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Abstract
In this report, we present a framework for implementing an arbitrary n-outcome
generalized quantum measurement (POVM) on an m-qubit register as a sequence
of two-outcome measurements requiring only single ancillary qubit. Our procedure
offers a particular construction for the two-outcome partial measurements which can
be composed into a full implementation of the measurement on any gate architec-
ture. This implementation in general requires classical feedback; we present specific
cases when this is not the case. We apply this framework on the unambiguous state
discrimination and analyze possible strategies. In the simplest case, it gives the same
construction as is known, if we opt for performing conclusiveness measurement first.
However, it also offers possibility of performing measurement for one of the state
outcomes first, leaving conclusiveness measurement for later. This shows flexibility
of presented framework and opens possibilities for further optimization. We present
discussion also on biased qubit case as well as general case of unambiguous quantum
state discrimination in higher dimension.
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1 Introduction

Measurements are one of the crucial elements of quantum theory. Compared to the
usual notions of observables as self-adjoint operators, or of von Neumann measure-
ments, there exists a more general description of measurements, the so-called positive
operator-valued measures (POVMs). POVMs are defined by a set of positive opera-
tors summing up to the identity operator [1]. Being more general, POVMs outperform
projective measurements for many tasks in quantum information theory, including
quantum tomography [2], unambiguous discrimination of quantum states [3], state
estimation [4], quantum key distribution [5–7], information acquisition from a quan-
tum source [8], Bell inequalities [9–11] or device-independent quantum information
protocols [12, 13].

Current quantum computation era, dubbed as Noisy intermediate-scale quantum
(NISQ) by John Preskill [14], is characterized by devices which still provide limited
resources. Firstly, their size is limited only to a small number of qubits. Secondly, the
number of computation steps (circuit depth) and their precision is still very limited by
the decoherence effects in current technology, making the efficient usable number of
qubits much smaller.

Final restraint is the limitation imposedon implementable quantummeasurements—
current devices are tuned to perform only projective measurements in the compu-
tational basis. While projective measurements are the ideal result, in reality, the
measurements are rather noisy as well. It could be noted that on the lowest level
of physical qubits one can possibly tune up the measurements to perform an arbitrary
measurement; in this paper, we are not addressing this topic.

Our aim is to provide a technique to implement POVM measurements with stated
limited resources using gate formalism with focus mostly on the circuit depth/width
trade-off. In addition, we do not concentrate on the noisy measurements [15, 16], the
implementation is analyzed in the idealized scenario of perfect implementation and
shows fundamental possibility of such realization and provides basic building blocks
to do so.

Suppose we want to perform an n-outcome (POVM) measurement in a d-
dimensional Hilbert space, A = {A j }n−1

j=0. By a naive interpretation of Naimark
theorem [1], one needs an ancillary Hilbert space of dimension up to dn. This is
a single-step measurement procedure, where the measurement on the whole dn-
dimensional space at some point provides complete outcome information; this,
however, requires log2 dn qubits and the decomposition into basic gates will increase
the depth of the circuit considerably. So far the best approach needs an additional
Hilbert space of the same dimension as is the dimension of the original Hilbert space
irrespective of the number of outcomes of the measurement at question [17].

On the other end lies the result of Ref. [18], where the spatial resources (system
dimension) are exchanged for the decreased success probability. In the paper, the
whole measurement is performed on the original d-dimensional Hilbert space, but
it is successful only with probability 1/d. The lowered success rate is in general
inevitable.

On one extreme, simple dilation may need more resources than available, on the
other extreme, measurements limited just to the original Hilbert space decrease proba-
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Fig. 1 An example of a coarse-graining illustrating possible implementation of a POVM in a sequential
way utilizing two-outcomemeasurements. Imaginemeasurement A = {A j } j∈[6] with six outcomes labeled
a– f . Measurement B = {B0, B1} is a coarse-graining of A having two outcomes, one being a collective
outcome for the labels a and b of the measurement A and the other one being a collective outcome for the
labels c– f of the measurement A. The idea of the paper is to use such two-outcome coarse-grainings in a
sequential way to perform the measurement A. In this case, if the measurement B gives the label a–b, it is
followed by the measurement C′ giving a definitive answer a or b. If, however, the B-measurement gives the
label c– f , it is followed first by the measurement C′′ and based on its outcome either D′ or D′′ is performed
and provides one of the definitive outcomes of the measurement A

bility of success and one does not have direct access to the measurement A. In this case
one can only reconstruct statistics by post-selecting obtained data, but per-shot relation
of the outcomes to the measurement A cannot be interpreted directly. We would like to
explore possibilities how to retain reasonable memory requirements (number of addi-
tional qubits), while not decreasing success probability. We also want to explore only
technical possibilities and the paper will not discuss philosophy of what constitutes
direct measurement of a POVM.

Inspired by [19], we will concentrate on the next simplest model to the no-ancilla
approach. We will use only a single ancillary qubit to provide us with a possibility of
performing simple (two-outcome) measurements. We shall explore this option from a
point of view determining practical ways of performing complex measurements as a
sequence of simple ones as depicted in Fig. 1. A similar approach using single ancilla
was presented in [20] with the difference that our approach does not require post-
selection. The price to pay in our case is a setup requiring deeper circuits and longer
coherence times.

As noted, our approach is not entirely new and partial results can be found in some
other works, most importantly [19], where the foundation for the sequential POVM
implementation has been laid down. Other results contain some steps for construc-
tions but they often lack generality. Quite often they are tailored for specific qubit
implementations—we present comparison on different approaches in a designated
Sect. 2.4. In this paper, we provide a general gate implementation procedure for any
d-dimensional qubit-based system including the description of all steps of the process
and all building blocks in one place. One can also view our results as partially fol-
lowing from more general approaches of single-qubit ancilla driven computation [21,
22].
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1.1 Generalizedmeasurements

Generalized measurements, or Positive operator-valued measures (POVMs), are a
general way of describing measurements in quantum theory. In the finite-outcome
case we are about to study, an n-outcome POVM A is represented by a set of operators
A = {A j } j∈[n], where [n] = {0, 1, . . . , n−1}. Operator A j corresponds to the outcome
j ; having state ρ on which we perform measurement A, outcome j is obtained with
probability p(A j |ρ) that is givenbyBorn formula, p(A j |ρ) = tr

[
A jρ

]
. This demands

that the operator A j is positive semi-definite, A j ≥ 0; these operators are called effects.
We also require that the probabilities sum up to one,

1 =
∑

j∈[n]
p(A j |ρ) =

∑

j∈[n]
tr

[
A jρ

] = tr

⎡

⎣ρ
∑

j∈[n]
A j

⎤

⎦ .

