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J1-J2 fractal studied by multirecursion tensor-network method
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We generalize a tensor-network algorithm to study the thermodynamic properties of self-similar spin lattices
constructed on a square-lattice frame with two types of couplings, J1 and J2, chosen to transform a regular
square lattice (J1 = J2) onto a fractal lattice if decreasing J2 to zero (the fractal fully reconstructs when J2 = 0).
We modified the higher-order tensor renormalization group (HOTRG) algorithm for this purpose. Single-site
measurements are performed by means of so-called impurity tensors. So far, only a single local tensor and
uniform extension-contraction relations have been considered in HOTRG. We introduce 10 independent local
tensors, each being extended and contracted by 15 different recursion relations. We applied the Ising model to
the J1 − J2 planar fractal whose Hausdorff dimension at J2 = 0 is d (H ) = ln 12/ ln 4 ≈ 1.792. The generalized
tensor-network algorithm is applicable to a wide range of fractal patterns and is suitable for models without
translational invariance.
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I. INTRODUCTION

The understanding of phase transitions and critical phe-
nomena plays an important role in condensed-matter physics.
Much of the research on phase transitions has been devoted
to the regular lattices. The two-dimensional classical Ising
model on the square lattice is exactly solvable; on the other
hand, there are no exact solutions for the spin models on
fractals, so these must be studied numerically, requiring sig-
nificantly higher effort than for regular lattices.

Many condensed-matter systems can be characterized as
fractal objects; for instance, percolation clusters, aggregates
obtained from diffusion-limited growth processes, and ad-
sorbent surfaces [1]. Earlier studies on fractals from the
viewpoint of the renormalization flow were carried out by
Gefen et al. [2–5]. One of the main results yields the fact
that the short-range classical spin models on finitely ramified
lattices exhibit no phase transition at nonzero temperature
[1,6]. The explanation can come from the relation of the
boundary length of a finite-size fractal to its linear size, which
strongly resembles one-dimensional systems. However, the
Ising model on the Sierpiński carpet exhibits a phase transition
[7]. There have been many attempts to study the Ising model
on the Sierpiński carpet numerically by Monte Carlo com-
bined with the finite-size scaling method [8–12], including the
Monte Carlo renormalization group method [13]. Significant
progress has been made recently in understanding the phase
transition and critical phenomena on fractal lattices.

Adaptation of the higher-order tensor renormalization
group (HOTRG) for a fractal lattice with Hausdorff dimen-
sion d (H ) = ln 12/ ln 4 ≈ 1.792 was introduced in Ref. [14].
Therein, the numerical calculations were shown to be stable
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with respect to the bond dimension D. Based on the order pa-
rameter, the critical temperature was obtained, together with
the critical magnetic exponent. The density matrix spectrum
exhibits an exponential decay even at the critical point, which
is possible to interpret as the system being less entangled
because of the fractal geometry. The technical details of the
methods used in [14] are presented in Ref. [15]. The hyper-
scaling hypothesis is briefly discussed as well. Preliminary
results on two separate infinite series of fractal lattices are
presented and discussed.

In Ref. [16], HOTRG was applied to the study of the
transverse-field Ising model on the Sierpiński fractal with
the Hausdorff dimension log2 3 ≈ 1.585. Ground-state energy
and magnetization were calculated and analyzed.

In Ref. [17], HOTRG was adapted to the classical Ising
model on the Sierpiński carpet with the Hausdorff dimension
log3 8 ≈ 1.8927 using two types of local tensors. The position
dependence of local thermodynamic functions was studied by
employing impurity tensors, which were inserted at different
locations on the fractal lattice. It was found that the critical
exponent associated with the local spin polarization (spon-
taneous magnetization) varies by two orders of magnitude,
depending on lattice location; however, the critical tempera-
ture Tc was found to be positionally independent.

Compared with their regular lattice counterparts, the geo-
metrical details, such as lacunarity and connectivity, are the
distinct key features of fractal lattices. If we embed a fractal
lattice into a regular lattice and treat the coupling on the
bonds not covered by the fractal differently, we can con-
tinuously interpolate between fractal and regular lattices. In
this paper, we explore the phase-transition phenomena on a
particular family of lattices that we can continuously interpo-
late between the planar fractal lattice [14] with the Hausdorff
dimension d (H ) = ln 12/ ln 4 ≈ 1.792 and the regular square
lattice d (H ) = 2. The property of self-similarity (i.e., scale
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FIG. 1. One step of the growth process of the J1-J2 fractal lattice.
Empty circles represent the two-state Ising spins. The thick (black)
lines and the thin (red) lines represent the interactions with the
spin-spin coupling equal to J1 and J2, respectively. Left: The basic
4 × 4 spin cluster is composed of 42 vertices, where 12 of them are
connected by the J1 coupling (in black), and the remaining four spin
vertices are located in the corners only, being surrounded by the J2

couplings (in red). Right: Extended cluster containing 162 vertices
with 122 spin vertices connected via J1 (the thick bonds in black)
and the remaining 112 (= 4 × 16 + 12 × 4) spin vortices with J2

coupling only (thin bonds in red).

invariance) of the lattice is preserved throughout the trans-
formation. However, only the regular square lattice is fully
translationally invariant.

Here, we develop a numerically stable technique, which
can also be applicable to a family of fractal lattices with
partial translational noninvariance. We call this family of lat-
tices J1-J2 fractals, as our technique employs two types of
couplings: J1 for bonds creating the fractal (thick bonds in
black, as depicted in Fig. 1) and the remaining couplings J2
(thin bonds in red). A pure fractal lattice is obtained when
specified bonds are cut by setting J2 = 0, and a regular square
lattice is recovered when J1 = J2 = 1.

In order to analyze the phase transitions for the spin mod-
els on the fractal, we generalized the extension scheme in
HOTRG [18], as we have used in Refs. [14,15]. Rather than
considering only one type of the local tensor with the uni-
form extension relation, we introduce several types of local
tensors (in this case 10), with each one being extended by
a different recursion relation. The recursion relations specify
how to combine different tensors in order to extend the size of
the fractal iteratively, as required by HOTRG. The recursion
relations reflect the symmetry of the self-similar lattices at
every scale (i.e., scale invariance) and are compatible with
the framework of the renormalization group applied to tensor
network states. The computational cost scales with the bond
dimension in the same way as in the two-dimensional HOTRG
with a constant-factor overhead.

Local observables, such as magnetization and energy, can
be implemented by means of impurity tensors. For concrete-
ness, we focus on the Ising model on the fractal lattice shown
in Fig. 1, which was recently studied using a different ap-
proach [14,15] and is meant for comparison with the current

approach, which has the potential to be applied to various
types of fractals.

