
PHYSICAL REVIEW A 112, 032204 (2025)

Coarse-grained dynamics in quantum many-body systems using the maximum entropy principle
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Starting from a coarse-grained map of a quantum many-body system, we construct the inverse map that
assigns a microscopic state to a coarse-grained state based on the maximum entropy principle. Assuming unitary
evolution in the microscopic system, we examine the resulting dynamics in the coarse-grained system using the
assignment map. We investigate both a two-qubit system, with SWAP and controlled-NOT gates, and n-qubit sys-
tems, configured either in an Ising spin chain or with all-to-all interactions. We demonstrate that these dynamics
exhibit atypical quantum behavior, such as nonlinearity and non-Markovianity. Furthermore, we find that these
dynamics depend on the initial coarse-grained state and establish conditions for general microscopic dynamics
under which linearity is preserved. As the effective dynamics induced by our coarse-grained description of
many-body quantum systems diverge from conventional quantum behavior, we anticipate that this approach
could aid in describing the quantum-to-classical transition and provide deeper insights into the effects of coarse
graining on quantum systems.
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I. INTRODUCTION

Coarse-grained descriptions have been extensively used to
study quantum systems [1–10]. This type of effective model-
ing is essential because the full quantum description is usually
impractical as the Hilbert space dimension grows exponen-
tially with respect to the number of particles. In this regard,
coarse graining is generally implemented by reducing the
number of degrees of freedom; however, the way this is done
is not unique [11]. Moreover, coarse graining has been pivotal
in studying the quantum-to-classical transition [1,12], which
remains, along with the measurement problem, an active area
of research due to the inherent linearity of the theory and the
mathematical connections between the studied entities and the
outcomes of measurement [13–15]. It has been employed also
in the study of the thermalization of closed quantum systems
[16,17].

Using the language of quantum information, several au-
thors have introduced the concept of coarse graining in the
quantum realm. In Ref. [11] coarse graining was defined via
classical stochastic maps between measures defined using
quantum observables; in Ref. [18] a framework exploiting
Stinespring dilation [19] was introduced to keep track of the
information dumped. Both frameworks accommodate a va-
riety of coarse-graining maps. A class of quantum channels,
amounting to a coarse-grained description of many-body sys-
tems, was introduced in [20]. A key feature in common is that
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the coarse-grained description contains less information than
the original fine-grained picture.

A natural and fundamental question concerns how a physi-
cal system appears when probed with imperfect measurement
devices. This issue is of central importance, as all experi-
mental observations are inherently limited by some degree
of imprecision. Such limitations raise critical concerns about
the implications they may have on the information extracted
from a system. In special relativity, for example, the behavior
of rods and clocks plays a key role in defining foundational
concepts such as simultaneity [21], while in quantum mechan-
ics, the von Neumann postulate establishes the framework for
what can be observed and how [22]. In the context of quantum
states, it has been shown that the space of observable states
shrinks doubly exponentially as a result of finite addressing
errors [20]. Of particular interest, both fundamentally and
practically, is the question of how the dynamics of many-body
quantum systems appears through the lens of imperfect mea-
surements. The limitations introduced by such coarse-grained
observations must be carefully considered when analyzing
and interpreting the evolution of complex quantum systems.

This question has been addressed from several points of
view. There have been efforts to define and investigate the
dynamics governing coarse-grained descriptions of quantum
systems. For example, in Ref. [18] the impact on the emerg-
ing dynamics due to the choice of the fine-grained state was
discussed. In Refs. [23,24] two ways of assigning fine-grained
quantum states were analyzed for the blurred detector across
various assignment maps. The key result in these works is
the emergence of nonlinear and non-Markovian dynamics. We
believe that a deeper exploration of such results is needed,
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especially in the context of many-body systems under general
but tractable enough assumptions.

In this work we address this need by exploring coarse-
grained descriptions of many-body quantum systems and
the emergent dynamics using the idea of assignment map
[23,24] to “invert” the coarse-graining map. Two crucial ob-
jects must be chosen carefully to achieve our goal. First, we
need a general enough coarse-graining map to accommodate
a decent variety of many-body systems. To do this, we con-
sider a recently developed coarse-grained model [20], which
is based on particle-indexing noise and a reduction of the
number of particles. More specifically, this model assumes
that when a measurement is performed, possibly involving
multiple particles, the subset of particles being measured
can vary randomly. This coarse-graining approach has two
key features that make it relevant for further study. First, it
captures the limitations of a measurement device that can-
not resolve individual particles, resembling the behavior of
a macroscopic apparatus observing a quantum system. Po-
tentially, this can contribute to a better understanding of the
quantum-to-classical transition. Second, the model allows for
the exploration of how different spatial configurations influ-
ence quantum states. It can incorporate various geometries,
such as linear chains (see, e.g., [25,26]), two-dimensional
lattices (see, e.g., [27,28]), or more complex layouts like those
found in IBM quantum processors (see, e.g., [29]).

Second, we must choose an assignment map. There is a
variety of criteria for selecting one. In Ref. [24] the authors
analyzed the difference between two assignment maps, one
on them based on the maximum entropy (MaxEnt) principle
and the other based on the average compatible pure states.
The MaxEnt principle serves as a method of inference that
assigns probabilities to all events while ensuring compatibility
with the known information, given as expectation values. The
resulting distribution is the least biased, i.e., it maximizes the
entropy [30]. The role of the MaxEnt principle as an inference
method in the formulation of statistical mechanics ensembles
for general observables was thoroughly discussed in Jaynes’
widely cited paper [31]. This work extends beyond the canon-
ical and microcanonical ensembles, providing a more general
framework. Its application to the quantum realm was further
developed in a subsequent paper [32] (see also [33]). In the
quantum case, the measure of uncertainty is the von Neumann
entropy and the resulting probability distribution (or density
matrix, in the quantum case) reflects these values without
introducing any additional information. It is worth mentioning
that this principle has been used for tackling the lack of infor-
mation in other scenarios, for example, in incomplete state
(and process) quantum tomography [34–36]. We have chosen
MaxEnt to construct the assignment map compatible with the
coarse-graining map for both its solid physical motivation,
in terms of information, and the fact that it is analytically
convenient.

Having established the connection between both scales
using the aforementioned maps, we investigate the emergent
coarse-grained dynamics induced by various quantum dynam-
ics at the finer scale. Specifically, we assume that only the
coarse-grained scale is accessible, meaning that expectation
values are expressed in terms of operators at this scale. Con-
sequently, we construct the corresponding operators at the

finer scale such that they reproduce the same expectation val-
ues while simultaneously encoding the coarse-graining map.
With these elements in place, we formulate the MaxEnt states
required for the assignment map. Finally, the emergent coarse-
grained dynamics naturally arise as the concatenation of the
coarse-graining maps and the dynamics at the finer scale.
We consider examples of both small and large many-body
quantum systems.

The paper is organized as follows. In Sec. II we intro-
duce both the coarse-graining map and the maximum entropy
assignment map, and with these elements we proceed to con-
struct the effective dynamics of the macroscopic system. Then
we apply these tools to different quantum dynamical systems.
In particular, Sec. III is devoted to the study of the effective
dynamics of a two-qubit system with underlying SWAP and
controlled-NOT gates. In Sec. IV we explore the effective
dynamics of an n-qubit system configured as an Ising spin
chain, with both all-to-all and nearest-neighbor interactions.
In Sec. V we establish conditions for general microscopic
dynamics under which linearity is preserved, and we present
an example of a microscopic dynamics that preserves linearity
but is nonetheless non-Markovian. We summarize our work
and discuss our conclusions in Sec. VI.