As this has to hold for all states ρ, it follows that the sum of the POVM effects equals
identity,

∑

j∈[n]
A j = 1.

Note, that von Neumann (projective) measurements are a special case of POVMs, as
any projective measurement is described by a set of particular projections, which are
also effects.

For the purposes of this paper, we also define the notion of coarse-graining as
exemplified in Fig. 1. Let us have a partition P = {Pk}k∈[w] (for some number of
partitions w) of the outcomes of the measurement A = {A j } j∈[n], namely Pk ⊆ [n]
such that ∪k Pk = [n] and Pj ∩ Pk = ∅ for all j 	= k. A coarse-graining is such
a measurement B = {Bk}k that composes outcomes according to given partitioning
P , Bk = ∑

j∈Pk A j . Later in this work we will restrict ourselves only to dichotomic
coarse-grainings where there are only two partitions of the measurement.

We will also use the term fine-graining, which is an opposite to coarse-graining,
i.e., it corresponds to splitting of effects Bk to sub-effects, providing a finer measure-
ment. For example, having a measurement A = {A0, A1, A2, A3} a coarse graining
can be a measurement B = {B0, B1}, where B0 = A0 + A1 + A3 and B1 = A2.
Measurement A is then a fine-graining of B.

We also note that occasionally we will discern between an outcome and its label—
while the effects of a POVM are in this paper usually indexed by the elements of the
set [n], in general they can have assigned different labels (as can be seen in Fig. 1
or Fig. 2). This is in particular useful in cases when we need a more descriptive
information about the outcome, as, e.g., in the case of collective outcomes. It can be
useful also in the case of binary (dichotomic, or two-outcome) measurements that we
use, when the particular effects are indexed by the measurement outcome value from
the computational basis (either 0 or 1), but the labels provide interpretation of given
outcome. This distinction will not always be followed in this paper and sometimes the
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Fig. 2 Examples of possible measurement procedures. Figure a depicts an outcome-decreasing procedure
representing an overall measurement A from Fig. 1, where every measurement eliminates one outcome. In
this case measurement eliminating label x is denoted by Bx . Figure b shows a binary-search procedure of
the same measurement A in which the number of possible outcomes is (roughly) halved in every step. Dark
regions correspond to measured effects and circled outputs represent labels of given measurement

labels will be the same as the outcomes. It should, however, be clear from the context
what form is meant by respective labeling or indexing.

1.2 Naimark dilation theorem

In this subsection, we present a mathematical model of performing a POVMmeasure-
ment by extending the given Hilbert space to a higher dimensional Hilbert space and
subsequently performing von Neumann measurements on the larger space to put our
result better into perspective.

Let {Fi }i∈[n] be a POVM acting on Hilbert spaceHA of dimension dA. Then, there
exists a projectivemeasurement {Pi }i∈[n] acting on theHilbert spaceHA′ of dimension
dA′ and an isometry S : HA −→ HA′ such that for all i

Fi = S†Pi S. (1)

A naive (and inefficient) way to construct such projective measurement and isometry
is to let HA′ = HA ⊗ HB , Pi = IA ⊗ |i〉B〈i |, and

S =
∑

i∈[n]

√
Fi A ⊗ |i〉B . (2)

This construction, however, requires a system of large dimension, and dA′ = ndA.
This approach to POVM can be turned into physical implementation by extending the
isometry S to a unitary operation U that fulfills

S = U (IA ⊗ |0〉B). (3)
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A more dimension-efficient approach was designed by Peres [1], where the con-
struction requires dimension

dA′ =
∑

i∈[n]
rank Fi .

In [17], the authors provide another construction of dilation requiring an ancillary
system of the same dimension as the original system irrespective of the number of
outcomes.

In this work, we will similarly extend the studied system but only by a qubit system.
This dilation to a qubit, however, limits possibilities for our intended measurements.
Namely, we cannot expect to be able to perform a measurement with more than two
outcomes (on the ancillary qubit system). This, in turn, defines a way, how we will
approach the problem of measuring more outcomes—we will look at the possibility
of splitting the measurements into a sequence of two-outcome measurements.

Note that particularities of used device may play role in the size of the required
ancilla. While we discussed the necessity of one ancillary qubit, this is only in the case
when it can be dynamically reset. If this is not the case, one will need single-qubit
ancilla for each measurement in the sequence.

1.3 Measurements with state changes

POVMs describe measurements only from the perspective of outcomes and their prob-
abilities. They do not, however, describe what happens to the measured state. As in
the sequential implementation, we want to reuse the system for fine-graining, we need
to be able to describe also measurements with a state change.

In the case of von Neumannmeasurements, the change to the state ρ when outcome
j corresponding to projector Pj is measured, is given as ρ̃ j = PjρPj . The operator
ρ̃ j is not normalized, and its normalization provides both the outcome state

ρ j = PjρPj

tr
[
Pjρ

]

and the probability of getting this outcome, p(Pj |ρ) = tr
[
Pjρ

]
.

For a general POVM, we will describe these measurement-induced state changes
as instruments. An instrument I, corresponding to the measurement A is a set of
completely positive trace non-increasing maps I = {I j } j such that

tr
[I j (ρ)

] = tr
[
A jρ

]
(4)

which has to hold for all states ρ. The positivity of A j translates to the requirement
that I j is completely positive, while the summation condition for A translates to the
requirement that the sum of I j ’s is a channel (completely positive trace preserving
map)which implies the trace non-increasing property on the particular I j ’s. As before,
operators ρ̃ j = I j (ρ), representing what happens to state ρ when outcome j is
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observed, are not normalized, with probability p( j |ρ) of obtaining the outcome being
the normalization factor, i.e., the outcome state is given as

ρ j = 1

p(A j |ρ)
I j (ρ) = I j (ρ)

tr
[I j (ρ)

] = I j (ρ)

tr
[
A jρ

] .

We will use measurement as the name for both POVMs and instruments; however, it
should be clear which one is used.