We expect that the critical behavior may substantially
change as the lattice transforms from the regular lattice to
a fractal one. For example, if comparing the Ising model
on the fractal and square lattices [14,15], the numerically
calculated critical temperatures Tc and associated magnetic
critical exponents β differed significantly: Tc ≈ 1.317 16, β ≈
0.0137 and Tc = 2/ ln(1 + √

2) = 2.269 19 . . . , β = 1/8 =
0.125, respectively.

Moreover, we observed no divergence of the specific heat
at the critical temperature in the fractal-lattice Ising model,
as it has to be on the regular lattice. Therefore, at some
point during the transformation from the fractal to the regular
lattice, the character of the phase transition must change from
a weakly singular to the standard behavior, as known for the
continuous (second-order) phase transition.

II. MODEL REPRESENTATION

First, we construct a square lattice with two types of bonds,
the thick black (J1) and the thin red (J2), connecting only the
nearest-neighbor lattice vertices, where the spins are located.
Hence, the fractal structure (J1) and the remaining space (J2)
are comprised of black and red bonds, respectively. The itera-
tive structure of HOTRG follows an extension series of how to
build up the (fractal) lattice. It starts from a unit cell made of a
4 × 4 grid of spin vertices, where 12 vertices consist of three
or four bonds J1 (in black) and the remaining 4 vertices consist
of four bonds J2 placed in the corners, as in Fig. 1 (left).
After the initial 16-spin unit cell was copied 12 times, in the
next iteration step, the identical pattern needs to be formed,
as depicted for the 4 × 4 grid. It then becomes a 16 × 16
grid with the four corners, each made of the 16-spin vertices
containing J2 couplings only, in accord with Fig. 1 (right).
Notice that by disregarding the four corners, the expansion
reduces to the process studied earlier [14].

Consider the J1-J2 fractal Ising model Hamiltonian,

H = −J1

∑
〈i j〉1

σiσ j − J2

∑
〈i j〉2

σiσ j − h
∑

i

σi, (1)

where the Ising variable σ takes the value +1 or −1, the
non-negative ferromagnetic couplings J1, J2, and h being the
uniform external magnetic field. To distinguish the summation
over J1 and J2 couplings, we separate the two sums and denote
them 〈·〉1 and 〈·〉2, respectively. For brevity, we do not include
the magnetic-field term h in the following. The two local
Boltzmann weights (between two adjacent spins) are given by

W (ζ )
B (σi, σ j ) = exp

(
Jζ

kBT
σiσ j

)
, (2)

where the superscript index ζ = {1, 2} specifies the two types
of the coupling Jζ . Here, kB is the Boltzmann constant and T is
the temperature. Without loss of generality, we will set kB = 1
in what follows next. The partition function is expressed as

Z =
∑
{σ }

∏
〈i j〉ζ

W (ζ )
B (σi, σ j ), (3)
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TABLE I. The graphical representation of the 10 local tensors T [k],n showing the way of arrangement for the next iteration step. Upper
row: Array of the local tensors at the nth iteration step T [k],n. Lower row: The respective extension patterns specifying how the local tensors
T [k],n are combined to form the extended tensors T [k],n+1 for the next iteration step.

k 1 2 3 4 5 6 7 8 9 10

T [k],n

T [k],n+1

where the sum is taken over all spin configurations {σ }. Fur-
thermore, the bond weights W (ζ )

B can be reexpressed in terms
of the matrix factorization,

W (ζ )
B (σi, σ j ) =

1∑
x=0

W (ζ )
ξix

W (ζ )
ξ j x

, (4)

where the first matrix index ξi = (1 − σi )/2 takes the values 0
or 1 if σi = ±1. Thus, the 2 × 2 matrix W (ζ ) has the elements

W (ζ ) =
(√

cosh Jζ /kBT
√

sinh Jζ /kBT√
cosh Jζ /kBT −√

sinh Jζ /kBT

)
. (5)

Finally, we are ready to represent the partition function as a
(nonhomogeneous) tensor-network state at the nth iteration
step (n = 0, 1, 2, 3, . . . ),

Zn = Tr
∏

ik

T [k],n
xix′

i yiy′
i
, (6)

with the position-dependent local tensor T [k],n specified at
lattice site ik . Each local tensor also carries information on
types of couplings J1 and J2, which is subindexed by integer
[k] at the vertex position i. The four surrounded indices keep
the fixed ordering so that xi (points to the left), x′

i (right), yi

(up), and y′
i (down), i.e.,

T [k],n
xix′

i yiy′
i
=

∑
ξ

W (ζ )
ξxi

W (ζ )
ξx′

i
W (ζ )

ξyi
W (ζ )

ξy′
i
, (7)

where ζ = 1, 2 specifies the coupling constant Jζ depending
on the orientation (left, right, up, down), which is deter-
mined by the index ordering in the position-dependent local
tensor T .

Notice that the local tensor can take up to 24 different con-
figurations (four indices or legs of the two states). On the other
hand, the tensor-network state of the current fractal structure
is constructed by 10 types of the local tensors T [k],n=0, where
k = 1, 2, 3, . . . , 10, as in Table I (upper row). We initialize the
local tensors at the zeroth iteration step (n = 0) as

T [1],n=0
x x′ y y′ =

∑
σ

W (1)
σx W (1)

σx′ W (1)
σy W (1)

σy′ ,

T [2],n=0
x x′ y y′ =

∑
σ

W (1)
σx W (1)

σx′ W (2)
σy W (1)

σy′ ,

T [3],n=0
x x′ y y′ =

∑
σ

W (1)
σx W (2)

σx′ W (1)
σy W (1)

σy′ ,

T [4],n=0
x x′ y y′ =

∑
σ

W (1)
σx W (1)

σx′ W (1)
σy W (2)

σy′ ,

T [5],n=0
x x′ y y′ =

∑
σ

W (2)
σx W (1)

σx′ W (1)
σy W (1)

σy′ ,

T [6],n=0
x x′ y y′ =

∑
σ

W (1)
σx W (2)

σx′ W (2)
σy W (1)

σy′ ,

T [7],n=0
x x′ y y′ =

∑
σ

W (1)
σx W (2)

σx′ W (1)
σy W (2)

σy′ ,

T [8],n=0
x x′ y y′ =

∑
σ

W (2)
σx W (1)

σx′ W (1)
σy W (2)

σy′ ,

T [9],n=0
x x′ y y′ =

∑
σ

W (2)
σx W (1)

σx′ W (2)
σy W (1)

σy′ ,

T [10],n=0
x x′ y y′ =

∑
σ

W (2)
σx W (2)

σx′ W (2)
σy W (2)

σy′ . (8)

Coarse-graining procedure

To consistently define the iterative extension procedure, we
need to extend each of the 10 local tensors according to the
specific extension relation for the next iteration step n + 1, as
graphically summarized in Table I. After the extension proce-
dure of the 10 extended tensors T [k],n+1 is finalized, we will
apply (renormalization) transformations to reduce the degrees
of freedom of the expanded tensors, specified later. Multiple
types of the local tensors enter the extension relation for each
tensor. Therefore, all the extensions for the next iteration step
n + 1 need to be performed by means of those from the pre-
vious iteration step n, which have to be kept simultaneously,
until the entire update of the tensors is completed. (The tensor
T [10] is a special case and is extended with the copies of itself.)

