain
mixtures of the POVMs tM¨|xuxPrgs by setting l “ k and νb|a,y “ 1a“b for all a, b P rks and
y P rrs. Then, the resulting POVM is indeed of the form

řg
x“1 px|yM¨|x for all y P rrs.

On the other hand, if we do not assume that ν is independent of x, and choose instead
that px|y “ 1 for some x “ xy P rgs, then the resulting POVM takes the following form

g
ÿ

x“1

k
ÿ

a“1
ν¨|a,x,yΛ˚

x|ypMa|xq “

k
ÿ

a“1
ν¨|a,xy ,yMa|xy

(12)

for all y P rrs. Thus, the simulated POVMs are simply just classical postprocessings of
the original measurements.

5.3 Classical simulation
From the more specific notions of simulations, let us start by reviewing a classical notion
of simulation, purely in terms of classical mixing and postprocessing of measurements
(see e.g. [6, 7, 8]). Essentially this is obtained by combining the two different classical
simulations from Sec. 5.2.2.

M=N
π

ν

y
b

y x
a

b

Figure 12: Classical simulation of multimeters.
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Definition 5.3. Let N “ tN¨|yuyPrrs Ă Mpl,Cdq be a multimeter of r POVMs each with l
outcomes on a d-dimensional Hilbert space. We say that N can be classically simulated (or
is classically simulable) with a multimeter M “ tM¨|xuxPrgs Ă Mpk,Cdq of g POVMs with
k outcomes (on the same Hilbert space) if there exist conditional probability distributions
π :“ pπ¨|yqyPrrs on rgs and ν :“ pν¨|a,x,yqaPrks,xPrgs,yPrrs on rls such that

Nb|y “

g
ÿ

x“1
πx|y

k
ÿ

a“1
νb|a,x,yMa|x (13)

for all b P rls and y P rrs.

The operational interpretation of classical simulability is the following: We are con-
ducting a physical experiment with a d-level quantum system where we can perform mea-
surements with a multimeter M with g measurement settings. Given an input y which
corresponds to the label of the new measurement setting, with probability πx|y we choose
the measurement setting x and use the measurement M¨|x to measure the system. After
obtaining an outcome a from the measurement of M¨|x instead of registering it we assign
an outcome b with probability νb|a,x,y. Then, the resulting r measurements (after multiple
rounds of the experiment) are described by the multimeter N in Eq. (13); see Fig. 12 for
a graphical representation of this simulation scheme.

We see that classical simulation is a special case of a realization pΛ, νq with a classical
ancilla for the quantum supermap Ψ : MpCqkdg Ñ MpCqlnr. Namely, in Eq. (8) if we
choose s “ 1, n “ d and take Λ˚

x|y “ πx|yidd for all x P rgs and y P rrs for some conditional

probability distribution π “ pπ¨|yqyPrrs on rgs, then

g
ÿ

x“1

k
ÿ

a“1
ν¨|a,y,xΛ˚

x|ypMa|xq “

g
ÿ

x“1
πx|y

k
ÿ

a“1
ν¨|a,x,yMa|x (14)

for all y P rrs for all M “ tM¨|xuxPrgs Ă Mpk,Cdq. Thus, the classical simulation map is a
particular instance of quantum superchannels between multimeters that admit a realiza-
tion without even a classical ancilla. In particular, the realization only consists of classical
pre- and postprocessing and both the original and the simulated multimeter act on the
same-size quantum system.

The classical simulation scheme describes the construction of new measurements from
existing ones by means of classical manipulations of the inputs and outputs of the mea-
surement devices. Naturally, this is also linked to joint measurability since in the case of
only one simulator, i.e., when g “ 1, the multimeter M consists of only one POVM and
the conditional probability distributions π “ pπ¨|yqyPrrs are all trivial so that each POVM
in N can be postprocessed from the single POVM in M .

Furthermore, instead of just creating new multimeters from existing ones, one can also
ask when a fixed multimeter can be simulated by some other multimeter with some desired
properties. For example, one can ask when a multimeter can be simulated by a multimeter
with a lesser number of measurements, or by a multimeter whose measurements have less
number of outcomes, or by multimeters whose measurements are projective. Such topics
have been explored in [6, 7, 8, 9].

5.4 Compressibility
We continue by reviewing the results of the recent work [10] (see also [12, 21]), which we
refer to as compressibility to distinguish the different notions of simulation of measure-
ments.
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Figure 13: Compressibility of measurements. The quantum (solid) wires have dimensions indicated in
blue.

Definition 5.4. Let N :“ tN¨|xuxPrg1s Ă Mpk,Cnq be a multimeter of g1 POVMs with
k outomes on an n-dimensional Hilbert space. We say that N is d-compressible if there
exists a finite C P N, a quantum instrument Φ P IpC,Cn,Cdq and another multimeter
M “ tM¨|x,cuxPrg1s,cPrCs Ă Mpk,Cdq of g1 ¨ C POVMs with k outcomes on a d-dimensional
Hilbert space, such that

Na|x “

C
ÿ

c“1
Φ˚

c pMa|x,cq (15)

for all a P rks and x P rg1s.

Here the recipe of simulation is as follows: a measurement with a label x is obtained
first by measuring the input state ϱ P SpCnq by the instrument Φ, obtaining an outcome
c and transforming the system into a conditional output state Φcpϱq which is now a (un-
normalized) state of a d-dimensional system. This state is then measured by the POVM
M¨|x,c from which an outcome a is obtained and then reported as the final outcome of
the transformed measurement with a label x. We depict this simulation scheme in Fig.
13. The terminology for compressibility comes from the case when d ă n so that one can
simulate the measurements by performing some other measurements on a smaller quan-
tum system. Note that [10] allows for non-finite C, which we exclude to avoid technical
difficulties.

Similarly to classical simulability, in our framework we get compressibility as a spe-
cial case of a realization pΛ, νq with a classical ancilla for the quantum supermap Ψ :
MpCqkdg Ñ MpCqlnr. Namely, in Eq. (8) we may choose s “ 1, g “ g1 ¨ C, l “ k
and r “ g1, and set νa|b,x1,c,x “ 1a“b for all a, b P rks and x, x1 P rg1s, c P rCs and

Λ˚
x1,c|x “ 1x“x1Φ˚

c for all x, x1 P rg1s and c P rCs for some instrument Φ P IpC,Cn,Cdq so
that

g1
ÿ

x1“1

C
ÿ

c“1

k
ÿ

a“1
ν¨|a,x1,c,xΛ˚

x1,c|xpMa|x1,cq “

C
ÿ

c“1
Φ˚

c pM¨|x,cq (16)

for all x P rg1s and for all multimeters M “ tM¨|x,cuxPrg1s,cPrCs Ă Mpk,Cdq. Thus, also com-
pressibility is indeed a particular instance of a quantum superchannel between multimeters
with a realization with a classical ancilla.

It is easy to see that POVMs are 1-compressible if and only if they are compatible,
because in this case the Ma|x,c are just conditional probabilities and the effects Ec :“
Φ˚

c p1q P MpCqsa
n form a joint POVM E for the multimeter N . In addition to generalizing

compatibility, compressibility (also called high-dimensional simulability) is shown to be
equivalent to high-dimensional steering [11].

5.5 Compatibility-preserving simulations
In the previous cases one could see both simulations as generalizations of compatibility
of multimeters so that compatibility emerges only as a special instant of the simulation.
In the work [13], however, the authors discuss a class of superchannels Ψ that preserve
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the property of compatibility of multimeters. Their motivation for introducing such su-
perchannels is to use them to build a resource theory of quantum incompatibility where
such maps would act as free operations between the objects of the resource theory. In our
setting, we can rephrase their definition of “programmable measurement device (PMD)
processing” as follows:

Definition 5.5. Let N :“ tN¨|yuyPrrs Ă Mpl,Cnq be a multimeter of r POVMs with l out-
omes on an n-dimensional Hilbert space. We say that N can be compatibility-preservingly
simulated by a multimeter M “ tM¨|xuxPrgs Ă Mpk,Cdq of g POVMs with k outcomes on a
d-dimensional Hilbert space if there exists K, L P N, a probability distribution p on rKs, a
set of quantum instruments Γ :“ tΓ¨|κuκPrKs Ă IpL,Cn,Cdq and conditional probability dis-
tributions π :“ pπ¨|y,λ,κqyPrrs,λPrLs,κPrKs on rgs and ν :“ pν¨|a,x,y,λ,κqaPrks,xPrgs,yPrrs,λPrLs,κPrKs

on rls such that

Nb|y “

K
ÿ

κ“1

g
ÿ

x“1

k
ÿ

a“1

L
ÿ

λ“1
pκνb|a,x,y,λ,κπx|y,λ,κΓ˚

λ|κpMa|xq (17)

for all b P rls and y P rrs.

The interpretation is as follows: given an input state ϱ P SpCnq and a classical input y
for the label of the new measurement, we choose an instrument Γ¨|κ according to probability
pκ and measure the input state with it. The measurement leads to an outcome λ and the
state is transformed to a conditional output state Γλ|κpϱq. Now, given y, κ and λ we choose
label x of the simulator POVM with probability πx|y,λ,κ and measure the (conditional)
state Γλ|κpϱq with the POVM M¨|x. After the measurement we obtain an outcome a which
we finally postprocess (by taking also into account the classical information x, y, λ, κ)
into an outcome b with probability νb|a,x,y,λ,κ and report it as the final outcome of the
new measurement y. We depict this process in Fig. 14. The motivation behind the
term “compatibility-preserving simulation” comes from the fact that if the multimeter
M is compatible then the resulting multimeter N in Eq. (17) is compatible as well [13].
However, it is currently an open question whether all transformations between multimeters
that preserve the compatibility of the multimeters are of this form.

