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Single-shot labeling of quantum observables
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We identify and study a particular class of distinguishability problems for quantum observables (positive-
operator-valued measures), in which observables with permuted effects are involved, which we call the labeling
problem. Consequently, we identify binary observables, which can be labeled perfectly. In this work, we study
these problems in the single-shot regime.
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I. INTRODUCTION

The lack of understanding of the individual action per-
formed by a measurement apparatus is the essence of most
quantum controversies. Quantum theory provides a way to
describe its probabilistic aspects for all practical purposes. In
particular, when one is interested in predicting the statistics
of observed outcomes, each measurement outcome is fully
determined by a positive operator known as an effect (see, for
example, [1]). An effect itself does not explain the physics or
form of the recorded event, but it captures the probabilities of
its occurrence. In order to describe measurement statistics, we
assign labels and effects for all outcomes. While the effects
associated with the measurement apparatus can be verified
experimentally, the choice of labels cannot be tested by the
measurement apparatus itself.

In this paper we consider the situation when the mathemat-
ical description of effects is known but their connection to the
labels is lost. The issue of outcome labeling we address is the
task of assigning a mathematical description to the unlabeled
outcomes, assuming the effects forming the observable are
known. For example, consider a black box with green and
red diodes. Each time the measurement is accomplished one
of the diodes shines and the outcome is recorded. We know
the measurement apparatus is designed to determine whether
the measured atom is in its excited state or its ground state.
It is not perfect and the associated effects are E = η|e〉〈e|
and G = (1 − η)|e〉〈e| + |g〉〈g|, respectively. The parameter η

quantifies the imperfections in the registration of the excited
state. Now is it possible to identify how the colors and effects
are paired? How many measurement runs are needed? It is
straightforward to realize that measuring the atom prepared
in the ground state can lead only to an outcome described by
the effect G. Therefore, the diode that shines in this situation
is necessarily described by the effect G. The task of outcome
labeling is accomplished and the labels (shining diodes) are
identified with effects.

It turns out that this investigation is a special case of the
discrimination problem whose origin stems from the seminal
work of Helstrom [2], who investigated the discrimination
problem for quantum states. In particular, in its simplest form
we are given a black box device known to be either A or B.
Our task is to design an experiment enabling us to conclude

whether it is A or B in a single run of the experiment. The
conclusions might be of various relevance or significance. One
of the measures is their averaged error probability, known to
justify operationally the choice of trace norm as the measure
of statistical distance between A and B [2]. The outcome
labeling problem of an n-valued measurement aims to dis-
tinguish among n! permutations of different labelings and as
such among n! devices. Unfortunately, very little is known
about decision problems beyond the binary case.

The performance of measurements is crucial for the suc-
cessful development of quantum technologies (see, e.g.,
Ref. [3]). Therefore, the elementary as well as foundational
question of discrimination of quantum measurements has at-
tracted researchers, and various versions and aspects of the
problem have been studied in Refs. [4–9]. In all of them,
either the labeling is assumed to be known or the equivalence
classes ignoring the labelings are considered as descriptions of
unknown (and unlabeled) measurement devices. The question
of assigning unknown labels was not addressed explicitly.
The closest is the work in Ref. [10], where authors analyzed
the minimum-error discrimination of two symmetric, infor-
mationally complete (SIC) positive-operator-valued measures
(POVMs), one of them being an arbitrary but fixed per-
mutation of the other. The question of labeling is about
identification of the permutation. However, in [10] the permu-
tation is fixed; thus, the problem is a binary decision problem
that can be investigated in single-shot settings. However, the
labeling problem for the SIC POVM aims to distinguish
among d2! different permutations (d is the Hilbert space di-
mension of the measured system).

The paper is organized as follows. In Sec. II the general
problem of labeling is formulated. Section III focuses on per-
fect labeling for single-shot settings. Minimum-error labeling
and unambiguous labeling are studied in Secs. IV and V, re-
spectively. Section VI introduces the concept of antilabeling.
We summarize and discuss the main results in Sec. VII.