II. EFFECTIVE DYNAMICS
IN COARSE-GRAINED SYSTEMS

In this section we introduce the coarse-graining map from
which the effective description of the state is recovered. We
construct the maximum entropy assignment map that will be
used to assign a microscopic state to the effective state and
study some of its properties. This map is used to formally
present the effective dynamics in a quantum many-body sys-
tem subject to a coarse-grained description.

A. Coarse-graining map

Consider an imperfect measuring device that is subject to
two types of errors. First, the device lacks the capability to
accurately distinguish between the individual particles of a
d-level n-body system. In other words, there exists a nonzero
probability pP of wrongly identifying particles according to
a permutation P. This type of measurement is referred to as
a fuzzy measurement. Second, the device does not have the
ability to resolve all particles; only a subset τ of m particles
can be measured. Mathematically, a partial trace over the com-
plement of τ is performed. A coarse-grained description of
the system is obtained when both types of error are combined
[20], in the sense that expected values should be calculated
with respect to an effective state resulting from the application
of the coarse-graining map

C : B
(
H⊗n

d

) → B
(
H⊗m

d

)
, � �→ trτ

(∑
P

pPP(�)

)
, (1)

where trτ represents the partial trace over the complement of
τ and B(H) is the space of bounded linear operators acting
on H.

Our primary focus is directed towards a particular case of
the coarse-graining map given by (1). First, the measuring
device might mistakenly swap pairs of particles. Second, it is
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able to resolve a single particle, that is, m = 1. Without loss of
generality, we can assume that the first particle is the one that
is intended to be measured, so that τ = 1. The coarse-graining
map that captures this situation is

C : B
(
H⊗n

d

) → B(Hd ), � �→ tr1

(∑
k

pkP1,k (�)

)
, (2)

where P1,k is the permutation between the first and the kth
particle and P1,1 ≡ 1. If state tomography were to be per-
formed on the system using our imperfect apparatus, the result
would be a one-particle effective state ρeff = C(�); similarly,
the expected value of any single-particle observable A will be
tr[AC(�)]. It is crucial to recognize that the resulting effective
state is a mixture of all the reduced systems of the microscopic
system (assuming pk �= 0 ∀ k).

Two specific probability distributions pk hold particular
significance in this context:

pk = 1

n
∀ k, pk = 1 − p1

1 − n
∀ k �= 1. (3)

The first one represents the scenario in which the measuring
device is completely incapable of distinguishing between the
individual particles. This situation is akin to a gas, where each
particle has an equal probability of being found anywhere
within the system. The second one can be interpreted as the
first particle being the one that is closest to the measuring de-
vice and the other providing a mean background noise. These
distributions are referred to as nonpreferential and preferential
distributions, respectively.

B. Maximum entropy principle and assignment map

Now let us shift our attention to the assignment map, which
allows us to make an inference about the microscopic state
of the system through our coarse-grained measurements. It
is through this map that we will be able to obtain the state
that will evolve according to the microscopic dynamics. The
assignment map is constructed by selecting the microscopic
state that maximizes the von Neumann entropy, while en-
suring that it corresponds to the effective macroscopic state
under a specific coarse-graining map, in a similar spirit as
in [31,37] or in the context of coarse graining [18,24]. The
maximization of entropy is carried out using the method of
Lagrange multipliers, where the information of the effective
state will be used as constraints.

Let us assume that we are able to perform state tomogra-
phy on the effective state [38]. If {ςα}α is a tomographically
complete set of operators acting on the Hilbert space Hd of the
effective state C(�), then its expected values can be connected
to the expected values of a set of operators {Gα}α acting on the
Hilbert space of the microscopic state, H⊗n

d . These operators
are defined by

Gα =
n∑

k=1

pkς
α
k , (4)

where ςα
k is the operator ςα acting on the kth particle. This

connection is expressed mathematically by

tr(ςαρeff ) = tr(Gα�) (5)

and is studied in Appendix A. Notice that the operators Gα

can be thought of as fuzzy operators since they are equivalent
to applying the ςα operator to the kth particle with probability
pk . Note that the set {Gα}α is not tomographically complete,
implying that we do not have access to all the details about the
microscopic system.

Given the expected values of the Gα operators, the state
that maximizes the von Neumann entropy is then [33]

�max = 1

Z
exp

⎛
⎝ n∑

k=1

pk

d2−1∑
α=1

λαςα
k

⎞
⎠, (6)

where λα is the Lagrange multiplier associated with the ex-
pectation value tr(ςαρeff ). Indeed,

tr(ςαρeff ) = ∂

∂λα

ln(Z ), (7)

with the partition function

Z = tr

⎡
⎣exp

⎛
⎝d2−1∑

α=1

λαGα

⎞
⎠
⎤
⎦. (8)

Because the operators pk
∑

α λαςα
k in Eq. (6) commute, it is

easy to observe that the maximum entropy state is separa-
ble. Due to this property, the maximum entropy assignment
map is

Amax
C : S (Hd ) → S

(
H⊗n

d

)
,

ρeff �→
n⊗

k=1

1

Zk
exp

⎛
⎝pk

d2−1∑
α=1

λαςα

⎞
⎠, (9)

where Zk is the partition function associated with the kth
particle and S (H) is the set of density matrices acting on H.
The dependence of the assigned state on the effective state
is encoded in the λα parameters. In fact, given the effective
state ρeff, the λα parameters are obtained by noting that the
norm of the generalized Bloch vector of the effective state,
�reff = reffn̂eff, can be expressed as

reff =
n∑

k=1

pkrk, (10)

where

rk = tanh(pkλ), λ =
(∑

α

λ2
α

)1/2

. (11)

Thus, inverting (10), we can find all the λα parameters from
�reff. More precisely,

λα = rα
eff

reff
λ, (12)

where rα
eff is the α component of the �reff Bloch vector. Now

the assigned states by the maximum entropy assignment map
in the preferential and nonpreferential cases (3) are

Amax
C (ρeff ) = ρ1 ⊗ ρ⊗(n−1)

np , (13)

Amax
C (ρeff ) = ρ⊗n

eff , (14)
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respectively. In the preferential case (13), we have defined the
reduced state of the nonpreferential particles as

ρnp = 1

Znp
exp

⎛
⎝1 − p1

n − 1

d2−1∑
α=1

λασα

⎞
⎠. (15)

Noticeably, the assignment map Amax
C is clearly nonlinear

[see Eq. (14)]. As an example, consider the nonprefer-
ential case with the state 1/2; we have Amax

C (1/2) =
1/2 ⊗ 1/2 = 1/4, which is not equal to Amax

C (|0〉〈0|)/2 +
Amax

C (|1〉〈1|)/2 = |00〉〈00|/2 + |11〉〈11|/2. Also observe that
Amax

C is defined once C is given such that their interplay is

C ◦ Amax
C = idS(Hd ), (16)

where the map idS(Hd ) is an affine mapping and has a unique
linear extension on B(Hd ) [11], namely, idB(Hd ). This is rel-
evant because, as we will show later, the emergent effective
dynamics is generally nonlinear. The nonlinearity will come
from the interplay of C and Amax

C , with the microscopic dy-
namics, where the only element that is nonlinear is Amax

C
alone.

