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Benedikt Scharf
Institute for Theoretical Physics and Astrophysics and Würzburg-Dresden Cluster of Excellence ct.qmats,

University of Würzburg, Am Hubland, 97074 Würzburg, Germany

Denis Kochan *

Institute of Physics, Slovak Academy of Sciences, 84511 Bratislava, Slovakia
and Center for Quantum Frontiers of Research and Technology (QFort), National Cheng Kung University, Tainan 70101, Taiwan

Alex Matos-Abiague
Department of Physics & Astronomy, Wayne State University, Detroit, Michigan 48201, USA

(Received 12 June 2024; revised 23 September 2024; accepted 25 September 2024; published 10 October 2024)

The superconducting diode effect (SDE) is a magnetoelectric phenomenon where an external magnetic
field imparts a nonzero center-of-mass momentum to Cooper pairs, either facilitating or hindering the flow of
supercurrent depending on its direction. We propose that quantum spin Hall insulator (QSHI)-based Josephson
junctions can serve as versatile platforms for nondissipative electronics exhibiting the SDE when triggered by
a phase bias and an out-of-plane magnetic field. By computing the contributions from Andreev bound states
and the continuum of quasiparticle states, we provide both numerical and analytical results scrutinizing various
aspects of the SDE, including its quality Q factor. The maximum value of the Q factor is found to be universal
at low (zero) temperatures, which ties its origin to underlying topological properties that are independent of the
junction’s specific details. As the magnetic field increases, the SDE diminishes due to the closing of the induced
superconducting gap caused by orbital effects. To observe the SDE, the QSHI-based Josephson junction must be
designed so that its edges are transportwise nonequivalent. Additionally, we explore the SDE in a more exotic
yet realistic scenario, where the fermionic ground-state parity of the Josephson junction remains conserved
while driving a current. In this 4π -periodic situation, we predict an enhancement of the SDE compared to its
2π -periodic, parity-unconstrained counterpart.
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I. INTRODUCTION

Magnetoelectric phenomena accompanying superconduc-
tors with broken time-reversal and space-inversion sym-
metries are attracting considerable attention [1]. There are
numerous superconducting systems displaying the supercur-
rent diode effect (SDE) including (1) thin superconducting
films [2–5]; (2) Josephson junctions (JJs) based on (i) semi-
conductors, [6–11], (ii) topological semimetals [12], (iii)
proximity-magnetized metals with strong spin-orbit coupling
(SOC) [13], (iv) van der Waals heterostructures, [14–16], (v)
twisted bilayer [17] and trilayer [18] graphenes, (vi) high-Tc

superconductors [19,20], (vii) ferromagnets [21], (viii) topo-
logical insulators [22–25] or semiconductor-based Majorana
wires [26–28], (ix) spin-orbit coupled quantum dot junctions
[29]; (3) Josephson weak links through a single magnetic
atom [30]; or even (4) altermagnets [31,32]. As many of
them demonstrate the potential for supercurrent rectification,
that is, maintaining a system superconducting for one cur-
rent direction, while transiting it to the resistive state for
the opposite one, they digress in the roles played by mag-
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netic fields, Meissner screening, magnetization, the origin of
spin-momentum locking, and generically in the spin-resolved
spectral properties of the associated subgap states. All these
nuances diversify the SDE and pin its origin with various
proliferating adjectives like intrinsic, trivial, universal [33],
anomalous [34], ubiquitous [5], field free [15], single atomic
[30], flux tunable [35], high temperature [20], altermagnetic
[31], and transverse [36], among others.