An important thing to note is that while for von Neumann measurements the pre-
sented state change is unique, in the general case of POVMs, the choice is not unique.
Different choices can affect the state in different ways and, in particular, can lead to
various degrees of state disturbances. For example, the instrument

I j (ρ) = tr
[
A jρ

]
ω

for some state ω destroys the original state ρ completely. It is therefore natural to try
to find the least disturbing choices, especially, when the resulting state is to be used
later.

In [23, Prop. 5.17], it was shown that the so-called Lüders measurements (or instru-
ments), given by the prescription

I j (ρ) ≡ L j (ρ) = A1/2
j ρA1/2

j , (5)

are the least disturbing in the following sense: any measurement can be realized as a
Lüders measurement followed by some outcome-dependent state change. This makes
them a straightforward choice in our endeavor.

Note that there is a number of possible additional criteria that may give preference
to other than Lüders instruments, such as hardware specifics, noise considerations, or
preferences following from a particular measurement goal. This is, however, beyond
the scope of this paper.

2 Measuring with limited resources

Aswe noted before, current quantum devices provide us with highly limited resources.
If a desired measurement is more complicated, these resources might not even allow
us to implement it. A straightforward idea is to split the measurement into a sequence
of binary measurements as depicted in Fig. 1. While in the classical world such action
bears no problems, in the quantum case we know, that every measurement disturbs
measured state. A question arises, whether it is possible to devise a general procedure
that would allow us to implement the measurement in such a sequential way. The
question has two parts, (i) whether on general level such splitting is theoretically
possible, and (ii) if so, whether this procedure is implementable.

The answer to the first question has been to large extent provided in [19]. In this
paper, we present a slightly different way of obtaining the result, and later, we apply
this procedure to study unambiguous state discrimination. We start by showing that
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the Lüders measurements allow for fine-graining of results, answering point (i). Then
we show how to implement qubit-assisted measurements, what in turn allows us to
implement this procedure on current quantum devices based on qubit registers. This
shall answer point (ii).

2.1 POVM as a sequence of binarymeasurements

Let us consider a measurement A and its coarse-graining B. We will consider only a
two-outcome coarse-graining as (i)wewant to study the possibilities of single ancillary
qubit that distinguishes only two outcomes, and (ii) the analysis of the procedure to
higher number of outcomes is straightforward. Let us haveB = {B,1−B} and Q being
the subset of outcome indices of measurement A that defines B, i.e., B = ∑

j∈Q A j .
Let us now take the casewhen the effect B wasmeasured on the input state ρ and the

state change is described by Lüders measurement from Eq. (5). The (unnormalized)
state now is ρ̃ = B1/2ρB1/2. If we now want to fine-grain the results to obtain
information about outcomes from Q, we cannot perform measurement A on the state
ρ̃ any more—we need to design a new measurement adjusted for the fact that the
previous measurement B has already been done, particular outcome corresponding to
the effect B has been obtained, and the state has changed.

In fact, what we want is to find measurement A′ = {A′
j } j∈Q such that the following

holds
tr

[
ρ̃A′

j

]
= tr

[
ρA j

]
. (6)

Expanding the left hand side we see

tr
[
ρ̃A′

j

]
= tr

[
B1/2ρB1/2A′

j

]
= tr

[
ρB1/2A′

j B
1/2

]
.

Since this has to be equal to tr
[
ρA j

]
for all ρ, we obtain condition for A′

j stating that

A j = B1/2A′
j B

1/2. (7)

Let us take the Moore-Penrose pseudoinverse of B1/2, which we denote simply as
B−1/2. We see that A′

j given by

A′
j = B−1/2A j B

−1/2 (8)

satisfies Eq. (7). Since B ≥ 0, we also have A′
j ≥ 0. It remains to verify the normal-

ization,

∑

j∈Q
A′
j =

∑

j∈Q
B−1/2A j B

−1/2 = B−1/2BB−1/2 = 1B,

where 1B is the identity (projection) on the support of B. We need not be concerned
with the rest of the Hilbert space, as for the operator supports we have supp A j ⊆
supp B and also supp ρ̃ ⊆ supp B. This means that while the transformed state loses
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information outside the supp B, the subsequent measurements anyway act only within
supp B. So we see that Eq. (8) is sufficient to define the subsequent measurement that
fulfills the condition from Eq. (6). As for the particular implementation, 1−1B can be
defined as an additional outcome in order for A′ to be a POVM on the whole Hilbert
space, but the probability of obtaining this outcome will be zero. Alternatively, one
can supplement the effects of A′ by parts from the orthocomplement of B so that they
sum up to identity. This will not change the probabilities, as ρ̃ does not have support
in this part of the space.

We can consider a number of possible strategies how to partition a particular mea-
surement into a measurement tree as exemplified in Fig. 1. The role in their usefulness
might have hardware specifics, noise considerations, or preferences following from
a particular measurement goal. Disregarding these considerations, two partitioning
strategies stand out.
Outcome-decreasing procedure: In every step, we try to rule out one of the labels.
Having a measurement A = {A j } j∈[n], in step j we performmeasurement B j deciding
between the outcome j corresponding to A j and outcomes corresponding to the effects
A j+1, . . . , An . If outcome j is obtained, the measurement process can be terminated,
since a definitive answer is obtained. This effectively means that conditioning on the
previous outcomes is not required—if definitive answer is obtained, the measurement
procedure can continue as planned, but we can disregard the results obtained after the
definitive answer. This implies that static circuits are enough for the implementation.
The drawback of this procedure is large resulting circuit depth, as one needs to perform
n − 1 consecutive steps of the measurement process. The procedure is depicted in
Fig. 2a.
Binary-search procedure: In this procedure we split the outcomes of current measure-
ment in (roughly) half and based on given outcome we choose the next measurement
to be done. This procedure is depicted in Fig. 2b and was presented already in [19, 24].
Compared to the outcome-decreasing procedure, it is more efficient in circuit depth,
as the number of steps one needs to make is roughly log2 n. The price to pay is that
one needs to be able to condition measurements to be done on the previous outcomes.
This option is becoming available in current quantum devices, but it still might have
unreasonable time demands or low quality.
There are, naturally, many other options how to approach the coarse-graining pro-
cedure. There seem to be only few special cases when the non-adaptive approach is
possible (outcome-decreasing procedure or the implementation of symmetric infor-
mationally complete POVMs as, e.g., in [25]), as in general the procedures need to
be adaptive (requiring dynamic circuits), where the later measurements depend on
previous results.