C. Effective dynamics

Now that we have established the use of a coarse-graining
model that incorporates both resolution and permutation er-
rors and have constructed an assignment map based on the
maximum entropy principle, we can explore the evolution
of the effective system. Since we assume that the state that
propagates due to the underlying evolution is precisely the
one assigned via the maximum entropy assignment map, we
can represent the dynamics of the effective state through the
commutative diagram

where Vt is the evolution of the microscopic state. The evo-
lution of the effective state 
t can be thus obtained from
the composition three different operations [23]. First, a mi-
croscopic state is assigned to the effective state through the
MaxEnt assignment map. Then the assigned map is propa-
gated via Vt . Finally, we define the coarse-grained description
of the evolved assigned state to be the evolved effective state.
In this way, we define the coarse-grained dynamics as the
composition


t : S (Hd ) → S (Hd ), ρeff �→ (
C ◦ Vt ◦ Amax

C
)
(ρeff ). (17)

As mentioned above, while C ◦ Amax
C admits the identity

map as a linear extension on B(Hd ), this linearity is generally
broken in the full composition C ◦ Vt ◦ Amax

C , giving rise to
the generally nonlinear dynamics defined above. Although
all maps contribute to the composition, the only inherently
nonlinear map is Amax

C itself.

D. Complete positivity and trace preservation
of the effective dynamics

In this section we prove that 
t is a nonlinear completely
positive and trace-preserving (CPTP) map. To do this, we first
show that both the assignment map and the effective dynamics
are homogeneous of degree 1. This property implies trace
preservation and will aid in the proof that both 
t and Amax

C
are completely positive.

1. Homogeneity and trace preservation

As C and Vt are linear, and therefore homogeneous of
degree 1, it suffices to prove the homogeneity of Amax

C to
conclude that 
t is also homogeneous.

To proceed, consider an operator � = kρ, where ρ ∈
S (Hd ) is a density matrix and k is a real number. Thus, we
have k = tr(�). To extend the domain of Amax

C beyond density
matrices and evaluate the assignment map on �, it suffices to
incorporate k as the expectation value of the identity opera-
tor in Eq. (5), introducing its own Lagrange multiplier, that
is, k = tr(1d�) = tr(1dn�max) = tr(�max), where �max is the
maximum entropy operator compatible with the normalization
k and with any other expectation value constrained by �.

Since the identity operator commutes with all observables,
it is easy to show that �max = k�max, where �max is the corre-
sponding MaxEnt state compatible with �/k. Therefore, the
extension of Amax

C to Hermitian operators is homogeneous of
degree 1, that is,

Amax
C (k�) = kAmax

C (�)

for any real scalar k. Consequently, Amax
C is trace preserving

on this space. This also implies, trivially, that 
t is trace
preserving.

Provided that Amax
C and 
t map density matrices to density

matrices, the homogeneity of Amax
C implies the positivity of

both maps. Indeed, for any � � 0 we have

Amax
C (�) = (tr�)Amax

C

(
�

tr�

)
� 0.

By construction, Amax
C (�/tr�) is a density matrix [see

Eq. (6)]. Since both C and Vt are positive maps, it follows
that 
t is positive as well.

2. Complete positivity of the assignment map

To prove that 
t is completely positive, the crucial step is to
show that Amax

C is completely positive. Due to the homogene-
ity of Amax

C , it suffices to consider only density matrices in
order to define its dilation. We denote this dilation by Amax

C⊗idE

for any finite-dimensional ancillary system E. The dilation
must satisfy the conditions

(C ⊗ idE) ◦ Amax
C⊗idE

= idS(Hd ⊗HE ),

Amax
C (ρ) = trEAmax

C⊗idE
(ρ̃), (18)

with ρ = trEρ̃. The first equation extends the consistency
condition given in Eq. (16), while the second ensures that
the effect of the dilation on the original system agrees with
Amax

C (ρ).
To construct Amax

C⊗idE
, we apply the same procedure used to

define Amax
C , but now with C ⊗ idE as the coarse-graining map.
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Consider a dilation of the microscopic description of the
system with an ancillary system described by the Hilbert
space HE; since the extended coarse-graining map C ⊗ idE :
B(H⊗n

d ⊗ HE) → B(Hd ⊗ HE) does not change the dimen-
sion of the extension, we will use HE also for the dilation
of the coarse-grained description. Thus, the total state of
the extended microscopic system is �̃ ∈ B(H⊗n

d ⊗ HE). The
next step is to extend the observables of the coarse-grained
description

ςα �→ ςα ⊗ 1E

such that 〈ςα〉= tr((ςα ⊗ 1E)ρ̃eff ), where ρ̃eff = (C ⊗ idE)(�̃)
is the effective extended state.

Since the assignment map consists of preparing the max-
imum entropy state compatible with the known expected
values of ςα , the following expression holds:

tr((ςα ⊗ 1E)ρ̃eff ) = tr((Gα ⊗ 1E)�̃max).

The Gα is defined in Eq. (4) and �̃max ∈ B(Hd ⊗ HE)
is the maximum entropy state compatible with the mean
values defined above. To construct explicitly �̃max us-
ing the operators Gα ⊗ 1E, first observe that exp(Gα ⊗
1E) = exp(Gα ) ⊗ 1E; therefore, �̃max = exp(

∑d2−1
α=1 λαGα ⊗

1E)/Z̃ = exp(
∑d2−1

α=1 λαGα ) ⊗ 1E/Z̃ . Thus Z̃ = Z × dim HE

and the λ’s coincide with the ones in Eq. (12). Therefore,

Amax
C⊗idE

(ρ̃eff ) := �̃max = �max ⊗ 1E

dim HE

= Amax
C (ρeff ) ⊗ 1E

dim HE
(19)

holds, with ρeff = trE(ρ̃eff ). This result is expected consider-
ing that the given expectation values 〈ςα〉 do not give any
information about the ancillary system. At this point we have
proven that �̃max is a density matrix for any finite-dimensional
ancillary system E. Moreover, the homogeneity of Amax

C⊗idE
on

the space of Hermitian matrices implies complete positivity,
i.e., Amax

C⊗idE
(�̃) � 0 for all �̃ � 0.

Observe that Amax
C⊗idE

is not written in the usual fashion
Amax

C ⊗ idE as it is nonlinear, but we were able to construct the
extension anyway given that we can perform the preparation
of the maximum entropy state compatible with the local ob-
servations, for any extension of the system. Moreover, notice
that the formula in Eq. (19) trivially fulfills the conditions in
Eq. (18).

3. Complete positivity of �t

The composition of linear CPTP maps is trivially CPTP
due to the semigroup property of CPTP maps [11]. However,
in our case, a nonlinear map is involved. To prove that 
t is
CPTP, we compute its dilation based on the dilations of all
constituent maps. The following scheme provides the details:

Thus, the dilation of 
t results in


̃t : S (Hd ⊗ HE) → S (Hd ⊗ HE),

ρ̃eff(0) �→ 
t (ρeff(0)) ⊗ 1E

dim HE
, (20)

where ρeff(0) = trEρ̃eff(0). Therefore, 
̃t (ρ̃) is a density
matrix for all ρ̃ ∈ B(Hd ⊗ HE). This, combined with the ho-
mogeneity of the extension of 
̃t to the space of Hermitian
matrices (inherited from Amax

C⊗idE
), implies


̃t (�̃) � 0 ∀ �̃ ∈ B(Hd ⊗ HE), �̃ � 0. (21)

In conclusion, 
t is a nonlinear CPTP map.