N =
y

b

Mx
a

π

Γ
λ

y

p
κ

bν

Figure 14: A compatibility-preserving transformation of a multimeter M ; compare with (17).

Again we can show that the above simulation scheme can be presented as a special
case of a realization with a classical ancilla of a the quantum supermap Ψ : MpCqkdh Ñ

MpCqlnr that takes multimeters to multimeters. We first note that in Fig. 14 there are two
classical ancillas connecting the preprocessing side and the postprocessing side. Hence, in
Eq. (8) we set s “ K ¨ L. Then we simply choose Λ˚

x,λ,κ|y “ pκπx|y,λ,κΓ˚
λ|κ for all x P rgs,

y P rrs, λ P rLs and κ P rKs for some probability distribution p on rKs, some set of
quantum instruments Γ :“ tΓ¨|κuκPrKs Ă IpL,Cn,Cdq and some conditional probability
distribution π :“ pπ¨|y,λ,κqyPrrs,λPrLs,κPrKs on rgs. The transformed POVMs then take the
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form

K
ÿ

κ“1

L
ÿ

λ“1

g
ÿ

x“1

k
ÿ

a“1
ν¨|a,x,y,λ,κΛ˚

x,λ,κ|ypMa|xq “

K
ÿ

κ“1

L
ÿ

λ“1

g
ÿ

x“1

k
ÿ

a“1
pκν¨|a,x,y,λ,κπx|y,λ,κΓ˚

λ|κpMa|xq

(18)

for all y P rrs. Thus, also compatibility-preserving simulation is a particular instance of a
quantum superchannel between multimeters that has a realization with a classical ancilla.

6 A new notion of simulation of multimeters
6.1 Not all transformations are simulations
A simulation of multimeters is a process that takes an existing multimeter and transforms
it to another multimeter. However, not all possible transformations can be considered to
capture the essence of what would be considered a simulation. For example, one could
state that in order for a transformation between multimeters to be truly considered a
simulation, the simulation process should minimally involve using at least some parts of
the original multimeter. Or by considering simulation as a resource theory, one could argue
that not all transformations between multimeters can be considered as free operations since
otherwise one could turn any object into another object freely so that there wouldn’t be
any resources to begin with. To see which types of transformations should be left out of
simulations, we start by presenting the following example:

Example 6.1. Let us revisit Example 4.3 and consider a process where we take the original
multimeter, discard it and replace it with some other fixed multimeter. More precisely, such
transformations are superchannels Ψ : MpCqkdg Ñ MpCqlnr between multimeters such
that ΨpJΦM

q “ JΦN
for some fixed N “ tN¨|yuyPrrs Ă Mpl,Cnq for all input multimeters

M “ tM¨|xuxPrgs Ă Mpk,Cdq. In particular, even a trivial multimeter, i.e., a multimeter
that consists of trivial POVMs M “ tM¨|xuxPrgs, where Ma|x “ pa|x1 for all a P rks

for some conditional probability distribution p “ pp¨|xqxPrgs on rks, is mapped to the fixed
multimeter N .

The two main points that we can infer from the previous examples are the following:
First, since any multimeter M is mapped to a fixed multimeter N , the simulation process
corresponding to the previous map is not using any part of the simulator multimeter to
perform the simulation. Second, if N includes a nontrivial POVM, then trivial multimeters
can simulate nontrivial ones. This suggests that it’s the simulation process, rather than
the multimeter we aim to use, that extracts information from the quantum state. If we
put ourselves in the position of an experimenter who has a multimeter at her disposal
and would like to know what other measurements she can perform without having to
change her experiment completely, these two things are not desirable in our opinion: If
the experimenter wants the simulation process to engage at least part of the simulating
device, rather than disregarding it, then transformations that map any multimeter to a
fixed multimeter should be avoided. Furthermore, because trivial multimeters discard the
quantum state without measuring it, if a transformation converts trivial multimeters into
nontrivial ones, it indicates that an additional device is needed to extract information
from the quantum state.

Hence, for a transformation between multimeters Ψ : MpCqkdg Ñ MpCqlnr we list the
following properties. We say that Ψ is
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1. trash-and-prepare if for all multimeters M we have that ΨpJΦM
q “ JΦN

for some
fixed multimeter N ,

2. triviality-preserving if whenever M consists of only trivial POVMs, then ΨpJΦM
q

corresponds to a multimeter that consists of trivial POVMs.

An important thing to notice is that actually imposing that a map is triviality-
preserving rules out most trash-and-prepare maps: Namely, if the map is triviality-
preserving and trash-and-prepare, then the fixed multimeter N to which it maps every
multimeter M must be a trivial multimeter. Thus, the only triviality-preserving trash-
and-prepare maps are maps that take any multimeter to a fixed trivial multimeter. We
note that operationally these type of maps may be considered simulations since trivial
multimeters can be considered as free objects since they are defined only by the classical
conditional probability distributions which can be thought of as an experimenter choos-
ing to discard the quantum system and outputting a random number instead. This is
something the experimenter can always do without having to change the measurement
setup, i.e., the multimeter, even though it is a very poor use of the original simulator.
Following this observation, we define what we consider in this article to be a simulation
of multimeters:

Definition 6.2 (Simulation of multimeters). A simulation of multimeters is a transfor-
mation between multimeters, i.e., a quantum superchannel between multimeters, that is
triviality-preserving.

We note that, in general, the decision of which transformations to exclude depends
on the intended application, allowing for the consideration of various different simulation
schemes. However, in this work we focus on the scenario that we already describe earlier
where an experimenter has a fixed multimeter to extract information from a quantum
system and she is considering how other possible measurements could be implemented by
using her device. Naturally, also in our set-up one can argue that maybe some other types
of maps should be excluded from the above definition of simulability (such as maps that
are not compatibility-preserving as in [13]). However, in this work we will focus on the
above definition, which is a minimal definition for us, leaving us with a maximal set of
simulation maps and present examples falling into this category of maps. Furthermore,
next we will focus only on maps that admit a realization with a classical ancilla (or in the
case when they are completely ancilla-free) since, as shown in the previous section, all the
previously defined notions of simulations are of this type as well and we want to explore
how these previous notions fall into our framework of simulation. We leave the treatment
of the maps with a quantum ancilla for future work.

6.2 Triviality-preserving maps
Motivated by our minimal definition of simulability of multimeters (Def. 6.2) we will next
explore the structure of the realizations of a triviality-preserving map. In particular, in
the case when a multimeter transformation admits an ancilla-free realization, i.e. s “ 1,
we can show the following characterization result for the map preserving triviality.

Theorem 6.3. Let Ψ : MpCqkdg Ñ MpCqlnr be a quantum superchannel between multi-
meters that admits an ancilla-free realization (neither quantum nor classical ancilla). The
following assertions are equivalent:

1. The transformation Ψ is triviality-preserving.
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2. Ψ admits an ancilla-free realization pΛ, νq with the property that the multi-instrument
Λ is partially normalized on the quantum system (see also Fig. 15): there exists a
conditional probability distribution π “ pπ¨|yqyPrrs on rgs such that

Λ˚
x|yp1q “ πx|y1

for all x P rgs and y P rrs.

Λ =

1 1

πy x y x

Figure 15: A multi-instrument Λ that is partially normalized on the quantum system (continuous line).

3. Ψ admits an ancilla-free realization pΛ, νq with the property that the multi-instrument
Λ factorizes as follows (see also Fig. 16): there exists a conditional probability distri-
bution π “ pπ¨|yqyPrrs on rgs and a family of g ¨r quantum channels tΦx,yuxPrgs,yPrrs Ă

CpCn,Cdq such that
Λx|y “ πx|yΦx,y

for all x P rgs and y P rrs.

Λ =

π

Φ

y
x

y
x

Figure 16: A multi-instrument Λ that factorises and induces a triviality-preserving multimeter transfor-
mation Ψ.

Proof. We start by showing (3) ùñ (1). Consider Ψ having an ancilla-free realization
pΛ, νq such that Λx|y “ πx|yΦx,y so that also Λ˚

x|y “ πx|yΦ˚
x,y for all x P rgs and y P

rrs for some set of quantum channels tΦx,yuxPrgs,yPrrs Ă CpCn,Cdq and some conditional
probability distribution π “ pπ¨|yqyPrrs on rgs. Let M “ tM¨|xuxPrgs Ă Mpk,Cdq be a trivial
multimeter, i.e., there exists some conditional probability distribution p “ pp¨|xqxPrgs on
rks such that Ma|x “ pa|x1 for all a P rks and x P rgs. We now have for all b P rls and
y P rrs that

g
ÿ

x“1

k
ÿ

a“1
νb|a,x,yΛ˚

x|ypMa|xq “

g
ÿ

x“1

k
ÿ

a“1
νb|a,x,yπx|ypa|xΦ˚

x,yp1q

“

˜

g
ÿ

x“1

k
ÿ

a“1
νb|a,x,yπx|ypa|x

¸

1 “: qb|y1,

where the last equality follows from unitality of the channels tΦ˚
x,yuxPrgs,yPrrs. Since clearly

q “ pq¨|yqyPrrs is a set of conditional probability distributions on rls, it follows that Ψ is
triviality-preserving.

