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Ex-so-tic van der Waals heterostructures take advantage of electrically tunable layer polarization to swap
proximity exchange and spin-orbit coupling in the electronically active region. Perhaps the simplest example
is Bernal bilayer graphene (BBG) encapsulated by a layered magnet from one side and a strong spin-orbit
material from the other. Taking WS2/BBG/Cr2Ge2Te6 as a representative ex-so-tronic device, we employ
realistic ab initio inspired Hamiltonians and effective electron-electron interactions to investigate the emergence
of correlated phases within the random phase approximation. We find that exchange and spin-orbit coupling
induced Stoner and intervalley coherence instabilities can be swapped for a given doping level, allowing one to
explore the full spectrum of correlated phases within a single device.
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I. INTRODUCTION

While a variety of novel electronic correlation effects
have initially been discovered in twisted graphene struc-
tures [1–4], recent demonstrations of quarter- and half-
metallic states [5–10] and superconductivity [7,11–17] in
rhombohedral trilayer graphene, as well as the observation
of isospin magnetism and spin-polarized superconductivity in
Bernal bilayer graphene (BBG) [18–26], are clear evidence
for correlated physics without moiré patterns. A common
feature, boosting the electron-electron interactions in these
systems is the presence of van Hove singularities (vHS) near
the charge neutrality point [27–29]. Particularly attractive is
the tunability of the correlated phases by a displacement field,
which can shift the electronic levels of the vHS [5,11,18,19].

The electronic states of two-dimensional materials in van
der Waals heterostructures can be also affected by prox-
imity effects [30]. Relatively strong spin interactions, for
example, can be induced in materials such as graphene
which exhibits weak spin-orbit coupling [31–33]. Indeed,
proximity-induced spin-orbit (SO) and exchange (EX) in-
teractions have been predicted theoretically [34–45] and
confirmed experimentally [46–60] in BBG-based heterostruc-
tures. Specifically, valley-Zeeman, Kane-Mele, and Rashba
SO couplings have been shown to emerge [34–41,46–56],
along with (anti)ferromagnetic EX couplings [39–43,45–
57,59–61], typically causing spin splittings on the meV scale.

Perhaps the most striking manifestation of the proxim-
ity effects is the possibility to swap the spin couplings, EX
and SO, by a displacement field, whereby changing the spin
Hamiltonian in the active layer. This effect arises due to the
interplay of the short-range proximity interactions and layer
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polarization by the field. An experimentally relevant materials
system to consider is that of BBG encapsulated from one side
by a strong spin-orbit material, such as WS2, and a magnetic
semiconductor, such as Cr2Ge2Te6 (CGT), from the other
side. The resulting heterostructure, termed “ex-so-tic” [40],
allows one to imprint selectively either SO or EX coupling
onto the Bloch states of the BBG.

Given that BBG can host correlated phases, is it possible
to swap between the phases induced by EX and SO coupling?
As we show here, ex-so-tronic devices can indeed supply
on-demand correlated phases, allowing one to swap the ef-
fective single-particle excitation Hamiltonians enabled by the
layer polarization effect. Although our conclusions are more
general, we specifically study WS2/BBG/CGT, for which an
effective orbital and spin-interaction Hamiltonian has been
derived from density functional theory (DFT) [39,40]. Em-
ploying random-phase approximation (RPA) [62–67], we first
examine the particle-hole instabilities of pristine BBG, whose
correlated phase diagram features intervalley coherence
(IVC) [68] and Stoner instabilities [14,15]. The spin interac-
tions induced by proximity SO (see the latest works [26,69–
71]) and EX couplings remove the spin and valley degen-
eracies of IVC and Stoner phases and cause a plethora
of emergent spin-valley correlated phases. In ex-so-tic het-
erostructures, such as the here employed WS2/BBG/CGT,
the phases can be effectively swapped, while the evidence of
the interplay of SO and EX interactions can be seen in the
single-particle [Hartree-Fock (HF)] excitation spectra which
we also calculate.

