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Numerical extrapolation method for complex conductivity of disordered metals
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Recently, quantum corrections to optical conductivity of disordered metals up to the UV region were observed.
Although this increase of conductivity with frequency, also called anti-Drude behavior, should disappear at
the electron collision frequency, such transition has never been observed, or described theoretically. Thus the
knowledge of optical conductivity in a wide frequency range is of great interest. It is well known that the
extrapolation of complex conductivity is ill-posed—a solution of the analytic continuation problem is not unique
for data with finite accuracy. However, we show that assuming physically appropriate properties of the searched
function σ (ω), such as symmetry, smoothness, and asymptotic solution for low and high frequencies, one can
significantly restrict the set of solutions. We present a simple numerical method utilizing the radial basis function
approximation and simulated annealing, which reasonably extrapolates the optical conductivity from visible
frequency range down to the far-infrared and up to the ultraviolet region. The method was compared with two
widely used analytic continuation techniques and resulting extrapolation obtained on MoC and NbN thin films
was checked by transmission measurements across a wide frequency range.
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I. INTRODUCTION

Optical properties of thin films, especially superconduct-
ing metals, are currently of great interest. Knowledge of the
electric response is essential for the rapidly expanding field of
superconducting devices, e.g., photon detectors [1], as well as
for purely academic purposes, due to the presence of phenom-
ena like weak localization. Therefore this class of materials
attracts much investigation [2–4]. Measurement of optical
properties in a broad frequency range is often demanding and
the experimental window of devices is naturally limited. How-
ever, as it is known, the knowledge of the response function
on a finite interval is sufficient to extend the domain because
this function must be analytical, i.e., satisfying the Kramers-
Kronig relations (KK). Unfortunately, this problem, known
as analytic continuation (AC), is ill-posed—its solution is
unstable and not uniquely determined when a small error is
introduced into an input data set [5]. In order to solve such a
problem, regularization should be carried out by making use
of additional information.

For example, one can presume that the studied system can
be described by a certain physical model [6,7]. In the case of
metals, the complex conductivity is usually analysed in terms
of the classical Drude-Lorentz model. This model allows to
fit the conductivity of clean metals well, but it fails to de-
scribe the conductivity of disordered metals, where quantum
corrections play a significant role [8] and can persist up to
the ultraviolet range [4]. The discussion on the applicability
of this model is in the Appendix C. In contrast, there are
more general, rather mathematical approaches to the AC, e.g.,
the Padé approximation and the singular value decomposition
(SVD). However, they exhibit instability due to noise in the

data, as we demonstrate in Appendix C 2, and the regulariza-
tion by physically motivated constraints is not straightforward
[9–11].

In this paper, we describe a method which allows to add
constraints systematically until a reasonable extrapolation is
obtained. As we demonstrate, our method is able to find the
expected solution, presuming physically well justified restric-
tions on the searched function. Namely, that the complex
conductivity (i) cannot oscillate on scales smaller than the
relaxation rate �, (ii) cannot diminish at frequencies higher
than 5�, (iii) has a non-negative real part, and (iv) the contri-
bution from high frequency (��) transitions can be included
in the “infinite frequency” dielectric constant ε∞. This al-
lows a model-independent determination of σ (ω), extending
the experimental window of spectroscopic ellipsometry by
making use of DC sheet resistance, both measured at room
temperature. The approach is demonstrated on data mea-
sured on highly disordered metals close to the metal-insulator
transition. Our simple illustrative procedure is compared to
the aforementioned techniques, namely, to the Drude-Lorentz
data fit, Padé approximation, and SVD.

II. METHOD DESCRIPTION

Let a set of complex values {σ ′
e(ωe

i ) + iσ ′′
e (ωe

i )} be the
complex conductivity at discrete frequencies ωe

i , from inter-
val [ωe

min, ω
e
max], as well as at zero frequency, σ ′

e(0) = σdc,
measured at temperature TR. We start with the discretization
of the ω axis. Taking into account that the error of analytical
continuation of experimental data measured with finite pre-
cision increases exponentially with distance from the known
interval [5], we use a logarithmic scale. This also helps to
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FIG. 1. Reconstruction of Drude complex conductivity by the
described method from precisely known values, shown as blue
points. The real part of Drude conductivity is shown by the red
dashed line together with three curves, which have considerably
different values yi (red points) at higher frequencies. Inset shows
the deviation �σ ′′/σ0 = H[σ ′

{yi}]/σ0 − g′′ of the imaginary part of
conductivity calculated from these curves by Hilbert transform, from
the Drude one. The deviation is surprisingly larger for the light
pink curve, which has all the red points lying on the real part of
Drude conductivity, than for the brown and orange curves oscillating
around it. The values of the functional (4) for the light pink curve
are F0 = 1.2×10−5σ 2

0 and for the orange and brown curves are
2.0×10−7σ 2

0 . Nevertheless, the average of brown and orange curves
is very close to the Drude one.

avoid problems with splining square-root and logarithmic
singularities with polynomial functions. We introduce a new
discrete variable xi with values

xi = 0, 1, . . .

