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Simple information-processing tasks with unbounded quantum advantage

Teiko Heinosaari ,1,* Oskari Kerppo ,1,† Leevi Leppäjärvi ,2,‡ and Martin Plávala 3,§

1Faculty of Information Technology, University of Jyväskylä, 40100 Jyväskylä, Finland
2RCQI, Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 84511 Bratislava, Slovakia

3Naturwissenschaftlich-Technische Fakultät, Universität Siegen, Walter-Flex-Straße 3, 57068 Siegen, Germany

(Received 31 August 2023; accepted 4 March 2024; published 29 March 2024)

Communication scenarios between two parties can be implemented by first encoding messages into some
states of a physical system which acts as the physical medium of the communication and then decoding the
messages by measuring the state of the system. We show that already in the simplest possible scenarios it is
possible to detect a definite, unbounded advantage of quantum systems over classical systems. We do this by
constructing a family of operationally meaningful communication tasks, each of which, on the one hand, can be
implemented by using just a single qubit but which, on the other hand, require an unboundedly larger classical
system for classical implementation. Furthermore, we show that even though, with the additional resource of
shared randomness, the proposed communication tasks can be implemented by both quantum and classical
systems of the same size, the number of coordinated actions needed for the classical implementation also grows
unboundedly. In particular, no finite storage can be used to store all the coordinated actions required to implement
all possible quantum communication tasks with classical systems. As a consequence, shared randomness cannot
be viewed as a free resource.
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I. INTRODUCTION

One of the most important ongoing investigations in quan-
tum information is to find information-processing tasks that
can be used to demonstrate a quantum advantage. This ques-
tion is equally important for quantum computing, where it
is still unclear whether the current noisy intermediate-scale
quantum devices [1] can demonstrate a computational ad-
vantage over classical computers. Therefore, it is of utmost
importance to identify scenarios where quantum devices can
offer some benefit over devices operating in the classical
domain. Understanding the basic ingredients of quantum
advantage forms the foundation for quantum technological
applications.

A simple yet important information-processing task is the
one-way-communication scenario, where one party, Alice, is
trying to send an encoded message to another party, Bob.
The message is prepared with a preparation device, and the
encoded message, carried by some physical medium, is de-
coded with a measurement device. While this scenario may
seem far too simple at first to reveal anything interesting,
large separations between classical and quantum protocols in
such scenarios have been shown in entanglement-based setups
[2,3], in the presence of shared randomness [4–6], and in other
settings [7–17]. Exponential separations are also known in the
one-way-communication complexity scenario [18–20], where
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the aim is to compute the value of a multivariate function;
interestingly, it is also known that the classical-quantum sep-
aration cannot be arbitrarily large in these scenarios [21,22].
Moreover, one can also see any channel-based quantum com-
putation as a preparation and subsequent measurement of a
quantum state and the aforementioned results as proof that
quantum computers have an advantage over classical ones
when sampling from some conditional probability distribu-
tions. These results are especially important in light of boson
sampling [23–27], which is a nonuniversal model of quan-
tum computation based on sampling from specific conditional
probability distributions.

A customary assumption in the quantum information lit-
erature is that the preparation and measurement devices are
classically correlated via shared randomness, making the sets
of implementable communication scenarios convex and easier
to analyze. Importantly, it is known that in the presence of
shared randomness quantum communication does not offer
any advantage over classical communication as the sets of
implementable scenarios are the same [28]. This hints that
either quantum physics does not offer a great advantage in
one-way communication or shared randomness should not be
considered a free resource in these scenarios. In the following
we show that the latter is the right conclusion by constructing
communication scenarios that require unbounded amounts of
shared randomness.

The starting point for our current investigation is the
fact that in the absence of shared randomness the sets
of implementable communication scenarios are not con-
vex [8,29]; see Fig. 1 for an illustration. It is clear that
an information-processing advantage can exist only if the
sets of implementable communication scenarios are different
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FIG. 1. Illustration of the quantum and classical one-way com-
munication scenarios represented by the sets of communication
matrices Qn×m

d and Cn×m
d with fixed size n × m and the same dimen-

sion d , respectively. The convex closures of both sets are the same
(dashed area), although the sets are different.

between two communication mediums; it was previously
shown that the sets of quantum and classical communication
scenarios with systems of fixed dimension are not the same,
and they have some rather large discrepancies [29]. This raises
the paramount question of whether quantum communication
can be simulated with a classical system of larger dimension.

