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exist in the existing structures of both quantum and classical theory. In particular, we design an explicit 
example of measure-and-prepare nonlocal (but no-signaling) channel being the realization of nonlocal 
and no-signaling Popescu-Rohrlich box within the generalized probabilistic theory of processes. Further 
we present a post-selection-based spatially non-local implementation and show it does not require truly 
quantum resources, hence, improving the previously known results. Interpretation and potential (spatially 
non-local) simulation of this form of process nonlocality and the protocol is discussed.
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1. Introduction

The spooky paradox of Einstein, Podolski and Rosen, challeng-
ing the completeness of the mathematical framework of quantum 
theory, represents one of the deepest foundational puzzle of quan-
tum theory. Quantum spookiness was discovered in 1935 [1] and 
it took thirty years until this paradox has been resolved by John 
Bell in Ref. [2]. He has realized that theories compatible with the 
concept of local realism (used to create the paradox) necessarily 
satisfy certain inequalities, nowadays known as Bell inequalities. 
He has shown that quantum theory violates them and the phe-
nomenon of quantum (Bell) nonlocality [3] has been discovered. 
Since then the mathematical origin of the EPR paradox was clari-
fied and nonlocality-enabled quantum technologies have been de-
veloped, however, its intuitive spookiness remains (see for instance 
Refs. [4,5]).

It is know that incompatibility is intimately related with the 
phenomenon of nonlocality [6–11]. Indeed, both the entangled 
states and the incompatible measurements are necessary for the 
demonstration of Bell nonlocality. The question of incompatibil-
ity of observables of processes was addressed recently in Ref. [12], 
where it was show that incompatibility of process measurements 
is both qualitatively and quantitatively different from incompati-
bility of state observables. In particular, unlike for quantum state 
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measurements, for quantum process observables the maximum in-
compatibility degree is attained already for qubit systems. It was 
exactly this observation that has driven our curiosity to investigate 
the CHSH settings within the framework of general probabilistic 
theory of quantum processes (GPTQP).

Since quantum processes are represented by Choi matrices 
forming a subset density operators, one may think that what-
ever phenomena we observe for channels could be simulated by 
quantum states. However, as the study on process observables in-
compatibility shows, the reality is different. In this work we will 
demonstrate that also the phenomenon of non-locality is different. 
The paper is organized as follows: In the Section 2 we will de-
fine different classes of nonlocal boxes. The general probabilistic 
theory of quantum processes is described in Section 3. Section 4
is devoted to maximization of the violation of the Bell-CHSH in-
equality and we obtain results similar to [13–15]. In Section 5 we 
describe probabilistic spatial implementation of the CHSH test us-
ing only classical shared randomness and post-selection. Section 6
is left for conceptual discussion of the achieved results.

2. Nonlocal boxes

In general, the paradigm of nonlocality requires the existence of 
spatially separated experimental facilities. It is common to name 
these local experimental stations as Alice and Bob. It is assumed 
that both can choose independently (of each other) their local 
experimental setups. In case of CHSH inequalities [16] each of 
them is selecting between a pair of two-outcome measurement 
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setups (X ∈ {A, A′} for Alice and Y ∈ {B, B ′} for Bob). In par-
ticular, the outcomes are labeled as a, a′, b, b′ , respectively, and 
takes values ±1. The whole setup is described by a family of 
conditional probabilities P (x, y|X, Y ), i.e. by 16 numbers satisfy-
ing the elementary probability constraints 0 ≤ P (x, y|X, Y ) ≤ 1 and ∑

x,y P (x, y|X, Y ) = 1 for all x, y = ±1, X ∈ {A, A′} and Y ∈ {B, B ′}. 
We say these conditional probabilities describe a bipartite nonlo-
cal box, because the experiment can be rephrased as a black-box 
device with separated inputs X, Y and outputs x, y on Alice’s and 
Bob’s sides, respectively.

In a special case, when such nonlocal box can be simulated by 
means of local conditional probability distributions and exchange 
of classical information, we say the nonlocal box is of local hidden 
variable type, i.e. LHV box. By definition it means that

P (x, y|X, Y ) =
∑

λ

π(λ)P (x|X, λ)P (y|Y , λ)

for (local) conditional probabilities P (x|X, λ), P (y|Y , λ) and some 
probability distribution π(λ) (called local hidden variable model over 
the (local hidden) parameter λ. Clearly, the local hidden variable 
model π(λ) represents the resource of (classical) randomness pre-
shared between Alice and Bob prior to experiment. Such shared 
randomness is the physical implementation of LHV boxes. It is im-
portant to stress that choices of X and Y are independent of the 
local hidden variable λ.

By definition, LHV boxes satisfy all Bell inequalities [17–19], 
thus, do not exhibit the phenomenon of quantum nonlocality. 
In particular, let us fix X and Y and denote by 〈X ⊗ Y 〉 =∑

x,y=±1 xy P (x, y|X, Y ) the expectation value of their joint mea-
surement performed by Alice and Bob, respectively. Since for all 
choices of a, a′, b, b′ = ±1 the identity a(b + b′) + a′(b − b′) = ±2
holds, it follows that for any LHV box |〈A ⊗ B〉 + 〈A ⊗ B ′〉 + 〈A′ ⊗
B〉 − 〈A′ ⊗ B ′〉| ≤ 2. This inequality is known as CHSH-Bell inequal-
ity [16].