III. EFFECTIVE NONLINEAR QUANTUM GATES

In light of the framework we have developed, and before
examining the effective dynamics of n-qubit systems, we will
focus our attention on simpler two-qubit systems, where the
effect of the coarse-graining map on a microscopic state �

will be

C(�) = p1tr2(�) + p2tr1(�), (22)

which is a convex combination of the reduced states of the
two qubits and is equivalent to Eq. (2) for n = 2. In particular,
we will explore the effective dynamics generated by two well-
known quantum gates: the SWAP gate and the controlled-NOT

(CNOT) gate. We will see that the resulting effective dynamics
is far from uninteresting. Indeed, the effective dynamics in-
duced by these gates exhibit nonlinearity and non-Markovian
behavior [39].

A. Effective SWAP gate

The Hamiltonian HSWAP given by

HSWAP = ω

2

∑
α∈{x,y,z}

σα ⊗ σα (23)

has the property of generating the SWAP gate for t = π/2ω.
Following the definition of 
t [Eq. (17)], we find that the
effective state of the evolved system is given by

C(USWAP(t )�maxU
†

SWAP(t )) = (p1 sin2 ωt + p2 cos2 ωt )�1

+ (p1 cos2 ωt + p2 sin2 ωt )�2,

where USWAP(t ) is the unitary operator generated by the
Hamiltonian (23). Since the effective initial state is given by
Eq. (22), it is possible to see that the effective state’s Bloch
vector has a constant direction; only its length changes with
time. This means that the effective dynamics corresponds to
a depolarization channel where the depolarization coefficient
depends on the initial state. To facilitate our analysis, let
us define the Bloch vector’s norm for the kth particle as
rk = tanh(pkλ) and similarly denote the norm of the Bloch
vector for the effective state by reff. With this, the quotient κeff

t
between the norm of the Bloch vector of the initial effective
state and the norm of the Bloch vector of the effective state at
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FIG. 1. Plot of the decay rate γt and the polarization coefficient
κeff

t (inset) for different values of p1, using an initial effective state
with reff = 0.9. The decay rate exhibits both positive and negative
values, indicating non-Markovian behavior in the dynamics.

time t is given by

κeff
t = 1

reff(0)
[p1(r1 cos2 ωt + r2 sin2 ωt )

+ p2(r2 cos2 ωt + r1 sin2 ωt )]. (24)

This allows us to write the effective dynamics of the
system as


t (ρeff ) = κeff
t ρeff + (

1 − κeff
t

)
1
21. (25)

Furthermore, since the effective dynamics is a depolarization
channel, the evolution of the effective state is described by the
Lindblad-like differential equation

ρ̇eff = γt

∑
α∈{x,y,z}

(σαρeffσ
α − ρeff ), (26)

with γt = −κ̇eff
t /4κeff

t . A plot of the decay rate and the de-
polarization coefficient is shown in Fig. 1. This reveals that
there are some scenarios where the effective state remains
unchanged over time. For example, in the nonpreferential case
where p1 = p2, the microscopic state is invariant under the
SWAP gate [see Eq. (14)] and therefore the effective state re-
mains invariant under the effective dynamics. In fact, it is easy
to see that the depolarization coefficient (24) is equal to one
when p1 = p2 (which is also shown in Fig. 1). Additionally,
all pure states |φ〉〈φ| are also invariant under the effective
dynamics, as long as no pk = 0, since the only microscopic
states compatible with such a macroscopic state is |φ〉〈φ|⊗n,
a symmetric state. Most interesting is that the decay rate γt

is able to take negative values, indicating that, in addition
to being nonlinear, the effective dynamics is non-Markovian
[40–43]. Quantitatively, using the Breuer-Laine-Piilo measure
in the interval shown in Fig. 1, we have [44]

MBLP[
t ] =
∫

k̇eff
t >0

k̇eff
t dt

= keff
π/ω − keff

π/2ω

= (p1 − p2)(r1 − r2)

reff(0)
� 0. (27)

The expression in the last line is always non-negative because
p2 > p1 implies r2 > r1, and vice versa, since tanh is strictly
increasing over the reals [see Eq. (11)].

To perform the optimization required to compute MBLP,
we used the states |0〉〈0| and |1〉〈1|; however, any pair of
antipodal states on the Bloch sphere yields maximal distin-
guishability. This is because 
t is a nonlinear depolarizing
channel that compresses or inflates the Bloch sphere in an
isotropic manner.

B. Effective CNOT gate

Similarly to (23), the Hamiltonian

HCNOT = −ω

2
(σ z ⊗ 1 + 1 ⊗ σ x − σ z ⊗ σ x ) (28)

generates the CNOT gate at time t = π
2ω

. The effective dynam-
ics at an arbitrary time t might be found by following the
same procedure as in the previous case. However, the resulting
expression is cumbersome and not very illuminating. Instead,
we focus on the effective dynamics of the system at time
t = π

2ω
, which is the time at which the CNOT gate is generated.

The effective dynamics at this time is given by


CNOT(ρeff ) = 1
2

[
ρeff + p1Dz

〈σ x
2 〉(ρ1) + p2Dx

〈σ z
1 〉(ρ2)

]
, (29)

where Dβ
q is a dephasing channel along the β direction with

dephasing coefficient 1 − q. For example, if β = z, then

Dz
q(ρ) = qρ + (1 − q)σ zρσ z; (30)

that is, in (29) we encounter a convex combination of the
effective state and two nonlinear state-dependent dephasing
channels. Note that the usual interpretation of the CNOT gate
is recovered, as we see that a bit flip (phase flip) is applied
to the second (first) particle depending on the state of the
first (second) particle. At an arbitrary time t , the effective
dynamics is given by


t (ρeff ) = 1

2
ρeff + p1

2
Ex(ρeff ) + p2

2
E z(ρeff ), (31)

where

Ex(ρeff ) = ρ1 cos2(ωt ) + [〈
σ x

2

〉
ρ1 + (

1 − 〈
σ x

2

〉)
σ zρ1σ

z
]

× sin2(ωt ) − i
(
1 − 〈

σ x
2

〉)
cos(ωt ) sin(ωt )[ρ1, σ

z]

and

E z(ρeff ) = ρ2 cos2(ωt ) + [〈
σ z

1

〉
ρ2 + (

1 − 〈
σ z

1

〉)
σ xρ2σ

x
]

× sin2(ωt ) − i
(
1 − 〈

σ z
1

〉)
cos(ωt ) sin(ωt )[ρ2, σ

x].

In Appendix B we show that E z and Ex are channels that
describe elliptical trajectories on the Bloch sphere. This
is because they correspond to the reduced dynamics of
two two-level systems that evolve according to a nonlocal
Hamiltonian [45].