II. MODEL

The orbital degrees of freedom of BBG are modeled by a
realistic Bloch Hamiltonian [32,40]:

ĥ0(k, τ )=

⎛
⎜⎜⎝

� + V γ0 f (k) γ4 f ∗(k) γ1

γ0 f ∗(k) +V γ3 f (k) γ4 f ∗(k)
γ4 f (k) γ3 f ∗(k) −V γ0 f (k)

γ1 γ4 f (k) γ0 f ∗(k) � − V

⎞
⎟⎟⎠ (1)
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FIG. 1. (a) Scheme of an ex-so-tic heterostructure comprising of
BBG encapsulated by WS2 and CGT which proximitize the BBG by
SO (WS2) and EX (CGT) interactions. (b) BBG unit cell with rele-
vant interlayer orbital hoppings and on-site energies. The intralayer
nearest-neighbor hopping γ0 is not indicated. The colors distinguish
A and B sublattices within the two layers. (c) Calculated single-
particle low-energy electronic dispersions of WS2/BBG/CGT near
K and K ′ points obtained from h(k, τ ) for V = ±10 meV; red bands
are spin polarized up, blue are spin polarized down; the spin quanti-
zation axis z is perpendicular to the layers.

in the basis of pz orbitals ordered as (A1, B1, A2, B2). Param-
eters γ denote intra- (γ0) and interlayer (γ1, γ3, γ4) hoppings
[see Figs. 1(b) and 1(c)]. The displacement field is accounted
for by on-site energy V , while the asymmetry between A and B
sublattice is quantified by �. Momenta k = (kx, ky ) are mea-
sured from K and K ′ valleys, while f (k) = −(

√
3al/2)(τx −

iky) is the linearized nearest-neighbor tight-binding function;
al = 2.46 Å is graphene’s lattice constant and τ = τK/K ′ =
±1 is the valley index. Since the SO coupling of pristine
BBG is weak—about 24 µeV [32]—we do not include it in
the Hamiltonian.

To model proximitized BBG in a WS2/BBG/CGT ex-so-
tic heterostructure, we need to include SO (due to WS2) and
EX (due to CGT) couplings, which were shown by ab initio
calculations and weak-antilocalization measurements [72] to
be sizable, on the order of 1 meV [39,40]. The correspond-
ing proximity induced spin interactions are described near K
and K ′ valleys by the Hamiltonian ĥprox(τ ) = ∑

l ĥl
VZ(τ ) +

ĥl
ex(τ ), for valley-Zeeman (VZ) spin-orbit, and exchange (ex)

coupling [34,38,41,44]:

ĥl
VZ(τ ) + ĥl

ex(τ ) =
((

τ λ
Al
VZ − λAl

ex

)
sz 0

0 −(
τ λ

Bl
VZ + λBl

ex

)
sz

)
,

(2)

parametrized by the corresponding sublattice and layer-
resolved couplings λ

Al /Bl
VZ and λ

Al /Bl
ex . We denote by sz the spin

Pauli matrix. Each ĥl is a 4 × 4 matrix in the spin-sublattice
resolved basis (Al↑, Al↓, Bl↑, Bl↓) within layer l (bottom, l =
1; top, l = 2). Since spin-orbit coupling in graphene induced
by transition metal dichalcogenide monolayers (TMDCs) is of
the valley-Zeeman type [37], we set λ

Al
VZ ≈ −λ

Bl
VZ.

The numerical values for the parameters of the single-
particle Hamiltonian, ĥ(k, τ ) = ĥ0(k, τ ) + ĥprox(τ ), are taken
from the ab initio results of Ref. [40] and presented in
Table I. The calculated low-energy band dispersions for
WS2/BBG/CGT are shown in Fig. 1(c). The signs of V and
electron doping ne determine the dominant proximity spin
interaction. If both V and ne are positive or negative, the
electrons at the Fermi level experience proximity exchange
coupling, while if the signs of V and ne are opposite, the
electrons at the Fermi level have strong proximity spin-orbit
coupling; we use labels (SO) and (EX) in Fig. 1(c) and below
when needed to keep track of the dominant spin interaction.