There is a common agreement linking the SDE to the
appearance of a finite center-of-mass momentum of Cooper
pairs, although, there is less consensus on what causes its
nonzero value. The breakdown of time-reversal symmetry,
triggered by a magnetic field (via Zeeman coupling) or mag-
netization (via exchange splitting), and a moving condensate
while probing the supercurrent seem to be necessary ingre-
dients in all scenarios [5–7,9–11,33,37–48]. However, there
is still an ongoing discussion to which extent the SOC plays
a role. Since experiments vary in terms of materials, geome-
try, measurements, and even the nature of superconductivity
(whether intrinsic or proximity induced), no single theory can
comprehensively explain the SDE in all its various forms.
The primary distinction between models of the SDE lies in
their stance on SOC. Pro-SOC models [6,7,9,10,37–44,49,50]
link supercurrent rectification to the emergence of a helical
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superconducting phase [37,38,51–54]. In contrast, con-SOC
models [5,33,45,47,48] attribute the SDE either to a Doppler
shift in the quasiparticle spectra for left and right movers or
to diamagnetic effects resulting from stray fields and inho-
mogeneous screening, or alternatively to Yu-Shiba-Rusinov
states [30,55].

In this paper we scrutinize magnetochiral properties of
two-dimensional (2D) JJs based on quantum spin Hall insu-
lators (QSHI) and explore their abilities to foster the SDE
when tuning an out-of-plane magnetic field, the phase biasing,
and/or the edge-channels asymmetry. We compute individual
contributions to the supercurrent carried by the spin-resolved
Andreev bound states (ABS) and the continuum quasiparti-
cle states, and analyze their roles in the emergence of the
SDE. Using a minimal yet realistic model capturing the main
junction characteristics and considering the relevant system
parameters, we investigate the SDE and provide practical
analytical formulas for the underlying quality Q factor, fo-
cusing primarily on its dependencies on magnetic field and
temperature. We show that in the presence of an out-of-plane
magnetic field and at very low temperatures the maximum
of the Q factor acquires a universal value, which is indepen-
dent of the junction parameters. Finally, we show that the
SDE and its corresponding Q factor can be further enhanced
by considering 4π -periodic junctions where the fermionic
ground-state parity remains conserved while probing the su-
percurrent, which requires a measurement of the SDE on
timescales shorter than the quasiparticle poisoning time.

The paper is organized as follows: In Sec. II we present the
model Hamiltonian and discuss the associated Andreev and
continuous spectra and their corresponding density of states.
In Sec. III we study the underlying free energy and Josephson
current and their dependencies on temperature and magnetic
field, among other junction parameters. The effects of the
magnetic field, edge-state Fermi velocities, and temperature
on the properties of the SDE and Q factor in QSHI-based
2D junctions are analyzed in Sec. IV. Section V is devoted
to the discussion of the SDE when the fermionic ground-state
parity is conserved. We examine possible ramifications toward
experimental realizations of the SDE in QSHI-based JJs in
Sec. VI. After the concluding remarks, the paper is supple-
mented with two brief technical Appendixes.

We use standard notations throughout this paper, where
e > 0 stands for the elementary charge, �0 = h/e is the quan-
tum of the magnetic flux, and kB is the Boltzmann constant.
Additionally, �(x) and sgn(x) denote the Heaviside step func-
tion and sign function, respectively.

II. MODEL, ANDREEV BOUND STATES
AND CONTINUUM DENSITY OF STATES

We consider a short QSHI-based topological JJ [56–58]
employing the established δ-function model developed in Ref.
[57] [for the geometry and configuration see Fig. 1, where for
the most part of the paper we focus on the setup with a single
proximitzed edge as shown in Fig. 1(a)]. We assume the Fermi
level is tuned to the bulk gap of the QSHI. Hence, the only
propagating modes are the spin-polarized edge states. When
the width WS of the junction is wide enough—as assumed in
this paper—the QSHI edge states (referred to as the top and

(b)(a)
top edge

bottom edge

top edge

FIG. 1. Topological Josephson junctions formed by (a) one and
(b) two QSHI edges. Here the QSHI is partially covered by two
s-wave superconductors with different superconducting phases, the
Cooper-pair tunneling induces superconducting proximity pairings
in the corresponding regions of the QSHI, defining the supercon-
ducting (S) and normal (N) spacers. The N region is subtended by
a perpendicular magnetic field B. The coordinate system is chosen
in such a way that the QSHI lies in the xy plane, with x being the
transport direction defined by the gradient of the superconducting
phase, correspondingly, B = Bez. The edge with a positive (negative)
ordinate y is called the top (bottom).