As a typical example, consider the extension of the tensor
T [1] in detail. According to Table I, for obtaining the new
tensor T [1],n+1, we contract 16 tensors at step n in total (four
tensors of type k = 1, two of type k = 2, two of type k = 3,
two of type k = 4, two of type k = 5, and, finally, four of type
k = 10) arranged onto a 4 × 4 grid to satisfy the extended
pattern k = 1 for the next step n + 1,

T [1],n+1

(x1x2x3x4)(x′
1x′

2x′
3x′

4)(y1y2y3y4)(y′
1y′

2y′
3y′

4)

=

x1
x2
x3
x4

x'1
x'2
x'3
x'4

y1 y2 y3 y4

y'1 y'2 y'3 y'4

.
(9)
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FIG. 2. Graphical visualization of the extension and renormal-
ization procedures to build up the tensor T [1],n+1 out of the
appropriate tensors T [k],n. In total, 15 different projectors are in-
troduced to perform four steps of the coarse graining in HOTRG.
We stress the way of distinguishing the external projectors (Ul , l =
1, 2, . . . , 6), which perform the projections onto the external legs,
from the internal projectors (Ũl , l = 1, 2, . . . , 9), which perform the
internal projections within the 4 × 4 grid.

Analogous extension relations hold for the remaining tensors,
as listed in Table I, and more details can be found in Ap-
pendix A.

III. RENORMALIZATION TRANSFORMATION

One step of the coarse-gaining procedure defined by Eq. (9)
increases the bond dimension as the fourth power. It is, thus,
numerically inefficient to exactly contract all of the 16 ten-
sors comprising one unit cell in just a single step. A simple
way of introducing an efficient approximation is to perform
four steps of the HOTRG-style coarse graining by contracting
neighboring pairs of tensors at each step while specifying
all the adjacent projectors, being properly matched, as de-
picted in Fig. 2. Notice Fig. 2, where we have introduced
15 different projectors, where six of the projectors (Ul , l =
1, 2, . . . , 6) perform projections onto the external (renormal-
ized) tensor indices or legs, whereas nine of the projectors (Ũl ,
l = 1, 2, . . . , 9) perform internal projections inside the 4 × 4
tensor grid.

Now, let us demonstrate how the internal renormalization
transformations Ũ1 and Ũ2 are calculated. By contracting the
tensors T [5],n and T [1],n along the y axis, we define

M[5,1],n
xx′yy′ =

∑
i

T [5],n
x1x′

1y i T
[1],n

x2x′
2i y′ , (10)

where x = x1 ⊗ x2 and x′ = x′
1 ⊗ x′

2. To truncate the tensor
M[5,1],n in accord with the higher-order singular-value decom-
position (HOSVD) [19], the following matrix unfolding has
to be prepared:

M ′[5,1],n
x(x′yy′ ) = M[5,1],n

xx′yy′ . (11)

We then perform the singular-value decomposition (SVD),

M ′[5,1],n = Ũ1ω̃1Ṽ
†

1 , (12)

where Ũ1 and Ṽ †
1 are unitary matrices of the respective di-

mensions, and ω̃1 is a diagonal matrix with the non-negative
singular values on its diagonal ordered in the decreasing order
by convention.

To obtain the internal renormalization transformation Ũ2,
we contract the tensors T [3],n and T [1],n along the y axis,

M[3,1],n
xx′yy′ =

∑
i

T [3],n
x1x′

1y i T
[1],n

x2x′
2i y′ , (13)

where x = x1 ⊗ x2 and x′ = x′
1 ⊗ x′

2. To truncate the tensor
M[3,1],n by HOSVD, the following matrix unfolding is pre-
pared:

M ′[3,1],n
x′(yy′x) = M[3,1],n

xx′yy′ . (14)

Notice that this unfolding is different from Eq. (11), as we
optimize the right side of the contracted tensor M[3,1],n, as
opposed to the left side. From SVD, we get

M ′[3,1],n = Ũ2ω̃2Ṽ
†

2 , (15)

where Ũ2 and Ṽ †
2 are unitary matrices, and ω̃2 is a diagonal

matrix with singular values (ordered decreasingly). The re-
maining projectors are calculated similarly.

The singular values obtained by SVD in Eqs. (12) or (15)
can be used to calculate the entanglement entropy. Alterna-
tively, we define the entanglement entropy using the singular
values obtained from SVD applied directly to the tensor T [1],n

unfolded into a matrix as T ′[1],n
x(x′yy′ ) = T [1],n

xx′yy′ . Having performed

the SVD T ′[1],n = U ω V †, we calculate the entanglement en-
tropy s as follows:

s = −Tr ρ ln ρ = −
D∑

ξ=1

(ωξ )2

�
ln

(ωξ )2

�
, (16)

where ρ is a reduced density matrix and � = ∑D
ξ=1(ωξ )2 is a

normalization factor such that Trρ = 1.
The projectors U and Ũ are obtained with the extension

pattern (k = 1) corresponding to T [1]. However, we can con-
sider applying these projectors uniformly to the remaining
extension patterns with k > 1. With such a simple setup, the
projectors’ consistency at the boundaries between all the unit
cells is clearly satisfied. If necessary, the internal projectors
Ũ can be obtained from each extension pattern separately,
which can increase numerical accuracy a bit, at the price of
higher computational costs (by a constant factor at most).
The external projectors U , however, have to be uniform, and
we need to decide which of the projectors to apply at the
boundaries of the unit cells.

We have encountered some numerical instabilities when
projecting the tensor patterns with k � 2 using the projectors
obtained from T [1]. To improve the approximation scheme de-
scribed above, we can introduce multiple sets of the external
projectors. As a simple yet practical example, let us consider
two sets of external projectors U 1

l , U 2
l (l = 1, 2, . . . , 6), each

containing six HOTRG isometries. The projectors U 1
l are ob-

tained as before (i.e., on T [1]); however, U 2
l are obtained on

the homogeneous pattern defining T [10]. We can then use U 1

when truncating a thick leg (black) and U 2 when truncating
a thin leg (red). For instance, the renormalization relations of
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the tensors T [1], T [2], T [6], and T [10] for the external legs are
straightforward,

T [1],n+1
x x′ y y′ = x x'

y

y'

, (17)

T [2],n+1
x x′ y y′ = x x'

y

y'

, (18)

T [6],n+1
x x′ y y′ = x x'

y

y'

, (19)

T [10],n+1
x x′ y y′ = x x'

y

y'

, (20)

where the projectors U 1 and U 2 are depicted by dashed thick
(black) and thin (red) lines, respectively. The explicit form of
Eqs. (17)–(20) is presented in Appendix B. For completeness,
we list all the projection patterns in Appendix B as well.