To investigate correlation phenomena we introduce the
many-particle Hamiltonian operator as the sum of the kinetic
and potential energies Ĥ = Ĥkin + Ĥint, where

Ĥkin =
∑

kτ s,i j

ĉ†
sτ i(k)[ĥ(k, τ ) − μ]si,s′ j ĉs′τ j (k), (3)

Ĥint = U0(n̂↑K n̂↓K + n̂↑K ′ n̂↓K ′ ) + U1n̂K n̂K ′ . (4)

Here, ĉ(†)
sτ i(k) is the annihilation (creation) operator for a

Bloch electron with spin s =↑/↓ in valley τ = K/K ′ on BBG
sublattice i with valley momentum k; μ is the chemical po-
tential. The intravalley and intervalley density interactions
are described by repulsive (positive) couplings U0 and U1,
respectively, while n̂sτ = ∑

|k|<kc

∑
i ĉ†

sτ i(k)ĉsτ i(k) stands for
the spin-valley number operator in the sτ -channel cutoff by
a momentum kc; the valley number operator then is n̂τ =
n̂↑τ + n̂↓τ .

In the following, we consider SU(4)-symmetric interac-
tions by setting U0 = U1 = U = 19 eV [14,71,73], and kc =
0.06 Å−1, which are consistent with the experimental pristine
BBG phase diagram [18,19]. We use the same interaction
parameters for the WS2/BBG/CGT heterostructure.

III. METHODOLOGY

To resolve the correlated phases of our models of pris-
tine and proximitized BBG we employ the RPA. First, we
evaluate the noninteracting generalized static Lindhard sus-
ceptibility, χ0, [65–67] using the BBG Hamiltonian Ĥkin,
Eq. (3), at 0.4 K, considering different spin-valley modes sτ
in the particle-hole channel. Second, we calculate the dressed
susceptibility, χ = [1 − χ0�]−1χ0, where � is the irreducible
vertex function corresponding to Ĥint, Eq. (B2). Finally, we
check for the divergence of χ : If the highest eigenvalue λc of
χ0� becomes greater than or equal to unity, a correlated phase
corresponding to that eigenvalue emerges.

In particular, we find all possible correlated phases �̂ of
different spin-valley channels by first diagonalizing χ0� at
μ = 0 and V = 0. Then, varying the doping and displacement
field, we compute the corresponding χ0 and χ0�. For each
�̂ found above we estimate the critical parameter λc(�̂) =
〈�̂|χ0�|�̂〉/‖�̂‖2. The dominant instability is realized by
phase �̂ that at given μ and V has the highest λc(�̂). Each
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TABLE I. The numerical values for the parameters of the low-energy single-particle Hamiltonian of WS2/BBG/CGT heterostructure are
taken from the ab initio results of Ref. [40].

γ0 (eV) γ1 (eV) γ3 (eV) γ4 (eV) � (meV) λ
A2
I (meV) λ

B2
I (meV) λ

A1
X (meV) λ

B1
X (meV)

2.432 0.365 −0.273 −0.164 8.854 1.132 −1.132 −3.874 3.874

symmetry-breaking phase �̂ can be expressed in terms of
ĉ(†)

sτ i(k) operators:

�̂ =
∑

|k|<kc

∑
i

ĉ†
sτ i(k) [ M� ]sτ,s′τ ′ ĉs′τ ′i(k), (5)

where the spin-valley resolved matrices M� that are relevant
for our model are listed in Table II. However, at the phase
boundaries, the dominant phase can be unresolved due to the
degeneracy of several λc(�̂).