2.2 Qubit implementation of Lüders measurements

Remaining question now is, whether there is a simple and an efficient realization to
an arbitrary binary measurement. In this part, we shall show that using one ancillary
qubit, we can represent any two-outcome measurement B = {B,1 − B} as a rotation
of the original system to the eigenbasis of B, followed by a controlled unitary with the
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Fig. 3 Coupling scheme for binary measurements. a In general setting the (not necessarily single-qubit)
state ρ is coupled by a unitary U to an ancillary qubit system prepared in the state |0〉, which is measured
in the computational z basis afterward. Given outcome of the measurement is j , the (unnormalized) output
state is ρ̃ j . b The scheme in the case of Lüders measurements can be decomposed into a rotation of ρ to the
eigenbasis of B byUB (and back at the end). The rest of the coupling unitary is a general control operation
of the form V = ∑

k |k〉〈k| ⊗ Vk . When some Vk is identity, it can be excluded from the circuit

ancillary qubit as the target, and finalized by a measurement on the ancillary qubit and
rotation of the system back. We will further assume that the successful measurement
outcome in the B measurement is 1 while the outcome 0 corresponds to the effect
1 − B.

Let us present a detaileddescription.We startwith a general coupling construction as
in Fig. 3a, where the original state (Hilbert spaceH1) is coupled to an ancillary single-
qubit state (Hilbert spaceH2), which ismeasured afterward.Without loss of generality,
we assume that the ancillary qubit is prepared in the state |0〉 and its measurement
is in the computational (z) basis. In fact, this is compatible with the default settings
of most contemporary quantum computers. This construction gives us the following
conditions for U acting on H1 ⊗ H2; for the two outcome cases (producing either
state ρ̃1 or ρ̃0) we have:

B1/2ρB1/2 = 2〈1|U |0〉2ρ 2〈0|U †|1〉2,
(1 − B)1/2ρ(1 − B)1/2 = 2〈0|U |0〉2ρ 2〈0|U †|0〉2,

where we explicitly use indexing marking the original system (1) and the ancillary
qubit (2) where necessary. These two equations are, in particular, implied1 by the
following conditions:

2〈1|U |0〉2 = B1/2 and 2〈0|U |0〉2 = (1 − B)1/2. (9)

For the moment we leave open the question whether for each B it is possible to
construct a unitary U satisfying these conditions.

1 We do not study general conditions as we are satisfied with any solution.
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Since B is an effect, it can be diagonalized (in the computational basis) by a unitary
transformation we denote UB . This unitary diagonalizes at the same time both B1/2

and (1− B)1/2. By emphasizing the diagonal form by the corresponding lower index,
we have

B1/2
diag = UB B

1/2U†
B = UB 2〈1|U |0〉2U†

B = 2〈1|(UB ⊗ 1)U (U†
B ⊗ 1)|0〉2,

(1 − B)
1/2
diag = UB(1 − B)1/2U†

B = UB 2〈0|U |0〉2U†
B = 2〈0|(UB ⊗ 1)U (U†

B ⊗ 1)|0〉2.

Denoting by V = (UB ⊗1)U (U †
B ⊗1), which is unitary if (and only if)U is unitary,

we can write it in the tensor productH2 ⊗H1 (note that we swapped the order of the
Hilbert spaces in the tensor product to achieve a more comprehensible form)

V =
(

(1 − B)
1/2
diag V01

B1/2
diag V11

)

. (10)

where V01 and V11 are unknown submatrices that we aim to complete in such a way
that V is unitary. We will proceed to show that for each measurement B it is possible
to construct such a unitary matrix V . This will also show thatU satisfying conditions
(9) exists.

Denoting columns of V as vk , it is easy to see that for j 	= k in the known part
we have v∗

j vk = 0 as both matrices B1/2
diag and (1 − B)

1/2
diag are diagonal. Denoting the

(real) eigenvalues of B as λk ∈ [0; 1], for the column norm we have

v∗
k vk =

[
(1 − λk)

1/2
]∗

(1 − λk)
1/2 +

(
λ
1/2
k

)∗ (
λ
1/2
k

)
= (1 − λk) + λk = 1.

So we see that the left part of V fulfills the conditions for unitarity. It remains to
find V01 and V11 such that all columns of V are orthonormal. There is freedom in the
choice, but we can choose

V01 = −B1/2
diag and V11 = (1 − B)

1/2
diag.

If we now write the matrix V in the original tensor orderH1 ⊗ H2, it has a block-
diagonal structure which is easily interpreted as a controlled operation of the form

V =
∑

k

|k〉〈k| ⊗ Vk (11)

with 2 × 2 matrices

Vk =
(

(1 − λk)
1/2 −λ

1/2
k

λ
1/2
k (1 − λk)

1/2

)

, (12)

where k ∈ [d]. Note that if rank B = r , then r of these matrices are non-trivial, while
the rest of them equals 12; implementation then requires r controlled operations for
the r non-trivial matrices.
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Fig. 4 The measurement scheme can be simplified even further in the case of a qubit system when the
general controlled operation can be constructed as a composition of V0 on the ancilla followed by a standard

controlled-(V1V
†
0 ) operation

To sum up, the procedure from Fig. 3a can in particular be constructed as in Fig. 3b,
in which we first rotate the original state to the B-eigenbasis, then perform controlled
operations with an ancillary qubit as target, and finally measure the ancillary qubit
and rotate the original system back from the B-eigenbasis. Presented construction is
general and works in any dimension d = 2m of the original system.

In the next part dealing with application to unambiguous state discrimination, we
will consider the simplest case, when the original system is a qubit. In such case, we
can rewrite this controlled operation as

V = |0〉〈0| ⊗ V0 + |1〉〈1| ⊗ V1 = (|0〉〈0| ⊗ 1 + |1〉〈1| ⊗ V1V
†
0 )(1 ⊗ V0), (13)

which can be realized as a composition of a unitary transformation V0 on the ancillary
qubit and a standard qubit controlled-(V1V

†
0 ) operation (see Fig. 4).