. . . k,
1

a
ln

(
h̄ωe

0/kBTR
)
,

1

a
ln

(
h̄ωe

1/kBTR
)
, . . .

. . . ,
1

a
ln

(
h̄ωe

N/kBTR
)
, l, l + 1, . . . , n, (1)

where the number of points k below the experimental window
is set by a parameter a = ln(h̄ωe

0/kBTR)/(k + 1) and l is the
lowest integer greater than ln(h̄ωe

max/kBTR). The discretization
is obtained simply by

ωi = kBTR

h̄
ea·xi . (2)

An example of such procedure is shown in Fig. 1, where
the exponential spacing of red points ωi is interrupted by the
experimental values (blue points) at ωe

i . Values of the real part
of conductivity at the frequencies ωi are denoted by yi, i.e.,
yi = σ ′(ωi ) and they will become the fitting parameters to be
optimized. The integer n, determining the number of fitted
points, can be estimated as the index of a reasonably high
value of ωn, where the conductivity can be safely fixed to zero,
since σ (ω → ∞) −→ 0, whereas the contributions from high
energy transition, being far enough from the studied region,

are included in parameter ε∞ introduced later on. According
to Fermi liquid theory, finite temperature can be taken into
account by the transformation

ω �→ � =
√

ω2 + γ (T )2, (3)

where γ (T ) is of the same order of magnitude as kBT/h̄, often
taken as γ (T ) = πkBT/h̄ (e.g., Eq. (6.7) in Ref. [8]). Equa-
tion (3) implies that for ω � γ (T ), the conductivity σ ′(�) is
constant and equals to σdc = σ ′(γ (T )). Thus a smooth func-
tion y = f{yi}(x) can be constructed by a cubic spline using
the radial basis function (RBF) method [12,13], with two
boundary conditions, y0 = σdc measured at room temperature
and yn = 0. The first condition is satisfied by fixing the first
point of the discretization to frequency ≈ γ (TR), which is the
reason for the presence of the temperature, at which the optical
measurement was conducted, in the discretization (1). The
spline proceeds in the logarithmic scale, where the distribution
of centres xi given by Eq. (1) is equidistant, which is optimal
for RBF method [14].

From known trial function f , the complex conductiv-
ity is calculated as σ ′

{yi}(ω) = f{yi}(x(ω)) and σ ′′
{yi}(ω) =

H[σ ′
{yi}(ω)]. Here, H[σ ′

{yi}(ω)] is the Hilbert transform of
σ ′

{yi}(ω). The curve f{yi}(x) is found as the best fit of its Hilbert
transform σ ′′

{yi}(ω) to experimental set of points σ ′′
e (ωe

i ) by
least-squares method, minimizing the functional

F
[
σ ′

{yi}(ω)
] =

∑
ωe

j

(
σ ′′

e

(
ωe

j

) − σ ′′
{yi}

(
ωe

j

))2

+
∑
ωe

j

(
σ ′

e

(
ωe

j

) − σ ′
{yi}

(
ωe

j

))2
. (4)

This approach leads to the following key observation. Sup-
pose, for a moment, that the values of σ ′

e(ωe
i ) and σ ′′

e (ωe
i ) were

not obtained by measurement, but were generated instead
by restricting the domain of a dimensionless model function
g′(ω) and its Hilbert image g′′(ω), i.e., σ ′

e(ωe
i ) = σ0g′(ωe

i ) and
σ ′′

e (ωe
i ) = σ0g′′(ωe

i ). It means that the solution corresponding
to the input data σ ′

e(ωe
i ) and σ ′′

e (ωe
i ) is already known [the

whole function g′(ω)]. It is clear that the spline of finite
number of points f{yi}(x) can not perfectly recover the func-
tion, even if yi = σ0g′(ωi). Slight differences yield small, but
nonzero values of the functional (4), denoted by F0. How-
ever,by applying the corresponding optimization method, one
can find curves with an even lower value of the functional (4),
while these curves are significantly different from g′(ω).