Impurity tensors

Magnetization. We can define the impurity tensor T̃ n=0 by
inserting a spin variable σ = 1 − 2ξ into the local tensor with
the pattern T [1],n=0 as follows [cf. Eq. (8)]:

T̃ n=0
xi x′

i yi y′
i
=

∑
ξ

(1 − 2ξ )W (1)
ξx W (1)

ξx′ W (1)
ξy W (1)

ξy′ . (21)

The extension of the impurity tensor, T̃ n → T̃ n+1, is per-
formed by taking an average over four central vertices in the

extension pattern T [1],n+1 [cf. Eq. (9)],

T̃ n+1

(x1x2x3x4)(x′
1x′

2x′
3x′

4)(y1y2y3y4)(y′
1y′

2y′
3y′

4)

=
1
4

⎛
⎜⎜⎜⎜⎝

x1
x2
x3
x4

x'1
x'2
x'3
x'4

y1 y2 y3 y4

y'1 y'2 y'3 y'4

+

x1
x2
x3
x4

x'1
x'2
x'3
x'4

y1 y2 y3 y4

y'1 y'2 y'3 y'4

x1
x2
x3
x4

x'1
x'2
x'3
x'4

y1 y2 y3 y4

y'1 y'2 y'3 y'4

++

x1
x2
x3
x4

x'1
x'2
x'3
x'4

y1 y2 y3 y4

y'1 y'2 y'3 y'4

⎞
⎟⎟⎟⎟⎠

,

(22)

where the full circles represent the inserted impurities. The
explicit form of Eq. (22) is presented in Appendix C 1.

Bond energy. The bond energy is proportional to the cor-
relation between two nearest-neighbor spins. We start by
defining an initial impurity tensor, as we have done for the
spontaneous magnetization [see Eq. (21)], and taking an av-
erage over the four bond energies at the central spins, as they
correspond to the nearest-neighbor pairs. The first extension
step (n = 0) is performed by taking an average over the four
different neighboring pairs of the impurity tensors in the ex-
tension pattern T [1],n+1,

˜̃T
n=1

(x1x2x3x4)(x′
1x′

2x′
3x′

4)(y1y2y3y4)(y′
1y′

2y′
3y′

4)

=
1
4

⎛
⎜⎜⎜⎜⎝

x1
x2
x3
x4

x'1
x'2
x'3
x'4

y1 y2 y3 y4

y'1 y'2 y'3 y'4

+

x1
x2
x3
x4

x'1
x'2
x'3
x'4

y1 y2 y3 y4

y'1 y'2 y'3 y'4

x1
x2
x3
x4

x'1
x'2
x'3
x'4

y1 y2 y3 y4

y'1 y'2 y'3 y'4

++

x1
x2
x3
x4

x'1
x'2
x'3
x'4

y1 y2 y3 y4

y'1 y'2 y'3 y'4

⎞
⎟⎟⎟⎟⎠

,

(23)

When n > 0, we extend the bond-energy impurity tensor ac-
cording to Eq. (22). The explicit form of Eq. (23) is presented
in Appendix C 2.

IV. NUMERICAL RESULTS

We are interested in the critical behavior of the J1-J2 fractal
lattice in the regime between the pure fractal lattice (i.e., when
J1 = 1 and J2 = 0) and the regular square lattice (i.e., when
J1 = J2 = 1). From now on, we will set the fractal coupling to
J1 = 1, only changing 0 � J2 � 1.

Let us first analyze the spontaneous magnetization (see
Fig. 3), where the phase-transition (critical) temperature Tc
continuously increases as J2 increases. The power-law decay
of the spontaneous magnetization, obtained from the impurity
tensor T̃ n at T � Tc and the external magnetic field h = 0,
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FIG. 3. Critical temperature Tc with respect to J2 (for J1 = 1,
D = 34). Inset: The J2 dependence of the critical exponents β (red)
and δ (blue).

below the critical temperature, follows the scaling

〈T̃ n〉 ∝ (Tc − T )β. (24)

It is important to stress the fact that the critical exponent
β does not significantly vary within the entire interval of
0 � J2 � 1 (see inset of Fig. 3). It remains almost identical to
the case of the pure fractal lattice (J2 = 0), where β ≈ 0.015,
until the square lattice recovers (J2 = 1), where the exponent
suddenly jumps to the expected value (exact value is βsquare =
1/8 = 0.125).

Likewise, the other critical exponent δ associated with
the induced magnetization at T = Tc and a nonzero external
magnetic field 0 � h � 10−7,

〈T̃ n〉|T =Tc
∝ h1/δ, (25)

does not significantly vary within 0 � J2 � 1 (see inset of
Fig. 3). The value of δ does not change from the pure fractal
case δ ≈ 185 when J2 = 0 until the square lattice recovers
(J2 = 1), where δ jumps to the exact value known for the
square lattice, δsquare = 15.

In the case of the pure fractal lattice (J2 = 0), it is sufficient
to employ a moderate value of the bond dimension D. Our
numerical results do not change for D � 16. Analyzing the
spontaneous magnetization, we found the critical tempera-
ture Tc ≈ 1.316 95 and the critical exponent β ≈ 0.015 395 1,
which does not change for D = (16, 18, 20, 22, 24).

When comparing the current results with the previous
study [15], the critical temperature is almost identical (com-
pare to Tc = 1.317 17 (with D = 32), which yields the relative
difference of ∼0.02%. On the other hand, the magnetic ex-
ponent exhibits a larger difference at D = 32, where β =
0.013 88, thus yielding the relative difference of ∼10%.

For J2 = 0.99, we got Tc ≈ 2.249 64 and β ≈ 0.021 (with
D = 34).

For J2 = 1 (being the regular square lattice), we got Tc ≈
2.269 19 and β ≈ 0.128 (D = 34), in full agreement with
the exact solution Tc = 2/ ln(1 + √

2) ≈ 2.269 19 and β =
1/8 = 0.125. To show the bond-dimension D dependence, we
plot the β exponent for J2 = 0.99 and J2 = 1 in Fig. 4.