Let us now prove (2) ùñ (3). Define for all x P rgs and y P rrs:

Φx,y :“
#

1
πx|y

Λx|y if πx|y ‰ 0
Φ0 if πx|y “ 0,
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where Φ0 is some fixed quantum channel (which does not play any role). Since Λ is a
multi-instrument, the maps Φx,y defined above are completely positive, and

@x, y Φ˚
x,yp1q “ 1,

proving that they are indeed quantum channels; this concludes the proof of (2) ùñ (3).
We show now the last implication, (1) ùñ (2). Let Ψ transform multimeters as in

Eq. (8), with s “ 1 (no classical ancilla λ). In order for this to be triviality-preserving for
any trivial multimeter M “ tM¨|xuyPrrs “ tp¨|x1uxPrgs Ă Mpk,Cdq it should result in some
other trivial multimeter NM “ tNM

¨|y uyPrrs “ tqp
¨|y1uyPrrs Ă Mpl,Cnq so that

qp
b|y1 “ NM

b|y “

g
ÿ

x“1

k
ÿ

a“1
νb|a,x,yΛ˚

x|ypMa|xq “

g
ÿ

x“1

k
ÿ

a“1
νb|a,x,ypa|xΛ˚

x|yp1q (19)

for all b P rls and y P rrs. Our goal is to show that, for a possibly different realization
pΛ̃, ν̃q of Ψ, Λ̃˚

x|yp1q „ 1 for all x, y.
Note that we can reason individually for every setting y P rrs of the resulting multime-

ter, hence we shall omit the variable y in the rest of this proof, for the sake of simplicity.
Moreover, we only need to check the previous equation for extremal trivial multimeter.
Those multimeters are parametrized by functions α : rgs Ñ rks by

p
pαq

a|x “ 1a“αpxq @x P rgs,

where 1 is the indicator function. The condition above reads in this case:

@b P rls :
g

ÿ

x“1
νb|αpxq,xΛ˚

xp1q “ q
pαq

b 1. (20)

We shall partition the set rgs in two subsets, depending on the behavior of the con-
ditional probabilities ν appearing in the given realization pΛ, νq of Ψ: rgs “ X‰ \ X“

with

X‰ :“ tx P rgs : Db P rls, a1, a2 P rks s.t. νb|a1,x ‰ νb|a2,xu

X“ :“ tx P rgs : @b P rls, the function a ÞÑ νb|a,x is constantu.

We shall now show that for all x P X‰, Λxp1q „ 1. To this end, fix x0 P X‰ and
b0 P rls, a1, a2 P rks such that νb0|a1,x0 ‰ νb0|a2,x0 . Choose a function α1 : rgs Ñ rks such
that α1px0q “ a1 and define α2 : rgs Ñ rks by

α2pxq “

#

α1pxq if x ‰ x0

a2 if x “ x0.

With these choices of α1,2, taking the difference of Eq. (20), we obtain

pνb0|a1,x0 ´ νb0|a2,x0qΛ˚
x0p1q “ pq

pα1q

b0
´ q

pα2q

b0
q1,

which allows us to conclude that Λ˚
x0p1q „ 1, as claimed.

Let us now consider the case of indices x P X“. Since for such indices we cannot
conclude as before, we shall construct another representation pΛ̃, νq of Ψ, with the property
that Λ̃˚

xp1q „ 1 for all x P rgs. We define, for all matrix Z,

Λ̃˚
xpZq :“

#

Λ˚
xpZq if x P X‰

TrtΛ˚
x pZqu

d 1 if x P X“.
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Since tΛ˚
xuxPrgs were a family of completely positive maps summing up to a unital CP

map, the same holds for tΛ̃˚
xuxPrgs. We need to show that pΛ̃, νq is indeed a representation

of the map Ψ. For a given multimeter M “ tM¨|xuxPrgs Ă Mpk,Cdq, the transformed
multimeters take the form

g
ÿ

x“1

k
ÿ

a“1
νb|a,xΛ˚

xpMa|xq “
ÿ

xPX‰

k
ÿ

a“1
νb|a,xΛ˚

xpMa|xq `
ÿ

xPX“

k
ÿ

a“1
νb|a,x

loomoon

“:νb|x

Λ˚
xpMa|xq

“
ÿ

xPX‰

k
ÿ

a“1
νb|a,xΛ̃˚

xpMa|xq `
ÿ

xPX“

νb|x

k
ÿ

a“1
Λ˚

xpMa|xq

“
ÿ

xPX‰

k
ÿ

a“1
νb|a,xΛ̃˚

xpMa|xq `
ÿ

xPX“

νb|xΛ˚
xp1q.

Hence, in order to conclude, we need to show that for all b P rls,
ÿ

xPX“

νb|xΛ˚
xp1q “

ÿ

xPX“

νb|xΛ̃˚
xp1q.

To this end, note that Eq. (20) implies that, for all functions α and b P rls, we have that

q
pαq

b 1 “

g
ÿ

x“1
νb|αpxq,xΛ˚

xp1q “
ÿ

xPX‰

νb|αpxq,xπx1 `
ÿ

xPX“

νb|xΛ˚
xp1q.

In particular, we obtain that
ÿ

xPX“

νb|xΛ˚
xp1q “ q

p“q

b 1 (21)

for all b P rls for some non-negative scalar q
p“q

b , independent of α. Taking the trace of this
expression yields

q
p“q

b “
ÿ

xPX“

νb|x
TrtΛ˚

xp1qu

d
.

Plugging this value back into Eq. (21) we obtain

ÿ

xPX“

νb|xΛ˚
xp1q “

ÿ

xPX“

νb|x
TrtΛ˚

xp1qu

d
1 “

ÿ

xPX“

νb|xΛ̃˚
xp1q,

which was our goal.

What our result thus shows is that a tranformation Ψ between multimeters that admits
an ancilla-free realization pΛ, νq is triviality-preserving if and only if there is a (possibly
different) ancilla-free realization pΛ̃, νq where the preprocessing part Λ̃ factorizes into just
probabilistically applying some set of channels instead of some general instruments. This is
exactly what is demonstrated in Fig. 16. This reflects our original motivation of considering
triviality preserving simulations in the first place: Indeed, in the case of no ancilla, the
only way a transformation between multimeters can be triviality-preserving is when the
preprocessing part does not extract information from the quantum state but rather just
probabilistically transforms the state. It is worth noting that our proof is constructive so
that given the original realization pΛ, νq the proof can be used to find the other realization
pΛ̃, νq that satisfies the conditions (2) and (3).
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We also note that even in the case when the original realization has a classical ancilla,
the conditions (2) and (3) (with added classical index λ as an outcome of the preprocessing
Λ) imply that the map is triviality-preserving (this is essentially just the same calculation
as in the first part of the proof). However, the precise necessary condition for the map
being triviality-preserving in the case of classical ancilla is still an open question.

We can now straight-forwardly apply Thm. 6.3 to the classical simulability map, the
compressibility map and the compatibility-preserving map.

Corollary 6.4 (Classical simulation). The classical simulation map defined in Eq. (13)
is always triviality-preserving.

Proof. The explicit realization pΛ, νq that we give in Sec. 5.3 is defined by setting n “ d
and Λx|y “ πx|yidd for all x P rgs and y P rrs, where idd is the identity map on Cd. Clearly
it is of the form given in the condition (2) of Thm. 6.3.

Corollary 6.5 (Compressibility). The compression map defined in Eq. (15) is triviality-
preserving if and only if the compressing instrument Φ P IpC,Cn,Cdq is of the form
Φc “ πcΩc for all c P C for some probability distribution π on rCs and some set of
channels tΩcucPrCs Ă CpCn,Cdq.

Proof. As explained in Sec. 5.4, the compressibility map given by Eq. (15) admits an
ancilla-free realization pΛ, νq, where g “ g1 ¨ C, l “ k and r “ g1, νa|a1,x1,c,x “ 1a“a1 for all
a, a1 P rks and x, x1 P rg1s, c P rCs and Λ˚

x1,c|x “ 1x“x1Φ˚
c for all x, x1 P rg1s and c P rCs for

some instrument Φ P IpC,Cn,Cdq. By applying the latter part of the proof of Thm. 6.3
in this case, we see that since for all x, x1 P rgs and c P rCs there exists a, a1, a2 P rks such
that νa|a1,x1,c,x ‰ νa|a2,x1,c,x, we have that px1, cq P X‰ for all x1 P rgs and c P rCs so that
we actually can take Λ̃ “ Λ in the proof. This means that we can apply the necessary and
sufficient condition (3) (or (2)) directly to the current realization pΛ, νq.

Thus, by Thm. 6.3 the compressibility map is triviality-preserving if and only if

1x“x1Φ˚
c “ Λ˚

x1,c|x “ π̃x1,c|xΩ̃˚
x1,c,x

for all c P rCs and x, x1 P rgs for some conditional probability distribution π̃ “ pπ̃¨,¨|xqxPrgs

on rgs ˆ rCs and some set of channels tΩ̃x1,c,xucPrCs,x,x1Prgs Ă CpCn,Cdq. It follows that

Φ˚
c “

ÿ

x1

π̃x1,c|xΩ̃x1,c,x (22)

and furthermore that Φ˚
c p1q “

ř

x1 π̃x1,c|x1 for all c P rCs and x P rgs. Let us define a
probability distribution π on rCs by setting πc :“

ř

x1 π̃x1,c|x for all c P rCs which we note
that is now independent of x P rgs. We note that πc ‰ 0 if and only if Φ˚

c p1q ‰ 0 if and
only if Φ˚

c ‰ 0. We can now define a set of CP maps tΩ˚
c ucPrCs by setting Ω˚

c “ Φ˚
c {πc for

all πc ‰ 0 and Ω˚
c “ Ω0 for all πc “ 0 for some fixed channel Ω0 P CpCn,Cdq. From Eq.

(22) it follows that the maps are actually unital so that tΩcucPrCs Ă CpCn,Cdq. The claim
follows.