bottom edges/channels) do not overlap and their low-energy
dynamics decouple. Correspondingly, the physics at each edge
can be accurately described by the Bogoliubov-de Gennes
(BdG) Hamiltonian,

Ĥσ
s = (sσvF p̂x − μS )τz + s

vF pS

2
+ V0h(x)τz

+ �[τx cos �σ (x) − τy sin �σ (x)]. (1)

In the above equation, p̂x = −ih̄∂x denotes the momentum
operator, μS represents the chemical potential in the supercon-
ducting (S) regions, V0 is the potential difference between the
normal (N) and S regions, and the (super/sub)scripts s =↑/

↓≡ ±1 and σ = t/b ≡ ±1 represent the spin projections
along the z axis and the top and bottom channels, respectively.
Finally, τx,y,z are Pauli matrices operating on the particle-hole
degrees of freedom. We consider junctions where the top and
bottom edge states have the same Fermi velocity (vF = v

t/b
F ),

although junctions with vt
F �= vb

F are also possible, as dis-
cussed in Sec. VI. We limit our study to short junctions, where
the length of the N region LN is shorter than the supercon-
ductor coherence length. Furthermore, we also assume LN to
be shorter than the Josephson penetration depth, such that
Josephson vortices and Fraunhofer features do not affect the
system under consideration. Therefore, the N region can be
effectively modeled as a δ-like spacer with a potential pro-
file h(x) = LNδ(x). The QSHI is proximitized by two s-wave
superconductors which are assumed to have equal gap mag-
nitudes, but different superconducting phases. Consequently,
the induced superconducting pairing in the QSHI, �eiφ(x),
retains a constant gap amplitude �, but an x-dependent phase
φ(x), φ(x < 0) = 0 and φ(x > 0) = φ, resulting in a global
phase difference φ. An out-of-plane magnetic field B = Bez

with B � 0 induces [58] (i) an orbital Doppler shift described
by the Cooper pair momentum pS and (ii) the edge-selective
superconducting-phase profiles �σ (x) with �σ (x < 0) = 0
and �σ (x > 0) = φσ , where

pS = π h̄
BWS

�0
, φσ = φ + σ

pS LN

h̄
. (2)
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FIG. 2. ABS given by Eq. (3) for the top edge for different values
of the dimensionless parameter γ = vF pS/(2�) [defined below in
Eq. (10)]: (a) γ = 0, (b) γ = 0.25, (c) γ = 1.25. Here the blue
and red colors denote different spin quantum numbers s =↑/↓≡ ±1
associated with the subgap ABS (solid lines) and the supragap con-
tinuum states (shadings).

The second term in φσ can be interpreted as a kinematic
phase acquired by a Cooper pair with a momentum σ pS when
traversing a distance of LN .

Following Refs. [57,59], the ABS spectra associated with
the model Hamiltonian, Eq. (1), are determined by means of
the spectral scattering approach, which yields per each edge
(indexed by σ ) two ABS branches (indexed by spin s) with an
obvious 2π periodicity,

εσ
s (φσ ) = s

[
−σ� cos

φσ

2
sgn

(
sin

φσ

2

)
+ vF pS

2

]
. (3)

When φσ = φt/b approaches an integer multiple of 2π , a pair
of the subgap ABS with opposite spin projections merges into
the continuum of quasiparticle states, see Fig. 2, while a pair
of ABS with the reversed spins splits-off from the supragap
states.

Complementary, the continuum of quasi-particles con-
tributes to the supra-gap density of states (DOS) that can be
separated into a phase-independent (shown explicitly later)
and phase-dependent part. It is the latter, which is important
for the computation of the Josephson current via differenti-
ation of the free energy with respect to the superconducting
phase difference. The phase-dependent part of the DOS, per
spin and edge, can be compactly written as

ρσ
s (ε, φσ ) = sσ�2

2π

�
(
ε2

s − �2
)
sgn(εs) sin φσ√

ε2
s − �2

(
ε2

s − �2 cos2 φσ

2

) (4)

with

εs = ε − svF pS/2. (5)

Although ρσ
s (ε, φσ ) can be negative, the total DOS, which

also includes the phase-independent part, is always positive.
As discussed in Ref. [57], a finite vF pS decreases the ef-
fective superconducting gap, which closes for |vF pS| � 2�.