24 26 28 30 32 34
D

0

0.05

0.1

0.15

β

J
2
 = 1

J
2
 = 0.99

β(1, 1) = 0.125

β(1, 0) ≈ 0.0154

FIG. 4. Critical exponent β as a function of the bond dimension
D. The numerical results obtained for J2 = 1 remain close to the
exact value β = 0.125 (dashed line). If setting J2 = 0.99, the numer-
ical results remain close to the numerical value obtained for the pure
fractal case associated with J2 = 0, where β ≈ 0.0154 (dotted line).

For J2 = 1.01 (i.e., inverse fractal lattice), we got Tc ≈
2.288 75 and β ≈ 0.5 (D = 34). The critical temperature Tc
continues to rise, as we further increase J2 > 1. However, the
critical exponent β seems to be stabilized around the (mean-
field) value β ≈ 0.5 in the inverse fractal regime when J2 > 1
(not shown, but confirmed up to J2 = 1.1 at D = 32).

If studying the magnetic-field response, we introduce a
small h into the system at the critical point. For the reg-
ular square lattice (J2 = 1), the HOTRG method results in
the critical exponent δ with the relative error of less than
one percent (with D = 34). For the pure fractal lattice, we
obtained δ ≈ 185 (with D = 34). Comparing them with the
previous results [15], we found a relative difference of ∼11%
(the previous study yielded δ ≈ 206 at D = 12). Interestingly,
close to the regular square lattice from the pure fractal side
(J2 = 0.99), we obtained δ ≈ 129 (with D = 34), whereas,
from the inverse fractal side (J2 = 1.01), we found δ ≈ 5.1
(with D = 34).

In order to observe the phase transition, we evaluate the
specific heat c(T ) = d

dT u(T ) by derivating the bond energy

u(T ) = 〈 ˜̃T
n〉 in accord with Eq. (23). The specific heat c(T )

does not diverge at any value of J2 < 1; see Fig. 5. We observe
the divergence only in the case of the regular square lattice,
i.e., when J2 = 1. If 0 � J2 < 1, the maximum of the specific
heat c(T ) does not correspond to the critical point. Instead, we
have confirmed and numerically verified (see Refs. [14] and
[15]) that the maximum of the first numerical derivative with
respect to T corresponds to the critical point for all values of
J2 < 1, i.e.,

Tc = max
T

{
d

dT
c(T )

}
. (26)

We have also explored the vicinity of J2 = 1 and considered
the cases when J2 = 0.99 and J2 = 1.01. There, the singular-
ity of c(T ) at Tc appears only if J2 = 1, as depicted in Fig. 6.

In order to determine the phase transition correctly, we
analyze entanglement entropy s(T ) introduced in Eq. (16),
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FIG. 5. Temperature dependence of the specific heat c(T ) for
various J2 at D = 16. Notice a weak divergence of c(T ) for J2 < 1
in the inflection point, which refers to the correct phase-transition
temperature [14,17].

which usually achieves full numerical convergence after n ≈
18 iteration steps. We select two values J2 = 0.3 and J2 = 0.5
(at D = 16) to observe how the iteration steps n affect the
entanglement entropy s(T ), as plotted in Figs. 7 and 8, re-
spectively. Surprisingly, the converged entanglement entropy
exhibits a divergence at temperatures T ≈ 0.68 (J2 = 0.3)
and T ≈ 1.13 (J2 = 0.5), which substantially differs from
the expected fractal critical temperatures Tc ≈ 1.404 05 and
Tc ≈ 1.5777, respectively. We have numerically confirmed
for additional values of 0 < J2 < 1 that the sharp maxima of
the converged entanglement entropy n > 18, typically associ-
ated with the phase transition, occurs at

T = J2T (J2=1)
c = 2J2

ln(1 + √
2)

, (27)
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FIG. 6. The specific heat c(T ) around phase transition Tc if J2 =
0.99, J2 = 1.0, and J2 = 1.01 (at D = 24).
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FIG. 7. Entanglement entropy s(T ) for J2 = 0.3 (D = 16) mea-
sured at various iteration steps n. The left peak in s(T ) is converged
after six iterations (n � 6) and is located at T = J2T (J2=1)

c ≈ 0.68.
The entanglement entropy is invariant at 3 � n � 9 resulting in the
critical point of the fractal at T (J2=0.3)

c ≈ 1.404 05. The values of s(T )
denoted by stars are not shown in the main plot for better visibility
(for n = 7, 8, 9). Inset: the zoomed-in view, where the entropy has
the fixed point at T (J2=0.3)

c .

which corresponds to the critical temperature of the regular
square-lattice Ising model T (J2=1)

c multiplied by the coupling
J2. The entanglement entropy s(T ) at J2 = 0.5 exhibits an
interesting behavior (see Fig. 8) after six iterations s(T ) yield
two peaks: the left peak around T ≈ 1.13 and the right peak
around the correct fractal critical temperature T ≈ 1.5777 at
J2 = 0.5. If zooming in around the fractal critical temperature,
the entanglement entropy becomes invariant in between n = 3
and n = 9. Such fixed-point behavior captures the correct
phase transition of the fractal.
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FIG. 8. Entanglement entropy s(T ) for J2 = 0.5 (D = 16). The
left peak in s(T ) appears at T = J2T (J2=1)

c ≈ 0.68. The entanglement
entropy is invariant at T (J2=0.5)

c ≈ 1.5777. Inset: the detail of the
entropy fixed point.
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V. CONCLUSIONS AND DISCUSSIONS

We have investigated the Ising model on a continuous fam-
ily of planar self-similar lattices with two types of coupling
strengths, J1 and J2. For this purpose, we have developed
a modified HOTRG technique with multiple types of local
tensors; each one is extended with specific coarse-graining
patterns. We focused on the way the critical behavior of the
Ising model on the self-similar lattices changes while trans-
forming the lattice from the fractal pattern into the regular
square lattice by the continuous change of the value of J2

from zero to one (if fixing J1 = 1). The critical temperature
Tc , as captured by the local order parameter (the spontaneous
magnetization) as well as the local bond energy (the internal
energy), grows continuously from T (J2=0)

c ≈ 1.317 (correct
value for the fractal lattice as shown in Refs. [14,15]) to
T (J2=1)

c ≈ 2.269 (known exactly). Having analyzed the mag-
netic critical exponent β when tuning 0 � J2 � 1, we did not
observe a continuous change of the exponent in the interval
0.015 � β � 1

8 , as one would have naturally expected. In-
stead, we determined almost a constant value of β ≈ 0.015
on the entire interval 0 � J2 < 1, followed by a significant
discontinuous jump if J2 = 1, where β = 1

8 . The other mag-
netic critical exponent δ exhibited similar singular behavior.
We measured a constant value of δ ≈ 185 on the interval
0 � J2 < 1, followed by a significant discontinuous jump if
J2 = 1, where δ = 15.