2.3 Final overview of the procedure

Previous steps provide a detailed description of the particularities of the implemen-
tation procedure. Now we provide a complete and cohesive view on the procedure to
give a higher-level overview of how it works. The work flow is as follows:

1. Choose measurement A for implementation.
2. Decide on binary-tree coarse-graining of A.
3. Compute corresponding measurements for each partial step.
4. For each partial dichotomicmeasurement B = {B,1−B} compute diagonalization

unitary UB , and U
†
B and the set of coupling unitaries Vk using Eq. (12).

5. Build the circuit stitching constructions from Fig. 3b for particular measurements.

The first two steps are to be chosen based on demands of the application and can
reflect also specific considerations based on the QPU design and its calibration. How
to choose coarse-graining is not the aim of this paper. Steps 3 a 4 are tasks from linear
algebra relying on the ability to perform spectral decomposition of used operators. In
the simplest tasks one can use analytic approach, but in general the decomposition
complexity is of the order O(d3) where d = 2m is the dimension of the m-qubit
Hilbert space. For small problems of the NISQ era this is easily computable.

Practically demanding is the last step which in general requires implementation
with the possibility of evaluation of circuits conditioned on previous outcomes. These
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possibilities are not generally available on current devices, and when implemented,
they are not yet suited for current implementation. Therefore, at present it is necessary
to ease of the demands that this paper sets. We see a few possibilities how to do that:
(i) find use cases where the conditioning is not needed, such as quantum state discrim-
ination, or (ii) use outcome-eliminating coarse-graining that can be evaluated without
conditioning, or (iii) create a set of circuits implementing possible paths. The last point
cannot be recommended as it removes the faithfulness of the measurement (realization
requires post-selection), while maintaining large depths of the circuits. However, we
believe that the progress in the development of QPUs will lead to improvement of
intermediate measurements.

2.4 Comparison to other works

Let us now discuss the relation of our approach to other works. As mentioned in the
introduction, the approach is not entirely new. However, we present the implementa-
tion in its entirety, from the theoretical analysis of the procedure, down to providing
elementary building blocks for the implementation. To better describe how current
paper fits into known results, we provide a list of relevant works in Table 1.

The top part of the table lists works in the direction of sequential POVM implemen-
tation. Our approach is inspired by [19] where a solid theoretical background for the
coarse-grained procedure was given, but without particularities for the implementa-
tion. In addition, the presentation was using binary coarse-graining. Similar approach
was used also in [24], where the authors focused on quantum state discrimination.
Their results are not universal, but rather hard-tailored to the task. In [26] the authors
presented a constructive way for implementing POVMs, but only on a single qubit.
Their realization requires O(log2 n) ancillary qubits.

Some of the ideas for sequential implementation of POVMs is present also in
papers practically utilizing the measurements but as we can see in Table 1 (bottom
part), most of these are limited to one or two qubits. An exception is [27] that works in
any dimension, but is specifically designed for performing so-called informationally
complete POVMs. All these implementations are platform specific and only hint at
general implementation at best.

There are also other POVM implementation techniques that are based on different
paradigms. All these implementations are suitable for POVMs of any dimension and
any number of outcomes. In particular, in [17] one of the results states that a POVM in
a d-dimensional Hilbert space can be performed as a specific Naimark-type dilation
with the ancillary Hilbert space of the same dimension as the original system. This
work also provides a constructive proof that can be adapted for practical implementa-
tion. In references [18, 20] a different approach is used with [20] requiring additional
qubit. Both approaches provide shallow circuits, but the price to pay is the probabilis-
tic nature of the implementation that requires post-selection. This means that these
implementations do not represent desired POVMs faithfully. Finally, in reference [28]
the authors present a construction requiring O(log2 n) ancillary qubits where the mea-
surement is mapped to a problem of a particular state preparation which is measured
on ancillas that provide the measurement outcome.
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Weconclude thatwhile the literature is rather richwith implementations of POVMs,
they are mostly limited in one or another way. Some results are just proof-of-the-
principle, some are limited in the scope. In this paper, we present a complete and
faithful construction for POVMs on any number m of qubits (i.e., the dimension is
d = 2m) and having an arbitrarily (finitely) many outcomes n.

3 Quantum unambiguous state discrimination as a sequential
measurement process

3.1 Quantum unambiguous state discrimination

Quantum state discrimination is a task in which we are provided a state from a set of
states {ρ j } j∈[w] with probabilities {p j } j∈[w] and our task is to determine, which state
was presented to us. Due to the particularities of quantum mechanics, this task is not
as straightforward as in the classical case—in quantum theory one cannot distinguish
non-orthogonal states perfectly. This task is therefore of high importance.

A particular situation of unambiguous state discrimination was introduced in [36,
37]. In this setting we want to distinguish particular states without errors, i.e., if we
are given a definite answer about the state, it needs to be correct. The price to pay for
this requirement is the necessity for an inconclusive outcome. When we obtain this
result, we cannot say anything particular about the presented state.

This particular task has many extensions, but for the sake of exemplifying the
framework from the previous section we will deal with the most basic setting of being
presented with two pure qubit states {|ψ1〉, |ψ2〉} with equal probabilities. Our task is
to determine, which state was given to us.

Let us first denote |ψ⊥
j 〉 as states perpendicular to |ψ j 〉 and Pj , P⊥

j as the corre-
sponding projectors. The unambiguous state discrimination measurement A has three
outcomes 1, 2, and ? (for the inconclusive outcome) with corresponding effects,

A1 = λP⊥
2 , A2 = λP⊥

1 , A? = 1 − A1 − A2.

The choice for effects A1 and A2 is logical, as it tells us that the presented state is not
the other one. Effect A? corresponds to the inconclusive answer ? and λ ∈ [0; 1] is
such a parameter that A? ≥ 0.

In order to analyze this situation, let us parametrize the problem (see also Fig. 5).
In the qubit case we can always pre-process presented states so that they would be
easily described as

|ψ1〉 = cosω|0〉 + sinω|1〉,
|ψ2〉 = cosω|0〉 − sinω|1〉,

with ω ∈ [0;π/4]. The case of ω = 0 corresponds to |ψ1〉 = |ψ2〉, while ω = π/4
describes orthogonal states. We will disregard the pre-processing routine as it is not
relevant for this work.
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Fig. 5 Depiction of an
unambiguous state
discrimination in the Bloch
picture

Within this parametrization we have

|ψ⊥
1 〉 = sinω|0〉 − cosω|1〉,

|ψ⊥
2 〉 = sinω|0〉 + cosω|1〉.