However, for each spin species saddled by the opposite edges
of the QSHI the superconducting gaps still remain open in-
dividually, and although energetically not overlapping, see
Fig. 2(c), the bound and continuum states exist simultaneously
on a spatial scale defined by the junction width WS . In the
following, we will focus mainly on the setup with only one
proximitized edge, as shown in Fig. 1(a).

III. FREE ENERGY AND CURRENT

The ABS spectra, Eq. (3), and the supragap DOS due
to continuum states, Eq. (4), allow us to determine the free
energy from which the Josephson current and other thermody-
namic quantities follow straightforwardly. As the edges of the
QSHI-based JJ are dynamically decoupled, the total free en-
ergy turns into a sum of its top and bottom parts. Hence, in an
equilibrium held at temperature T and magnetic field B � 0,

the free energy F σ (φσ , T ) of the edge σ (more precisely its
phase-dependent part) equals

F σ (φσ , T ) = −kBT

{
ln

[
2 cosh

(
εσ
↑ (φσ )

2kBT

)]

+
∫ ∞

0
dερσ (ε, φσ ) ln

[
2 cosh

(
ε

2kBT

)]}
. (6)

Equation (6) consists of a discrete part due to ABS and of
a continuum part, which integrates over the supragap DOS
summed over both spin projections,

ρσ (ε, φσ ) =
∑

s=↑/↓
ρσ

s (ε, φσ ). (7)

As the superconducting phase difference φ and the edge-
saddled phase difference φσ differ by just a shift, Eq. (2), the
Josephson current carried by an edge σ is then calculated as

Iσ (φσ , T ) = 2e

h̄

∂F σ (φσ , T )

∂φσ
= 2e

h̄

∂F σ (φσ , T )

∂φ
. (8)

Inserting Eqs. (3) and (4) into the free energy F σ (φσ , T ), the
Josephson current splits into ABS and continuum contribu-
tions,

Iσ (φσ , T ) = Iσ
ABS(φσ , T ) + Iσ

cont(φ
σ , T ). (9)

Introducing the short-hand notations,

I0 = e�

2h̄
, γ = vF pS

2�
, �̃ = �

2kBT
, (10)

the current contributions read,

Iσ
ABS(φσ , T )

= I0 sin
φσ

2
tanh

[
�̃

(
cos

φσ

2
− σγ sgn

(
sin

φσ

2

))]

(11)

and

Iσ
cont(φ

σ , T ) = −I0
σ

�̃

1

π

∫ ∞

1
dx ln

[
cosh(�̃(x + γ ))

cosh(�̃(x − γ ))

]

× x2 cos φσ − cos2 φσ

2√
x2 − 1

(
x2 − cos2 φσ

2

)2 . (12)
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FIG. 3. Josephson current It , composed of the ABS and con-
tinuum states, carried by the top edge of the QSHI-based junction
plotted as a function of the phase difference φ and parameter γ =
vF pS/(2�) ∝ B. The dashed line traces the evolution of the su-
perconducting phase difference φ that minimizes the top-edge free
energy at a given value of γ . Here kBT = 0.1�, LN�/h̄vF = 0.1,

and the current It is measured in units of I0 = e�/(2h̄).

At zero magnetic field, γ reduces to zero and consequently
Eq. (12) gives no contribution, which is consistent with the
expectation that in field-free short junctions the supercurrent
is driven by the sub-gap states.

Figure 3 shows the top-edge current-phase relation, It (φ),
normalized to I0 at kBT = 0.1� as a function of the phase
difference φ and the dimensionless parameter γ ∝ B [see
Eq. (10)]. As γ increases, the maxima (red loci), minima (blue
loci), and zeros (white trench) of the current-phase relation
move along the φ axis, while, simultaneously, the amplitude
of the Josephson current reduces.