Corollary 6.6 (Compatibility-preserving). The compatibility-preserving map defined in
Eq. (17) is triviality-preserving if the preprocessing instruments Γ “ tΓ¨|κuκPrKs P IpL,Cn,Csq

are of the form Γλ|κ “ µλ|κΦλ,κ for all λ P rLs and κ P rKs for some conditional probability
distribution µ “ pµ¨|κqκPrKs on rLs and some set of channels tΦλ,κuλPrLs,κPrKs Ă CpCn,Cdq.

Proof. The claim follows from a straightforward calculation as in the beginning of the
proof of Thm. 6.3.
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Since the realization of the compatibility-preserving map utilizes a classical ancilla,
Thm. 6.3 cannot be applied to see whether this condition is also a necessary one for the
map to be triviality-preserving. We leave the necessary condition as an open question.

Finally, let us give a further example of an explicit map that is not triviality-preserving.

Example 6.7. Let us fix r “ 1 and g “ k “ l “ d “ n “ 2 so that the map transforms
two dichotomic qubit POVMs, say M¨|0 and M¨|1, to a single dichotomic qubit POVM, say
N . Let the map M ÞÑ N be defined as

Nb “

„

x0|Mb|0|0y 0
0 x1|Mb|1|1y

ȷ

for all b P t0, 1u for the computational basis t|0y , |1yu of C2. This map admits a realization
pΛ, νq with νb|a,x “ 1b“a and

Λ0pZq “ Λ˚
0pZq “

„

x0|Z|0y 0
0 0

ȷ

Λ1pZq “ Λ˚
1pZq “

„

0 0
0 x1|Z|1y

ȷ

.

Note that neither of these maps satisfy Λ˚
xp1q „ 1 and the map Ψ is not triviality-

preserving, since if we take M “ tM¨|0, M¨|1u “ tp¨|01, p¨|11u for some probability dis-
tributions with p0|0 “ p, p1|0 “ 1 ´ p, p0|1 “ q, p1|1 “ 1 ´ q for some q, p P r0, 1s, we see
that M is mapped to a POVM N such that

N0 “

„

p 0
0 q

ȷ

, N1 “

„

1 ´ p 0
0 1 ´ q

ȷ

which is not trivial in general.

6.3 Trash-and-prepare maps
Since triviality-preserving maps are mostly not trash-and-prepare (they are trash-and-
prepare only in the case when a fixed trivial multimeter is prepared), in order to determine
when a transformation is a simulation, i.e., triviality-preserving, it might be easier to first
check that the map is not trash-and-prepare.

To start ruling out the trash-and-prepare maps from the general quantum super-
channels between multimeters we make a simple observation. Let a superchannel Ψ :
MpCqkdg Ñ MpCqlnr admit a realization pCs, Λ, νq as in Thm. 4.1. Let us assume that
the POVMs in B “ tB¨|a,x,yua,Prks,xPrgs,yPrrs Ă Mpl,Csq are independent of the output
a P rks of the input multimeters M , i.e., B¨|a,x,y “ B¨|a1,x,y “: B¨|x,y for all a, a1 P rks,
x P rgs and y P rrs. Now we see that the resulting POVMs are given by

g
ÿ

x“1

k
ÿ

a“1
Λ˚

x|ypMa|x bB¨|a,x,yq “

g
ÿ

x“1

k
ÿ

a“1
Λ˚

x|ypMa|x bB¨|x,yq “

g
ÿ

x“1
Λ˚

x|yp1d bB¨|x,yq P Mpl,Cnq

for all y P rrs. Thus, in this case we see that the process of transforming the multimeter
M is just to ignore M and prepare the resulting multimeter irrespective of M . This means
that it is trash-and-prepare.

The above result is intuitive: in Fig. 5 for the multimeter B being independent of the
outcome a corresponds to having no classical wire connecting the input multimeter M
and the fixed multimeter B. If this is the case the outcome a of the multimeter M can be
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simply discarded and the multimeter B is applied to the ancilla not affected by a at all.
Thus, in the end a fixed multimeter is applied irrespective of the input multimeter M .

We see that the above sufficient condition for a map being trash-and-prepare works
even in the case of a quantum ancilla. However, in the case of a classical ancilla, it turns
out that the trash-and-prepare maps are exactly of this type:

Theorem 6.8. Let Ψ : MpCqkdg Ñ MpCqlnr be a quantum superchannel that admits a
realization ps, Λ, ν̃q with a classical ancilla. Then Ψ is a trash-and-prepare map if and
only if it admits a (possibly different) realization ps, Λ, νq with a classical ancilla such
that all the conditional probability distributions ν “ tν¨|a,x,y,λuaPrks,xPrgs,yPrrs,λPrss on rls are
independent of a P rks. Furthermore, if s “ 1, then we can take ν “ ν̃.
Proof. The sufficiency of the condition follows from the more general observation made
before the statement of the theorem.

On the other hand, if a quantum superchannel Ψ with a realization ps, Λ, ν̃q with a
classical ancilla transforms a set of POVMs in Mpk,Cdq as in Eq. (8), then in order for
this to be of the trash-and-prepare type, it should result in some fixed set of POVMs
N “ tN¨|yuyPrrs Ă Mpl,Cnq so that

Nb|y “

g
ÿ

x“1

k
ÿ

a“1

s
ÿ

λ“1
ν̃b|a,x,y,λΛ˚

x,λ|ypMa|xq (23)

for all b P rls and y P rrs for all sets of POVMs M “ tM¨|xuxPrgs Ă Mpk,Cdq. As this
should hold for all M , if we take M to consist of trivial POVMs, i.e. Ma|x “ pa|x1d for
all a P rks and x P rgs for some conditional probability distribution p “ pp¨|xqxPrgs on rks ,
then it follows that

Nb|y “

«

g
ÿ

x“1

s
ÿ

λ“1

˜

k
ÿ

a“1
pa|xν̃b|a,x,y,λ

¸

Λ˚
x,λ|y

ff

p1dq (24)

for all b P rls and y P rrs. Now if we fix pa1, . . . , agq P rksg and set pax|x “ 1 for all x P rgs,
we see that

Nb|y “

˜

g
ÿ

x“1

s
ÿ

λ“1
ν̃b|ax,x,y,λΛ˚

x,λ|y

¸

p1dq (25)

for all b P rls and y P rrs. Since he choice of pa1, . . . , agq P rksg was arbitrary, we have
that Nb|y “

´

řg
x“1

řs
λ“1 ν̃b|a,x,y,λΛ˚

x,λ|y

¯

p1dq “

´

řg
x“1

řs
λ“1 ν̃b|a1,x,y,λΛ˚

x,λ|y

¯

p1dq for all
a, a1 P rks, b P rls and y P rrs.

Let us again fix pa1, . . . , agq P rksg and furthermore let us fix also x1 P rgs and a1
x1 P rks

such that a1
x1 ‰ ax1 and define POVMs M “ tM¨|xuxPrgs Ă Mpk,Cdq by setting Ma1

x1 |x1 “ B

and Max1 |x1 “ 1d ´ B for some fixed effect B P EpCdq and Max|x “ 1d for all x ‰ x1.
Inserting these POVMs in Eq. (23), we see that

Nb|y “

g
ÿ

x“1

k
ÿ

a“1

s
ÿ

λ“1
ν̃b|a,x,y,λΛ˚

x,λ|ypMa|xq

“
ÿ

x‰x1

s
ÿ

λ“1
ν̃b|ax,x,y,λΛ˚

x,λ|yp1dq `

s
ÿ

λ“1
ν̃b|a1

x1 ,x
1,y,λΛ˚

x1,λ|ypBq `

s
ÿ

λ“1
ν̃b|ax1 ,x1,y,λΛ˚

x1,λ|yp1d ´ Bq

“

g
ÿ

x“1

s
ÿ

λ“1
ν̃b|ax,x,y,λΛ˚

x,λ|yp1dq `

s
ÿ

λ“1
ν̃b|a1

x1 ,x
1,y,λΛ˚

x1,λ|ypBq ´

s
ÿ

λ“1
ν̃b|ax1 ,x1,y,λΛ˚

x1,λ|ypBq

“ Nb|y `

˜

s
ÿ

λ“1
ν̃b|a1

x1 ,x
1,y,λΛ˚

x1,λ|y ´

s
ÿ

λ“1
ν̃b|ax1 ,x1,y,λΛ˚

x1,λ|y

¸

pBq
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for all b P rls and y P rrs. Since x1, ax1 , a1
x1 were chosen arbitrarily and since the set of

effects spans MpCqd, we must have that

s
ÿ

λ“1
ν̃b|a1,x,y,λΛ˚

x,λ|y “

s
ÿ

λ“1
ν̃b|a,x,y,λΛ˚

x,λ|y (26)

for all a, a1 P rks, b P rls, x P rgs and y P rrs. Let us now define another set of conditional
probability distributions ν “ tν¨|a,x,y,λuaPrks,xPrgs,yPrrs,λPrss on rls by setting

νb|a,x,y,λ :“ 1
k

k
ÿ

a1“1
ν̃b|a1,x,y,λ

for all a P rks, b P rls, x P rgs, y P rrs and λ P rss. By definition ν is now independent
of the outcome a P rks, and we can show that ps, Λ, νq is also a realization of Ψ with a
classical ancilla: Let us denote Ωb,x|y :“

ř

λ ν̃b|a,x,y,λΛ˚
x,λ|y for all b P rls, a P rks, x P rgs

and y P rrs, which by Eq. (26) is indeed independent of the outcome a P rks. On the other
hand, also

Ωb,x|y “
1
k

k
ÿ

a“1
Ωb,x|y “

1
k

k
ÿ

a“1

s
ÿ

λ“1
ν̃b|a,x,y,λΛ˚

x,λ|y “

s
ÿ

λ“1

˜

1
k

k
ÿ

a“1
ν̃b|a,x,y,λ

¸

Λ˚
x,λ|y

“

s
ÿ

λ“1
νb|a,x,y,λΛ˚

x,λ|y

for all b P rls, a P rks, x P rgs and y P rrs. Now we see that

g
ÿ

x“1

k
ÿ

a“1

s
ÿ

λ“1
νb|a,x,y,λΛ˚

x,λ|ypMa|xq “

g
ÿ

x“1

k
ÿ

a“1
Ωb,x|ypMa|xq “

g
ÿ

x“1

k
ÿ

a“1

s
ÿ

λ“1
ν̃b|a,x,y,λΛ˚

x,λ|ypMa|xq

for all b P rls, y P rrs and for all M “ tM¨|xuxPrgs Ă Mpk,Cdq. Hence, ps, Λ, νq is also a
realization of Ψ and this completes the proof. In the case when s “ 1 we see that Eq. (26)
already implies that ν̃ is independent of the outcome a P rks and we can choose ν “ ν̃.