This is interpreted as a practical consequence of the ill-
posed nature of the problem and in order to regularize it, we
add the assumption that the searched function is slowly vary-
ing. This can be confirmed by the fact that the relaxation rate
� in highly disordered metals has a large value (for estimation
of � see Appendix D), and therefore, their conductivity varies
on large scales [4]. Utilization of this requirement is based on
the following idea. For the sake of simplicity, let g′(ω) be the
Lorentzian

g′(ω) = 1

1 + (ω/�)2
(5)

shown in Fig. 1 as red dashed line. The choice of input data
σ ′

e(ωe
i ) and the discretization of the problem are depicted in
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Fig. 1 as blue and red dots, respectively. Let us investigate
different solutions with the value of functional (4) smaller or
equal to the F0. Such solutions have the following property: if
the red point at ω11 is lifted and the red point at ω12 lowered,
or vice versa, the deviation of the imaginary conductivity from
the Drude one, shown in inset of Fig. 1, changes only very
slightly and can even decrease the deviation caused by the
spline error. Thus a solution with the least structure can be
obtained by averaging of all generated curves [9,15]. Curves
with energy (4) lower than F0 can be found, utilizing the
simulated annealing technique by repeated melting of the
system. We suggest inverse logarithmic temperature decay
and rather small step in the form of n-dimensional Gaussian
random variable, recommended for continuous optimization
[16]. Optimized parameters are forced to be non-negative and
the upper bound is chosen high enough to include the shape
of an expected solution but not too high to make optimization
time-consuming. Points in the measured interval, i.e., values
yi = σ ′(ωi ) where ωi ∈ [ωe

min, ω
e
max] are optimized within in-

tervals [σ ′
e(ωe

i ) − χ, σ ′
e(ωe

i ) + χ ], where χ is the noise level
of the data.

The generated curves σ ′
{yi}(ω) which satisfy F (σ ′

{yi}(ω)) �
F0 are used to compute the averaged curve σ ′(ω) = σ ′

{yi}(ω).
Although the Hilbert transformation is linear, the averaged
curve σ ′(ω) gives a slightly higher value of the functional
F . Therefore we search a curve varying similarly to σ ′(ω),
while minimizing the functional (4). Such a multiobjective
optimization is performed by linear scalarization [17], i.e.,
minimizing functional:

F̃λ

[
σ ′

{yi}(ω)
]

= F
[
σ ′

{yi}(ω)
] + λ

∫ ωn

ω0

(
d2σ ′(ω)

dω2
− d2σ ′(ω)

dω2

)2

dω, (6)

where ω0 and ωn are the first and the last point of the spline
defined by Eq. (2). The parameter λ is not a priori known and
must be carefully chosen for the particular problem. One can
start with a high value of λ, such that λ � F/I , where I is the
integral in (6), estimated with an arbitrarily chosen curve from
the ensemble. The found solution is very similar to σ ′(ω) and
with a similar value of the first error functional (4). One can
lower the value of λ further, until the error (4) is lower then
F0. In real data analysis, the precision limit F0 is set by the
measurement error in such a way, that the accepted curve lies
within the estimated measurement error.

III. NUMERICAL RESULTS

The extrapolation range and accuracy of the described pro-
cedure, i.e., finding reasonable complex conductivity curves
to extrapolate the experimental curves with respect to KK
relations, naturally depends on the degree of complexity of
the extrapolated functions. Thus, to demonstrate the feasibility
of this method, we tested the extrapolation on sets of data
created from two functions, which qualitatively describe the
real part of the optical conductivity of MoC and NbN thin
films, respectively. The conductivity of the former is modeled
by a simple function motivated by Ref. [4], which contains
the observed square-root quantum corrections to the optical

conductivity of these films:

g1(ω, T ) = e−�2/�2
1 + Q2(

√
�/�1 − 1)e−4�2/�2

1 . (7)

Here, � is defined by Eq. (3), �1 is the scattering rate, and the
quantumness Q2 characterizes the strength of the square-root
corrections, which are significant up to a certain crossover
frequency, chosen to be half of the scattering rate. This func-
tion is shown as the red dashed line in square-root-scale in
top plot of Fig. 2(a) for Q2 = 0.66. The input data—depicted
as blue dots—were obtained by sampling the above function
(7) at 20 regularly placed frequencies. Points of discretization
are depicted as red dots. Next, to test the extrapolation of a
slightly more complex function, we study a model function
with two peaks motivated by Refs. [3,4]

g2(ω, T ) = 1

1 + (�/�2,1)2
+ Q2(

√
�/�2,1 − 1)e−4�2/�2

2,1

+ r2

1 + ((� − �2)/�2,2)2
, (8)