It follows from Eq. (8) that the points (γ , φt ) where It

vanishes and the free energy Ft minimizes—shown in Fig. 3
by the black dashed line—determine the ground-state phase,
i.e., the phase at which the top edge is in its ground state for a
given γ (magnetic field). As shown in Fig. 3, increasing γ

causes the ground-state phase to shift from 2π (∼ 0) to π ,
resulting in the top junction edge undergoing a 0 − π -like
transition. The second white trench seen in Fig. 3, emanating
from φ = π at γ = 0, corresponds to maxima of the free
energy Ft . The supercurrent at the bottom edge can read-
ily be obtained from Fig. 3 by using the symmetry relation
Ib(φ, γ ) = −It (2π − φ, γ ).

In the low-temperature limit, the integration in Eq. (12)
can be performed analytically and the contribution from the
continuum of states at the top/bottom edge reduces to

Iσ
cont(φ

σ , T → 0) = σ
2I0

π

{
γ+�(γ−1)

[
arctan

(√
γ 2 − 1

sin φσ

2

)

× sin
φσ

2
−

√
γ 2 − 1

]}
. (13)

Note that the above equation has been derived assuming
B � 0 or equivalently γ � 0. To obtain the corresponding
expression for B < 0, the relation Iσ (B, φ) = I−σ (−B, φ)

0 1 2 3 4
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FIG. 4. Top edge Josephson current characteristics for a QSHI-
based JJ. Panel (a) displays maximal (red), It+, and minimal
(blue), It−, critical currents (normalized to I0) as functions of γ =
vF pS/(2�) ∝ B. Panels (b) and (c) show, correspondingly, the ABS
contribution, It±

ABS, and continuum-state contribution, It±
cont, of It±.

Again the maxima and minima are plotted in red and blue.

can be used. It is instructive to connect the dependence of
Iσ
cont(φ

σ , T → 0) on γ with the closing of the effective su-
perconducting gap, see Fig. 2(b), and of the lifting of the
protected ABS crossing, see Fig. 2(c), when γ = vF pS/(2�)
exceeds unity.

IV. SUPERCONDUCTING DIODE EFFECT AND Q FACTOR

The maximum Iσ+ = maxφσ Iσ (φσ ) and minimum Iσ− =
minφσ Iσ (φσ ) of the total Josephson current for a given edge,
σ , at a given magnetic field B ∝ γ determine the Q factor,
Qσ (γ , T ). The latter serves as a figure of merit quantifying the
SDE as a function of the out-of-plane field and temperature,

Qσ (γ , T ) = |Iσ+| − |Iσ−|
I0

. (14)

Combining the low-temperature limit of Eq. (11) with Eq. (13)
yields

Qσ (γ , T → 0) = σ

{(√
1 − γ 2 − 1 + 4γ

π

)
�(1 − γ )

+
[

4

π
(γ −

√
γ 2 − 1)

+ 2

π
arctan(

√
γ 2 − 1) − 1

]
�(γ − 1)

}
.

(15)

Figure 4 illustrates the behavior of the Josephson current
on the top edge. In particular, the maximal and minimal
Josephson currents, It+ and It−, are displayed in Fig. 4(a) as
functions of γ ∝ B, while different contributions to It±, car-
ried by the ABS and continuum states, are plotted in Figs. 4(b)
and 4(c). As already observed in Fig. 3, the Josephson current
gets suppressed with increasing γ , and thus also Iσ±. Con-
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FIG. 5. Diode effect Q factor, Eq. (14), for the top edge of a
QSHI-based JJ as a function of γ ∝ B displayed for different tem-
peratures. Here Qt (T → 0) is computed by means of Eq. (15).

sequently, the Q factor is expected to approach zero when γ

increases.
This is borne out by Fig. 5, which shows the Q fac-

tor of the top edge for different temperatures. According
to Eq. (15), the Q factor at T = 0 exhibits a pronounced

maximum Qt
max =

√
16/π2 + 1 − 1 ≈ 0.618993 at γmax =

1/
√

1 + π2/16 ≈ 0.786439. The fact that both Qt
max and γmax

reduce to universal values, independent of junction parame-
ters, is quite remarkable [60]. As T increases, the Q factor
decreases until the pronounced peak observed at low temper-
atures is no longer discernible [see, for example, the solid line
corresponding to kBT = � in Fig. 5].