Figure 2 displays the obtained correlated phase diagram of
pristine BBG. We find IVC and Stoner instabilities, as also
reported earlier [14,15]. While the Stoner instability is local,
the IVC state corresponds to a phase spatially modulated by
wave vector q which connects K and K ′ valleys. The fact that
Ĥkin lacks particle-hole symmetry is reflected in the different
phases for the electron and hole doping ranges. Both IVC
and Stoner phases exhibit degeneracies, as listed in Table I,
due to not fully broken spin-valley symmetries. The critical
temperatures for each correlated phase depend heavily on the
doping parameters and displacement field. With the chosen
interaction parameters, it can reach up to 2.2 K for IVC and
1.0 K for the Stoner phases, as shown in Appendix E.

Figure 3 shows the main result of the paper. There, we plot
the correlated phase diagram of WS2/BBG/CGT for different
doping levels and displacement fields. Compared with the
pristine case, the phase diagram of proximitized BBG is rather
rich. Indeed, if the Fermi level crosses bands experiencing
strong proximity SO coupling, the Stoner phase breaks up
into two SVP± states—both displaying spin-valley polariza-
tion along the ±z direction—while IVC splits into spin-valley
coherent states SVC±. Resolving specific spin-valley states
within the Stoner and IVC phases is attributed to the valley-
Zeeman SO coupling [37]. Similarly, if the Fermi level lies in
bands with strong EX coupling, the Stoner phase evolves into
valley-polarized states, VP±, while IVC is split into charge
density waves, VC±. The multitude of spin-valley-split phases
of proximitized BBG due to SO and EX interactions are sum-
marized in Table II, including the explicit forms of the phase
operators �̂. Their expectation values in the corresponding
ground states can serve as the conventional order parameters
discriminating different phases.

Let us take a closer look at vHS. If the singularity is split
due to the valley-Zeeman SO coupling, two SVC± phases
appear. As the corresponding MSVC± contain spin sx and sy

matrices, and valley τx and τy matrices, they can be described
as intervalley spin-flip hopping that retains the spin-valley
quantum number, i.e., the product of sτ . Say, spin up at K is
degenerate with spin down at K ′. Coupling the two enabled by
the Coulomb interaction lowers the kinetic energy, resulting in
an SVC correlated phase. Similarly, when vHS are split by EX
interaction, two spin-polarized VC± phases form up. Contrary
to SVC±, MVC± does not mix spins—it involves s0 and sz spin
matrices—but similarly as SVC± it intertwines the valleys—
matrix τx. Because of that both SVC± and VC± possess
spatial modulations; the correlations effectively enlarge the
BBG unit cell into a “magnetic” 3 × 3 unit cell. Consequently,
the Brillouin zone gets smaller while both valleys fold into the
� point. In what follows, the k vector is measured with respect
to the center of such a reduced Brillouin zone.

Finally, to find the effective single-particle excitation
energies of the correlated phases of our WS2/BBG/CGT
model, we employ the HF method and solve the following
eigenproblem:

(Ĥkin + 	̂)|ũn(k)〉 = ε̃nk|ũn(k)〉, (6)

where ε̃nk and |ũn(k)〉 are HF-corrected quasiparticle energies
and wave functions labeled by the band index n and the
k vector in the reduced Brillouin zone. Correspondingly, 	̂

represents the HF self-energy, which mixes spin and valley
indices; for details, see Appendix C.

To illustrate how our ex-so-tic heterostructure enables one
to swap two correlated phases, one induced by valley-Zeeman
SO and the other by EX coupling, we consider one particular
doping level, namely hole density ne = −0.183 × 1012 cm−2.
At positive V = 18.5 meV, the most stable correlated phase
(largest λc) is a spin-valley coherence SVC−. This phase
arises due to the proximity spin-orbit coupling from WS2, and
couples the opposite spins at the two valleys. It is character-
ized by the flat band states close to the Fermi level exhibiting
reduced spin polarization, which is not exactly zero because of
the residual proximity exchange. Flipping the direction of the
displacement field to V = −18.5 meV, a different correlated

TABLE II. List of phases and corresponding phase operators �̂ = ∑
|k|<kc

∑
i ĉ†

sτ i(k) [ M� ]sτ,s′τ ′ ĉs′τ ′i(k) = �̂† resolved in different spin-
valley channels for the relevant symmetry-broken phases of pristine and proximitized BBG. The spin-valley resolved matrices M� entering �̂’s
are given in the third line. Phases involving τx or τy are valley mixed, i.e., they possess spatial modulation with vector q = (2π/3al )(1,

√
3)

which connects K and K ′ valleys.