II. FORMULATION OF the LABELING PROBLEM

A. Mathematical tools

The mutually exclusive outcomes x1, . . . , xn of n-valued
quantum measurements are represented by effects, i.e.,
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FIG. 1. To measure a channel M, we send a test state ρ through
an extended channel and perform a test observable F on the evolved
state. We can identify that the pair of the state and observable con-
stitutes the measurement procedure event and as such determines
a quantum tester T. The reduced subsystem entering the unknown
channel is in the state ξ�, where the transposition is used just to
obtain simpler expressions in the other formulas.

positive operators M1, . . . , Mn, respectively, satisfying the
normalization M1 + · · · + Mn = I . For most of the situations
we can safely say the measurements are a collection of ef-
fects; however, rigorously, the measurements are mappings
assigning effects for particular outcomes. Let us denote by �

the ordered set of outcome labels � := {x1, . . . , xn} and by
E (H) the set of all effects. Then a quantum measurement is
described by an observable, as a normalized POVM M : � →
E (H) with M(x j ) = Mj . Alternatively, we can think of observ-
ables as measure-and-prepare channels M transforming input
states of the measured system � into output states (effectively
probability distributions) of n-dimensional systems

M(ρ) =
∑

xk∈�

Tr(ρMk )|xk〉〈xk|. (1)

Once we have the channel form, the Choi-Jamiołkowski iso-
morphism [11,12] between completely positive maps and
positive operators associates the observable M with a positive
operator

M = (I ⊗ M)[�+] =
∑

k

M�
k ⊗ |xk〉〈xk|, (2)

where �+ is the (unnormalized) maximally entangled
state on H ⊗ H defined by �+ := |ψ+〉〈ψ+| with |ψ+〉 :=∑d

j=1 | j〉 ⊗ | j〉 and |1〉, . . . , |d〉 form an orthonormal basis
of H.

The mathematical framework describing the measurements
of processes was introduced and developed in Refs. [13–15].
The most general single-shot experiment measuring the prop-
erties of quantum processes (channels) is illustrated in Fig. 1.
In particular, the channel under consideration M acts on the
subsystem of a bipartite test state � and subsequently the
output is measured by a bipartite test observable F leading
to outcome α. Suppose the input subsystem of the channel is
associated with the Hilbert space H and its output is associ-
ated with Hilbert space K; thus, the channel M transforms
operators L(H) into L(K). Further, let us denote by Hanc the
Hilbert space associated with the ancillary subsystem. Then
the test state � is a density operator from L(Hanc ⊗ H) and

Fα ∈ L(Hanc ⊗ K) is the effect associated with the outcome α

of the test observable F. The outcome α occurs with probabil-
ity pα = tr[(I ⊗ M)[�]Fα].

For any state � the Choi-Jamiołkowski isomorphism de-
fines a completely positive linear map R� : L(H ⊗ H) →
L(Hanc ⊗ H) such that � = (R� ⊗ I )[�+] (see Ref. [15]).
Using its dual R∗

ρ , we obtain pα = tr((I ⊗ M)(R� ⊗
I )[�+]Fα ) = tr((I ⊗ M)[�+](R∗

� ⊗ I )[Fα]). In the last ex-
pression we may identify the Choi-Jamiołkowski representa-
tion M of the tested channel M and introduce the so-called
process effect Tα = (R∗

� ⊗ I )[Fα] determining the probabil-
ity of outcome α for any channel M. As a result we obtain
the description of the process measurement by the so-called
tester being a collection of positive operators T1, . . . , Tm

[Tα ∈ L(H ⊗ K)] satisfying the normalization T1 + · · · +
Tm = ξ ⊗ I , where ξ = [trK(ρ)]� is the transposition of the
reduced state of the subsystem passing through the unknown
channel M. We recover the Born-like formula pα = tr(MTα )
for the outcome probabilities.

Let us stress that for testing channels of measure-and-
prepare form (2) the tester operators can be assumed, without
loss of generality, to be of the form Tα = ∑

k H(α)
k ⊗ |xk〉〈xk|

[7], where for all k the normalization
∑

α H(α)
k = ξ is satisfied

and all H(α)
k ∈ L(H) are positive operators.