In this work we argue that quantum communication can-
not be reliably simulated with larger classical systems. This
is shown by introducing a family of simple communication
scenarios based on antidistinguishability which can be im-
plemented with a qubit but require arbitrarily large classical
systems or an arbitrary amount of classical resources in the
form of classical communication or shared randomness in the
limit. We then argue that the use of shared randomness cannot
be considered a free resource for communication because the
difference in the sizes of the quantum and classical systems
needed to implement the communication task puts a limit
on how much shared randomness is needed to implement
quantum communication classically.

II. INFORMATION-PROCESSING TASKS

In a communication scenario we can envision the following
setup: Alice will be made aware of the value of a random
variable a, while Bob remains unaware of it. Prior to the task,
they have the opportunity to meet and establish any strat-
egy they desire. However, once they start, Alice is restricted
from freely communicating with Bob. Instead, she is provided
with a d-dimensional quantum system or, alternatively, a d-
dimensional classical system. Alice is revealed the value of a
and has the liberty to prepare this system in any desired state
and hand it over to Bob. Subsequently, Bob’s task is to specify
the value of a. The task can also be more general, in which
case, Bob is expected to return different values b1, . . . , bm

with some probabilities p1, . . . , pm determined by the input
a. For instance, it could be required that for some inputs Bob
will erase all information, meaning that he delivers a uniform
probability distribution. In a computing scenario the setup is
similar, but Alice and Bob can be the same person. In this
case, there is a function f , and Alice’s task is to produce
f (a) for any input a drawn from some set of possible inputs.

FIG. 2. Basic one-way communication setup between two par-
ties, Alice and Bob. In each round of communication Alice receives
a random variable a and prepares a state sa from her state ensemble.
Bob performs a measurement of M and receives an outcome b.

The role of the communication channel is taken by a quantum
processor.

To cover all these information-processing scenarios, we
use the formalism of communication matrices [29,30], also
called channel matrices [28]. We assume that Alice possesses
a finite collection of states, referred to as a state ensemble.
Alice selects a label a and transmits a quantum (or classi-
cal) system in the corresponding state sa to Bob. Bob then
performs a measurement using a fixed measurement device
M, which yields b, one of the possible outcomes {1, . . . , m}.
The entire set of conditional probabilities that describes this
preparation-measurement scenario is represented by an n × m
matrix C, given as Cab = tr[saMb]. This matrix is row stochas-
tic, i.e., has non-negative entries, and the sum of each row is
1. This basic communication scenario is illustrated in Fig. 2.

The previously mentioned information-processing tasks
can be written as communication matrices. For instance, the
task of perfectly distinguishing d states corresponds to the
identity matrix 1d . On the other hand, consider a communi-
cation task in which there are three possible labels and Alice
is able to transmit the first two without error while the third
input leads to an ambiguous result. This corresponds to the
matrix ⎡

⎣1 0
0 1
1
2

1
2

⎤
⎦ , (1)

where the third row shows that when Alice sends the third
label to Bob, Bob randomly gets one of the first labels in his
measurement.

To compare the difficulty of the implementation of commu-
nication matrices corresponding to different tasks, we recall
that there is a physically motivated preorder (i.e., partial order
without being antisymmetric) called ultraweak matrix ma-
jorization in the set of communication matrices [29]. We write
C � D and say a communication matrix C is ultraweakly ma-
jorized by another communication matrix D if row-stochastic
matrices L and R exist such that C = LDR. The matrices L
and R have a natural interpretation as pre- and postprocessing
matrices of the preparations and measurement outcomes: in
the communication task C one uses the mixtures of states used
in task D according to the convex weights provided by the
matrix L, and the measurement used in task C is a classical
postprocessing given by the matrix R of the measurement
used in task D. Thus, the preorder gives a precise mathemat-
ical definition of the level of difficulty among the tasks: if
C � D, then performing the task C cannot be any harder than
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performing D since the implementation of D can be used to
implement C as well. In the case when C � D and D � C we
say that C and D are ultraweakly equivalent, and then they
represent equally hard communication tasks.