Pristine BBG phases IVC Stoner

Proximity phases SVC± VC± SVP± VP±

Spin-valley matrices M� [sxτx ± syτy] [s0 ± sz]τx [szτ0 ± s0τz] [s0 ± sz]τz
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FIG. 2. Calculated phase diagram of pristine BBG for varying
doping ne and displacement field V . We only show phases for V > 0,
as the diagram has V to −V symmetry. There are two dominant
phases: the intervalley coherent phase (IVC), displayed by blue, and
the Stoner instability, shown in red. The white background corre-
sponds to a stable Fermi liquid (FL). The phase diagram was obtained
for T = 0.4 K.

phase emerges, VC−, in which the states at the Fermi level
are fully spin polarized, due to the proximity exchange from
CGT.

In Fig. 4 we also show the markedly different quasiparticle
Fermi contours of the two swappable phases SVC− and VC−.
To make this visualization, we plotted the thermally broad-
ened density of states (derivative of the Fermi-Dirac function)
at T = 0.4 K:

ρnk = − df (ε)

dε

∣∣∣∣
ε̃nk

= 1

kBT

[
4 cosh

(
ε̃nk − μ

2kBT

)]−2

. (7)

Inspecting Fig. 4 we see that the quasiparticle band struc-
tures for the two considered phases, and also the shapes of
their Fermi contours, demonstrate very pronounced spectral
asymmetries at the corresponding Fermi levels. However,
regions with more smeared portions of the Fermi surface
(different from just contour plots) are visible in the center of
the reduced Brillouin zone.

FIG. 3. (a) Correlated-phase diagram of a model of ex-so-tic
WS2/BBG/CGT heterostructure, for varying doping ne and dis-
placement field V . Eight symmetry-breaking phases are predicted to
emerge due to the interplay of the electron-electron interactions and
proximity-induced SO and EX splittings: VC± (valley coherence),
SVC± (spin-valley coherence), SVP± (spin-valley polarized state),
and VP± (valley polarized state), each marked by a different color.
The FL phase is displayed by white. The phase diagram was obtained
for T = 0.4 K.

FIG. 4. Swapping SVC and VC. Calculated HF quasiparticle
band structures and spin-valley-resolved Fermi surfaces for the
correlated SVC− phase (a), (c), with V = +18.5 meV and ne =
−0.183 × 1012 cm−2, and VC− phase (b), (d), with V = −18.5 meV
and ne = −0.183 × 1012 cm−2. Red, blue, and gray lines mark, cor-
respondingly, spin-up, spin-down, and spin-unpolarized states.

Knowing the HF self-energies 	̂ we are able to
estimate the magnitudes of the associated correlated gaps,
��̂ = ∑

sτ,s′τ ′ �̂∗
s′τ ′,sτ 	̂sτ,s′τ ′/‖�̂‖2. This yields for the con-

sidered SVP− and VC− phases the following values: �SVP− =
0.109 meV and �VC− = 0.085 meV.

To model an interacting system with a symmetry-broken
phase at a self-consistent mean-field level, one can factorize
Ĥint, Eq. (B2), in terms of accessible �̂’s and for a given
dominant phase approximate the interaction just by Ĥ� =
��̂�̂. For example, for a SVC± phase, one explores an
effective Hamiltonian Ĥkin + �SVC±�̂SVC± which promotes
spin-flip-valley-flip hopping due to the interplay of interval-
ley electron-electron interactions and the valley-Zeeman SO
coupling. Such a phase enables alternative spin interactions
and is expected to result in alternative phenomena in spin-
tronics [74]. In turn, a VC± phase can be treated on the
mean-field level by Ĥkin + �VC±�̂VC± which gives rise to
spatial modulations of the already spin-split bands due to the
proximity-induced EX interaction.