B. Labeling problem

The question of labeling takes place when the information
on the mapping xk 	→ Mk is lost but the collection of effects is
known. If all the effects are different, then for an n-valued
observable there are n! different permutations of how the
outcomes can be paired with the effects. Therefore, the goal
of the labeling problem is to discriminate among n! permu-
tations. Let us fix the order of effects and denote by Mσ the
observable obtained by σ permutation. The result of labeling
is the identification of σ . In what follows we assume that
all the permutations are equally likely, and thus the a priori
information on σ is represented by the probability distribution
π (σ ) = 1/n!.

In the language of measure-and-prepare channels the label-
ing takes the form of discrimination among channels, whose
actions are given by Mσ (A) = ∑

k tr(AMk )|xσ (k)〉〈xσ (k)| =
PσMid (A)P†

σ , where Pσ = ∑
k |xσ (k)〉〈xk| is the permutation

operator and id stands for the identity permutation. Con-
sequently, for the associated Choi operators it holds that
Mσ = (I ⊗ Pσ )Mid(I ⊗ Pσ )†. Let us denote by T1, . . . , Tm

(m = n!) the operators forming the tester used to discriminate
M1, . . . ,Mm, respectively. The performance is characterized
by conditional probabilities p(σ |σ ′) = tr(Mσ Tσ ′ ). Intuitively,
the closer this conditional probability is to δσσ ′ the better,
but there are various ways to quantify the performance. The
most common one is the average error probability perror = 1 −
1
n!

∑
σ p(σ |σ ), where 1

n!

∑
σ p(σ |σ ) is the corresponding av-

erage success probability. Minimizing this function, one finds
minimum-error labeling. Introducing an additional inconclu-
sive outcome Tinconclusive and requiring p(σ |σ ′) = 0 whenever
σ �= σ ′ is known as unambiguous labeling, for which the con-
clusions are error-free, but the labeling fails with probability
pfailure = 1

n! tr(
∑

σ Mσ Tinconclusive ). When perror = pfailure = 0
we speak about perfect labeling.
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III. PERFECT LABELING

Perfect discrimination of two quantum channels M1 and
M2 in a single use corresponds to the scenario when there is
no error in each of the conclusions associated with the dis-
crimination task, that is, the average error pe = μ tr(C1T2) +
(1 − μ)tr(C2T1), where μ characterizes the a priori bias be-
tween the channels. In our case there is no bias and thus
both labelings are equally likely and μ = 1

2 . The condition
itself (independently of μ) translates to the existence of testers
{T1, T2} with normalization ξ ⊗ I satisfying [15,16] the
identity

M1(ξ ⊗ I )M2 = O (3)

for some normalization ξ . Let us recall that this condition
is necessary and sufficient for the single-shot perfect dis-
tinguishability of two quantum channels and replaces the
orthogonality condition �1�2 = O for perfect discrimination
of two quantum states. In this section we evaluate the validity
of this condition for the labeling problem.

A. Binary measurements

Let us start with the labeling of so-called binary observ-
ables characterized by a pair of effects M1 and M2 = I − M1.
There are only two permutations of outcomes determining
observables M12 and M21 associated with the Choi operators

M12 = M�
1 ⊗ |1〉〈1| + M�

2 ⊗ |2〉〈2|, (4)

M21 = M�
1 ⊗ |2〉〈2| + M�

2 ⊗ |1〉〈1|. (5)

Theorem 1. A binary observable associated with effects M1

and M2 (M1 �= M2) can be perfectly labeled in a single shot if
and only if at least one of the effect operators is rank deficient.

Proof. If M1 = M2, then the observable is labeled (in fact,
M1 = M2 = 1/2I , where I is the identity on a d-dimensional
system). If M1 �= M2, the perfect discrimination condition
M12(ξ ⊗ I )M21 = O implies that

M�
1 ξ M�

2 = O. (6)

Suppose both operators M1 and M2 are invertible. Then also
their transpositions are invertible and we may apply inverse
operators to obtain ξ = O, contradicting the assumption that
ξ is a density operator. In other words, no binary observable
with full rank effects can satisfy the perfect discrimination
condition. In contrast, suppose that there exists at least one
state vector |ϕ〉 such that M1|ϕ〉 = 0 or M2|ϕ〉 = 0. Then
M�

1 |ϕ〉〈ϕ|M�
2 = 0 and thus the perfect discrimination condi-

tion holds. �
This result is clear. If the measurement device is used only

once, at most one of the outcomes is recorded. The purity of
successful probe state ξ = |ϕ〉〈ϕ| implies the potential auxil-
iary system is uncorrelated, rendering it irrelevant for labeling.
Consequently, a single click can only reveal some information
about the recorded outcome. This information is “negative” in
the following sense. Recording an outcome implies the effect
is not the one having the vector ϕ in its kernel. For example,
if M1|ϕ〉 = 0, then the recorded outcome is not described
by the effect M1. In the considered binary case this implies

the unrecorded outcome can be associated with M1 and the
recorded one with M2.