where �2,1/2 is the cutoff for quantum corrections and r2 is
the peak height ratio. Here, the cutoff frequency was not deter-
mined by the �2,1 but by the appropriate scale describing the
ultimate decrease of the function to zero, which we assumed
to be �2 + �2,2. As we show in Appendix D, the estimated
relaxation rate � for the NbN film corresponds rather to this
scale. The searched function (8) is shown in the top plot of
Fig. 2(b) as the red dashed line, the input data are blue dots and
the optimized points are red. A few curves from the averaged
ensemble are also shown as silver lines. The average curves
are depicted as black lines and the final conductivity is green.
As shown in Sec. IV, function (8) based on Drude-Lorentz
model [3] qualitatively describes the measured conductivity
of our NbN films, which indicates the presence of two peaks
in optical conductivity.

The results presented in Fig. 2 show the usability of the
procedure. For the g1(ω) model, there is good agreement
of the final green curve with the original curve (7) at both
higher and lower frequencies. The deviation �σ ′ = g1 − σ ′

yi

shown in bottom plot of Fig. 2(a) is below 5%. Shown is
also a histogram generated by the ensemble of found curves.
The conductivity model g2(ω) is more complex, therefore,
the function (8) is accurately reconstructed in the vicinity
of the extrapolated region, whereas further from this region,
the deviation increases. The deviation of the final curve from
the searched function (8), shown in bottom plot of Fig. 2(b),
reaches 20% and variance of the curves is also larger than for
the simpler model (7). This is visible at higher frequencies
in the slightly underestimated second peak’s height, whereas
at low frequencies, the function is recovered with lower
deviation. In both cases, we performed both the Padé approx-
imation and SVD. The results are presented and discussed in
Appendix C 2.

IV. EXTRAPOLATION OF EXPERIMENTAL DATA

The procedure was applied to extrapolate the conductiv-
ity of disordered thin films, as shown in Fig. 3(a) for MoC
and Fig. 3(b) for NbN, respectively. For the details of sam-
ple preparation, see Appendix B and Refs. [4,18]. Complex
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FIG. 2. (a) (Top) Red dashed line is a Gaussian model of opti-
cal conductivity with square-root quantum corrections (MoC). Blue
points laying on the curve are input data for the extrapolation. Sil-
ver lines are curves from the ensemble. Black line is a normalized
averaged curve σ ′(ω) = σ ′

{yi}(ω). The final curve is green. (Bottom)
Histogram showing occupancy of deviations around the searched
function by curves from ensemble and deviation of final curve shown
as green line. (b) (Top) Red dashed line is the optical conductivity
as a sum of two Lorentzians, with square-root quantum corrections
(NbN). Blue points are input data, ensemble curves are silver, the av-
erage curve is black and the final curve is green. (Bottom) Histogram
of deviation of curves from ensemble and deviation of final green
line.

conductivity was determined from spectroscopic ellipsometry,
and DC conductivity was measured by the Van der Pauw
method. The contribution of interband transitions at higher
energies must be taken into account in the imaginary part of
the conductivity. Following the KK relations, the contribu-
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FIG. 3. Real (solid green line) and imaginary (dashed green
line) parts of the extrapolation of normalized complex sheet con-
ductance g = g′ + ig′′ = (σ ′ + iσ ′′)dZ0, obtained from spectroscopic
ellipsometry (blue data) for MoC (a) and NbN (b) thin films with
thicknesses d = 5 nm and 3.5 nm, respectively, measured at room
temperature. All found complex conductivities with functional (4)
�F0 are shown as silver (real part) and gold lines (imaginary part).
Since Eq. (3) implies g′(ω = 0, T ) = g′(ω = πkBT, 0), the real part
of complex conductivity at zero temperature (dotted line), obtained
from extrapolation procedure, can be compared to temperature-
dependent DC transport measurement shown as light blue thick
lines. (a) also shows two theoretical curves, a Lorentzian (red) and
a Gaussian (pink), proposed in Ref. [4].