By minimizing the probability for the inconclusive outcome ? we find the optimal
choice of λ to be

λ = 1

2 cos2 ω
.

We can now explicitly express

A1,2 = 1

2

(
tan2 ω ∓ tanω

± tanω 1

)
, A? =

(
1 − tan2 ω 0

0 0

)
.

By construction we see that A1,2 are multiples of projectors and we can also observe
that A? is a multiple of a projector, a measurement in the z direction.

An important quantity for us is the probability of inconclusive result,

p? = p1 p(A?|ρ1) + p2 p(A?|ρ2) = 1

2
tr [A?P1] + 1

2
tr [A?P2] = cos 2ω.

The probability of conclusive result (labeled !) is

p! = 1 − p? = 1 − cos 2ω = 2 sin2 ω.

Before analyzingparticular sequentialmeasurement scenarios, let us set the notation
a bit. In the first case, we will consider first the measurement B = {A?,1− A?}, where
we will denote corresponding outcomes as ? for the inconclusive answer and ! for the
conclusive answer. We shall call this measurement conclusiveness measurement as it
tells us, whether in the subsequent measurement we will obtain a conclusive result
or not. In the second case we will start with measurement B = {A1,1 − A1}, with
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Fig. 6 Unambiguous state discrimination where the conclusive measurement is performed first. The two
situations show probabilities when a the state |ψ1〉 or b the state |ψ2〉 is on input. Denoted probabilities are
conditional, i.e., relating only to the particular measurement

corresponding outcomes 1 and 1′ (representing the result ‘not 1’). We will call this
measurement state 1 measurement (or for brevity just state measurement) that either
tells us whether we were given state |ψ1〉 or whether we should continue with the
measurement with possibility of obtaining result 2.

3.2 Conclusiveness measurement as the first measurement

Let us first look at the symmetric case in which we perform conclusiveness measure-
ment first (see Fig. 6) and then perform the outcome measurement. In this case we
coarse-grain the measurement A = {A1, A2, A?} by B = {A?,1 − A?}. The unitaries
used in the construction of the coupling from Eq. (13) and the basis transformation
UB are determined to be

UB = 1, V1 = 1, V0 =
(

tanω −√
1 − tan2 ω√

1 − tan2 ω tanω

)
.

The pre-measurement state after the coupling transformation is

|ψ ′
1,2〉 = −√

2 sinω|±〉 ⊗ |0〉 + √
cos 2ω|0〉 ⊗ |1〉. (14)

Denoting A! = 1 − A?, the conclusive result ! is obtained with probability
p(A!|ψ1) = p(A!|ψ2) = 2 sin2 ω if we measure the ancillary qubit in the state
|0〉. The (normalized) post-measurement states are |ψ̃1〉 = |+〉 for the initial state
|ψ1〉 and |ψ̃2〉 = |−〉 for the initial state |ψ2〉. These states are orthogonal and, hence,
perfectly distinguishable. Indeed, the measurement that shall be performed based on
Eq. (8) is A′ = {P+, P−} for the corresponding definitive outcomes 1 and 2; operators
P± are projectors into the σx eigenvectors, i.e., states |±〉 and the measurement can
be performed on the system qubit. Altogether we have

p(A1|ψ1) = p(A!|ψ1)p(A
′
1|ψ̃1) = p(A!|ψ1)p(P+|+) = p(A!|ψ1) = 2 sin2 ω,

p(A1|ψ2) = p(A!|ψ2)p(A
′
1|ψ̃2) = p(A!|ψ2)p(P+|−) = 0,

p(A2|ψ1) = p(A!|ψ1)p(A
′
2|ψ̃1) = p(A!|ψ1)p(P−|+) = 0,

p(A2|ψ2) = p(A!|ψ2)p(A
′
2|ψ̃2) = p(A!|ψ2)p(P−|−) = p(A!|ψ2) = 2 sin2 ω.

As for the inconclusive outcome, the measurement on the ancilla measures the state
|1〉 corresponding to this outcome with probability p(A?|ψ1) = p(A?|ψ2) = cos 2ω.
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Fig. 7 Unambiguous state discrimination where the measurement for the outcome 1 is performed first. The
two situations show probabilities when a the state |ψ1〉 or b the state |ψ2〉 is on input. Denoted probabilities
are conditional, i.e., relating only to the particular measurement

The (normalized) post-measurement state is afterward the same for both initial states,
|ψ̃1〉 = |ψ̃2〉 = |0〉, and thus loses all the information about the original state (as noted
above).

This known result was originally presented in [38]. The computation serves as a
formalized way of obtaining the coupling transformation. Comparing the details of
the two results, one finds that A = 2ω and the pre-measurement state from [38] equals
to the state from Eq. (14) up to an unimportant local phase which is due to a slightly
different choice of completing unitary V in Eq. (10).

3.3 State measurement as the first measurement

With the framework presented in the previous section, we are able to choose also
a different measurement as the first one; it does not have to be the conclusiveness
measurement. Let us choose the state 1 measurement (see Fig. 7), i.e., we want to
know whether the presented state |ψ〉 is |ψ1〉. If we are presented the answer 1, we
know that the given state was |ψ1〉; in the opposite case of the answer labeled as 1′
(meaning not 1) we need to perform a second measurement that shall tell us whether
the state was |ψ2〉 or the outcome is inconclusive ?.

In the previous case of conclusivenessmeasurement as the first one to be performed,
we saw that in the first step we either got an inconclusive answer, in which case the
outcome states for both input states were the same, or we got a conclusive answer,
in which case the outcome states for the two input states were orthogonal, and thus
perfectly distinguishable.

What can we expect in this scenario, where we first test whether the first state is on
the input? Let us assume first, that we got the first state on the input; the test shall then
show with probability p(A!|ψ1) that we have the state |ψ1〉 and with complementary
probability 1− p(A!|ψ1) = p(A?|ψ1) we obtain outcome 1′ and we need to perform
the second measurement on the post-measurement state |ψ̃1〉, where answer that we
have the state |ψ2〉 has to have zero probability, p(A′

2|ψ̃1) = 0, and so outcome ? will
always be given.