B. Nonbinary measurements

We refer to an observable with more than two outcomes as
nonbinary. The negative logic used to label binary observables
cannot be extended to nonbinary ones. Knowing the recorded
outcome is not described by an effect M1 does not in gen-
eral help one identify either the recorded or the unrecorded
outcomes. It is straightforward to see that the recording of a
single outcome of the unlabeled device cannot reveal infor-
mation about all the outcomes. As such, we can formulate the
following theorem.

Theorem 2. Perfect labeling of a nonbinary observable with
effects M1, . . . , Mn (all different, i.e., Mj �= Mk for all j �= k)
requires at least n − 1 uses of the measurement device.

Proof. Using the device once, we record exactly one out-
come that can be the subject of labeling. In general, only
recorded outcomes can be labeled; thus the n-valued observ-
able demands at least n − 1 uses. �

Let us note that by identifying n − 1 outcomes of the con-
sidered observable we obtain a binary observable described
by the effects X1 = M1 and X2 = M2 + · · · + Mn. This bi-
narization is a purely abstract construction, because for the
unlabeled device itself we do not know which outcomes
are identified. However, if it happens that the conditions of
Theorem 1 are met and X2 is rank deficient, then we can label
the outcome of a nonbinary observable associated with M1. In
the second use of the device we may choose a different bina-
rization and potentially label a different outcome. Altogether
there are n different binarizations of this form, but exploiting
n − 1 of them is sufficient to accomplish the goal of perfect
labeling.

Let us stress that the condition that all the effects are differ-
ent is important. The situation might be different if some of the
outcomes are described by the same effects. In what follows
we show an example of nonbinary observable for which all
outcomes can be labeled in a single shot. Consider an ob-
servable with the effects M1 = |ϕ〉〈ϕ| and M2 = M3 = · · · =
Mn = 1

n−1 (I − |ϕ〉〈ϕ|) ≡ M⊥
1 . Using the probe state |ϕ〉, the

recorded outcome is necessarily associated with the effect
M1, but simultaneously the remaining effects are described
by the effect M⊥

1 . One use of the observable is sufficient to
accomplish perfect labeling. It is straightforward to design
similar pathological examples of n-valued observables that
can be perfectly labeled in m uses for all m � n. However, for
generic observables the number of outcomes determines the
number of uses required to completely label all the outcomes.

It also follows that the single-shot setting allows for partial
labeling of the recorded outcome. For example, consider an
unlabeled observable with effects M1, . . . , Mn with m identi-
cal effects, i.e., M1 = M2 = · · · = Mm for m < n (in the case
m = n the outcomes are labeled). Assuming M̃ = M1 + · · · +
Mm = mM1 has eigenvalue one, then there exists a vector state
|ϕ〉 such that M̃|ϕ〉 = |ϕ〉. In other words, if the state |ϕ〉 is
measured, then necessarily the recorded outcome is associated
with effect M1 and the task of partial labeling is accom-
plished. Let us note that using the same state |ϕ〉 also in the
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second use does not guarantee labeling of another unlabeled
outcome.

Proposition 1. An effect E ∈ {M1, . . . , Mn} can be partially
labeled in a single use of the observable if and only if there
are 1 � m � n outcomes j such that Mj = E and the largest
eigenvalue of the effect E equals 1/m.

Proof. Let |ϕ〉 be an eigenvector associated with the
eigenvalue 1/m. Then the probability of observing any of
the outcomes Mj �= E equals 〈ϕ|(∑ j:Mj �=E Mj )|ϕ〉 = 〈ϕ|(I −
mE )|ϕ〉 = 0. In other words, only outcomes associated with E
can be recorded. Therefore, the observed outcome is labeled
to the effect E . �

IV. MINIMUM-ERROR LABELING

In this section we study the limitations of single-shot label-
ing for general observables. More specifically, we quantify the
optimal success probability for labeling given the observable
is binary and used only once, which is encapsulated in the
following theorem.