IV. EFFECTIVE SPIN CHAIN DYNAMICS

Now that we have seen that nonlinear, non-Markovian re-
sults arise from the coarse-grained dynamics of a two-qubit
system, we study larger many-body systems, such as the spin
chains.
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A. Nonuniform external magnetic field
with all-to-all interactions

First, we consider spin-1/2 chains evolving in a nonuni-
form external magnetic field in the z direction with an
all-to-all Ising interaction parallel to the field. The Hamilto-
nian considered is thus

H = Hfield + Hint, (32)

where

Hfield =
∑

k

ωkσ
z
k , Hint = (σ z )⊗n. (33)

Since the field and interaction terms commute, it is possible to
solve them separately.

Let us first consider the magnetic-field part of the
Hamiltonian, which leads to an effective evolution that
is a combination of all the local evolutions. Indeed, be-
cause all terms in Hfield commute, the corresponding unitary
evolution is

Ufield(t ) =
∏

k

Uk (t ), (34)

where Uk (t ) = e−iωktσ z
k . Applying the coarse-graining map to

the maximum entropy stated evolved through (34) yields


field
t (ρeff ) =

∑
k

pkUk (t )ρkU
†
k (t ), (35)

where ρk are the subsystems defined by the maximum entropy
assignment map (9).

We now show that in scenarios where a dominant probabil-
ity prevails, the state evolution described by Eq. (35) tends to
spiral down towards a unitary evolution into a more mixed
state. Specifically, each term in the summation of Eq. (35)
circles the z axis. However, given random frequencies, these
movements are incoherent. This lack of coherence manifests
completely after a specific time, defined as tc = 2π/ς , where
ς represents the standard deviation of the frequencies ωk .
At this juncture, under appropriate conditions, the phases
exp(iωkt ) distribute uniformly around the whole unit circle.
In scenarios where one probability, such as p1, significantly
surpasses others and there is a large number of particles, the
dominant effect is a singular weakened contribution

lim
n→∞
t>tc


field
t (ρeff ) → U1(t )Pp1r1 (ρeff )U

†
1 (t ), (36)

where Pq(ρ) = qρ + (1 − q)1/d is a depolarizing channel.
Thus, after tc, the dynamics converges to a limit cycle in the
Bloch sphere representation [see Fig. 2(a)]. In fact, the fluc-
tuations around this evolution will decrease as approximately
1/

√
n, since we would be effectively adding n − 1 random

numbers on top of the preferred evolution [see Fig. 2(b)].
This convergence reflects how dominant probabilities influ-
ence the system’s evolution, simplifying the overall dynamics
to primarily one major contribution. The contraction of the
resulting state with respect to the initial one is a consequence
of the loss of information about the nonpreferential particles.
This loss of information arises due to the averaging process
of the preferential measurement, which effectively discards
information about the other particles and makes the effective

FIG. 2. Effective evolution of the macroscopic state’s Bloch vec-
tor for (a) n = 10 and (b) n = 500 particles under the Hamiltonian
Hfield with frequencies ωk normally distributed with mean μ = 1.5
and standard deviation ς = 0.2 (manifested in the variation of the
gray curve around the limit cycle). The green point represents the
state at t = 0 and the red point denotes the state at the final time
t = 4tc. The effective state oscillates around a mean evolution (red)
of radius p1r1, with p1 = 0.5. Comparing the two plots, its possible
to appreciate the decrease of the fluctuations, which is proportional
to 1/

√
n.

state more mixed. It is worth adding that if there is no pref-
erential particle, we will observe the qubit simply spiraling
towards the origin in the x-y plane while keeping the z com-
ponent constant.

Having solved the free part of the Hamiltonian, we now
focus on the interaction term. It can be shown, either by apply-
ing the coarse-graining map to the evolved microscopic state
or by applying it to the Liouville–von Neumann equation, that
the interaction part of the Hamiltonian leads approximately to
a nonunitary but linear evolution. Consider the Liouville–von
Neumann equation

�̇max = −i[(σ z )⊗n, �max] (37)

and solve it by iteratively integrating and substituting the
implicit solution in the commutator, from which we obtain
the power series in Hint. Applying the coarse-graining map
and taking into account its linearity, we arrive at


int
t (ρeff ) = ρeff(0) + (−it )C([Hint, �max(0)])

+ (−it )2

2!
C([Hint, [Hint, �max(0)]]) + · · · . (38)

To work with Eq. (38), we notice that the nested commutators
can be expressed as

[[b]Hint , . . . , [Hint,
n times

�max(0)]]

=
{

2n−1[Hint, �max(0)], odd n

2n−1[�max(0) − Hint�max(0)Hint], even n.
(39)

Using this, we can integrate the von Neumann equation as
usual to obtain two different power series, corresponding
to even and odd powers of t . Then we can neglect the
terms with odd powers of t in the limit of large N , because
C{[Hint, �max(0)]} decreases exponentially with the number of
particles. This will lead us to find that the effective evolution
for big N is


int
t (ρeff ) = Dz

cos2(t )
(ρeff ), (40)
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FIG. 3. Plot of the effective evolution of a set of particles, under
the Hamiltonian (32) for (a) n = 10 and (b) n = 500 particles. See
the caption of Fig. 2 for the color coding. The frequencies are chosen
in an identical manner, as well as the probability distribution and
the evolution time. In this case, the asymptotic evolution, in red,
corresponds to Eq. (41).

i.e., a dephasing channel in the z direction with oscillating
intensity. For details regarding the calculation stated in this
paragraph, see Appendix D.

Now that we have found the solutions to both the local and
interaction parts of the Hamiltonian to be given by (35) and
(40), respectively, and given that both dynamics commute, we
can say that the effective evolution will be the composition of
these two, that is,

lim
n→∞
t>tc


t (ρeff ) → Dz
cos2(t )

(
U1(t )Pp1r1 (ρeff )U

†
1 (t )

)
. (41)

For times much larger than tc, the effective state’s Bloch vector
will oscillate around the composition of the evolution of the
preferred subsystem and the dephasing channel, i.e., a polar
rose, as shown in Fig. 3. In cylindrical coordinates, we can
write

r(t ) = r(0) cos[θ (t )], (42)

θ (t ) = t

ω1
+ θ (0), (43)

z(t ) = z(0). (44)

It is important to underline that such dynamics is ob-
tained assuming a large number of particles. This allows us
to write the interaction part of the evolution as a dephas-
ing channel, i.e., as a straight line. For finite n, a squeezed
elliptical trajectory is found. Moreover, the actual trajectory
will oscillate around Eq. (41) with an amplitude proportional
to 1/

√
n.

So far, our discussion of the dynamics induced by Hamil-
tonian (32) has centered around the use of the preferential
distribution (3). For the nonpreferential case, the situation
is analogous. Indeed, without interaction, the dynamics will
once again follow (36). However, since the depolarization
of the state will have a coefficient reff/n, it will effectively
converge to a point on the z axis. On the other hand, for the
interacting case, the state’s trajectory will follow the shape of
the appropriate rose, but with an increasingly small amplitude,
until it also collapses to the z axis.

B. Ising chain

We now consider a homogeneous and closed Ising spin-1/2
chain coupled to a transversal magnetic field. The governing
Hamiltonian is

H = − J
N∑

j=1

σ z
j σ

z
j+1 − g

N∑
j=1

σ x
j , σ z

N+1 ≡ σ z
1 . (45)

This Hamiltonian is invariant under spin translations, that is,
changing indices j → j + 1. We study the case when the
effective initial state is pure,

|ψ〉 = cos

(
θ

2

)
|0〉 + ieıφ sin

(
θ

2

)
|1〉.