We can now again apply our result to the previously introduced simulation schemes.

Corollary 6.9 (Classical simulation). The classical simulation map defined in Eq. (13) is
trash-and-prepare if and only if the postprocessing ν “ tν¨|a,x,yuaPrks,xPrgs,yPrrs is indepen-
dent of the outcome a P rks. In this case the prepared multimeter is always trivial.

Proof. The first part of the statement follows from the case s “ 1 of the previous theorem.
Now, if ν “ tν¨|a,x,yuaPrks,xPrgs,yPrrs “: tν¨|x,yuxPrgs,yPrrs is independent of the outcome a P

rks, then the prepared multimeter is of the form

g
ÿ

x“1
πx|y

k
ÿ

a“1
ν¨|x,yMa|x “

g
ÿ

x“1
πx|yν¨|x,y1 “: q¨|y1 P Mpl,Cdq

for all y P rrs and all multimeters M “ tM¨|xuxPrgs Ă Mpk,Cdq.

Corollary 6.10 (Compressibility). The compression map defined in Eq. (15) is never
trash-and-prepare.
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Proof. This follows from the case s “ 1 of the previous theorem when noting that the
realization given in Sec. 5.4 involves a postprocessing ν that is not independent of the
outcome a P rks.

Corollary 6.11 (Compatibility-preserving). The compatibility-preserving map defined in
Eq. (17) with a realization pL ¨ K, p ¨ π ¨ Γ, ν̃q (as given in Sec. 5.5) is trash-and-prepare if
and only if pL ¨ K, p ¨ π ¨ Γ, νq, where

νb|a,x,y,λ,κ :“ 1
k

k
ÿ

a1“1
ν̃b|a1,x,y,λ,κ @a P rks, x P rgs, y P rrs, λ P rLs, κ P rKs,

is also a realization.

Proof. This is just making the construction of ν obtained in the proof of Thm. 6.8 explicit
and rephrasing the original statement accordingly.

Another curious application of Thm. 6.8 is to show that in the absence of a quantum
ancilla, there are maps that still require a classical ancilla in their realization.

Example 6.12. Consider the case of a trash-and-prepare map Ψ transforming POVMs
(g “ 1) to POVMs (r “ 1), preparing a non-trivial POVM N . We shall prove that such
a map Ψ cannot admit a realization without a quantum or a classical ancilla. If this were
the case, so that Ψ would have a realization pΛ, νq with s “ 1. Then, Thm. 6.8 would
imply that ν “ tν¨|auaPrks is independent of a P rks so that

Nb “

k
ÿ

a“1
νb|aMa “ νb|a1n

for all b P rls, a P rks and all POVMs M . This contradicts the fact that N is non-trivial.
Of course, such a trash-and-prepare map can be realised with a classical ancilla of size

s “ l, simply by defining
Λzpρq “ TrrρNzsσ @z P rls

and all input states ρ, for some fixed quantum state σ and νb|a,z “ 1b“z (see Fig. 17).

M
a

Λ ν

b
N

b
=

zN

σ 1

N
b

=

Figure 17: A trash-and-prepare POVM transformation that requires a classical ancilla.

6.4 Comparing different simulations
We will finish our investigation by considering the inclusions of the set of the previously
considered maps.
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Figure 18: The inclusions of the sets of the investigated maps.

Proposition 6.13. Let us denote by T :“ TpMMpg, k, dq, MMpr, l, nqq the set of trans-
formations Ψ : Mgkd Ñ Mrln between multimeters, and let us consider the following sets
of maps:

Ttp :“ tΨ P T : Ψ is triviality-preservingu,

Ttap :“ tΨ P T : Ψ is trash-and-prepareu,

Tttap :“ tΨ P Ttap : Ψ prepares a fixed trivial multimeteru,

Tcs :“ tΨ P T : Ψ is a classical simulation, u

Tc :“ tΨ P T : Ψ is a compressionu,

Tcp :“ tΨ P T : Ψ is compatibility-preservingu.

Then the inclusions presented in Fig. 18 hold.

Proof. Let us start with the sets Ttap and Ttp. The fact that Tttap “ Ttap X Ttp is clear:
As already stated before, if a map is triviality-preserving and trash-and-prepare, then the
prepared fixed multimeter must be trivial. On the other hand, any trash-and-prepare map
that prepares fixed trivial multimeters is triviality-preserving.

Let us now consider the set of classical simulations Tcs and see how they relate to
Ttap and Ttp. The inclusion Tcs Ă Ttp follows from Cor. 6.4 and by Cor. 6.9 we have
that Tcs X Ttap Ă Tttap. However, since maps in Tcs cannot change the dimension of the
quantum system, we cannot have the equality Tttap “ Tcs X Ttap in general. But, on the
other hand, if we have a map Ψ : Mgkd Ñ Mrln, Ψ P Tttap, such that n “ d, and which
prepares some fixed trivial multimeter N “ tq¨|y1uyPrrs Ă Mpl,Cdq, then by defining the
postprocessing ν “ tν¨|,a,x,yuaPrks,xPrgs,yPrrs for the classical simulation as νb|a,x,y “ qb|y for
all b P rls, a P rks, x P rgs and y P rrs, it follows that

g
ÿ

x“1
πx|y

k
ÿ

a“1
ν¨|a,x,yMa|x “

g
ÿ

x“1
πx|yq¨|y1 “ q¨|y1

for all y P rrs and all multimeters M “ tM¨|xuxPrgs Ă Mpk,Cdq, so that in this case Ψ P Tcs.
Let’s now move on to the set Tc. The fact that Tc X Tcs ‰ H follows by considering a

compression map with a compressing instrument Φ P IpC,Cd,Cdq of the form Φc “ πcidd

for all c P rCs. The ”compressed” transformed multimeter is then of the form
ř

c pcM¨|x,c

for all x P rgs which is clearly just a mixture of the multimeter M which is a special case
of a classical simulation. We note that there are also compressions that are triviality-
preserving which are not classical simulations so that pTc X TtpqzTcs ‰ H: take now the
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compressing instrument as Φc “ πcΦ0 for all c P rCs for some probability distrubution
π on rCs and some fixed channel Φ0 P CpCn,Cdq for n ‰ d. By Cor. 6.5 the resulting
compression map is then triviality-preserving but it is clearly not a classical simulation.
Furthermore, there are also classical simulations that are not compressions (any classical
simulation which non-trivially postprocesses the outcomes of the input multimeter to some
different number of outcomes, i.e., l ‰ k) so that also TcszTc ‰ H. From Cor. 6.5 one
can see that there clearly are compression maps that are not triviality-preserving so that
TczTtp ‰ H. Finally, by Cor. 6.10 we have that Tc X Ttap “ H.

Lastly, let us focus on the compatibility-preserving maps Tcp. First, clearly any
classical simulation can be obtained from a compatibility preserving map (Eq. (17))
by simply choosing n “ d, L “ K “ 1, and by fixing the channel Γ P CpCd,Cdq as
Γ “ idd. This shows that Tcs Ă Tcp. Also, any compression with a compressing instru-
ment Φ P IpC,Cn,Cdq can be obtained from the compatibility-preserving map by setting
g “ g1 ¨ C, K “ 1, L “ C, l “ k, r “ g1, and νa|a1,x1,c1,x,c “ 1a“a1 , πx1,c1|x,c “ 1x“x11c“c1

and Γc “ Φc for all a, a1 P rks, x, x1 P rgs and c, c1 P rCs. Indeed, the resulting multimeter
looks as follows:

g
ÿ

x1“1

C
ÿ

c“1

k
ÿ

a“1

C
ÿ

c1“1
νa|a1,x1,c1,x,cπx1,c1|x,cΓ˚

c pMa1|x1,c1q “

C
ÿ

c“1
Φ˚

c pMa|x,cq

for all a P rks and x P rgs. This show that Tc Ă Tcp. Furthermore, to see that also Tttap Ă

Tcp, we note that for any trivial multimeter N “ tq¨|yuyPrrs Ă Mpl,Cnq we can choose a
compatibility-preserving map with K “ 1, L “ g, πx|y,x1 “ 1x“x1 and νb|a,x,y,x1 “ qb|y for
all b P rls, a P rks, x, x1 P rgs and y P rrs so that then the resulting multimeter takes the
form

k
ÿ

a“1

g
ÿ

x,x1“1
νb|a,x,y,x1πx|y,x1Γ˚

x1pMa|xq “ qb|y

g
ÿ

x“1
Γ˚

xp1q “ qb|y1 “ Nb|y

for all b P rls and y P rrs. Thus, Tttap Ă Tcp.
To see that pTcp X Ttpq z pTcs Y Tc Y Ttapq ‰ H, we can take a compatibility-preserving

map with L “ K “ 1 (so that the map will automatically be triviality-preserving by Cor.
6.6) and choose n ‰ d (so that the map cannot be a classical simulation), l ‰ k (so that
the map cannot be a compression), and the postprocessing ν to depend on the outcome
a P rks (so that by Cor. (6.11) it is not a trash-and-prepare map). On the other hand, to
see that pTcp X Ttapq zTtp ‰ H we refer to Example 6.14 below.