Theorem 3. The optimal minimum-error probability for
labeling a binary observable associated with the effects
{M1, M2} is given by

pe = 1
2 (1 − ‖M1 − M2‖2). (7)

Proof. Consider a binary observable with effects M1 and
M2. Following Eq. (4), we denote by M12 and M21 the Choi
operators associated with two possible labelings. Let us de-
note by T12 and T21 the elements of the tester associated with
the labelings {M1, M2} and {M2, M1}, respectively, and satis-
fying the normalization condition T12 + T21 = ξ ⊗ I , where
ξ is a density operator. The average error probability reads

pe = 1
2 tr(T12M21) + 1

2 tr(T21M12). (8)

Using the definitions and the tester’s normalization, we obtain

pe = 1
2 tr[T12(M21 − M12) + (ξ ⊗ I )M12]

= 1
2 tr

[
T12

[(
MT

1 − MT
2

) ⊗ (|1〉〈1| − |2〉〈2|)]] + 1
2 .

In the spectral form MT
1 − MT

2 = ∑
x μx|ωx〉〈ωx|, where μx

are real eigenvalues and |ωx〉 are the associated eigenvectors.
It follows that the operator (MT

1 − MT
2 ) ⊗ (|1〉〈1| − |2〉〈2|)

has 2d eigenvalues ±μx (including multiplicities) and the
error probability equals

pe = 1

2
+ 1

2

∑

x

μx〈ωx ⊗ 1|T12|ωx ⊗ 1〉

− 1

2

∑

x

μx〈ωx ⊗ 2|T12|ωx ⊗ 2〉.

In order to minimize the error probability we need to suppress
positive terms and maximize the negative one. The negativity
or positivity of the terms depends solely on the value of μx,
because the operator T12 is positive. We know there is one
positive and one negative term for each nonzero |μx|. We set
T12 to vanish on all positive terms, i.e., T12|ωx ⊗ j〉 = 0 if
(−1)( j−1)μx is positive. Then

pe = 1

2
− 1

2

∑

x

|μx|〈ωx ⊗ jx|T12|ωx ⊗ jx〉,

where jx = 1 if μx < 0 and jx = 2 if μx > 0. Due to normal-
ization T12 � ξ ⊗ I , it follows that 〈ωx ⊗ j|T12|ωx ⊗ j〉 �
〈ωx|ξ |ωx〉. The numbers 〈ωx|ξ |ωx〉 define a probability; thus
the values qx = 〈ωx ⊗ jx|T12|ωx ⊗ jx〉 form a subnormalized
probability distribution. Our goal is to maximize the expres-
sion

∑
x |μx|qx over subnormalized probability distributions.

It turns out that the maximum is achieved when T12 =
|ωx ⊗ jx〉〈ωx ⊗ jx| is associated with the largest eigenvalue
|μx|. More specifically, the minimum-error probability equals

pe = 1
2 (1 − max

x
|μx|) = 1

2 (1 − ‖M1 − M2‖2), (9)

where ‖ · ‖2 is the operator 2-norm defined as ‖X‖2 =
supϕ �=0〈Xϕ|Xϕ〉/〈ϕ|ϕ〉 = λmax, where λmax denotes the
largest singular value of X . �

Because of the normalization M1 + M2 = I , the identity
M1 − M2 = 2M1 − I holds. It follows that the eigenvalues and
eigenvectors of M1, M2, and M1 − M2 are related. Indeed,
all the operators mutually commute, because [M1, M2] = 0;
hence they share the same system of eigenvectors. Let us
denote by λx the eigenvalues of M1 and by κx the eigenvalues
of M2. Then λx + κx = 1 and μx = λx − κx = 2λx − 1. Con-
sequently, the maximal value of |μx| is achieved for either
the maximal or the minimal values of λx. Let us denote by
λmax and λmin the maximal and the minimal eigenvalue of
M1. Let us stress that the minimal eigenvalue of M1 is the
maximal one for M2 and vice versa. It follows that the largest
of the distances of the minimal and the maximal eigenvalue
from 1

2 (the value for which μ = 0) determines the value of
the minimum-error probability. In particular, |μx| = 1 (per-
fect labeling) only if either λmin = 0 or λmax = 1. The binary
observables with all the eigenvalues of M1 close to 1

2 are the
ones for which the minimum error is the largest, and thus the
labeling is least reliable.