When all particles participate in the coarse graining, i.e., they
have nonzero probabilities in Eq. (2), the only compatible
microscopic state is |ψ〉⊗N , given that pure states are extremal.

Moreover, observe that the reduced dynamics of one spin is
the same for every spin due to the translation symmetry of the
Hamiltonian and the permutation symmetry of the initial state.
If we denote the reduced density matrix of the kth particle at
a time t by ρk (t ), this implies that ρk (t ) = ρl (t ) for every t ,
k, and l . Consequently, the effective state at time t is simply
ρeff(t ) = ρk (t ) for any k. Therefore, the effective dynamics
and the microscopic state are independent of the exact values
of pk , provided all of them are nonzero (pk > 0 ∀ k).

Let us now discuss the results. For g/J = 0 the system is
tractable analytically (see Appendix C for details). For this
case, the reduced dynamics is a nonlinear dephasing with
rotation around the z axis,

ρeff(t ) =
(

cos2
(

θ
2

)
γ (θ, t ) 1

2 e−iφ sin(θ )

γ ∗(θ, t ) 1
2 eiφ sin(θ ) sin2

(
θ
2

)
)

,

(46)

with

γ (θ, t ) = [cos(2Jt ) + i cos(θ ) sin(2Jt )]2. (47)

The dynamics is nonlinear and does not depend on the total
number of spins in the chain. Moreover, it depends only on θ

(see Fig. 4); this is expected due to the azimuthal symmetry
of the Hamiltonian. Furthermore, both dephasing and rotation
depend on θ ; therefore, there is a differential rotation apart
from the nonlinear dephasing, depicted by the twisted white
wires in the figures.

For g/J > 0, we performed numerical calculations without
approximations for 2252 initial pure states, uniformly dis-
tributed to resemble the polygon mesh representation of the
Bloch sphere. In Fig. 4 we present the results for N = 8, where
it can be observed that the dynamics becomes increasingly
intricate as g/J increases.

In our numerical experiments, we observed that the results
are visually indistinguishable for N � 4. Since increasing the
system’s size is computationally expensive, we analyzed how
uniformly random effective initial states vary with respect to
the finer system’s size. To do this, we evolved each random
state over multiple time points, particle numbers at the finer
level, and different several values of g/J .

For comparison, in Fig. 5 we plot the trace distance be-
tween states evolved with consecutive particle numbers, while
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FIG. 4. Evolution of the Bloch sphere containing all initial pure
states for several values of field coupling and time, with eight qubits
in the fine transverse-field Ising dynamics. The color code is as fol-
lows: A gradient from north (red) to south (blue) represents different
polar angles, while white wires indicate families of states with a fixed
azimuthal angle. The effective dynamics is nonlinear in all cases; in
particular, for g/J = 0, it corresponds to nonlinear dephasing with
differential rotation around the z axis (illustrated by the twisted white
wires). See the text for further details.

the inset shows the trace distance with respect to the case of
eight particles (recalling that Fig. 4 was produced with eight
particles). As g/J increases, the error grows slightly but still
decays rapidly. With respect to the system with eight particles
(inset in Fig. 5), the error becomes negligible, indicating that

FIG. 5. Average trace distance of effective states evolved with
different numbers of particles at a finer level. The main plot shows
the average trace distance between consecutive particle numbers. The
inset displays the average trace distance for nine and ten particles
with respect to the case of eight particles. The average is taken over
multiple time points and 100 quantum states.

the results shown in Fig. 4 are close to those of the thermody-
namic limit (N → ∞).

V. LINEAR EFFECTIVE DYNAMICS

In Sec. III we presented two examples of microscopic
dynamics that give rise to a nonlinear, non-Markovian
evolution of the effective state. Nevertheless, not all micro-
scopic dynamics will produce such behavior of the effective
dynamics. In this section we present some examples of
evolution for which the linearity is preserved under the
coarse-graining map.

A. Channels that act equally on all subsystems

First, let E be a quantum channel acting on a two-level
system

E : B(H2) → B(H2) (48)

and let � be the density operator that describes a collection of
n such units. We define E⊗n as E applied locally to each of the
subsystems of the n-partite system,

E⊗n : B
(
H⊗n

2

) → B
(
H⊗n

2

)
, (49)

according to

(E ⊗ E )(A ⊗ B) = E (A) ⊗ E (B) (50)

for any A, B ∈ B(H2). By expanding � in the basis of tensor
products of the Pauli matrices, it is a matter of algebra to show
that

(C ◦ E⊗n)(�) = (E ◦ C)(�) (51)

for any � ∈ S (H⊗n
2 ). This means that all channels that act

locally and in the same way over all subsystems conserve
their linearity under the coarse-graining map. Furthermore,
nonfactorizable channels that act equally upon all reduced
matrices also conserve their linearity.

As a first example, let us consider dephasing channel. An
n-qubit total dephasing channel in the z direction is

Dz
1/2n (�) = 1

2n

∑
�α

(σ �α )�(σ �α )†, (52)

where σ �α = σα1 ⊗ · · · ⊗ σαn with α j ∈ {0, z}. It is not diffi-
cult to see that

C
(
Dz

1/2n (�)
) = Dz

1/2(C(�)), (53)

that is, the total dephasing channel on the microscopic system
translates under the coarse-graining map as a total dephasing
channel over the effective system. The total dephasing channel
is an example of a factorizable Pauli component erasing map
[46]. A nonfactorizable Pauli component erasing map that is
also a quantum channel is

E : B
(
H2

2

) → B
(
H2

2

)
, � = 1

4

∑
�α

γ�ασ �α → 1

4

∑
�α

γ�ατ�ασ �α,

(54)
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with⎛
⎜⎜⎝

τ0,0 τ0,x τ0,y τ0,z

τx,0 τx,x τx,y τx,z

τy,0 τy,x τy,y τy,z

τz,0 τz,x τz,y τz,z

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

⎞
⎟⎟⎠. (55)

Note that this E acts equally on both reduced density matrices.
In fact, it acts as a dephasing channel in the y direction upon
both subsystems, and so

C(E (�)) = Dy
1/2(C(�)). (56)

Although this is an example for two two-level systems, all
n-qubit quantum channels that satisfy

tr j (E (�)) = trk (E (�)) ∀ k, j ∈ {1, . . . , n} (57)

will give rise to linear effective dynamics.

B. Linear non-Markovian evolution

Another instance of a microscopic evolution that preserves
its linearity under the coarse-graining map is the given by the
Hamiltonian

H = ω

2
(1 ⊗ σ z ). (58)

Clearly, this is not a mapping that abides by the condition
stated by Eq. (57). However, as we will see, the effec-
tive dynamics remain linear with a notable twist: They are
non-Markovian. Indeed, using the nonpreferential distribution
described in Eq. (3), the microscopic evolution (58) induces
the macroscopic dynamics given by


t (ρeff ) = 1
2

(
ρeff + e−i(ωt/2)σ z

ρeffe
i(ωt/2)σ z)

, (59)

and its effect on the evolution of the effective Bloch vector is
described by the parametric equations

rx
eff(t ) = 1

2

[
rx

eff cos(ωt ) − ry
eff sin(ωt ) + rx

eff

]
, (60)

ry
eff(t ) = 1

2

[
ry

eff cos(ωt ) + rx
eff sin(ωt ) + ry

eff

]
, (61)

rz
eff(t ) = rz

eff, (62)

which represent the parametric equations of a circle in R3 with
center at (rx

eff/2, ry
eff/2, rz

eff ), parallel to the x-y plane, and with
radius 1

2

√
(rx

eff )
2 + (ry

eff )
2 .