IV. CONCLUSION

By performing realistic calculations at the RPA level,
and by computing Hartree-Fock excitation spectra, we pre-
dict that the correlated states of ex-so-tic heterostructures
based on BBG can be swapped between SO and EX driven
phases. A single device can exhibit the full spectrum of
correlated phases, from uniform Stoner valley polarized, to
spatially modulated spin-polarized VC and spin-flip-valley-
flip spin-valley coherences. While we specifically consider
the DFT parametrization of one stacking of WS2/BBG/CGT,
our findings are more general and valid for twisted struc-
tures with modified proximity spin interactions, as well as
for different encapsulating spin-orbit materials and magnetic
semiconductors/insulators.
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APPENDIX A: GENERALIZED LINDHARD
SUSCEPTIBILITY TENSOR

To calculate the static susceptibility tensor, χ0
abcd , we

use the generalized Lindhard susceptibility formula that
employs the eigenstates and eigenvalues of the full single-
particle Hamiltonian ĥτ s(k), in the case of pristine or
proximitized BBG, correspondingly, with or without the
proximity-furnished SO and EX interactions:∑

j

ĥa
i j (k)ua j

nk = εa
nkuai

nk, (A1)

where εa
nk denotes single-particle energy and uai

nk is the
amplitude of the nth eigenstate |unk〉 projected onto a sub-
lattice i in a spin-valley channel a. In what follows we
reserve indices m, n to label electronic bands stemming
from the single-particle Hamiltonian ĥ(k), and indices i, j
to label BBG sublattices (A1, B1, A2, B2). Moreover, we in-
troduce four quantum numbers 0,1,2,3—saddled by indices
a, b, c, d, u, v—that overall parametrize the spin-valley de-
grees of freedom:

0 = (↑ ×K ), 1 = (↑ ×K ′),

2 = (↓ ×K ), 3 = (↓ ×K ′). (A2)

Also, we would like to point out that indices with a bar such
as ā, b̄, etc., correspond to creation operators, while those
without a bar such as a, b, etc., correspond to annihilation
operators.

The generalized Lindhard susceptibility tensor, χ0, can be
given in terms of eigenenergies εa

nk and projections uai
nk as

follows:

χ0
ābb̄a = Auc

∫
|k|<kc

d2k
(2π )2

×
∑
nm

∑
i j

f a
nk − f b

mk

εb
mk − εa

nk

(
uai

nk

)∗
ubi

mk

(
ub j

mk

)∗
ua j

nk, (A3)

where Auc stands for an area of the unit cell and the corre-
sponding Fermi-Dirac weights f a

nk read

f a
nk = 1

1 + exp
[(

εa
nk − μ

)/
kBT

] (A4)

where μ is chemical potential.
The static susceptibility, χ0, as used in the main text and

below is computed for T = 0.4 K (equivalent in energy to
0.02 meV, which is an order of magnitude below the mag-
nitudes of all estimated correlated gaps ��̂), and for the
momentum cutoff kc = 0.06 Å−1. The latter corresponds to
the orbital-energy scale

√
3/2alγ0kc = 0.453 eV, i.e., the em-

ployed ultraviolet cutoff is sufficiently larger than the SO and
EX coupling strengths, displacement field magnitudes, and
chemical potentials as considered in this paper. This proves

that the used temperature T and electron-electron couplings
U0 and U1 are chosen meaningfully and are not spoiling the
physical results obtained in our calculations.