In the computational scenario a 0/1 matrix can be inter-
preted as a Boolean function, and we will refer to 0/1 matrices
as deterministic matrices. For instance, the logic gates NOT

and XOR correspond to the matrices

[
0 1
1 0

]
,

⎡
⎢⎢⎣

1 0
0 1
0 1
1 0

⎤
⎥⎥⎦ . (2)

The NOT setup simply means that Bob reads the opposite
label that Alice sends. In the XOR setup Alice can send all
ordered pairs from {0, 1}; hence, the matrix has four rows. It
is straightforward to verify that the communication matrices
in (2) are ultraweakly equivalent.

There is a relatively widely adopted view that a single
qubit on its own is not more powerful than a bit. This view
is motivated by Holevo’s theorem [31], which states that a
single qubit can transmit only one bit of information. Indeed,
we make the following observation.

Proposition 1. Let C be a deterministic communication
matrix. Then C is implementable with classical and quantum
systems of the same size.

Proof. Let C be a 0/1 matrix, i.e., a deterministic com-
munication matrix. It is straightforward to see that any
communication matrix is ultraweakly equivalent with the
matrix that is obtained by removing the zero columns (cor-
responding to measurement outcomes which never occur)
and duplicate rows (some of the states that are used in the
implementation are the same). Denote by C′ the ultraweakly
equivalent matrix that is obtained from C in this way. But now
C′ is clearly a permutation of an identity matrix of some size
d , depending on how many duplicate rows were removed. As
C′ is equivalent to 1d and the ultraweak relation is clearly
transitive, we conclude that C is implementable by d-level
classical and quantum systems as both of these systems can
transmit d distinct messages without error by the basic decod-
ing theorem [32]. �

By Proposition 1 we are forced to conclude that by looking
at deterministic communication matrices, quantum systems
do not seem to offer any advantage over classical systems.
However, as we will see, this is far from the whole truth
because there are many interesting and important commu-
nication matrices that are not deterministic. In the current
framework it becomes natural to look at all possible communi-
cation matrices that can be implemented with a d-dimensional
quantum or classical system. We denote these sets as Qd

and Cd , respectively. We note that both of these sets consist
of arbitrarily large matrices. Both of them also contain the
identity matrix 1d but not 1n for any n > d .

The sets Qd and Cd do not have convex structure as they
have matrices of different sizes. To form convex mixtures,
we have to limit ourselves to matrices of a certain size, and
we denote by Qn×m

d and Cn×m
d the matrices with size n × m.

Forming a convex combination of two communication matri-
ces of the same size corresponds to a coordinated action with
Alice and Bob. As mentioned previously, the sets Qn×m

d and

Cn×m
d are not convex [8,33], but in the seminal work in [28]

it was shown that the convex closures of Qn×m
d and Cn×m

d are
the same; the convex structure of these sets is illustrated in
Fig. 1. It follows that shared randomness is a genuinely distin-
guished resource in the setup, but with unlimited use of shared
randomness one can simulate any quantum prepare-measure
scenario with classical settings. Our main result is to show
that this would require infinitely many rounds of coordinated
actions.

III. CLASSICAL AND QUANTUM DIMENSIONS

To explain the information-processing tasks that cannot be
effectively simulated with a classical system with the same
dimension, we need some additional tools. The quantum di-
mension of a communication matrix C, denoted by dimQ(C),
is the smallest integer d such that Cab = tr[saMb], where the
states {sa} and effects {Mb} act on a d-dimensional Hilbert
space. As the matrix C has finite size, the quantum dimen-
sion of a fixed communication matrix is also always finite.
Thus, for a communication matrix C we have C ∈ Qd if
and only if dimQ(C) � d . It can be shown that the quan-
tum dimension of a communication matrix C is equal to
the positive-semidefinite (PSD) rank of C [34,35], denoted
by rankPSD(C), since a PSD decomposition can always be
normalized to give density operators and effects in the decom-
position.