It is clear from Eq. (15) that the net Q factor of the narrow
topological JJs, consisting of top and bottom edges, Qtot =
Qt + Qb, vanishes because Qt = −Qb (see also Appendix B).
Hence, to realize a finite SDE in QSHI-based junctions, a
setup with disparate QSHI edges is required. This can be
achieved, for example, by using the setup depicted in Fig. 1(a),
where the superconductor proximitizes only one edge (the top
edge in this case), or by designing the heterojunction in a way
that the corresponding Fermi velocities vt

F and vb
F become

substantially different.

V. PARITY CONSERVING SUPERCONDUCTING
DIODE EFFECT

Having discussed the SDE in a situation without con-
straints on the fermion parity, we now discuss a scenario
in which the fermionic ground-state parity is conserved.
To keep track of that, all underlying quantities are indexed
by the subscript p. Correspondingly, the parity-conserved
free energy—up to phase-independent contributions—reads
[57,61,62]

F σ
p (φσ , T ) = F σ (φσ , T ) − kBT ln

{
1

2

[
1 + pPσ (φσ ) tanh

∣∣∣∣ε
σ
↑ (φσ )

2kBT

∣∣∣∣ exp

[
JS (T ) +

∫ ∞

0
dερσ

tot (ε, φ
σ ) ln

[
tanh

(
ε

2kBT

)]]]}
, (16)

where the equilibrium free energy F σ (φσ , T ) is given by
Eq. (6) and the parity factor equals

Pσ (φσ ) = sgn

[
cos

φσ

2
− σγ sgn

(
sin

φσ

2

)]
. (17)

The above form of Pσ (φσ ) implies a convention according to
which the fermionic parity p = +1 corresponds to the lower,
and p = −1 to the upper spectral branches in Fig. 2, where
lower and upper refer to energies near φ = 0.

In contrast to the Josephson current Iσ (φσ , T ) derived from
the equilibrium free energy F σ (φσ , T ), the parity conserv-
ing Josephson current Iσ

p (φσ , T ) derived from F σ
p (φσ , T ) via

Eq. (8), involves the total quasiparticle DOS, ρσ
tot (ε, φ

σ ) =
ρσ (ε, φσ ) + ρ0(ε), which, in addition to the term ρσ (ε, φσ )
given by Eq. (7), contains the phase-independent contribution,

ρ0(ε) = 2

πES

∑
s=↑/↓

|εs|�
(
ε2

s − �2
)

√
ε2

s − �2
, (18)

where the energy scale, ES = h̄vF /LS , is related to the total
length LS of the superconducting QSHI edge. In a similar way,
the φ-independent DOS of the superconducting electrodes on
top of the QSHI contribute with [63]

JS (T ) = − 2

πkBT ES

∫ ∞

�

dε

√
ε2 − �2

sinh (ε/kBT )
. (19)

Although the underlying expressions get more involved
when compared to Secs. III and IV, still some approximate
analytical results can be obtained in the limiting case T → 0
and γ � 1. However, one needs to pay attention in which or-
der are the corresponding mathematical operations taken into
action: first goes an integration in Eq. (16), then a derivative
with respect to φ, and finally the limit T → 0. Proceeding
in this way, the current for a fixed fermionic parity p = ±1
reduces to

Iσ
p (φσ , T → 0) = σ I0

(
p sin

φσ

2
+ 2γ

π

)
, γ � 1 (20)

with the corresponding Q factor [see Eq. (14)]

Qσ
p (γ , T → 0) = σ

4γ

π
, γ � 1. (21)

While Eqs. (20) and (21) already provide some useful guid-
ance, we proceed fully numerically for a more detailed
analysis.