In the case we are presented with the state |ψ2〉, the first measurement has to
always provide the outcome 1′, since p(A1|ψ2) = 0; the subsequent measurement on
the post-measurement state |ψ̃2〉 shall afterward lead to the conclusive answer 2 with
probability p(A′

2|ψ̃2) = p(A2|ψ2) and with probability p(A′
?|ψ̃2) = p(A?|ψ2) lead

to the inconclusive outcome ?. Let us confirm these expectations.
In this case we coarse-grain the measurement A = {A1, A2, A?} by B = {A1,1 −

A1}. The unitaries used in the construction of the coupling in Eq. (13) and the basis
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transformation UB are determined to be

UB = |0〉〈ψ⊥
2 | + |1〉〈ψ2| =

(
sinω cosω

cosω − sinω

)
,

V0 = 1√
2 cosω

(√
cos 2ω −1
1

√
cos 2ω

)
,

V1 = 1.

The second measurement A′ = {A′,1− A′} is determined based on Eq. (8). Choos-
ing effect A′ to correspond to the outcome 2, and the complementary effect to the
outcome ? we obtain

A′ ≡ A′
2 =

(
P2 + 1√

1 − λ
P⊥
2

)
λP⊥

1

(
P2 + 1√

1 − λ
P⊥
2

)
(15)

First, supposing we are given the state |ψ2〉 on the input, the pre-measurement state
is

|ψ ′
2〉 = |1〉 ⊗ |0〉.

Since we have p(A1|ψ2) = 0, the ancillary qubit measurement will measure the state
|0〉 with probability 1; this state corresponds to the outcome 1′ and we need to follow
with the second measurement A′ on the post-measurement state |ψ̃2〉 = |ψ2〉—this
is the same state as the presented state, as it is the 1-eigenstate of the measurement
effect B = A1. The probability that the effect A′

2 will be measured in the second
measurement, i.e., state 2 will be determined, is directly computed using the Born
rule,

p(A′
2|ψ̃2) = tr

[
P2A

′
2

] = λtr
[
P⊥
1 P2

]
= 2 sin2 ω.

Sincewe always end up doing thismeasurement, initial state |ψ2〉 leads to the definitive
answer 2 with conclusive probability p(A2|ψ2) = 2 sin2 ω and to the inconclusive
answer ? with probability p(A?|ψ2) = 1 − p(A2|ψ2).

Now, suppose the state |ψ1〉 is presented on the input. Particular computations
are more extensive than in the previous case, but still straightforward. The pre-
measurement state is

|ψ ′
1〉 = √

2 sinω|0〉 ⊗ |1〉 + √
cos 2ω

(√
2 sinω|0〉 + √

cos 2ω|1〉
)

⊗ |0〉.

In the case state |1〉 is measured on the ancillary qubit, outcome 1 is assumed and this
happens with probability p(A1|ψ1) = 2 sin2 ω. With probability p(1 − A1|ψ1) =
p(A?|ψ1) = cos 2ω outcome 1′ is provided and we follow with measurement A′. The
post-measurement state is

|ψ̃1〉 = U †
B

(√
2 sinω|0〉 + √

cos 2ω|1〉
)

.
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After some computation we find that the probability measurement A′ yields outcome
2 is p(A′

2|ψ ′
1) = 0 and so the inconclusive outcome ? is always measured.

3.4 Generalization into biased case

In the introduction of the problem, we included a possibility to provide states with
unequal probabilities. Suppose now that state |ψ1〉 is sampled with probability p and
the state |ψ2〉 with probability 1 − p. Analysis of the situation is similar to the one
provided above with the difference that

A1 = λ1P
⊥
2 , A2 = λ2P

⊥
1 , A? = 1 − A1 − A2.

In this case the optimized parameters are λ1 and λ2, both from the interval [0; 1], such
that A? ≥ 0. In the optimization one minimizes the inconclusive result

p? = p1 p(A?|ψ1) + p2 p(A?|ψ2) = ptr [A?P1] + (1 − p)tr [A?P2]

or maximizes the success rate psuc = 1 − p?.
Denoting the threshold value for p as pθ = cos2 2ω/(1+ cos2 2ω), the solution is

split into two cases, either (i) p ≤ pθ or p ≥ 1 − pθ , or (ii) pθ ≤ p ≤ 1 − pθ .
The case (i) is not relevant for this paper, as in this case one of the states is pre-

ferred to such a degree that the most suitable measurement is a projective one for that
state, i.e., one of the λ’s is 0, while the other one is 1. This means that the presented
sequential procedure of implementing POVMs is not needed to implement the optimal
measurement.

In the other case (ii), all the effects of the measurement are non-trivial, with

λ1 = 1

sin2 2ω

(

1 − cos 2ω

√
1 − p

p

)

, λ2 = 1

sin2 2ω

(
1 − cos 2ω

√
p

1 − p

)
,

and A1 and A2 are, again, multiples of projectors. As the optimization procedure for
A? ≥ 0 is such that one of the eigenvalues A? is zero, it implies that A? is a multiple
of a projector as well. Hence, all the effects are always multiples of projectors in this
task. This means that in both implementations either V0 = 1 or V1 = 1 and we can
disregard corresponding controlled operation.

Furthermore, we can look at the follow-up measurement A′. In both cases, conclu-
siveness as well as state measurement schemes, this measurement is projective. The
reasoning has two steps. In the first step we show that the observed effect A′ (which
is either A′

1 or A′
2) is a multiple of a projector. In the second step we show that the

multiplication factor has to be 1, i.e., the measurement is projective.
For the first part, the measured effect A′ is obtained by a general scheme induced

by Eq. (8)

A′ = (1 − A0)
−1/2A(1 − A0)

−1/2,
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Fig. 8 Measurement scheme for the (biased) qubit unambiguous state discrimination. Whichever mea-
surement is chosen on the ancilla, the scheme has the same structure, with the first part performing the
measurement of the coarse graining. Since the follow-up measurement is always projective, it can be per-
formed on the system qubit by some rotation W into the corresponding basis. Note that this setup does not
require classical conditioning inside the quantum circuit, but if the result on the ancilla is for the chosen
definitive outcome, the results on the system qubit are disregarded. Also, the ancilla measurement can be
postponed so that both measurements are performed at the end

where A′ is the effect to be observed in the follow-up measurement, A is the intended
effect (in our case a multiple of an identity, one of the effects A2 or A?), and A0 is
the effect for the definitive outcome from the first measurement (either A? or A1).
In this general notation, we have A0 = λP0 and A = μP where λ and μ are some
multiplicative constants and P and P0 are projectors. We can see that

A′ · A′ = (1 − A0)
−1/2A(1 − A0)

−1A(1 − A0)
−1/2

= (1 − A0)
−1/2κA(1 − A0)

−1/2 = κA′,

where we used that PQP = κ̃P for projector P and some factor κ̃ . We see that
A′ · A′ = κA′ and so A′ is a multiple of a projector.