The specific heat c(T ) also followed qualitatively similar
behavior as the magnetic exponent β. A sharp singularity
appeared at J2 = 1 only, whereas broadened maxima of c(T )
did not coincide with the correct Tc determined from the
spontaneous magnetization in Fig. 3. Instead, the sharp peaks
of d

dT c(T ) referred to the correct Tc (in accord with Ref. [14]).
To address the question of why we observed the disconti-

nuity in β when J2 = 1 (including analogous behavior in the
specific heat), we relate the answer to the fact that the J1-J2

model on the lattice becomes fully translationally invariant
only if J1 = J2. Otherwise, the J1-J2 fractals possess a weaker
type of symmetry, i.e., the scale invariance. Based on our
numerical observations, we conjecture that there are three
classes of the behavior of the J1-J2 fractals: (i) fractal-like
when J1 < J2 (with β ≈ 0.02), (ii) regular square lattice when
J1 = J2 (with β = 1/8), and (iii) inverse fractal when J1 > J2

(with the mean-field value of β ≈ 0.5).
The entanglement entropy s(T ) calculated from the sin-

gular values obtained as a byproduct of the SVD during
the renormalization of the tensors captures the global be-
havior of the system. The entanglement entropy after around
n = 18 iteration steps corresponds to the regular square lat-
tice, whose critical point uniformly scales with the prefactor
J2 and information on the fractal structure is suppressed.
However, when the number of the iteration step in HOTRG
does not reach the full numerical convergence with spon-
taneously broken symmetry, s(T ) can capture two phase
transitions: (i) the one occurring inside the fractal struc-
ture, which is in an agreement with the local quantities
such as the spontaneous magnetization, and (ii) the phase
transition taking place on the homogeneous part at the
critical temperature T = J2T (J2=1)

c ; cf. Eq. (27). The for-
mer case corresponds to the fixed-point-like behavior of

the entanglement entropy s(T ) with respect to the iteration
steps n.

Another interesting question arises: how to think about
the dimensionality of the lattice, between the fractal and the
regular square lattice. We propose that it might be meaningful
to define an appropriate dimension, in this case, being a com-
bination of both coupling strengths J1 and J2. A generalized
Hausdorff dimension might have been defined,

d1 = ln(12J1 + 4J2)

ln 4
. (28)

If considering the scaling of the boundary bonds, the other
dimension could follow the expression

d2 = 1 + ln(2J1 + 2J2)

ln 4
. (29)

Both formulas need to be adapted to the case when J2 = 0.
Then, irrespective of J1, we need to recover d1 = ln 12/ ln 4
and d2 = 1.5 (see Ref. [14]), provided that J1 �= 0.

The current study opens the door to many exciting direc-
tions for research. HOTRG can be applied to the study of the
quantum Ising model on the J1-J2 fractals. Also, the extension
to three dimensions of the correct classical spin model is
possible, although computationally very complex and requir-
ing more extensive computational resources. Moreover, the
technique presented in this work is applicable to a variety
of nonhomogeneous lattices, including the Sierpiński carpet.
In some cases, it might be desirable to employ different opti-
mization schema of the local tensors than used here; however,
the basic idea of extending multiple types of the local tensors
remains valid. Apart from the typical condensed-matter ap-
plications, our technique might inspire new data compression
approaches, for example, in image processing.
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APPENDIX A: EXTENSION PATTERNS

Each of the 10 tensor types can be extended by means
of a different extension relation (see Table I). For instance,
the extension formula for the tensor type T [k=1] is shown in
Eq. (9).

Consider the extension of the tensor T [1] in detail. As seen
from Table I, to obtain the new tensor T [1],n+1, one needs to
contract 16 tensors in total (four tensors of type 1, two of type
2, two of type 3, two of type 4, two of type 5, and, finally, four
of type 10) arranged on a 4 × 4 grid according to the specified
pattern

T [1],n+1
(x1x2x3x4 )(x′

1x′
2x′

3x′
4 )(y1y2y3y4 )(y′

1y′
2y′

3y′
4 )
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=
∑

abcde f ghi
jklmn′opq
rstuvwx

T [10],n
x1ay1d T

[5],n
aby2eT

[3],n
bcy3 f T

[10],n
cx′1y4g

T [2],n
x2hd k T

[1],n
hiel T

[1],n
i j f mT

[2],n
j x′2gn′

T [4],n
x3ok r T

[1],n
o pl s T

[1],n
pqmt T [4],n

qx′3n′u
T [10],n

x4v r y′1
T [5],n

vw sy′2
T [3],n

wx t y′3
T [10],n

x x′4uy′4

. (A1)

Here, we list all 10 extension relations in an abbreviated
form where we omitted all the tensor indices except for the
tensor-type index (in square brackets) and the iteration step n
[the omitted tensor indices are identical to those in Eq. (A1)
in all the remaining formulas]. The new tensors T [k],n+1 have
been obtained from the preceding iteration step, out of the ten-
sors T [k],n, where k = 1, 2, . . . , 10. Each extension relation
specifies the pattern of the 16 previously prepared tensors T n

on a 4 × 4 grid (on the right-hand side of the formulas below),
which are needed to obtain the extended T n+1 tensors of each
type (on the left-hand side),

T [1],n+1 ←

⎛
⎜⎝

T [10]T [5]T [3]T [10]

T [2]T [1]T [1]T [2]

T [4]T [1]T [1]T [4]

T [10]T [5]T [3]T [10]

⎞
⎟⎠

,n

,

T [2],n+1 ←

⎛
⎜⎝

T [10]T [9]T [6]T [10]

T [2]T [1]T [1]T [2]

T [4]T [1]T [1]T [4]

T [10]T [5]T [3]T [10]

⎞
⎟⎠

,n

,

T [3],n+1 ←

⎛
⎜⎝

T [10]T [5]T [3]T [10]

T [2]T [1]T [1]T [6]

T [4]T [1]T [1]T [7]

T [10]T [5]T [3]T [10]

⎞
⎟⎠

,n

,

T [4],n+1 ←

⎛
⎜⎝

T [10]T [5]T [3]T [10]

T [2]T [1]T [1]T [2]

T [4]T [1]T [1]T [4]

T [10]T [8]T [7]T [10]

⎞
⎟⎠

,n

,

T [5],n+1 ←

⎛
⎜⎝

T [10]T [5]T [3]T [10]

T [9]T [1]T [1]T [2]

T [8]T [1]T [1]T [4]

T [10]T [5]T [3]T [10]

⎞
⎟⎠

,n

,

T [6],n+1 ←

⎛
⎜⎝

T [10]T [9]T [6]T [10]

T [2]T [1]T [1]T [6]