To finish the proof we still need to show that Ttapz pTtp Y Tcpq ‰ H, Ttpz pTcp Y Ttapq ‰

H and Tcpz pTtp Y Ttap Y Tcq ‰ H. The first claim follows from the fact that there are
trash-and-prepare maps that prepare incompatibile (and thus non-trivial) multimeters
so that these maps cannot be triviality-preserving nor compatibility-preserving. For the
second claim refer to Example 6.15 below. The last claim follows from Example 6.16
below.

Example 6.14 (Compatibility-preserving trash-and-prepare but not triviality-preserv-
ing). Let us consider a trash-and-prepare map Ψ : MpCqkdg Ñ MpCqlnr for which any in-
put multimeter M “ tM¨|xuxPrgs Ă Mpk,Cdq is mapped to a fixed multimeter tN¨|yuyPrrs Ă

Mpl,Cnq, where N¨|y “ N¨|y1 for all y, y1 P rrs for some nontrivial POVM E :“ N¨|y P

Mpl,Cnq. It is then clear that the multimeter N is compatible since it only consists of
copies of the same POVM. Now Ψ is not triviality-preserving since also trivial multime-
ters are mapped to N which is nontrivial. On the other hand Ψ is compatibility-preserving:
in Eq. (17) we can choose K “ 1, L “ l, νb|a,x,y,b1 “ 1b“b1 and define Γ P Ipl,Cn,Cdq by

Accepted in Quantum 2025-01-06, click title to verify. Published under CC-BY 4.0. 31



setting Γbpϱq “ TrrEbϱsσ for all ϱ P SpCnq for some fixed state σ P SpCdq. By plug-
ging these into Eq. (17) it is straightforward to see that indeed the transformed multimeter
results in the multimeter N which consists only copies of the POVM E.

Example 6.15 (Triviality-preserving but not compatibility-preserving nor trash-and-pre-
pare). Let us consider a map Ψ : MpCqkdg Ñ MpCqlnr in the special case of s “ g “ 1
and d “ n “ k “ l “ r “ 2 which admits an ancilla-free realization pΛ, νq, where
in Eq. (8) we choose νb|a,y “ 1b“a for all a, b, y P t0, 1u and we define the channels
tΛp0q, Λp1qu Ă CpC2,C2q as Λpyqpϱq “ HyϱHy for all ϱ P SpC2q for y P t0, 1u, where H is
the Hadamard gate. The transformed POVMs take the following form:

1
ÿ

a“0
νb|a,y

´

Λpyq
¯˚

pMaq “ HyMbH
y Ă Mp2,C2q (27)

for all b, y P t0, 1u. Now it is clear that the map is triviality-preserving since HH “ I2.
On the other hand, if we set Ma “ |ayxa| for all a P t0, 1u for the computational basis
t|0y , |1yu Ď C2, then although the input multimeter M is compatible (since it consists of
only one POVM), the resulting two transformed POVMs given by the previous equation
are incompatible. Thus, Ψ is not compatibility-preserving.

Example 6.16 (Compatibility-preserving but not trash-and-prepare nor triviality-pre-
serving nor a compression). Let us take a compatibility-preserving map and let us set
K “ 1 and g “ r “ 1 (transforming POVMs to POVMs) so that the transformed POVM
N given by Eq. (17) takes the form

NM
b “

L
ÿ

λ“1

k
ÿ

a“1
νc|a,λΓ˚

λpMaq (28)

for all b P rls. We can see that we can make such a compatibility-preserving map not trash-
and-prepare by choosing the postprocessing ν suitably (i.e. such that the condition in Cor.
6.11 does not hold) nor a compression by choosing ν and Γ such that the above equation
will not lead to a channel (we note that compressions between POVMs will always just be
transformations given by channels). Lastly, by choosing Γ suitably we can also make the
map not triviality-preserving.

To give an explicit example of such a map, let us take L “ k “ l “ 2 and n “ d, and
let us take Γ to be a Lüders instrument related to some dichotomic POVM G P Mp2,Cdq,
which has effects G0 “ E and G1 “ 1´ E for some effect E P EpCdq such that E ȷ 1, so
that

Γλpϱq “
a

Gλϱ
a

Gλ

for all λ P t0, 1u and ϱ P SpCdq. Let us fix the postprocessing ν “ tν¨|a,λu1
a,λ“0 by setting

ν0|0,1 “ ν0|1,1 “ 0 and ν0|0,0 “ p and ν0|1,0 “ q for some p, q P r0, 1s such that p ‰ q. Now,
given an input POVM M P Mp2,Cdq with effects M0 “ F and M1 “ 1´F for some effect
F P EpCdq, Eq. (28) takes the form for outcome b “ 0 (note that NM

1 “ 1 ´ NM
0 )

NF :“ NM
0 “ p

?
EF

?
E ` q

?
Ep1 ´ F q

?
E “ qE ` pp ´ qq

?
EF

?
E.

If we take F “ π1 for some π P r0, 1s, we see that

Nπ1 “ qE ` pp ´ qqπE “ ppπ ` qp1 ´ πqqE.

Now, clearly the map M ÞÑ NM is not triviality-preserving since E ȷ 1, and it is also not
trash-and-prepare since by choosing π “ 0 we get N0 “ qE and by choosing π “ 1 we get
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N1 “ pE, which are not the same effect since p ‰ q. Lastly, if the map were a compression,
in Eq. (15) we would have to have also C “ 1 so that NF “ NM

0 “ ΦpM0q “ ΦpF q for
some channel Φ P CpCd,Cdq. In particular, by taking F “ 1 we would get N1 “ 1 which
is a contradiction. Thus, the map cannot be a compression either.

7 Discussion and outlook
In this work, we have thoroughly examined what it means to simulate a set of mea-
surements, i.e. a multimeter, by some other measurements. To this end, we have first
characterized transformations between multimeters in terms of their realization involving
a preprocessing instrument and a multimeter defined on an ancillary system that is con-
ditioned on the classical inputs and outputs of the simulating multimeter. We have then
argued that not all such transformations should be seen as simulations because otherwise
one would be able to produce any resource related to multimeters for free. In particular,
we argue that from the perspective of an experimenter with a fixed multimeter as mea-
surement apparatus a trash-and-prepare transformation, i.e. the process of discarding a
multimeter and replacing it with a fixed multimeter, is not a valid simulation strategy
in general, and that simulations should be triviality-preserving, i.e. that no simulation
can produce nontrivial multimeters from trivial ones, resulting in our minimal definition
of simulability. We characterize these two properties of transformations in terms of their
realization in the case when the realization is ancilla-free or only utilizes a classical an-
cilla. Finally, we demonstrate our findings in the previously proposed simulation scenarios,
namely in classical simulation, compressibility, and compatibility-preserving simulations,
and compare these simulations to each other and to trash-and-prepare and triviality-
preserving transformations.

Some specific open questions arise from trying to generalize our results to the case with
a quantum ancilla. While our realization result for transformations between multimeters
is valid in the most general case, when it comes to actual simulation scenarios, our results
on triviality-preserving and trash-and-prepare maps are mostly restricted to cases when
the realization is ancilla-free or only involves a classical ancilla. This limitation is partially
intentional since all the previously proposed simulation scenarios are of this type. However,
this does leave open questions regarding the general cases. Some of the difficulties that
arise when working with the quantum ancilla results from the lack of fully understanding
the degrees of freedom in the realizations of the transformations between multimeters and
how different realizations might be connected. Answering these questions requires further
research.

Another avenue for future work comes from the fact that although our minimal def-
inition of simulability makes sure that non-triviality of multimeters can be generated in
a simulation using trivial multimeters, we are not using a resource theoretic framework.
Doing so would likely lead to different notions of simulation depending on the resource at
hand. In particular, one could argue, as the authors in [13] have argued, that also the com-
patibility of the multimeters should be preserved under simulations so that incompatibility,
a fundamental non-classical feature of quantum theory, cannot be produced freely with
simulations. An immediate open question there is to look more closely into the proposed
compatibility-preserving maps by considering them in full generality as transformations
between multimeters and show that these are exactly the type of transformations that
preserve compatibility altogether. Moreover, examining other possible resources would be
an interesting future direction.

A related but different perspective on multimeter simulation is to consider the preorder
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that it induces on the set of multimeters: one can say that a multimeter is greater than
another multimeter if the latter can be simulated by using the former one. This would cre-
ate a way to see which multimeters are more useful with respect to each specific simulation
task. Subsequently one can start examining questions from the order perspective such as
what are the maximal and minimal elements with respect to a particular simulation, what
are the simulation irreducible multimeters [8], and if there is a natural representative in
each equivalence class. We leave this perspective to future work as well.
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A Additional properties of quantum channels and instruments
One particular advantage of representing the quantum devices introduced in Section 3 as
channels is the fact that then we can treat them all similarly with the tools and repre-
sentations known for quantum channels (see e.g. [15] for more details). One particularly
useful representation of a quantum channel is given by the Choi–Jamio lkowski isomor-
phism [22] which gives us a correspondence between channels and (subset of) states of a
higher-dimensional quantum system. More specifically, a linear map Φ : MpCqd Ñ MpCqn

corresponds to a matrix JΦ P MpCqnd, called the Choi matrix of Φ, defined as

JΦ :“
d

ÿ

i,j“1
Φp|iyxj|q b |iyxj| (29)

for some orthonormal basis t|iyud
i“1 of Cd. It is know that Φ is CP if and only if JΦ is

positive semidefinite, it is TNI if and only if TrCnrJΦs ď 1d and it is TP if and only if
TrCnrJΦs “ 1d. We denote the set of Choi matrices of channels in CpCd,Cnq by J pCndq :“
tJΦ P MpCqnd : Φ P CpCd,Cnqu so that in particular 1

dJ pCndq Ă SpCndq. Conversely, a
matrix J P MpCqnd defines a linear map EJ : MpCqd Ñ MpCqn by setting

EJ pXq :“ TrCnrp1n b XT qJs (30)

for all X P MpCqd where the transpose is taken with respect to the same basis t|iyud
i“1 of

Cd. The Choi–Jamio lkowski isomorphism states that EJΦ “ Φ for all Φ : MpCqd Ñ MpCqn

and JEJ
“ J for all J P MpCqnd.