The classical dimension of a communication matrix C,
denoted by dimC (C), is the smallest integer d such that C can
be obtained using a classical system with d distinct states.
Equivalently, it is the smallest integer d such that the im-
plementation of the matrix is obtained by using the standard
embedding of classical d-dimensional theory in the quantum
formalism by using only diagonal density matrices and effects
of dimension d . It then follows that C ∈ Cd if and only if
dimC (C) � d . Furthermore, it can be shown that dimC (C) is
then the smallest integer d such that row-stochastic matrices
L and R exist such that C = L1d R, i.e., C � 1d [29]. Thus,
the communication tasks with a classical implementation of
dimension d are exactly those that can be obtained from the
task of perfectly distinguishing d states by means of ultraweak
matrix majorization, i.e., in terms of pre- and postprocessing
of states and measurement outcomes. From this equivalent
formulation it is then clear that mathematically, the classical
dimension of a communication matrix C exactly coincides
with the concept of a non-negative rank of C [36], denoted
by rank+(C).

The connection between the quantum and classical com-
munication complexity and the PSD and non-negative ranks
is known in the literature (see, e.g., [34]). It is also known that
these ranks are very difficult to compute [37,38]. Nontrivial
upper bounds on the non-negative rank were derived only
relatively recently [39,40]. Our strategy is to define a family of
communication matrices with fixed quantum dimension and
show that the classical dimension of these matrices cannot
be bounded from above. We note that previously, for some
matrices (such as the Euclidean distance matrices) an expo-
nential separation between the non-negative and PSD ranks
was shown [41,42]. However, our aim is to construct actual
communication matrices which have a physically meaningful
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interpretation as clear communication tasks such that they still
experience the same exponential separation. To this end, we
make the following definition.

Definition 1. Let n � 2 be an integer. Define Bloch vec-
tors {�ra}n

a=1 ⊂ R3 by �ra = (cos ( 2aπ
n ), 0, sin( 2aπ

n )), so that
sa = 1

2 (1 + �ra · �σ ), where �σ = (σx, σy, σz ) is composed of the
Pauli matrices, defines a pure state for all a. Define the cor-
responding effects by Mb = 1

n (1 − �rb · �σ ), so that tr[saMb] =
2
n sin2( (a−b)π

n ). Note that tr[scMc] = 0 for all c, and otherwise,
tr[saMb] > 0. We denote by An the n × n matrix with elements
tr[saMb] at the ath row and bth column.

The matrix An defines an instance of communication tasks
known as antidistinguishability [43–47]. As all diagonal en-
tries of An are zero, it corresponds to the task in which upon
obtaining outcome b Bob knows that Alice did not send state
sb. Antidistinguishability plays an important role in quantum
information and foundations, as evidenced by its role in the
influential Pusey–Barrett–Rudolph [48] theorem and its con-
nection to noncontextuality inequalities [49]. Our motivation
in defining An is that clearly, this matrix has a quantum di-
mension equal to 2 for any n. We now proceed to show that
the classical dimension of An cannot be bounded from above.

Lemma 1. The non-negative rank of An scales as
rank+(An) = �(log2 n).

The result follows from Theorems 5, 6, and 8 of [39]. The
details can be found in Appendix A. We now have all the
necessary tools to prove one of our main results.

Theorem 1. For all integers d, m � 2 there is a communi-
cation matrix C such that dimQ(C) � d while dimC (C) � m.

Proof. It is sufficient to consider d = 2. Let m � 2 and
n = 2m. It is guaranteed by Lemma 1 that dimC (An) =
rank+(An) � m. �

Our result shows that there is a sequence of commu-
nication tasks that can be implemented with a fixed-size
quantum system but which cannot be implemented by any
classical system of fixed size. In the limit of these tasks we
arrive at an unbounded quantum advantage over any clas-
sical implementation. In the literature quantum advantages
are typically shown in scenarios involving inputs for both
parties of the communication protocol. In the present work
we study the scenario where only the party preparing states
receives an input, and we are thus able to show the advan-
tage with communication tasks of the simplest type with a
very clear and important physical motivation, namely, an-
tidistinguishability of states. This results provides yet another
way to see how antidistinguishability can be used to surface
some of the fundamental nonclassical aspects of quantum
theory as well as what type of information-processing ca-
pabilities quantum systems hold. On the other hand, our
result can also be used as a witness for the classical dimen-
sion of the implementation: if we know that we are using
a classical system to implement an antidistiguishability task
of a certain size, then we can use the lower bound from
Lemma 1 to deduce what the dimension of the system must
at least be. Additionally, we consider it important that we
managed to use preparations and measurements that belong
only to the XZ plane of the Bloch sphere since this im-
mediately shows that our construction is also valid for real
quantum theory (and also for PSD rank based on real Hilbert
spaces).

From the technical side a natural question is whether it is
possible to improve the scaling of the non-negative rank in
Lemma 1. A nontrivial upper bound on the non-negative rank
of � 6n

7 � was proven in [40]. Therefore, better scaling could be
possible, but we leave that as an open problem.

Example 1. A7 is a matrix with elements (A7)ab =
2
7 sin2( (a−b)π

7 ), with a, b ∈ {1, 2, . . . , 7}. Define i =
2
7 sin2( π

7 ), j = 2
7 sin2( 2π

7 ), and k = 2
7 sin2( 3π

7 ). Then

A7 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 i j k k j i
i 0 i j k k j
j i 0 i j k k
k j i 0 i j k
k k j i 0 i j
j k k j i 0 i
i j k k j i 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3)

A7 has the following non-negative factorization because A7 =
W H , where

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2k 2 j 0 0 2i 0

0 2k 0 0 2ik
k− j w

0 2 j 2k 0 2i 0

0 2i 2k( j−i)
k− j 1 − R 0 0

0 0 2ik
k− j 2

(
k − i2

k− j

)
1 − R w

2ik
k− j 0 0 2

(
k − i2

k− j

)
1 − R w

2k( j−i)
k− j 2i 0 1 − R 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 i
2k

j
2k

k−i
2k

k− j
2k 0 0

0 0 0 0 1
2

1
2 0

j
2k

i
2k 0 0 0 k− j

2k
k−i
2k

1
4

1
2

1
4 0 0 0 0

0 0 0 1
2 0 0 1

2

h1 0 h1 h2 0 0 h2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4)

where

w = 2(i + j) − 2ik

k − j
, h1 =

j − 1
2

(
k − i2

k− j

)
2(i + j) − 2ik

k− j

,

h2 =
j − ik

k− j

2(i + j) − 2ik
k− j

, (5)

and R stands for the sum of all other elements in the same
row. This non-negative factorization was found with the help
of a heuristic method [50]. As this decomposition exists, the
non-negative rank of A7 is less than or equal to 6. The bound
given in Corollary 4 of [39] can be used to show that equality
must hold. The details can be found in Appendix B.

The classical dimension of A7 provides a counterexample
to a conjecture presented in [29], which speculated that the
classical dimension of quantum theory equals the quantum
dimension squared.
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IV. NON-NEGATIVE RANK AND SHARED RANDOMNESS

The first part of our result was to show that the classical
dimension of communication matrices with fixed quantum
dimension can grow without bound; we now turn to our
second result concerning shared randomness. Namely, it is
well known that any quantum communication matrix can be
obtained using classical communication and shared random-
ness [28]. Since shared randomness is usually considered a
free resource, it would seem that our previous result holds no
real consequence and shared randomness could be used as a
loophole. Next, we will close this loophole by showing that
shared randomness is not, in fact, a free resource.

Suppose Alice and Bob coordinate their actions in the
following way: Alice and Bob both have k ∈ N different
choices for their preparation and measurement devices. That
is, in each round of communication, Alice and Bob observe a
correlated random variable k′ ∈ {1, 2, . . . , k}. Alice prepares
some state with the preparation device labeled k′. Likewise,
Bob uses a measurement device with the label k′. Without
loss of generality we can assume that the devices have the
same number of inputs and outputs, say, n preparations and m
outcomes, so that the coordinated communication matrix can
be written as

C =
k∑

k′=1

αk′Ck′ , (6)

where αk′ is the probability of sampling k′ as the shared
variable and Ck′ is the corresponding communication matrix
implemented by those devices. Suppose now that each of the
Ci’s has a classical dimension equal to d , that is, Ck′ = Lk′Rk′

for some row-stochastic matrices Lk′ and Rk′ of size n × d and
d × m, respectively. Then, clearly,

C = [α1L1 α2L2 . . . αkLk]

⎡
⎢⎢⎣

R1

R2
...