tion from the bound electrons can be expressed as σ ′′
bound =

−ε0(ε∞ − 1)ω, where ε0 is the permittivity of vacuum and
ε∞ is the bound-electron contribution to the static dielectric
constant. For MoC, the value of ε∞ was estimated as 1.4
in Ref. [4] and for NbN, we calculated ε∞ = 2.6 utilizing
the same procedure, while a similar value was estimated in
Ref. [3]. Subsequently, the corresponding contribution to the
imaginary part of the conductivity σ ′′

bound was subtracted from
measured data. Since the relaxation rate � can not be easily
used as a fitting parameter, we estimated the value from the
sheet resistance measured on our thin films and the density of
carriers. The details on both estimations of ε∞ and � are given
in the Appendix D. For MoC conductivity, the extrapolation
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fits between two theoretical curves, a Lorentzian (red) and
a Gaussian (pink), proposed in Ref. [4]. Taking γ (T ) in the
form πkBT/h̄ (same as in Ref. [4]), the inverse transformation
given by Eq. (3) allows to compare the extrapolation (dotted
lines) with the terahertz-frequency real part of conductivity
(light blue thick lines), obtained from the temperature depen-
dent DC transport measurement. The agreement for MoC is
very good, especially taking into account the large distance
between optical frequencies (500 THz) and the frequency
(πkT/h ≈ 50 THz) relevant for transport measurements. The
agreement for NbN is less satisfying. However, even for these
more complicated conductivity spectra, the extrapolation can
match the transport measurements reasonably.

In order to verify the extrapolation procedure experi-
mentally, the real part of conductivity, determined from the
extrapolation of ellipsometric data, was compared to the con-
ductivity calculated from the transmission of MoC and NbN
films (see Appendix A), directly measured in the much wider
frequency range accessible by our spectrometer, as shown
in Fig. 4. The good agreement of our extrapolation with the
data from transmission measurement for MoC is the encour-
aging result. The mismatch in the NbN’s transmission above
5.0 eV could be caused by interdiffusion between sapphire
and NbN. The transmission of sapphire is nearly frequency
independent between 0.3–5.0 eV [inset in Fig. 4(b)], but above
5.0 eV, the transmission strongly depends on impurities in
the sapphire [19]. To verify the reliability of transmission
data above 5.0 eV, we used them to compute the real part of
conductivity, taking the imaginary part from ellipsometry for
the same sample, and used both as the basis for extrapolating
a complex conductivity curve, plotting its real part (Fig. 4).
Such extrapolation failed if the entire transmission dataset
(6.2 eV) was used, indicating that such conductivity violates
the Kramers-Kronig relations. By the bisection method, we
found the cutoff, for which the transmission data still process
into valid complex conductivity, to be 5.4 eV (dotted line,
brown); if a data set with the cutoff at 5.0 eV was used, the
real part of the generated conductivity (orange) matches that
produced from ellipsometry alone (green).

V. CONCLUSION

A numerical procedure of extrapolating the complex con-
ductivity of disordered metals based on the Kramers-Kronig
relations was introduced. In general, this task has many solu-
tions with standard methods finding a single particular one.
The proposed method finds a single solution by averaging
many of them which is reasonable, if the requirement of slow
variation of their conductivity on energy scale �� is met.
A slow variation of σ (ω) is reasonably satisfied in highly
disordered metals, where experimental data do not indicate
rapid oscillations in conductivity and the described method
offers a robust and reliable extrapolation procedure of the
measured optical conductivity. The range and precision of
the extrapolation depend on the complexity of the function.
For the simple single-peak model of conductivity, which is
the case for MoC thin films, even the DC transport measure-
ments can be reconstructed from the optical measurements,
despite the presence of strong quantum corrections. For the
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FIG. 4. Green curves are extrapolations of normalized sheet con-
ductance for MoC (a) and NbN (b) obtained from spectroscopic
ellipsometry data (blue points) (the same as in Fig. 3) and the exper-
imental values obtained from transport (light blue) and transmission
(red) measurements. In plot (b) brown and orange curves are extrap-
olations of data obtained from transmission measurement with the
upper cutoff 5.4 and 5.0 eV, respectively. The value 5.4 eV of the
energy cutoff (dotted line) is the largest, where the extrapolation can
be done. The highest value of the cutoff energy, where the influence
of the substrate can be neglected, is 5.0 eV. The rapid change in the
brown curve above 5.0 eV is probably due to the influence of the
substrate, whose transmission changes rapidly above this value, as
shown in the inset. Data are shown in linear scale.

more complex, double-peaked conductivity model, which is
the case of NbN films, the reliability range of the extrapola-
tion is decreased. However, the extrapolation still reasonably
matches the DC measurements and predicts the second peak.
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APPENDIX A: OPTICAL PROPERTIES CALCULATION

Both the ellipsometry data and the extrapolated conductiv-
ity were used to obtain the optical properties of our thin films.
The real and imaginary parts of the complex refractive index
are defined in Ref. [20] as

n(ω) =
√

1

2
(
{εR(ω)} + |εR(ω)|),

k(ω) = sgn(ω)

