
PHYSICAL REVIEW A 110, 029901(E) (2024)

Erratum: Quantum measurements constrained by the third law of thermodynamics
[Phys. Rev. A 107, 022406 (2023)]

M. Hamed Mohammady and Takayuki Miyadera

(Received 29 July 2024; published 13 August 2024)

DOI: 10.1103/PhysRevA.110.029901

Item (iv) of Lemma B.2 is incorrect. Specifically, if a channel � : L(H) → L(H) maps all full-rank states to full-rank states,
it may be the case that none of its fixed states ρ0 = �(ρ0) have full rank. Consider a channel defined as

�(·) := λI(·) + (1 − λ)tr(·)|ψ〉〈ψ |, (1)

where 0 < λ < 1, I is the identity channel so that I(ρ) = ρ for all ρ, and |ψ〉 is a unit vector in H. It is easily verified that
�(ρ) � λ ρ for all ρ. Given that for any pair of positive operators A and B it holds that A � B ⇒ rank(A) � rank(B), it follows
that � is a rank nondecreasing channel, i.e., rank[�(ρ)] � rank(ρ) for all ρ. As such, � maps all full-rank states to full-
rank states. However, now assume that �(ρ0) = ρ0. It holds that ρ0 = λρ0 + (1 − λ)|ψ〉〈ψ |, which implies that (1 − λ)ρ0 =
(1 − λ)|ψ〉〈ψ |, and so ρ0 = |ψ〉〈ψ |. In other words, the only fixed state of � is the pure state |ψ〉〈ψ |. Indeed, one can also
show that

�av(·) := lim
N→∞

1

N

N∑
n=1

�n(·)

= lim
N→∞

1 − λN

N (1 − λ)
I(·) +

(
1 − 1 − λN

N (1 − λ)

)
tr(·)|ψ〉〈ψ |

= tr(·)|ψ〉〈ψ |,
where we recall that �av is a completely positive projection on the fixed points of �. It follows that while � maps all full-rank
states to full-rank states, � does not have any full-rank fixed states.

As a consequence of the above-mentioned error, item (ii) of Lemma D.1 is also incorrect. More specifically, while a
measurement scheme M := (HA, ξ , E, Z) that is constrained by the third law results in an E-channel IX which maps all
full-rank states to full-rank states, it may be the case that the fixed-point set of IX does not contain any full-rank states. In
other words, it may be the case that IX maps every full-rank state to some different full-rank state. In such a case, the results in
Appendix E may not necessarily hold. Consequently, while Theorems 4.3 and 4.5 are independent of the fixed-point structure
of IX and so are left unchanged, it may be the case that Theorems 4.1 (as well as its corollaries in Proposition F.2), 4.2, and 4.4
are not valid in general. Specifically, if it is possible for a third-law constrained measurement to implement a channel IX that
perturbs all full-rank states, then it may still be possible for such a measurement of an unsharp—but not necessarily completely
unsharp—observable to not disturb any observable that commutes with it (Theorem 4.1), to not disturb itself (Theorem 4.2),
or to be ideal (Theorem 4.4). Note that the impossibility of nondisturbance and ideality is still guaranteed for the class of
sharp observables; if an observable is sharp, then its measurement is of the first kind (does not disturb itself) if and only if it
is repeatable, which is ruled out by Theorem 4.3. Since sharp observables are commutative, this immediately implies that a
third-law constrained measurement of a sharp observable will disturb at least some observable that commutes with it. Finally,
for sharp observables, the ideal measurements are precisely the Lüders instruments. However, by Proposition D.1, the third law
rules out Lüders instruments for any observable that is not completely unsharp.

The universal validity of the aforementioned theorems is guaranteed to hold under the added assumption that there exists
a full-rank fixed state ρ0 = IX (ρ0). There are special cases where an E-channel IX that is constrained by the third law is
guaranteed to not perturb at least one full-rank state, as shown by the following examples.

Example 1: Rank-1 observables. Consider the case where E is a rank-1 observable, i.e., where every effect Ex is proportional
to a rank-1 projection Px ≡ |ψx〉〈ψx|, where {|ψx〉} are not necessarily mutually orthogonal. Since E is an observable, then for
every state ρ it holds that tr(Exρ) > 0 for some x; however, tr(Exρ) = 0 ⇐⇒ PxρPx = O. As such, for every state ρ, it will
hold that PxρPx will have full rank in the 1-dimensional subspace PxHS for at least some x. Now assume that the measurement
of a rank-1 observable is constrained by the third law. By item (iv) of Lemma D.1 it follows that for every state ρ, Ix(ρ) has full
rank for some x. As such, any fixed state ρ0 = IX (ρ0) = ∑

x Ix(ρ0) must have full rank.
Example 2: Thermodynamically free measurements. Consider the case where the compound of the system and apparatus

has an additive Hamiltonian H = HS ⊗ 1A + 1S ⊗ HA, so that for some inverse temperature β > 0 the Gibbs state of the
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compound system is e−βH/tr(e−βH ) = ρβ ⊗ ξβ , where ρβ := e−βHS/tr(e−βHS ) and ξβ := e−βHA/tr(e−βHA ) are the Gibbs states
of the system and apparatus, respectively. Note that such states have full rank. If the apparatus is prepared in ξβ and if the
measurement interaction channel E is Gibbs preserving, then the measurement will be constrained by the third law. However,
in such a case it will hold that IX (ρβ ) = trA[E (ρβ ⊗ ξβ )] = trA(ρβ ⊗ ξβ ) = ρβ , and so IX will have a full-rank fixed state. In
particular, the thermal instruments introduced in [1] are constrained by the third law and are guaranteed to have a full-rank fixed
state.

Example 3: Measurement channels with bounded smallest eigenvalues. Assume that the measurement channel IX is such that
if the smallest eigenvalue of an arbitrary state ρ is larger than ε > 0, then the smallest eigenvalue of IX (ρ) will also be larger
than ε. This is a stronger condition than merely mapping all full-rank states to full-rank states. For example, consider the channel
� defined in Eq. (1) and let ρ be a state whose smallest eigenvalue is ε, with the corresponding eigenvector orthogonal to |ψ〉. In
such a case, the smallest eigenvalue of �(ρ) will be λε < ε. In other words, repeated applications of � will continuously reduce
the smallest eigenvalue of the input state, so in the limit of infinite applications, such a state will be taken to the pure state |ψ〉〈ψ |.
However, if the measurement channel IX satisfies the aforementioned property, then even in the limit of infinite applications,
the smallest eigenvalue of the output will be larger than ε if the smallest eigenvalue of the input is also larger than ε. In such a
case, and in contrast to the incorrect proof of item (iv) of Lemma B.2, it will hold that Iav(ρ) := limN→∞ 1

N

∑N
n=1(IX )n(ρ) will

have full rank, so IX will have a full-rank fixed state.

We would like to thank Joseph Cunningham and Timothée Hoffreumon for bringing this error to our attention by way of the
simple counterexample shown in Eq. (1).
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