Rk

⎤
⎥⎥⎦. (7)

This puts an upper bound on the classical dimension of C,
namely, rank+(C) � dk.

Theorem 2. Suppose Alice and Bob agree beforehand that
they will use coordinated actions from a finite set {1, 2, . . . , k}
and they will communicate with d-dimensional classical sys-
tems. Communication matrices with the quantum dimension
equal to 2 that they cannot implement classically by coordi-
nating their actions exist.

Proof. The result follows directly from Eq. (7) and The-
orem 1, as the maximal classical dimension Alice and Bob
can achieve is dk and we have seen in Theorem 1 that the
classical dimension of antidistinguishability matrices cannot
be bounded. �

Our second main result thus shows that, ultimately, shared
randomness cannot be considered a free resource. In particu-
lar, even though the convex closures of Cd and Qd are the same
for fixed d [28], one cannot implement all the tasks in Qd by
using a d-dimensional classical system with any finite amount
of shared randomness. In the limit this ultimately leads to
the need for an infinite storage for the coordinated actions.
It is worth repeating that without this result our first result

would lack proper physical and operational interpretation,
and hence, it is a key feature that this loophole was closed.
Furthermore, there are no further known loopholes remaining
in this scenario. On the other hand, our second result can also
be used as a witness for shared randomness: there are simple
communication tasks which for fixed dimension d can be used
to detect how many coordinated actions are minimally needed
to implement a given task classically.

V. DISCUSSION

We have shown that it is not possible to simulate quantum
communication with larger classical systems reliably. Our re-
sult has two consequences. First of all, if the dimension of the
communication medium is taken to be proportional to the cost
of communication, then quantum communication displays an
unbounded advantage. As quantum systems can only give
an advantage in the considered simple communication sce-
narios when the communication matrix is not deterministic,
we conclude that the displayed advantage is somehow related
to quantum systems generating randomness more effectively
than is possible classically. In the example we provided with
antidistinguishable matrices the classical dimension scaled at
least logarithmically with the size of the matrix. We are unsure
whether it is possible to obtain better scaling with other ma-
trices or even what the exact scaling of the antidistinguishable
matrices is. We leave this problem for future work.

Second, given that the convex closures of quantum and
classical communication matrices coincide, we nonetheless
have shown that no finite number of coordinated actions is
enough to exactly simulate quantum communication clas-
sically when the preparation and measurement devices are
correlated. This points us to the conclusion that taking shared
randomness as a free resource is an overwhelmingly strong
assumption.
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APPENDIX A: PROOF OF LEMMA 1

The restricted non-negative rank of a non-negative ma-
trix A, denoted by rank∗

+(A), is defined as the smallest
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TABLE I. First (relevant) values of the upper bounds for the
restricted non-negative rank given in [39].

r+

3 4 5 6 7

φ′(r+) 3 4 6 9 14
φ3(r+) 3 6 10 18 30

decomposition of A into A = W H with W and H being
non-negative and rank(A) = rank(W ). Clearly, if A is of size
n × m, then rank(A) � rank+(A) � rank∗

+(A) � m. The au-
thors of [39] showed that the restricted non-negative rank
is related to the nested-polytopes problem, which they used
to show bounds on the restricted non-negative rank and the
non-negative rank. In particular, they gave the following upper
bound on the restricted non-negative rank.

Theorem 3 ([39], Theorem 5). The restricted non-negative
rank of a non-negative matrix M with r = rank(M ) and r+ =
rank+(M ) can be bounded above by

rank∗
+(M ) � max

r�ru�r+
faces(r+, ru − 1, ru − r) =: φr (r+),

(A1)

where faces(n, d, k) is the maximal number of k faces of a
polytope with n vertices in dimension d , which can be calcu-
lated as

faces(n, d, k) =
d
2∑

i=0

∗
[(

d − i
k + 1 − i

)
+

(
i

k + 1 − d + i

)]

×
(

n − d − 1 + i
i

)
, (A2)

where
∑ ∗ stands for a sum in which half of the last term is

taken for i = d
2 if d is even and the whole last term is taken

when d is odd, or i = d−1
2 .