In the second step we argue, that κ = 1. If this would not be the case, by denoting
A′ = τ R for some τ and projector R we could exchange the measurement A′ for the
projective measurement {R,1−R}. This would allow us to obtain higher probabilities
for the intended effects (either A1 or A2) which would increase the success rate. Since
our measurements are optimal, A′ has to be projective.

This discussion leads us to a simplified measurement scheme, where the final mea-
surement can be performed on the original system without the need of an ancilla.
Altogether, only one ancillary qubit (without intermediate reset) is needed. The situ-
ation is depicted in Fig. 8.

The implementation within the scheme we presented is not expressible in such an
easy manner as in the unbiased case, but from the Fig. 8 we see that it can be used in
a systematic and computationally accessible way to determine particular elements of
the circuit.

3.5 Usefulness of the POVM implementation scheme

In the previous section, we have seen that the scheme for the biased unambiguous
discrimination of qubit states can be implemented in a very simple way requiring
only a single ancillary qubit. The analysis shows that presented scheme can produce
circuit settings in a systematic way based on the preferred choice of the measurement
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on the ancilla. In this case it might not be clear which choice will produce the best
result and the factors affecting the decision are numerous and beyond the scope of
this paper. However, let us provide a more illustrative usefulness of having possibility
of the choice here. We do so be providing yet another generalization of the problem
of unambiguous state discrimination beyond the qubit case. Due to the complexity of
the problem, we shall provide only estimation of resources without delving into the
intricacies of particular computations.

Following the results of [39, 40], unambiguous discrimination is possible only for
linearly independent states and, thus, in dimension d we can distinguish unambigu-
ously only up to d states. Together with the inconclusiveness outcome, we need d + 1
outcomes of the measurement. Translated to qubits, for the implementation of unam-
biguous state discrimination onm qubits, at least one additional qubit is necessary. This
in general is not sufficient, but for our analysis of just a single partial measurement,
we need to consider just one ancillary qubit.

In such case one just needs to decide which outcomemeasurement is to be assigned
to the ancillary qubit. A straightforward observation suggests there is space for
optimization—considering Eq. (11) we see that in the coupling scheme the num-
ber of controlled operations equals to the rank of the observed effect. In the standard
unambiguous state discrimination [39] the outcomes (conclusive) effects are multiples
of projections and, hence, rank-1, while the inconclusive effect A? has, in general, rank
d − 1. In higher dimension this suggests advantage of assigning one of the conclusive
outcomes to the ancilla.

To quantify it, let us restrict to a dimension d = 2m of m ≥ 2 qubits. The problem
of implementing the unambiguous discrimination of d states is split into (i) the part of
coupling the system to the ancilla and performing chosen measurement on the ancilla,
(ii) performing the rest of the measurement, and finally, (iii) the part for interpret-
ing the result—if the ancillary measurement provides definitive answer, keep it and
discard measurement outcomes on the system, and if the measurement on the ancilla
does not provide a definitive answer, deduce correct outcome from the remaining
measurements.

We are especially interested in the point (i). Since our aim is to obtain a definitive
outcome, choosing the inconclusive outcome for the ancilla seems to be less useful as
picking one of the definitive outcomes. For one of the definitive outcomes, which are
multiples of a projection, we need to perform only single multi-controlled operation,
while for the inconclusive outcome, this can be as many as d − 1 multi-controlled
operations. Two-qubit operations in practical computation bring considerable noise
into the computation and the rule of a thumb is to minimize their number. In this case,
using results of [41], the number of CNOTs to decompose anm-qubit multi-controlled
real-valued operation would be 16m − 24.

To reduce the number of CNOTs, it is therefore better to perform definitive mea-
surements on the ancilla. This rough estimate minimizes the number of two-qubit
operations. However, there can be other factors involving the decision for the ancilla-
designated measurement, such as particularities of studied problem, or specific noise
profiles of the quantum device.
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4 Discussion

We have presented amethod of transforming complex general quantummeasurements
into a sequence of simple atomic measurements. Similarly to [19] we have provided
a framework for the analysis, which we used to study quantum unambiguous state
discrimination in its simplest setting on a qubit (analytically for the unbiased case and
in less detail for the biased case). We were able to show that this framework describes
almost exactly the construction of Peres [38] in the casewe perform the conclusiveness
measurement first.

However, the framework allows us to choose any other measurement on the ancilla,
e.g., the measurement whether we are presented the first state. In such case we devised
the measurement procedure. The reason why one might opt for this option might be
following. Quantum measurements, even the simple ones, are from the experimental
point quite demanding. In the current noisy quantum devices this means that during
the measurement we lose a lot of quantum resources (coherence in particular). It might
be therefore beneficial to perform measurements that give us the largest amount of
information or the most useful information as early in the process of measurement as
possible.

Take, for example, a case where we are presented with two states that are close to
orthogonal. In such case performing measurement for conclusiveness will be followed
by state measurement with high probability, but the state presented to this second
measurement will be presented with higher noise due to short coherence times. But
if we will perform the measurement for the first state, we will be presented with a
definite answer with much higher probability and the second measurement will be
less frequently performed. This may lead to a higher overall success rate.

At this point the procedure might not seem very useful, as in this simplest setting
the measurement on the original system can be performed irrespective of the mea-
surement on the qubit system. However, in constructions of measurements with larger
number of outcomes, this flexibility might become important, as the measurements to
be performed will be conditioned on the previous outcomes. The situation becomes
apparent already for n = 4 outcomes, where subsequent measurements depend on the
previous outcome.

This paper, however, does not present results on which choice for the ancillary
measurement is optimal; it offers only a systematic construction based on the choice.
The depth of the circuit may depend, in addition to the choice of the ancillary mea-
surement, also on many other factors, such as the form of subsequent measurement,
the ability to efficiently decompose different parts of implementation circuit, or even
technical parameters of the particular quantum device.

We hope that this procedure can offer us more precise measurement processes on
current quantum devices by offering a flexible and generic approach to implementing
POVMs.
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