The differential equation governing the effective dynamics
is

dρ

dt
= −i

[ω
4

σ z, ρ
]

+ ω

2
tan

(
ωt

2

)
(σ zρσ z − ρ). (63)

From this differential equation, we can identify the effective
Hamiltonian as

Heff = ω

4
σ z, (64)

where the frequency appearing in the effective Hamiltonian is
reduced by half compared to the frequency of the microscopic
Hamiltonian. It is worth noting that Eq. (63) exhibits singular-
ities at points where the tangent function diverges.

Since the term tan( ωt
2 ) can be positive or negative, the

dynamics is generally non-Markovian. Furthermore, it is

straightforward to verify that the corresponding dynamics in
(59) do not satisfy the semigroup property:


t+s(ρ) �= 
t (
s(ρ)). (65)

Thus, coarse-grained quantum dynamics adds to the wide va-
riety of physical systems that exhibit non-Markovianity [47].

VI. CONCLUSION

We introduced a pragmatic notion of effective dynamics for
coarse-grained descriptions of conventional many-body quan-
tum systems. To achieve this, we used the maximum entropy
principle to deal with the fact that the effective description
emerges from a coarse-graining map that irreversibly destroys
part of the microscopic information. This method is quite
appealing given that no additional information or assumptions
are introduced to construct the microscopic state of the sys-
tem. We assumed that the latter undergoes unitary evolution
and thus the system is closed. Remarkably, the emergent dy-
namics is generally nonlinear and depends on both the initial
effective state and the probability distribution that defines the
coarse-graining map.

Additionally, we have proven that such dynamics defines
nonlinear completely positive and trace-preserving maps. We
believe that this is a beneficial trait given that complete pos-
itivity implies positivity, and classical stochastic maps are
positive [40]. Moreover, in the absence of quantum correla-
tions, complete positivity is reduced to positivity [48]. This
ensures consistency if we consider this framework to investi-
gate the quantum-to-classical transition.

We studied several systems to test the framework, ranging
from quantum gates to spin systems. They show explicitly the
dependence on the distribution of the coarse-graining map and
on the initial effective states. However, in the case of the Ising
spin chain, its symmetries conceal the effective dynamics
from the exact values of the distribution, except that they must
be greater than zero. It is worth noting that effective dynamics
is not always nonlinear, as shown in Sec. V B. Interestingly,
this example is nonlinear and non-Markovian; thus, closed
(and trivially Markovian) microscopic dynamics leads to non-
Markovianity.

The proposed framework has both fundamental and prac-
tical applications. On the fundamental side, it contributes to
understanding how effective nonlinearity can emerge from the
combination of linear Schrödinger dynamics and addressing
errors. This perspective may offer insights into the quantum-
to-classical transition at the level of dynamical evolution.
However, further investigations are needed to explore this con-
nection in greater depth. On the practical side, when analyzing
the dynamics of quantum many-body systems, such as spin
lattices [49] or IBM quantum processors with various hard-
ware geometries [50], the framework provides a principled
basis for identifying and quantifying a source of decoherence.
Notably, in systems with many particles, the cumulative effect
of addressing errors can become significant even when indi-
vidual error probabilities remain small, due to the exponential
sensitivity [20].

Finally, several questions arise from this work. For exam-
ple, under what conditions does the emergent nonlinearity
depend only on the distribution of the coarse graining?
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Inspired by the Ising spin chain, is it possible to find nonlinear
dynamics that is independent of the initial state?
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APPENDIX A: FUZZY OPERATORS

In this Appendix we show the relation between the
expected values of a tomographically complete set of observ-
ables on the effective Hilbert space {ςα}α and the expected
values of what we call fuzzy operators. Recalling that the
effective and the microscopic states are related through ρeff =
C(�), we can write

tr(ςαρeff ) = tr[ςαC(�)]

= tr

[
ςαtr1

(
n∑

k=1

pkP1,k�P1,k

)]

= tr

(
ςα

1

n∑
k=1

pkP1,k�P1,k

)
(A1)

=
n∑

k=1

pktr
(
ςα

1 P1,k�P1,k
)

(A2)

=
n∑

k=1

pktr
(
P1,kς

α
1 P1,k�

)
(A3)

= tr

[(
n∑

k=1

pkP1,kς
α
1 P1,k

)
�

]
(A4)

= tr

[(
n∑

k=1

pkς
α
k

)
�

]
, (A5)

where we have used the fact that swaps Pj,k are Hermitian
and the cyclic property of the trace. Additionally, ςα

k is the
observable ςα applied to the kth particle. Finally, we can
identify the operators Gα as defined in (4) where the following
holds:

tr(ςαρeff ) = tr(Gα�). (A6)

APPENDIX B: ELLIPTIC CNOT PATH

Here we show that the interaction term of the CNOT Hamil-
tonian, σ zσ x, results in an elliptical path for the Bloch vector
of the effective state. First, it is easy to show [45] that if we
assume that the initial microscopic state is a product state, then

the reduced Bloch vectors evolve according to

rx
1 (t ) = rx

1 (0) cos(t ) + ry
1(0)rx

2 (0) sin(t ),

ry
1(t ) = ry

1(0) cos(t ) − rx
1 (0)rx

2 (0) sin(t ),

rz
1(t ) = rz

1(0) (B1)

and

rx
2 (t ) = rx

2 (0),

ry
2(t ) = ry

2(0) cos(t ) − rz
1(0)rz

2(0) sin(t ),

rz
2(t ) = rz

2(0) cos(t ) + rz
1(0)ry

2(0) sin(t ), (B2)

which correspond to ellipses confined to the x-y and y-z
planes. The Bloch vector of the effective state is of course
the sum of the Bloch vectors of the two qubits, and thus the
effective Bloch vector evolves according to

�reff = p1�r1 + p2�r2. (B3)

As it turns out, this is also an ellipse, as it can be written as

�reff = �u sin(t ) + �v cos(t ) + �c. (B4)

Here

�u =

⎡
⎢⎣

−b1 p1 sin(θ1)

p1[a1 sin(θ1) + b1 cos(θ1)]

p2[a2 sin(θ2) + b2 cos(θ2)]

⎤
⎥⎦, (B5)

�c = [p2x2(0) 0 p1z1(0)]
T

, and

�v =

⎡
⎢⎣

a1 p1 cos(θ1)

p2[a2 cos(θ2) − b2 sin(θ2)]

0

⎤
⎥⎦. (B6)

The parameters a j , b j , and θ j correspond to the ellipse pa-
rameters of the path followed by each reduced system and are
related to their initial Bloch vectors through

a1 cos(θ1) = rx
1 (0), a1 sin(θ1) = −ry

1(0),

b1 cos(θ1) = −rx
1 (0)rx

2 (0), b1 sin(θ1) = ry
1(0)rx

2 (0)

and

a2 cos(θ2) = ry
2(0), a2 sin(θ2) = −rz

2(0),

b2 cos(θ2) = rz
1(0)ry

2(0), b2 sin(θ2) = −rz
1(0)rz

2(0).