T [4]T [1]T [1]T [7]

T [10]T [5]T [3]T [10]

⎞
⎟⎠

,n

,

T [7],n+1 ←

⎛
⎜⎝

T [10]T [5]T [3]T [10]

T [2]T [1]T [1]T [6]

T [4]T [1]T [1]T [7]

T [10]T [8]T [7]T [10]

⎞
⎟⎠

,n

,

T [8],n+1 ←

⎛
⎜⎝

T [10]T [5]T [3]T [10]

T [9]T [1]T [1]T [2]

T [8]T [1]T [1]T [4]

T [10]T [8]T [7]T [10]

⎞
⎟⎠

,n

,

T [9],n+1 ←

⎛
⎜⎝

T [10]T [9]T [6]T [10]

T [9]T [1]T [1]T [2]

T [8]T [1]T [1]T [4]

T [10]T [5]T [3]T [10]

⎞
⎟⎠

,n

,

T [10],n+1 ←

⎛
⎜⎝

T [10]T [10]T [10]T [10]

T [10]T [10]T [10]T [10]

T [10]T [10]T [10]T [10]

T [10]T [10]T [10]T [10]

⎞
⎟⎠

,n

.

APPENDIX B: PROJECTION PATTERNS

After the extension process, the external legs are pro-
jected by the two sets of the external projectors U 1

l , U 2
l

(l = 1, 2, . . . , 6). We use U 1 when projecting thick legs (in
black) and U 2 when projecting thin legs (in red). For example,
the projections for the tensor types T [k=1], T [k=2], T [k=6], and
T [k=10] are performed as follows:

T [1],n+1
xx′yy′ =

∑
x1x2x3x4x5x6
x′

1x′
2x′

3x′
4x′

5x′
6

y1y2y3y4y5y6
y′

1y′
2y′

3y′
4y′

5y′
6

T [1],n+1
(x1x2x3x4 )(x′1x′2x′3x′4 )(y1y2y3y4 )(y′1y′2y′3y′4 )

U 1
1,(x1x2 )x5

U 1
2,(x3x4 )x6

U 1
5,(x5x6 )x

U 1
1,(x′1x′2 )x′5

U 1
2,(x′3x′4 )x′6

U 1
5,(x′5x′6 )x′

U 1
3,(y1y2 )y5

U 1
4,(y3y4 )y6

U 1
6,(y5y6 )y

U 1
3,(y′1y′2 )y′5

U 1
4,(y′3y′4 )y′6

U 1
6,(y′5y′6 )y′

, (B1)

T [2],n+1
xx′yy′ =

∑
x1x2x3x4x5x6
x′

1x′
2x′

3x′
4x′

5x′
6

y1y2y3y4y5y6
y′

1y′
2y′

3y′
4y′

5y′
6

T [2],n+1
(x1x2x3x4 )(x′1x′2x′3x′4 )(y1y2y3y4 )(y′1y′2y′3y′4 )

U 1
1,(x1x2 )x5

U 1
2,(x3x4 )x6

U 1
5,(x5x6 )x

U 1
1,(x′1x′2 )x′5

U 1
2,(x′3x′4 )x′6

U 1
5,(x′5x′6 )x′

U 2
3,(y1y2 )y5

U 2
4,(y3y4 )y6

U 2
6,(y5y6 )y

U 1
3,(y′1y′2 )y′5

U 1
4,(y′3y′4 )y′6

U 1
6,(y′5y′6 )y′

, (B2)

T [6],n+1
xx′yy′ =

∑
x1x2x3x4x5x6
x′

1x′
2x′

3x′
4x′

5x′
6

y1y2y3y4y5y6
y′

1y′
2y′

3y′
4y′

5y′
6

T [6],n+1
(x1x2x3x4 )(x′1x′2x′3x′4 )(y1y2y3y4 )(y′1y′2y′3y′4 )

U 1
1,(x1x2 )x5

U 1
2,(x3x4 )x6

U 1
5,(x5x6 )x

U 2
1,(x′1x′2 )x′5

U 2
2,(x′3x′4 )x′6

U 2
5,(x′5x′6 )x′

U 2
3,(y1y2 )y5

U 2
4,(y3y4 )y6

U 2
6,(y5y6 )y

U 1
3,(y′1y′2 )y′5

U 1
4,(y′3y′4 )y′6

U 1
6,(y′5y′6 )y′

, (B3)

T [10],n+1
xx′yy′ =

∑
x1x2x3x4x5x6
x′

1x′
2x′

3x′
4x′

5x′
6

y1y2y3y4y5y6
y′

1y′
2y′

3y′
4y′

5y′
6

T [10],n+1
(x1x2x3x4 )(x′1x′2x′3x′4 )(y1y2y3y4 )(y′1y′2y′3y′4 )

U 2
1,(x1x2 )x5

U 2
2,(x3x4 )x6

U 2
5,(x5x6 )x

U 2
1,(x′1x′2 )x′5

U 2
2,(x′3x′4 )x′6

U 2
5,(x′5x′6 )x′

U 2
3,(y1y2 )y5

U 2
4,(y3y4 )y6

U 2
6,(y5y6 )y

U 2
3,(y′1y′2 )y′5

U 2
4,(y′3y′4 )y′6

U 2
6,(y′5y′6 )y′

. (B4)

Next, we abbreviate the notation by omitting all the tensor
indices except for the tensor-type index (in square brackets)
and the iteration step n [the omitted tensor indices are the same
as in Eq. (B1) in each of the formulas]. For brevity, we also
omit the repeated U and list the corresponding indices in the
form of the 4 × 3 matrices instead,

T [1],n+1 ←
∑

T [1],n+1U

⎛
⎜⎜⎝

1, 1, 1
1, 1, 1
1, 1, 1
1, 1, 1

⎞
⎟⎟⎠
,

T [2],n+1 ←
∑

T [2],n+1U

⎛
⎜⎜⎝

1, 1, 1
1, 1, 1
2, 2, 2
1, 1, 1

⎞
⎟⎟⎠
,

T [3],n+1 ←
∑

T [3],n+1U

⎛
⎜⎜⎝

1, 1, 1
2, 2, 2
1, 1, 1
1, 1, 1

⎞
⎟⎟⎠
,

T [4],n+1 ←
∑

T [4],n+1U

⎛
⎜⎜⎝

1, 1, 1
1, 1, 1
1, 1, 1
2, 2, 2

⎞
⎟⎟⎠
,

T [5],n+1 ←
∑

T [5],n+1U

⎛
⎜⎜⎝

2, 2, 2
1, 1, 1
1, 1, 1
1, 1, 1

⎞
⎟⎟⎠
,
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T [6],n+1 ←
∑

T [6],n+1U

⎛
⎜⎜⎝

1, 1, 1
2, 2, 2
2, 2, 2
1, 1, 1

⎞
⎟⎟⎠
,

T [7],n+1 ←
∑

T [7],n+1U

⎛
⎜⎜⎝

1, 1, 1
2, 2, 2
1, 1, 1
2, 2, 2

⎞
⎟⎟⎠
,

T [8],n+1 ←
∑

T [8],n+1U

⎛
⎜⎜⎝

2, 2, 2
1, 1, 1
1, 1, 1
2, 2, 2

⎞
⎟⎟⎠
,

T [9],n+1 ←
∑

T [9],n+1U

⎛
⎜⎜⎝

2, 2, 2
1, 1, 1
2, 2, 2
1, 1, 1

⎞
⎟⎟⎠
,

T [10],n+1 ←
∑

T [10],n+1U

⎛
⎜⎜⎝

2, 2, 2
2, 2, 2
2, 2, 2
2, 2, 2

⎞
⎟⎟⎠
.