Another useful representation for CP maps is the Stinespring dilation [23]: for any CP
map Φ : MpCqd Ñ MpCqn and for any s ě rankpJΦq, there exists an ancillary system Cs

and a bounded operator V : Cd Ñ Cn b Cs such that

ΦpXq “ TrCsrV XV ˚s (31)

for all X P MpCqd. Equivalently, for the dual map Φ˚ : MpCqn Ñ MpCqd defined as
TrrΦ˚pNqDs “ TrrNΦpDqs for all D P MpCqd and N P MpCqn, this means that

Φ˚pAq “ V ˚pA b 1sqV (32)

for all A P MpCqn. In this case, we refer to the tuple pCs, V q as a Stinespring dilation
of Φ (or Φ˚). Furthermore, we say that a dilation pCs, V q is minimal if s “ rankpJΦq, or
equivalently Cn b Cs “ tpA b 1sqV φ : A P MpCqn, φ P Cdu. It is known that a minimal
dilation always exists and that any dilation pCs1

, V 1q of Φ is related to a minimal dilation
pCs, V q by an isometry W : Cs Ñ Cs1

such that V 1 “ p1n b W qV , and that pCs1

, V 1q is
minimal if and only if W is unitary [24, Sec. 2.4]. Now for any dilation of pCs, V q of Φ it
follows that Φ is TNI if and only if V ˚V ď 1d and it is TP, or equivalently Φ˚ is unital
meaning that Φ˚p1nq “ 1d, if and only if V is an isometry, i.e., V ˚V “ 1d.

Related to the Stinespring dilation of CP maps we will be using the following Radon-
Nikodym theorem for CP maps [25]:

Theorem A.1 ([25, Thm. III.3]). Let N P N and let tΦ˚
i uiPrNs be a collection of CP maps

from MpCqd to MpCqn such that Φ˚ :“
ř

Φi
˚ is a CP map with minimal Stinespring

dilation Φ˚pAq “ V ˚pA b 1sqV for all A P MpCqd. Then, there is Q P MpN,Csq such
that

Φ˚
i pAq “ V ˚pA b QiqV @A P MpCqd.
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We will now show that we can drop the requirement that the Stinespring dilation is
minimal in the above theorem (see also [26]).

Corollary A.2. Let N P N and let tΦ˚
i uiPrNs be a collection of CP maps from MpCqd to

MpCqn such that Φ˚ :“
ř

Φi
˚ is a CP map with Stinespring dilation Φ˚pAq “ W ˚pA b

1s1qW for all A P MpCqd. Then, there is Q1 P MpN,Cs1

q such that

Φ˚
i pAq “ W ˚pA b Q1

iqW @A P MpCqd.

Proof. Let Φ˚pAq “ V ˚pA b 1sqV for all A P MpCqd be a minimal Stinespring dilation of
Φ˚. Then, by Thm. A.1, there is Q P MpN,Csq such that

Φ˚
i pAq “ V ˚pA b QiqV @A P MpCqd.

As explained in [24, Sec. 2.4], s1 ě s and there exists an isometry U : Cs Ñ Cs1 such
that W “ p1 b UqV . Let P “ UU˚, which is an orthogonal projection because U is an
isometry. Then, let Q1

i :“ UQiU
˚ ` p1s1 ´ P q{N for all i P rN s. As Q1

i ě 0 and

N
ÿ

i“1
Q1

i “ p1s1 ´ P q `

N
ÿ

i“1
UQiU

˚ “ 1s1 ,

indeed Q1 P MpN,Cs1

q. Finally, we verify that

W ˚pA b Q1
iqW “ V ˚p1 b U˚qA b pUQiU

˚ ` p1s1 ´ P q{Nqp1 b UqV

“ V ˚pA b QiqV

“ Φ˚
i pAq

for all i P rN s, as U˚PU “ U˚UU˚U “ 1s.

B Proof of Theorem 4.1
In order to characterize the completely positive maps between multimeters, we need to first
take a closer look on Choi matrices of multimeters. Let ΦM P MMpg, k, dq Ă CpCdg,Ckq

be a multimeter for some number g of k-outcome POVMs M “ tM¨|xuxPrgs Ă Mpk,Cdq

on Cd. Now if take some bases t|iyuiPrgs of Cg and t|αyuαPrds of Cd, then the Choi matrix
JΦM

can be written as

JΦM
“

d
ÿ

α,β“1

g
ÿ

i,j“1
ΦM p|αyxβ| b |iyxj|q b |αyxβ| b |iyxj|

“

d
ÿ

α,β“1

g
ÿ

i,j“1

«

g
ÿ

x“1

k
ÿ

a“1
Tr

“

pMa|x b |xyxx|qp|αyxβ| b |iyxj|q
‰

|ayxa|

ff

b |αyxβ| b |iyxj|

“

d
ÿ

α,β“1

g
ÿ

x“1

k
ÿ

a“1
xβ|Ma|x|αy |ayxa| b |αyxβ| b |xyxx|

“

g
ÿ

x“1

k
ÿ

a“1
|ayxa| b

˜

d
ÿ

α,β“1
xα|MT

a|x|βy |αyxβ|

¸

b |xyxx|

“

g
ÿ

x“1

k
ÿ

a“1
|ayxa| b MT

a|x b |xyxx| ,
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where the transpose MT
a|x of Ma|x is taken with respect to the basis t|αyuαPrds. Thus, now

we have that

J pMMpg, k, dqq “

#

g
ÿ

x“1

k
ÿ

a“1
|ayxa| b MT

a|x b |xyxx| : tM¨|xuxPrgs Ă Mpk,Cdq

+

(33)

“

#

g
ÿ

x“1

k
ÿ

a“1
|ayxa| b Ma|x b |xyxx| : tM¨|xuxPrgs Ă Mpk,Cdq

+

. (34)

Now we can prove Theorem 4.1:

Theorem. Let Ψ : MpCqkdg Ñ MpCqlnr be a CP map such that ΨpJ pMMpg, k, dqqq Ď

J pMMpr, l, nqq. Then Ψ has a realization pCs, Λ, Bq, i.e., there exist an ancillary system
Cs for some s P N, CP maps Λ˚

x|y : MpCqds Ñ MpCqn such that Λ˚
y :“

ř

xPrgs Λ˚
x|y is a

unital CP (UCP) map for all y P rrs, and a set of POVMs B “ tB¨|a,x,yuaPrks,xPrgs,yPrrs Ă

Mpl,Csq such that

Ψ
˜

JΦ
tM¨|xu

xPrgs

¸

“ JΦ"

řg
x“1

řk
a“1 Λ˚

x|y
pMa|xbB¨|a,x,yq

*

yPrrs

, (35)

where
!

řg
x“1

řk
a“1 Λ˚

x|ypMa|x b B¨|a,x,yq

)

yPrrs
Ă Mpl,Cnq is a set of POVMs for all

tM¨|xuxPrgs Ă Mpk,Cdq.

Proof. Let us start by defining the following CP maps

@x P rgs : Px : MpCqkdg Ñ MpCqkd,
PxpW q :“ TrCg rp1k b 1d b |xyxx|qW s @W P MpCqkdg,

@a P rks : Qa : MpCqkd Ñ MpCqd,
QapXq :“ TrCk rp|ayxa| b 1dqXs @X P MpCqkd,

@y P rrs : Ry : MpCqlnr Ñ MpCqln,
RypY q :“ TrCr rp1l b 1n b |yyxy|qY s @Y P MpCqlnr,

@b P rls : Sb : MpCqln Ñ MpCqn,
SbpZq :“ TrClrp|byxb| b 1nqZs @Z P MpCqln,

where now t|xyuxPrgs and t|ayuaPrks are the same bases of Cg and Ck respectively that are
used to define J pMMpg, k, dqq and analogously t|yyuyPrrs and t|byubPrls are the same bases
of Cr and Cl respectively that are used to define J pMMpr, l, nqq. It is straightforward to
see that