APPENDIX C: ISING MODEL
WITHOUT MAGNETIC FIELD

As mentioned in the main text, to compute the coarse-
grained state of the spin chain after the unitary evolution of the
microscopic description with g/J = 0, it is enough to compute
the reduced density matrix for any spin. To do it, first observe
that due to the translation symmetry and the specific form of
the initial state |ψ〉⊗N , the reduced evolution for each spin
is identical. The density matrix of the initial pure state of the
spin tagged with N − 1, |ψ〉 = cos(θ/2)|0〉 + eiφ sin(θ/2)|1〉,
in the computational basis is

ρN−1(0) =
(

cos2
(

θ
2

)
1
2 e−iφ sin(θ )

1
2 eiφ sin(θ ) sin2

(
θ
2

)
)

,

032204-11
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and the total density matrix of the microscopic description,
also in the computational basis, is

(|ψ〉〈ψ |)⊗N =
∑
�k,�l

CN
k CN

l ei(φ+π/2)(l−k)ck+l
θ s2N−k−l

θ |�k〉〈�l |,

(C1)

with CN
k and CN

l the binomial coefficients where k and l are
the numbers of 0’s in �k and �l , respectively. We also use the
abbreviations cθ := cos(θ/2) and sθ := sin(θ/2). To derive its
evolution it is enough to compute the components [ρN−1(t )]00

and [ρN−1(t )]01. Now observe the following: When tracing out
all spins except N − 1, only operators with the form |0�i〉〈0�i|
contribute to |0〉〈0|, where �i is a vector indicating the rest of
the 0’s and 1’s of the computational basis. Since |0�i〉 is an
eigenstate of the Hamiltonian, the component [ρN−1(t )]00 =
[ρN−1(0)]00 remains invariant.

For [ρN−1(t )]01 only operators with the form |0�i〉〈1�i| con-
tribute to the partial trace. Thus, let us investigate their
evolution. Observe that both |0�i〉 and |1�i〉 are eigenvectors of
the evolution operator of the spin chain. Therefore, assume
that

U (t )|0�i〉 = eitE0�i |0�i〉,
where E0�i is the eigenenergy of |0�i〉. Now we want to find
the relative phase with |1�i〉. To do this it is enough to observe

what happens with the nearest neighbors of N − 1 (spins 0
and N − 2). So we need to investigate the changes in just four
configurations: 000. Starting with 000, where the spin at the
center is N − 1 and others are its neighbors, changing it to
010 “removes” two +J terms in the eigenenergy expression
of state |00�i′0〉 in favor of two −J terms; thus

U (t )|10�i′0〉 = eit (E0�i−4J )|10�i′0〉,
where the leftmost spin is the one tagged with N − 1 and the
other spins indicated explicitly are its neighbors. The vector
�i′ contains the rest of the spins in the computational basis.
Putting both kets together we have

U (t )|00�i′0〉〈10�i′0|U (−t ) = eit4J |00�i′0〉〈10�i′0|.
To compute how operators |00�i′〉〈10�i′0| contribute to the par-
tial trace, observe that they appear in the initial density matrix
weighted with

e−iφ cos5

(
θ

2

)
sin

(
θ

2

)
cos2k

(
θ

2

)
sin2(N−3−k)

(
θ

2

)
,

where k is the number of 0s in �i′ [see Eq. (C1)]. More-
over, after tracing out all spins except the one tagged with
N − 1, there are exactly CN−3

k = (N − 3)!/k!(N − 3 − k)!
such factors for each k. Therefore, the total contribution to
the operator |0〉〈1| from the family of operators with the form
|00�i′0〉〈10�i′0| is

e−iφ cos5

(
θ

2

)
sin

(
θ

2

) N−3∑
k=0

CN−3
k cos2k

(
θ

2

)
sin2(N−3−k)

(
θ

2

)
= e−iφ cos5

(
θ

2

)
sin

(
θ

2

)[
cos2

(
θ

2

)
+ sin2

(
θ

2

)]N−3

= e−iφ cos5

(
θ

2

)
sin

(
θ

2

)
. (C2)

This result, together with the rest of the cases, is summarized
in Table I. Adding up all contributions to the operator |0〉〈0|1,
we have (using the notation of Table I)

[ρN−1(t )]01 = 2
(
eit4Jc5

θ + 2c3
θ s2

θ + e−it4Jcθ s4
θ

)e−iφsθ

2

= γ (θ, t )[ρN−1(0)]01, (C3)

where we have identified e−iφsθ /2 = [ρN−1(0)]01. The factor
γ (θ, t ) can be further simplified [see Eq. (47)]. Notice that the
result is independent of N .

APPENDIX D: NEGLIGIBILITY OF TERMS
IN THE POWER SERIES OF EFFECTIVE

ALL-TO-ALL INTERACTION

In Sec. IV, chains evolving due to a nonuniform external
magnetic field in the z direction with an all-to-all Ising in-
teraction parallel to the field were considered. By iteratively
integrating the Liouville–von Neumann equation, a Dyson
series, given by Eq. (38), was obtained. In this series, terms
proportional to C{[Hint, �max(0)]} arise, which are discarded.
In this Appendix we show that they are in fact negligible.

By virtue of Eq. (9), we know that �max(0) is of the form⊗
ρk and so

C{[Hint, �max(0)]} =
N∑

k=1

pk[ρk, σ
z]
∏
j �=k

tr(ρkσ
z )

=
N∏

j=1

tr(ρ jσ
z )

N∑
k=1

pk

tr(ρkσ z )
[ρk, σ

z],

(D1)

TABLE I. Summary of phases gained by each operator type
(parametrized by�i′) during microscopic evolution; the (N − 1)th spin
is in bold. The contribution is the sum of all factors that remain
once all operators of each family are partially traced (see the main
text for details). We use the abbreviations cθ := cos(θ/2) and sθ :=
sin(θ/2).

Operator family Contribution Phase

|00�i′0〉〈10�i′0| e−iφc5
θ sθ eit4J

|00�i′1〉〈10�i′1| e−iφc3
θ s3

θ 1

|01�i′0〉〈11�i′0| e−iφc3
θ s3

θ 1

|01�i′1〉〈11�i′1| e−iφcθ s5
θ e−it4J
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meaning that

C{[Hint, �max(0)]} ∝
N∏

j=1

tr(ρ jσ
z ). (D2)

The product on the right-hand side of Eq. (D2) is a product
of the z components of each subsystem of �max(0), which we
know to be

tr(ρ jσ
z ) = rz

eff

reff
tanh(λp j ), (D3)

where rz
eff/reff < 1. Now, as N grows, tanh(λp j ) ≈ λp j , and

if we take pj of O(1/N ), then the product

N∏
j=1

tr(ρ jσ
z ) = O

(
1

NN

)
, (D4)

which implies that

C{[Hint, �max(0)]} = O

(
1

NN

)
, (D5)

which decays exponentially as N grows. We conclude that
once the coarse-graining map is applied, the odd terms in (39)
can be approximated by 0.
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