Furthermore, they showed that, in fact, the quantity φr (r+)
can be used as a lower bound for the non-negative rank.

Theorem 4 ([39], Theorem 6). The upper bound φr (r+) on
the restricted non-negative rank of a non-negative matrix M
with r = rank(M ) and r+ = rank+(M ) satisfies

φr (r+) = max
r�ru�r+

faces(r+, ru − 1, ru − r)

� max
r�ru�r+

(
r+

ru − r + 1

)

�
(

r+

r+/2�

)
� 2r+

√
2

πr+
� 2r+ . (A3)

By combining Theorems 3 and 4 we see that for a non-
negative matrix M it holds that

rank∗
+(M ) � 2rank+(M ) . (A4)

Thus, the restricted non-negative rank gives a lower bound on
the actual non-negative rank. In order to use this bound, we
must first be able to calculate (or lower bound) the restricted
non-negative rank. For a particular class of matrices, which
will also suit our purposes, the authors in [39] were able to
calculate the restricted non-negative rank exactly.

Let Ai denote the ith row of a matrix A. The sparsity pattern
of a row Ai is defined as Si = {k | Aik = 0}. Matrix A is said to
have a disjoint sparsity pattern if Si � S j for all i �= j.

Theorem 5 ([39], Theorem 8). If M is a rank-3 non-
negative square matrix of dimension n whose columns have
disjoint sparsity patterns, then rank∗

+(M ) = n.
Now we can use all the previously stated results of [39] to

prove a lower bound for the antidistinguishability matrices An

from Example 1.
Lemma 1. The non-negative rank of An scales as

rank+(An) = �(log2 n).
Proof. We note that, trivially, rank+(A1) = 1 and

rank+(A2) = 2, so that for n = 1 and n = 2 the result
holds. On the other hand, since the communication matrix
An can be implemented with a restricted qubit (the states
are only in the xz plane on the Bloch sphere), it can be
shown that the maximum rank of these matrices can be
at most 3 (Proposition 3 in [29]). Furthermore, it can
be easily checked that for a matrix size of more than 2 the
rank cannot be 2. Thus, it follows that rank(An) = 3 for all
n > 2. Thus, for n > 2 we have that An is a rank-3 ma-
trix which clearly has a disjoint sparsity pattern, so from
Theorem 5 we have that rank∗

+(An) = n. By using the lower
bound for the non-negative rank given by Theorems 4
and 3, namely, Eq. (A4), we have that rank+(An) � log2 n,
which completes the proof. �

APPENDIX B: PROOF THAT RANK+(A7 ) = 6

Since, from Theorem 5, we know that rank∗
+(A7) = 7, we

can use the derived upper bounds from [39] for the restricted
non-negative rank based on the actual non-negative rank to
lower bound the non-negative rank of A7. In particular, one
could use Theorem 3 for this, but in fact, for rank-3 matrices
the authors of [39] provided an even better bound.

Lemma 2 ([39], Corollary 4). For a rank-3 non-negative
matrix M with r+ = rank+(M ) the restricted non-negative
rank is bounded above by

rank∗
+(M ) � max

3�ru�r+
min
i=0,1

faces(r+, ru − 1, ru − 3 + i)

=: φ′(r+) � φ3(r+) . (B1)

It is crucial to note that φ′(r+) [and φr (r+) for any fixed r]
is an increasing function of its argument r+. This is because
faces(n, d, k) increases with increasing n. The first few (rele-
vant) values of φ′ (and φ3 for comparison) are presented in the
Table I. In particular, for A7 we have that rank∗

+(A7) = 7, so
φ′(r+) � 7. From Table I we see that then we must have that
rank+(A7) � 6. Our explicit non-negative factorization from
Example 1 then shows that, in fact, rank+(A7) = 6.
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