APPENDIX C: EXTENSIONS OF IMPURITY TENSORS

1. Magnetization

The extension of the impurity tensor T̃ n is performed by
taking an average over four central spins of the impurity in
the extension pattern T [1] [cf. Eq. (A1)],

T̃ n+1
(x1x2x3x4 )(x′

1x′
2x′

3x′
4 )(y1y2y3y4 )(y′

1y′
2y′

3y′
4 )

= 1

4

∑
abcde f ghi
jklmn′opq
rstuvwx

⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎝

T [10],n
x1ay1d T

[5],n
aby2eT

[3],n
bcy3 f T

[10],n
cx′1y4g

T [2],n
x2hd k T̃ n

hiel T
[1],n

i j f mT
[2],n
j x′2gn′

T [4],n
x3ok r T

[1],n
o pl s T

[1],n
pqmt T [4],n

qx′3n′u
T [10],n

x4v r y′1
T [5],n

vw sy′2
T [3],n

wx t y′3
T [10],n

x x′4uy′4

⎞
⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎝

T [10],n
x1ay1d T

[5],n
aby2eT

[3],n
bcy3 f T

[10],n
cx′1y4g

T [2],n
x2hd k T

[1],n
hiel T̃ n

i j f mT
[2],n
j x′2gn′

T [4],n
x3ok r T

[1],n
o pl s T

[1],n
pqmt T [4],n

qx′3n′u
T [10],n

x4v r y′1
T [5],n

vw sy′2
T [3],n

wx t y′3
T [10],n

x x′4uy′4

⎞
⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎝

T [10],n
x1ay1d T

[5],n
aby2eT

[3],n
bcy3 f T

[10],n
cx′1y4g

T [2],n
x2hd k T

[1],n
hiel T

[1],n
i j f mT

[2],n
j x′2gn′

T [4],n
x3ok r T

[1],n
o pl s T̃ n

pqmt T [4],n
qx′3n′u

T [10],n
x4v r y′1

T [5],n
vw sy′2

T [3],n
wx t y′3

T [10],n
x x′4uy′4

⎞
⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎝

T [10],n
x1ay1d T

[5],n
aby2eT

[3],n
bcy3 f T

[10],n
cx′1y4g

T [2],n
x2hd k T

[1],n
hiel T

[1],n
i j f mT

[2],n
j x′2gn′

T [4],n
x3ok r T̃ n

o pl sT
[1],n

pqmt T [4],n
qx′3n′u

T [10],n
x4v r y′1

T [5],n
vw sy′2

T [3],n
wx t y′3

T [10],n
x x′4uy′4

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦,

where the letter T̃ in bold is meant to stress the readability of
the above formula.

2. Bond energy

The expression for the bond energy begins with the
identical initial impurity tensor as we used in the spon-
taneous magnetization [see Eq. (21)]. However, the aver-
aging over the bond energy, corresponding to the spin-
spin pairs, is necessary to be performed. Therefore, the
first extension takes an average over the four differ-
ent neighboring pairs of the impurities in the extension
pattern T [1],

˜̃T
n=1

(x1x2x3x4 )(x′
1x′

2x′
3x′

4 )(y1y2y3y4 )(y′
1y′

2y′
3y′

4 )

= 1

4

∑
abcde f ghi

jklmn′opq

rstuvwx

⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎝

T [10],n=0
x1ay1d T [5],n=0

aby2e T [3],n=0
bcy3 f T [10],n=0

cx′1y4g

T [2],n=0
x2hd k T̃ n=0

hiel T̃ n=0
i j f mT

[2],n=0
j x′2gn′

T [4],n=0
x3ok r T [1],n=0

o pl s T [1],n=0
pqmt T [4],n=0

qx′3n′u
T [10],n=0

x4v r y′1
T [5],n=0

vw sy′2
T [3],n=0

wx t y′3
T [10],n=0

x x′4uy′4

⎞
⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎝

T [10],n=0
x1ay1d T [5],n=0

aby2e T [3],n=0
bcy3 f T [10],n=0

cx′1y4g

T [2],n=0
x2hd k T [1],n=0

hiel T̃ n=0
i j f mT

[2],n=0
j x′2gn′

T [4],n=0
x3ok r T [1],n=0

o pl s T̃ n=0
pqmt T [4],n=0

qx′3n′u
T [10],n=0

x4v r y′1
T [5],n=0

vw sy′2
T [3],n=0

wx t y′3
T [10],n=0

x x′4uy′4

⎞
⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎝

T [10],n=0
x1ay1d T [5],n=0

aby2e T [3],n=0
bcy3 f T [10],n=0

cx′1y4g

T [2],n=0
x2hd k T [1],n=0

hiel T [1],n=0
i j f m T [2],n=0

j x′2gn′

T [4],n=0
x3ok r T̃ n=0

o pl s T̃ n=0
pqmt T [4],n=0

qx′3n′u
T [10],n=0

x4v r y′1
T [5],n=0

vw sy′2
T [3],n=0

wx t y′3
T [10],n=0

x x′4uy′4

⎞
⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎝

T [10],n=0
x1ay1d T [5],n=0

aby2e T [3],n=0
bcy3 f T [10],n=0

cx′1y4g

T [2],n=0
x2hd k T̃ n=0

hiel T
[1],n=0

i j f m T [2],n=0
j x′2gn′

T [4],n=0
x3ok r T̃ n=0

o pl sT
[1],n=0

pqmt T [4],n=0
qx′3n′u

T [10],n=0
x4v r y′1

T [5],n=0
vw sy′2

T [3],n=0
wx t y′3

T [10],n=0
x x′4uy′4

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦.

If n > 0, we proceed in the bond-energy extension of the
impurity tensor according to the relation defined for magne-
tization in Appendix C 1.
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