Figure 6 shows the parity conserving Josephson currents,
It

p=±1(φσ , T ), at the top edge, for both fermionic parities p =
±1. In contrast to the parity unconstrained Josephson current,
It (φσ , T ), which exhibits 2π periodicity, its parity-conserved
counterpart, c, becomes 4π periodic [57,61,62]. Intriguingly,
Fig. 6 illustrates that the current-phase relations of the two dif-
ferent parities p = ±1 are only shifted along the φ axis with
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φ /π
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I t
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I t
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FIG. 6. Josephson current carried by the top edge of a QSHI-
based JJ plotted as a function of the phase difference φ with (solid
lines) and without (dashed line) parity constraints: It stands for parity
unconstrained 2π periodic current, Secs. II–IV, while It

p=±1 denotes
parity conserved 4π periodic currents with p = ±1. Here γ = 0.6,
kBT = 0.1�, ES = 0.05�, LN�/h̄vF = 0.1, and the currents are
measured in units of I0 = e�/(2h̄).

respect to each other, implying the Q factor to be independent
of the value of p, as also shown by Eq. (21). Moreover,
one can discern from Fig. 6 that for γ < 1 the asymmetry
between the magnitudes of the maximal and minimal values of
the Josephson current increases when the fermionic ground-
state parity is kept conserved. This, in turn, implies that for
γ < 1 parity conservation enhances the SDE, as evidenced by
Fig. 7, where the magnetic-field dependence of the Q factor
[see Eq. (14)] is shown for p = +1 and various tempera-
tures. Indeed, by comparing Figs. 5 and 7 we can observe
that, at a given temperature, the parity-conserved Q factor
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FIG. 7. Diode effect Q factor, Eq. (14), for the top edge of QSHI-
based JJ with the parity p = +1 as a function of γ ∝ B and different
temperatures. Here ES = 0.05�. Note that the Q factor for p = −1
is the same as that for p = +1.

is generally larger than its parity-unconstrained counterpart,
as long as the magnetic field keeps the global superconduct-
ing gap open (that is, when γ < 1). The parity-enhanced Q
factor is reminiscent of the enhanced parity-protected SDE
predicted in semiconductor-based Majorana wires [26]. How-
ever, when γ � 1, the additional contributions in Eq. (16)
tend to zero and F σ

p (φσ , T ) tends to the equilibrium free
energy F σ (φσ , T ). Therefore, the Q factors for the case
with and without fermionic parity conservation approach each
other when γ � 1. For low temperatures, Q increases linearly
(see Fig. 7), which is perfectly described by Eq. (21).

While we predict that for magnetic fields such that γ < 1,
topological JJs with conserved fermionic parity exhibit larger
Q factors than their parity unconstrained counterparts, their
experimental realization becomes more challenging, as will
be discussed in the following section.

VI. EXPERIMENTAL REALIZATIONS

Turning to potential experimental realizations displaying
the SDE, we first consider the situation, where the fermionic
ground-state parity does not play a role. As discussed above,
if both edges of the QSHI-based JJ are equivalent [e.g., as
illustrated in Fig. 1(b)], their contributions to the SDE cancel
each other out. One way to overcome this difficulty is to
design the system so that the two edges of the JJ become
nonequivalent. For example, by predominantly transporting
Cooper pairs along one edge, as shown in Fig. 1(a). In this
configuration, only the top edge constitutes a short JJ, while
the bottom edge forms a long JJ that carries less current due to
a diminished contribution from the ABS. Consequently, the Q
factor is dominated by that of the top edge, making the single-
edge physics discussed in Sec. IV experimentally relevant.

Another way to make the edges nonequivalent is by en-
dowing them with different Fermi velocities. For instance,
in Hg1−xCdxTe/HgTe/Hg1−xCdxTe-based quantum wells re-
alizing a QSHI, the bandgap and Fermi velocity depend on
(i) the thickness of the HgTe spacer [64,65] and (ii) the
stoichiometric ratio of the Cd compound [66,67]. There-
fore, manufacturing HgTe-based quantum wells with different
thicknesses and/or different Cd concentrations at opposite
edges will make the edges nonequivalent, resulting in an
observable nonzero SDE. For such HgTe-based junctions,
thin-film aluminium has been used successfully to induce
superconductivity in the presence of magnetic fields of more
than 1 T in the normal region [68,69]. We expect much smaller
magnetic fields, well below the critical magnetic field of the
parent superconductor, are needed to observe a sizable SDE
in such a system, however [70].