√
1

2
(−
{εR(ω)} + |εR(ω)|), (A1)

where εR is the (complex) relative permittivity given by

εR(ω) = 1 + iσ (ω)/ωε0. (A2)

The transmission Tv f s of a thin film with the complex refrac-
tive index ñ(ω) = n(ω) + ik(ω), placed upon a semi-infinite
substrate with index ñs = ns, i.e., vacuum-film-substrate,
whose imaginary part is neglected is [21]

Tv f s =
∣∣∣∣∣

2

(1 + ñs)cosφ − i(ñs + ñ2)φ0
sinφ

φ

e−iφ0

∣∣∣∣∣
2

. (A3)

Here, φ = ñ ω
c d and φ0 = ω

c d are phase shifts in the film and in
vacuum of thicknesses d , respectively. The transmission Tv f sv

through a system with finite substrate thickness is

Tvs f v = Tv f sTsv

1 − Rv f sRsv
, (A4)

where Tsv = 4ns/(1 + ns)2 is the transmission of the
substrate-vacuum interface, and the reflection R is obtained
from the corresponding transmission simply by 1 − T . Next,
the transmission of the vacuum-substrate-vacuum system is

Tvsv = T 2
sv

1 − R2
sv

. (A5)

Finally, Eqs. (A4) and (A5) are used to express the transmis-
sion of the system vacuum-film-substrate-vacuum normalized
to the transmission of the substrate itself as

Tv f sv

Tvsv
= Tv f s

Tsv

1 − R2
vs

1 − Rv f sRsv
, (A6)

which was also a measured quantity. The right-hand side of
Eq. (A6) is a function of complex conductivity marked as
Tn(σ ′, σ ′′) and can be utilized to calculate one of its parts,
real or imaginary, from another part and from the normal-
ized transmission. Instead of inverting Eqs. (A1)–(A6), one
can simply minimize the difference between Tn(σ ′, σ ′′) and
measured Tv f sv/Tvsv , namely,

σ ′ = arg min((Tn(σ ′, σ ′′) − Tv f sv/Tvsv )2), (A7)

which is, in fact, plotted in Fig. 4 as red symbols.

APPENDIX B: SAMPLE PREPARATION

The MoC thin film was prepared by means of reactive
magnetron sputtering from Mo target in argon-acetylene at-
mosphere (both gases used of purity 5.0) on c-cut sapphire
wafer heated to 200 ◦C. The flow rates of argon and acetylene
were set by flow meters. During deposition, the magnetron

current was held constant at 200 mA, corresponding to a
deposition rate ≈11 nm/min. The deposition time, and thus
the thickness, was regulated by means of a programmable
shutter control interface with a precision of 1 s. The chamber
was evacuated to approximately 5×10−5 Pa. For details on
the preparation of the MoC films and their characterization
see Ref. [22]. The sheet resistance of the studied MoC sample
with a nominal thickness d = 5 nm was R� = 720 �.

The thin NbN film was prepared by pulsed laser abla-
tion from an Nb target (purity 99.99%) in atmosphere of N2

with added 1% H2 (purity of the gas mixture is 5.0). The
NbN thin film was deposited on c-cut sapphire wafer, heated
to the 600 ◦C. The used laser fluency of the KrF laser of
4.9 J cm−2 corresponded to the deposition rate of 2.4 nm/min.
The vacuum chamber was evacuated to 2×10−6 Pa before
deposition. For more details of the preparation of NbN film
and its growing features, see Ref. [18]. The sheet resistance of
our 3.5-nm-thick NbN films was R� = 655 �.

APPENDIX C: STANDARD METHODS
OF EXTRAPOLATION

In the following section, the standard methods of the com-
plex conductivity extrapolation are applied to the MoC and
NbN noisy experimental data and compared to our method.

1. Fitting to model function

The presumed model determines a direct physical inter-
pretation of the parameters of the fit, which have a direct
physical interpretation, are determined by. The ill-posed na-
ture of the analytic continuation enables one to fit the finite
interval data with reasonable accuracy by a variety of models.
Therefore the final solution should be verified by an indepen-
dent measurements. For example, the conductivity of metallic
thin films is commonly analysed by the Drude-Lorentz model
[23], as presented by Semenov et al. in Ref. [3] for NbN thin
film:

εr = ε∞ − ω2
p

ω(ω + i�)
+

2∑
n=1

�2
Sn

�2
0n − ω2 − i�Dn

(C1)