P ˚
x pAq “ A b |xyxx| @A P MpCqkd, Q˚

apBq “ |ayxa| b B @B P MpCqd,

R˚
ypCq “ C b |yyxy| @C P MpCqln, S˚

b pDq “ |byxb| b D @D P MpCqn,

so that for all x P rgs, y P rrs, a P rks and b P rls we have

PxpJΦM
q “ JΦM¨|x

, JΦM
“

g
ÿ

x“1
P ˚

x pJΦM¨|x
q, QapJΦM¨|x

q “ MT
a|x, JΦM¨|x

“

k
ÿ

a“1
Q˚

apMT
a|xq,

RypJΦN
q “ JΦN¨|y

, JΦN
“

r
ÿ

y“1
R˚

ypJΦN¨|y
q, SbpJΦN¨|y

q “ NT
b|y, JΦN¨|y

“

l
ÿ

b“1
S˚

b pNT
b|yq,

(36)
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for all M “ tM¨|xuxPrgs Ă Mpk,Cdq and N “ tN¨|yuyPrrs Ă Mpl,Cnq.
For all x P rgs, y P rrs, a P rks and b P rls we define CP maps Ψ˚

b,x|a,y : MpCqd Ñ MpCqn

by setting Ψ˚
b,x|a,y :“ Sb ˝ Ry ˝ Ψ ˝ P ˚

x ˝ Q˚
a. By using the properties of the above defined

maps and the fact that ΨpJ pMMpg, k, dqqq Ď J pMMpr, l, nqq it is straightforward to
check that

g
ÿ

x“1

k
ÿ

a“1

r
ÿ

y“1

l
ÿ

b“1

´

R˚
y ˝ S˚

b ˝ Ψ˚
b,x|a,y ˝ Qa ˝ Px

¯

pJΦM
q “ ΨpJΦM

q (37)

for all M “ tM¨|xuxPrgs Ă Mpk,Cdq.
Let us now focus on the properties of the maps Ψ˚

b,x|a,y. First, since ΨpJ pMMpg, k, dqqq Ď

J pMMpr, l, nqq, from the properties of the maps Px, Qa, Ry and Sb it follows that
#

g
ÿ

x“1

k
ÿ

a“1
Ψ˚

¨,x|a,ypMT
a|xq

+

yPrrs

Ă Mpl,Cnq (38)

for all M “ tM¨|xuxPrgs Ă Mpk,Cdq. In particular, now we have that

l
ÿ

b“1

g
ÿ

x“1

k
ÿ

a“1
Ψ˚

b,x|a,ypMT
a|xq “ 1n (39)

for all y P rrs for all M “ tM¨|xuxPrgs Ă Mpk,Cdq.
Let us now take some pa1, . . . , agq P rksg and define POVMs A “ tA¨|xuxPrgs Ă Mpk,Cdq

by setting Aa|x “ 1d, only if a “ ax, and naturally due to normalization Aa|x “ 0 otherwise.
Now from the above equation we see that

l
ÿ

b“1

g
ÿ

x“1

k
ÿ

a“1
Ψ˚

b,x|a,ypAT
a|xq “

l
ÿ

b“1

g
ÿ

x“1
Ψ˚

b,x|ax,yp1dq “ 1n. (40)

Hence, since pa1, . . . , agq was chosen arbitrarily, we have that
řl

b“1
řg

x“1 Ψ˚
b,x|a,y is unital

for all a P rks and y P rrs.
On the other hand, let us now fix some effect operators Bx P EpCdq for all x P rgs.

Now if we take some pa1, . . . , agq, pa1
1, . . . , a1

gq P rksg such that ax ‰ a1
x for all x P rgs and

define POVMs B “ tB¨|xuxPrgs Ă Mpk,Cdq by setting Bax|x “ Bx, Ba1
x|x “ 1d ´ Bx and

Ba|x “ 0 otherwise, we see that

1n “

l
ÿ

b“1

g
ÿ

x“1

k
ÿ

a“1
Ψ˚

b,x|a,ypBT
a|xq “

l
ÿ

b“1

g
ÿ

x“1
Ψ˚

b,x|ax,ypBT
x q `

l
ÿ

b“1

g
ÿ

x“1
Ψ˚

b,x|a1
x,yp1d ´ BT

x q

“ 1n `

l
ÿ

b“1

g
ÿ

x“1

´

Ψ˚
b,x|ax,y ´ Ψ˚

b,x|a1
x,y

¯

pBT
x q

“ 1n `

g
ÿ

x“1

˜

l
ÿ

b“1
Ψ˚

b,x|ax,y ´

l
ÿ

b“1
Ψ˚

b,x|a1
x,y

¸

pBT
x q.

Now if we fix x1 P rgs and take Bx1 “ B for some B P EpCdq and Bx “ 0 otherwise, we then
must have that

´

řl
b“1 Ψ˚

b,x1|ax1 ,y
´

řl
b“1 Ψ˚

b,x1|a1

x1 ,y

¯

pBT q “ 0 for all y P rrs. Since B can
be chosen arbitrarily and since the set of effects EpCdq, as well as their transposes, spans
MpCqd, we thus have that

řl
b“1 Ψ˚

b,x1|ax1 ,y
“

řl
b“1 Ψ˚

b,x1|a1

x1 ,y
for all y P rrs. Finally, since
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x1 P rgs and the outcomes pa1, . . . , agq, pa1
1, . . . , a1

gq P rksg can also be chosen arbitrarily,
we conclude that

řl
b“1 Ψ˚

b,x|a,y “
řl

b“1 Ψ˚
b,x|a1,y for all x P rgs, y P rrs and a, a1 P rks. Thus,

we may denote Ψ˚
x|y :“

řl
b“1 Ψ˚

b,x|a,y.
To summarize so far, we have the following properties

Ψ˚
b,x|a,y : MpCqd Ñ MpCqn CP @x P rgs, @y P rrs, @a P rks, @b P rls (41)

Ψ˚
x|y :“

l
ÿ

b“1
Ψ˚

b,x|a,y “

l
ÿ

b“1
Ψ˚

b,x|a1,y CP @x P rgs, @y P rrs, @a, a1 P rks (42)

Ψ˚
y :“

g
ÿ

x“1
Ψ˚

x|y UCP @y P rrs, (43)

where UCP means that the maps are unital and CP.
Let us now take s ě maxx,y rankpJΨ˚

x|y
q and a Stinespring dilation pCs, Vxyq for Ψ˚

x|y so
that Ψ˚

x|ypAq “ V ˚
xypAb1sqVxy for all A P MpCqd and such that V ˚

xyVxy ď 1d for all x P rgs

and y P rrs. Furthermore, since Ψ˚
y “

ř

x Ψ˚
x|y is unital it follows that

ř

x V ˚
xyVxy “ 1d for

all y P rrs. Since Ψ˚
x|y “

ř

b Ψ˚
b,x|y,a for all a P rks, x P rgs and y P rrs, by Cor. A.2 there

exists POVMs B̃ “ tB̃¨|a,x,yuaPrks,xPrgs,yPrrs Ă Mpl,Csq such that

Ψ˚
b,x|a,ypAq “ V ˚

xypA b Bb|a,x,yqVxy . (44)

We can now define CP maps Λ̃˚
x|y : MpCqds Ñ MpCqn by setting Λ̃˚

x|ypXq “ V ˚
xyXVxy

for all x P rgs and y P rrs. From the fact that
ř

x V ˚
xyVxy “ 1d it follows that Λ̃˚

y :“
ř

x Λ̃˚
x|y

is UCP for all y P rrs. Thus, we have shown that there exist an ancillary system Cs, CP
maps Λ̃˚

x|y : MpCqds Ñ MpCqn such that Λ̃˚
y :“

ř

xPrgs Λ̃˚
x|y is UCP for all y P rrs, and a

set of POVMs B̃ “ tB̃¨|a,x,yuaPrks,xPrgs,yPrrs Ă Mpl,Csq such that

Ψ˚
b,x|a,ypAq “ Λ̃˚

x|ypA b B̃b|a,x,yq (45)

for all x P rgs, y P rrs, a P rks and b P rls.
Finally, we now see that for any M “ tM¨|xuxPrgs Ă Mpk,Cdq we have that

ΨpJΦM
q “

g
ÿ

x“1

k
ÿ

a“1

r
ÿ

y“1

l
ÿ

b“1

´

R˚
y ˝ S˚

b ˝ Ψ˚
b,x|a,y ˝ Qa ˝ Px

¯

pJΦM
q (46)

“

g
ÿ

x“1

k
ÿ

a“1

r
ÿ

y“1

l
ÿ

b“1

`

R˚
y ˝ S˚

b

˘

´

Ψ˚
b,x|a,ypMT

a|xq

¯

(47)

“

r
ÿ

y“1

l
ÿ

b“1

`

R˚
y ˝ S˚

b

˘

˜

g
ÿ

x“1

k
ÿ

a“1
Λ̃˚

x|ypMT
a|x b B̃b|a,x,yq

¸

(48)

“

r
ÿ

y“1
R˚

y

ˆ

JΦ
p
řg

x“1
řk

a“1 Λ̃˚
x|y

pMT
a|x

bB̃¨|a,x,yqqT

˙

(49)

“ JΦ"

řg
x“1

řk
a“1pΛ̃˚

x|y
pMT

a|x
bB̃¨|a,x,yqqT

*

yPrrs

, (50)

where the outer transposition in the last line is taken in the t|βyuβPrns basis of Cn. Now,
we can define a new CP map Λ˚

x|ypXq “ pΛ̃˚
x|ypXT qqT , where the outer transposition is

in the t|βyuβPrns basis and the inner in the t|αy |cyuαPrds,cPrss basis, with t|cyucPrss being a
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basis of Cs. Moreover, we define a new UCP map Λ˚
y “

ř

xPrgs Λ˚
x|y and a new POVM

B “ tB̃T
¨|a,x,yuaPrks,xPrgs,yPrrs, where the transpose is in the t|cyucPrss basis. Thus,

Ψ
˜

JΦ
tM¨|xu

xPrgs

¸

“ JΦ"

řg
x“1

řk
a“1 Λ˚

x|y
pMa|xbB¨|a,x,yq

*

yPrrs

and
!

řg
x“1

řk
a“1 Λ˚

x|ypMa|x b B¨|a,x,yq

)

yPrrs
“

!

řg
x“1

řk
a“1pΨ˚

¨,x|a,ypMT
a|xqqT

)

yPrrs
Ă Mpl,Cnq.
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