The optimal labeling procedure consists of preparation
of the state |ωx〉 being the eigenvector of M1 associated
with the maximal or minimal eigenvalue λx maximizing the
value of |μx|. The effect M1 is recorded with probability
λx = 〈ωx|M1|ωx〉 and the effect M2 with probability κx =
〈ωx|M2|ωx〉. If λx > κx, then we conclude that the recorded
outcome is M1 and the unrecorded one is M2. In this case the
probability κx characterizes the error, and indeed introduc-
ing |μx| = λx − κx into Eq. (9), we obtain pe = [1 − (λx −
κx )]/2 = κx. Similarly, if λx < κx we have |μx| = κx − λx

and pe = λx, and thus the recorded outcome is labeled by
the effect M2 and the unrecorded by M1. In other words, in
the optimal minimum-error labeling procedure we label the
effect with the largest eigenvalue by performing the unlabeled
measurement on the associated eigenvector state |ωx〉.

For nonbinary observables we are met with the same basic
limitation. A single shot can reveal the identity of unrecorded
outcomes only if they are described by an identical effect. In
general, we can talk about error probability for the question
of partial labeling. More specifically, we use the unlabeled
measurement device once and label the recorded outcome
by one of the effects M1, . . . , Mn forming the n-outcome
observable. Suppose Mx ∈ {M1, . . . , Mn} is chosen to be the
label for the recorded outcome. Then pe = ∑

j �=x tr(ωMj ) =
tr(ω

∑
j �=x Mj ) = tr(ω(I − Mx )) = 1 − tr(ωMx ) is the prob-

ability of error for labeling the recorded outcome to Mx.
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It is minimized if tr(ωMx ) is maximal. Finding λmax =
max j ‖Mj‖, where ‖ · ‖ is the operator norm that equals the
largest eigenvalue of Mj , we obtain the minimum-error prob-
ability, which reads pe = 1 − λmax and ω = |ωmax〉〈ωmax|,
where |ωmax〉 is the eigenvector associated with the eigenvalue
λmax. Let us denote by Mmax the effect with eigenvalue λmax.
In the optimal partial labeling procedure the outcome recorded
in the measurement of |ωmax〉 is labeled Mmax.

Example: Biased coin-tossing binary observables

This family is formed by trivial effects M1 = qI and M2 =
(1 − q)I . The formula for minimum-error probability implies
that pe = 1 − λmax, where λmax is the largest eigenvalue of
M1 and M2. Assuming 1

2 � q � 1, we have λmax = q. Inter-
estingly, the minimum error for this trivial observable can
achieve any value including perfect discrimination between
O and I when q = 1. For an unbiased coin-tossing observable
(q = 1

2 ), the minimum error equals 1
2 . Nevertheless, this is not

completely correct. In particular, for the unbiased situation no
verification is needed as both outcomes are described by the
same effect and there is nothing unknown about the labels.
Contrary to the minimum-error formula, but in accordance
with Theorem 1, the labeling in this case is trivially free of
any error.

V. UNAMBIGUOUS LABELING

The discrimination procedure is unambiguous if so-called
no-error conditions are satisfied and an inconclusive result is
allowed. For the case of labeling of binary observables this
means that

tr(M12T21) = tr(M21T21) = 0, (10)

with the normalization T12 + T21 + T? = ξ ⊗ I . The operator
T? is identified with the inconclusive result when no labeling
is made. The performance of unambiguous labeling is evalu-
ated by the so-called failure probability

pf = 1
2 tr[T?(M12 + M21)] = 1

2 tr[T?] (11)

associated with the occurrence of an inconclusive result. The
goal is to design a tester T12, T21, or T? such that the failure
probability is minimized. A nontrivial solution is possible if
the no-error conditions can be satisfied for nonzero operators
T12 and T21. It follows that M12 or M21 must have nonempty
kernels. This is possible only if at least one of the effects M1

and M2 is rank deficient. However, Theorem 1 implies that
such an observable can be perfectly labeled, and thus T? = O
(pf = 0) and for binary observables the unambiguous labeling
reduces to perfect labeling.