While we anticipate a finite SDE for QSHI junctions with a
single edge or nonequivalent edges in a situation without par-
ity constraints, preserving the fermionic parity of the ground
state in experimental setups poses additional challenges, re-
quiring conducting experiments on timescales shorter than the
quasiparticle poisoning rate [71,72]. For the topological JJs
based on Hg1−xCdxTe/HgTe/Hg1−xCdxTe, such timescales
become of the order of 1 µs [73–75]. Consequently, exper-
iments aiming to measure the parity-conserving SDE must
operate within a sub-µs range. Nevertheless, with modern
qubit and SQUID technologies enabling controlled modula-
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tion of φ on timescales of 1 ns or shorter [76], the observation
of a parity-conserving SDE in narrow topological JJs, despite
being challenging, should be experimentally feasible.

VII. CONCLUSIONS

In this work we have studied the SDE in narrow topolog-
ical QSHI-based JJs triggered by an out-of-plane magnetic
field. In general, the realization of the SDE in QSHI-based
JJs requires the transport of Cooper pairs through nonequiv-
alent edge channels at the opposite ends of the junction.
We investigated two different parity regimes—the conven-
tional, so-called parity-unconstrained regime and a novel one,
where the fermionic parity of the ground state is preserved.
Our findings demonstrate that QSHI-based JJs can be used
as versatile experimental platforms showcasing the SDE.
Furthermore, our calculations predict an increase in the Q
factor and, consequently, the diode efficiency as the tem-
perature decreases. Interestingly, in the parity-unconstrained
low-temperature regime, the maximum diode efficiency ex-
hibits a universal character, with the maximum Q-factor value
being independent of the system and Hamiltonian parameters.
This remarkable behavior appears to be a direct consequence
of the topological nature of edge-state charge transport in the
QSHI regime.

Complementary to detailed numerical simulations, we also
provide valuable analytical results that can be readily applied
to understanding, interpreting, and fitting experimental data.
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APPENDIX A: ALTERNATIVE DEFINITION OF Q FACTOR

In addition to the definition of the Q factor as given in
Eq. (14), one can alternatively define the Q factor as

Qσ
alt(γ , T ) = |Iσ+| − |Iσ−|

|Iσ+| + |Iσ−| , (A1)

where Iσ+ and Iσ− are the global maxima and minima of the
Josephson current, respectively. The dependence of Qt

alt(γ , T )
on γ is shown in Fig. 8 for different values of the temperature.
In the zero-temperature limit the Q factor defined by Eq. (A1)
can be written as

Qσ
alt(γ , T → 0)

= σ

{√
1 − γ 2 − 1 + 4γ /π√

1 − γ 2 + 1
�(1 − γ )

+
[

2(γ −
√

γ 2 − 1)

π/2 − arctan(
√

γ 2 − 1)
− 1

]
�(γ − 1)

}
. (A2)
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FIG. 8. Q factor of the top edge, Qt
alt, see Eq. (A1), as a func-

tion of γ = vF pS/(2�) ∝ B for different temperatures. Q(T → 0)
is computed from Eq. (A2).

APPENDIX B: JOSEPHSON CURRENT AT THE TOP
AND BOTTOM EDGES

As discussed in the main text, if the edge states at the
opposite ends (say, top and bottom) of the QSHI-based JJ
are equivalent, the SDE contribution at the top and bottom
edges cancel each other out, leading to a vanishing Q factor.
This is illustrated in Fig. 9, where the total Josephson current,
Itot(φ, T ) = It (φ, T ) + Ib(φ, T ), as well as the individual
contributions from the top and bottom edges are shown. When
the edges are equivalent, their associated currents It (φ, T )
and Ib(φ, T ) obey the symmetry relation, max[Itot(φ, T )] =
|min[Itot(φ, T )]|, which in turn implies that Qtot = 0.
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FIG. 9. Total Josephson current (black) of a QSHI-based JJ and
the individual contributions from the top (blue) and bottom (red)
edges as a function of the phase difference φ. Here vF pS = 0.9�

and LN�/h̄vF = 0.1.
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