APPENDIX B: RANDOM PHASE APPROXIMATION:
VERTEX FUNCTION

We treat emergent correlations by means of the following
density-density Hamiltonian:

Ĥint = U0(n↑K n↓K + n↑K ′n↓K ′ ) + U1nK nK ′

= U0(n0n2 + n1n3) + U1(n0 + n2)(n1 + n3) (B1)

where U0 > 0 and U1 > 0 are parametrizing the intravalley
and intervalley effectively repulsive interactions. To obtain the
RPA vertex function, U , we use the conventional approach,
which gives

Ĥint = 1

4

∑
abcd

Ucādb̄ĉ†
ā ĉ†

b̄
ĉcĉd . (B2)

The representative components of this spin-valley tensor are
given by

U0220 = U1331 = +U0,

U0022 = U1133 = −U0,

U0110 = U0330 = U1221 = U2332 = +U1,

U0011 = U0033 = U1122 = U2233 = −U1. (B3)

All nonprovided components of the U tensor can be obtained
by the relation Uabcd = Udcba.

APPENDIX C: SELF-CONSISTENT HARTREE-FOCK
CALCULATIONS

This paper employed a self-consistent Hartree-Fock ap-
proach to determine the correlated band structure. The
effective Schrödinger equation is given by∑

b

[
εa

nkδāb + 	āb
]
ũb

nk = ε̃nkũa
nk, (C1)

where ε̃a
nk and ũnk denote Hartree-Fock corrected single-

particle energy and wave function, and as before n denotes
band index and a, b are spin-valley degrees of freedom. 	ab is
the Hartree-Fock self-energy that was calculated as follows:

	āb = −
∑
cd

Ubācd̄ Gcd̄ , (C2)

where Uabcd is the RPA vertex function and Gcd is the den-
sity matrix. The density matrix is subsequently determined as
follows:

Gcd̄ = Auc

∫
|k|<kc

d2k
(2π )2

∑
i,n

[
f̃nk − 1

2

]
ũci

nk

(
ũdi

nk

)∗
. (C3)

Note that the orbital and band indices are traced out to calcu-
late the density matrix Gcd . The corresponding Fermi-Dirac
weights f̃nk read

f̃nk = 1

1 + exp[(ε̃nk − μ)/kBT ]
. (C4)
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We constrain chemical potential μ by fixing electron
doping:

ne =
∫

|k|<kc

d2k
(2π )2

∑
n

[
f̃nk − 1

2

]
. (C5)

The offset −1/2 in Eqs. (C3) and (C5) is intended to fix
the chemical potential equal to zero at the point of charge
neutrality.

APPENDIX D: TWO-PARTICLE RESPONSE FUNCTION
LINEAR ALGEBRA

In our paper, we used the following linear algebra rule for
the product of two-particle response functions in a particle-
hole channel labeled by the spin-valley indices:

[A · B]abcd =
∑
uv

AabuvBvucd . (D1)

Thus, the expression for calculating the critical parameter can
be obtained as follows:

λc = 1

‖�̂‖2

∑
ab

∑
cd

�̂∗
bāχ

0
ābb̄aUab̄cd̄�̂d̄c. (D2)

The most relevant set of �̂’s corresponding to correlated
phases in BBG with and without SO and EX couplings was
obtained by the diagonalization of the symmetric matrix χ0U :

λc�̂āb =
∑
cd

χ0
ābb̄aUab̄cd̄�̂d̄c, (D3)

at charge neutrality point and zero displacement field. The list
of �̂’s is provided in Table II in the main text.

FIG. 5. Temperature/doping phase diagram for pristine BBG at
the displacement field with a layer energy difference of 30 meV.
There are two dominant phases: the IVC, displayed by blue, and the
Stoner instability, shown in red. The white background corresponds
to a FL.

The value of the correlated gap in our paper was calculated
using the following formula:

��̂ = 1

‖�̂‖2

∑
ab

�̂∗
bā	āb. (D4)

Prefactor 1/‖�̂‖2 is due to the normalization of �̂, as repre-
sented in Table II in the main text.

APPENDIX E: TEMPERATURE/DOPING PHASE
DIAGRAM FOR PRISTINE BBG

To clarify the robustness of the different phases with tem-
perature, we calculated a temperature/doping phase diagram
for pristine BBG at the fixed displacement field V = 30 meV,
which is displayed in Fig. 5. The Stoner phase is predicted to
be stable up to 1.0 K, while IVC can be up to 2.2 K.
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