For nonbinary measurements the no-error conditions also
require that at least one of the effects is rank deficient. How-
ever, the single use of the unlabeled measurement device
does not provide sufficient information for the unambiguous
labeling of all effects. We may be able to label partially
a particular effect E , but all the situations are covered by
Theorem 1. It follows that the unambiguous effect labeling is
always perfect in the sense that the recorded results are always
conclusive.

VI. ANTILABELING

Analyzing the unambiguous labeling for nonbinary mea-
surements, we observe the following. Although the no-error
conditions do not allow us to label the rank deficient effects
E , we can still use the corresponding state |ϕ〉, for which
E |ϕ〉 = 0 as the probe state. It is straightforward to see that
recorded outcome cannot be labeled by the effect E , because
its probability in this case vanishes. Instead of assigning a
label for the recorded outcome we may exclude all the labels
E ∈ {M1, . . . , Mn}, for which Mj |ϕ〉 = 0.

This type of discrimination tasks was named antidistin-
guishability [17] and following this we will call this process
antilabeling. For the binary case, it trivially coincides with
perfect labeling; however, for the nonbinary case the question
is open. Since in this study we focus on only single-shot
protocols, the antilabeling also can be achieved only partially,
that is, not all effects can be excluded in a single run of
the experiment. The question of partial antilabeling reduces
to antilabeling of some fixed effect E ∈ {M1, . . . , Mn}. Rank
deficiency is necessary and sufficient for partial antilabeling
of such effects. Let us stress that this is not the case for the
question of partial labeling.

Consider rank-1 nonbinary measurements, i.e., Mj =
q j |ϕ j〉〈ϕ j |, such that |ϕ j〉 �= |ϕk〉 if j �= k. In general, these
effects cannot be partially labeled unless q j = 1 for some
j. However, all of them can be partially antilabeled. It is
sufficient to choose a probe state |ϕ⊥

j 〉 and the recorded
outcome cannot be described by the effect Mj = q j |ϕ j〉〈ϕ j |.
This means the recorded outcome is antilabeled not to be
Mj . If there are more Mk such that Mk|ϕ⊥

j 〉 = 0, then all
such effects are also antilabeled and we may conclude
that the recorded outcome is not labeled by any of those
effects Mk .

VII. CONCLUSION

In this work we introduced the problem of measurement
labeling as a special instance of the measurement discrim-
ination problem. We completely characterized the various
forms of labeling questions given the unlabeled measure-
ment device is used only once (single shot). In particular,
we showed that perfect labeling exists for binary observables
if the effects are rank deficient (Theorem 1). For nonbinary
measurements the perfect labeling generally requires more
uses of the measurement device (Theorem 2); however, we
characterized the measurements for which a single shot is
sufficient. Proposition 1 specifies conditions when a single
shot reveals partial information about the observed outcomes
and thus perfectly labels particular outcomes. Further, we
evaluated the minimum-error probability for the case of binary
measurements. We found [Eq. (9)] it is proportional to the 2-
norm of the difference between effects forming the observable
and thus by the largest eigenvalue of the effects. Unam-
biguous labeling for binary measurements reduces to the
perfect one. The case of nonbinary measurements motivated
us to introduce the concept of antilabeling, which excludes
labelings of the recorded outcomes instead of identifying
them.
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The problem of labeling is a specific question that is not
only of foundational interest. Naturally, it refers to situations
when the identity of labels is not available, but how can
one lose this type of information? It is unlikely someone
will question the description of detectors, for which clicks
simply mean the particle is detected. However, detectors are
used in more sophisticated experiments to measure quantum
properties of systems. In fact, we typically combine many
devices and clicks of different detectors or their combinations
constitute different (more abstract) outcomes. The risk of for-
getting the labels does not originate in the physics itself, but
in its users. The labeling serves as a relatively simple tool to

operationally retrieve the identity of outcomes without the
need to access (sometimes invasively) the details of experi-
mental setup.
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