Here, εr is the relative permittivity from which the conductiv-
ity is obtained by equation (A2). This function does not take
into consideration the presence of quantum corrections to the
optical conductivity, which are clearly present in highly dis-
ordered NbN films. These corrections can strongly affects the
optical conductivity of these films, depending on the degree
of disorder. The contribution of quantum corrections to opti-
cal conductivity should be present up to UV frequencies, as
assumed in theory and recently experimentally demonstrated
in Ref. [4]. Still, such contributions are usually neglected
above infrared frequencies and the complex conductivity is
commonly analysed by the Drude-Lorentz model. This leads
to either unrealistic physical parameters or to the conclusion
that the complex conductivity cannot be fitted by the standard
model [24]. The fit of our NbN data by the Drude-Lorentz
model (C1) is shown in Fig. 5. The first Lorentz peak, i = 1
in (C1), which should corresponds to a band transition, is
misused to fit the conductivity suppressed by quantum cor-
rections at lower frequencies and the normal regime at higher
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FIG. 5. Fit of the normalized sheet conductance (blue dots), by
the Drude-Lorentz model (red line). The fit does not match the
increase of the conductivity indicated by the temperature-dependent
DC transport measurement (light blue thick line) in contrast to the
prolongation (green line), see Fig. 4 (b) in the main text. The pink,
brown and violet dashed lines show the contributions from the Drude
and the two Lorentz terms in (C1), respectively.

frequencies. As a consequence, the Drude contribution is
suppressed to create a crossover to the low frequency con-
ductivity and the fit provides an extremely small value of
the relaxation rate h̄� ≈ 0.26 eV in comparison with rough
estimation h̄� ≈ 10 eV presented in next section. In fact, all
quantities the listed in Table I are unphysical, as was explicitly
pointed out in Ref. [3], too. Moreover, fitting data by an
inappropriate physical model can lead to the appearance of
additional features that do not have to be real. On the contrary,
our “unbiased” method has predictive strength and can un-
cover phenomena present at frequencies outside the measured
interval, just assuming that the optical conductivity cannot
rapidly oscillate on a scale determined by the relaxation rate
�, whereas rapid changes are not excluded. This is shown
in Fig. 5 by arrows which mark frequencies, where optical
conductivity changes its monotonicity. Due to quantum cor-
rections, the change can be very sharp, e.g., thermally smeared
square-root or logarithmic singularity at zero frequency.

2. Padé approximation and SVD

In the Padé approximation, the data are fitted by the ratio of
two general complex polynomials, σ (ω) = P(ω)/Q(ω) with

TABLE I. Parameters given by the fit of the real and imaginary
part of the complex conductivity obtained from spectroscopic ellip-
sometry on our NbN sample by model (C1). We assumed ε∞ = 2.6,
coming from calculation as mentioned in the main text.

ωph̄ �h̄ h̄�S1 h̄�01 h̄�D1 h̄�S2 h̄�02 h̄�D2

(eV)
2.88 0.25 9.42 0.86 2.12 11.71 5.54 3.31

0.0 0.5 1.0 1.5 2.0√
ω/ωe

max

0.0

0.5

1.0

σ
/σ

e(
ω

e m
a
x
)

(a)

0.0 0.5 1.0 1.5 2.0√
ω/ωe

max

0.0

0.5

1.0

1.5

2.0

σ
/σ

e(
ω

e m
a
x
)

(b)

FIG. 6. Application of the Padé and SVD prolongation method
on the model data (blue dots, same as in Fig. 2). The red dashed
line in (a) and (b) corresponds to the model function (7) and (8),
respectively. Black line is real part of the solution obtained by SVD,
orange dash-dotted line is Padé approximtion with both boundary
conditions included and orange solid line is Padé approx. without
them.

orders N and M, respectively. The first boundary condition
is satisfied by including the point at zero frequency and the
asymptotic behavior at higher frequencies is ensured by set-
ting M = N + 1 [9]. Results of such constrained Padé approx.
strongly depends on the orders N and M, which were chosen
to avoid reaching negative, unphysical values. This approach
offered poor precision of extrapolation (the dash-dotted line in
Fig. 6) even for the best fit, which was obtained for the orders
N = 5 and M = 6 for model (7) and N = 4 and M = 5 for
model (8). Surprisingly, fitting data in the interval [ωe

min, ω
e
max]

only (solid orange curve), without condition on the orders,
offered the best result. For the single peak model (7) the
maximum deviation reached was 1%. For the double peak
function (8), the result was similar but only in higher frequen-
cies. Non-negativity was again ensured by the orders N and
M, which were optimized to reach the best match to the value
at zero frequency. For the unconstrained Padé, they were both
equal to 6. The Padé approx. which worked reliably for the
noiseless model data, was applied to the MoC and NbN noisy
experimental data as well (Fig. 7). Although the noise was
carefully filtered out, the unconstrained Padé approximation
(solid orange curve) rapidly varies and diverges for the NbN
data. The orders of polynomials were chosen to reach the
best match to the static conductivity, being N = 5, M = 6
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FIG. 7. Comparison of the real parts of normalized sheet conduc-
tance obtained by our method (green line) extrapolating ellipsometric
(blue) data to the solutions obtained by the Padé approximation (or-
ange solid), constrained Padé (orange dash-dotted), and SVD (black).

and N = 8, M = 9 for MoC and NbN, respectively. The
constrained Padé (dash-dotted line) gave a solution which was
more stable, but poorly fitted the data, especially at the edges
of the experimental window.

In SVD, the behavior of the searched function is prescribed
at both boundaries. Following Ref. [25], the problem of find-
ing a function satisfying the KK relations, while fitting the
input data, is turned into solving a linear system by expanding
the known and searched functions into a proper series. Reg-
ularization is done by truncating the series and the resulting
system is solved by the SVD, which means that the solution is
one with the least squares error. For the model function (7), a
result similar to Padé was achieved by SVD, with the rank of
the decomposed matrix being equal to 7. The rank was chosen
to minimize the rapid oscillations of the resulting curve. For
the double peak model (8), SVD recovers the searched func-
tion at low frequencies very well, but at high frequencies gives
additional structure. To obtain this result the matrix rank was
equal to 8. The results obtained from SVD are shown in Fig. 6
as black lines.

When applied to the experimental data, the SVD solution
oscillates, its real part reaching negative values, which can not

be forbidden in the SVD approach. The rank of the matrix
of which we calculated the pseudoinverse by SVD was again
chosen to minimize the oscillations, even though they are still
present in the final curves (black lines in Fig. 7). This rank
was 7 and 6 for MoC and NbN, respectively.

We believe, that the local variability of the curves gen-
erated by our method allows us to suppress the effects of
the noise and averaging inside the measured interval provides
additional smoothing of data, but with respect to KK.

APPENDIX D: ESTIMATION OF DIELECTRIC CONSTANT
ε∞ AND RELAXATION RATE �

Extrapolating the complex conductivity as described re-
quires two crucial parameters, electron relaxation rate � and
an “infinity frequency” dielectric constant ε∞. Our estimation
of ε∞ closely follows calculation presented in Ref. [4]:

ε∞ ≈ 1 +
∑ �2

j

ω2
j

. (D1)

Here, approximate equality means that the high frequency
permittivity consists of resonant contributions of transitions
between bands modeled by atomic-like levels and conduction
band at the Fermi energy. Estimation of weights of the os-

cillator was based on the f −sum rule as �2
j = Z j nat e2

mε0
, where

Zj is the number of electrons at the atomic level j and nat

is the density of the particular atom type. The excitation
energies of the atomic levels h̄ω j were taken from Ref. [26]
and corresponding densities were calculated from volumes of
elementary cells, which can be found in Refs. [27,28]. The
calculation for MoC yields ε∞ = 1.38 [4]. Relevant levels of
niobium are 4p (6 electrons, 31 eV), 4s (2 electrons. 56 eV),
and 3d (10 electrons, 203 eV) and levels of nitrogen are 2s
(2electrons, 20 eV) and 1s (2 electrons, 410 eV), which yields
ε∞ = 2.58 for NbN.

Our rough estimation of the relaxation rate � is based on
the Drude formula for static conductivity

� = e2n

mσ0
. (D2)

Here, the density of carriers n ≈ 4.2×1023cm−3 is taken from
the Hall measurement in Ref. [29]. The quantum corrections
to the static conductivity can be included via the quantum-
ness Q2 ≈ 1/(kF l )2, which relates the classical value σ0 to
the measured one as σdc = σ0(1 − Q2) [4]. For a reasonable
quantumness [4] Q2 = 0.7, we obtained h̄� ≈ 16 eV and
≈10 eV for MoC and NbN thin films, respectively. Here
we should emphasize, that our method requires a rough es-
timation of the relaxation time (order of magnitude) only.
For example, if � is overestimated, the method sets more
high frequency points close to zero conductivity. On the
other hand, if � is considerably underestimated, the simulated
annealing finds no curve. In each case, one can properly
adjust � to obtain reasonable curves found by the simulated
annealing.
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