The phenomenon of quantum nonlocality is recovered when the 
shared randomness is replaced by the shared bipartite quantum 
state that is accessed independently by Alice and Bob who per-
forms measurements on their parts. Quantum (state) nonlocal boxes
are inducing the conditional probabilities through Born formula 
P (x, y|X, Y ) = Tr(�(Ax ⊗ B y)), where � is some density opera-
tor (representing a joint state of a pair of quantum systems) and 
Ax, B y are effects (positive operators smaller than identity opera-
tor) describing the probabilities of the outcomes observed by Alice 
and Bob, respectively. It is well known that many of quantum non-
local boxes are violating CHSH inequality and that for any choice 
of the state and the measurements |〈A ⊗ B〉 +〈A ⊗ B ′〉 +〈A′ ⊗ B〉 −
〈A′ ⊗ B ′〉| ≤ 2

√
2. This quantum limitation is known as Tsirelson 

bound [20].
In their seminal work [21,22] Popescu and Rohrlich questioned 

the conceptual and operational origin of quantum correlations and, 
especially, of the existence of Tsirelson bound. It is straightforward 
to verify that the no-signaling maximum is equal to the algebraic 
maximum of CHSH formula, which is four. Popescu and Rohrlich 
were wondering why this value of nonlocality is not achieved by 
quantum states. Extending CHSH framework they have identified 
the concept of nonlocal boxes and motivated the study of so-called 
general probabilistic theories (GPT) [23,24]. In particular, they have 
introduced a family of no-signaling nonlocal boxes characterized 
by the conditions

P (x|X) =
∑

y

P (x, y|X, Y ) =
∑

y′
P (x, y′|X, Y ′)

for any X, Y , Y ′ and

P (y|Y ) =
∑

P (x, y|X, Y ) =
∑

′
P (x′, y|X, Y )
x x
for any X, X ′, Y . In other words, the marginal distributions P (x|X), 
P (y|Y ) are independent of the choices of Y and X , respec-
tively. Such no-signaling restriction ensures that measurements 
performed in the local laboratories are not influencing each other.

Popescu and Rohrlich gave an example of no-signaling nonlo-
cal box (coined as PR box) violating Tsirelson bound for CHSH 
inequality and achieving the algebraic maximum. Relabeling the 
outcome values to {0, 1} and denoting non-dashed and dashed ob-
servables as choices 0 and 1, respectively, we set for all variables 
the same value space x, y, X, Y ∈ {0, 1}. Using such notation the 
conditional probabilities for PR box can be compactly expressed as 
PPR(x, y|X, Y ) = 1/2 if x ⊕ y = XY and vanishes otherwise.

Recently, it was realized that PR box would represent a resource 
both qualitatively and quantitatively stronger than any quantum 
nonlocal box [3,23,25,26]. For example [27–29], PR box would 
make any communication trivial from the complexity point of 
view. However, such device is purely hypothetical and currently no 
known existing realizations. Several proposals and attempts have 
been made to realize PR box in laboratories [30–32]. All these 
constructions are employing post-processing of quantum measure-
ments to achieve the desired goal. In this work we will present 
qualitatively different PR box implementations. In particular, we 
will show that a general probabilistic theory in which channels are 
playing the role of states allows for maximal violation of CHSH 
inequality. Moreover we will present a protocol based on post-
selection and classical shared randomness, that implements the PR 
box correlations without the need for quantum systems at all.

3. General probabilistic theory of quantum processes

When designing a general probabilistic theory (GPT) we can 
follow the following algorithm. First, we specify a convex set play-
ing the role of states (density operators in quantum theory), i.e. 
mathematical representation identified with the set of preparations 
of the object of experiments. Probabilities of outcomes of mea-
surements are then naturally identified with positive affine (thus 
convex structure preserving) functions, i.e. affine maps from the 
convex set into the interval [0, 1]. Such functions are usually called 
effects.

Further, we need to give some mathematical meaning to sys-
tems composed of more than one object (being the tensor product 
for quantum theory). There is a freedom in the definition of a 
suitable tensor product and a particular choice determines the fea-
tures of the theory. However, the discussion of these consequences 
is not relevant for the purposes of this work, the only important 
fact is that the chosen tensor product must contain all separable 
states and only no-signaling states. There are several ways to ex-
press nonlocality of bipartite systems. One may e.g. consider spa-
tial nonlocality, that is a bipartite system is nonlocal if its parts are 
separated by some distance or temporal nonlocality, that is when 
objects are separated by some time period. In our calculations we 
will use Bell nonlocality. We will say that a bipartite state is Bell 
nonlocal if it violates some Bell inequality. We will be concerned 
only with CHSH Bell inequality.

We will consider as a state space the set of quantum chan-
nels (quantum processes), i.e. the set of completely positive trace 
preserving linear maps mapping density operators to density op-
erators. Quantum channels on a quantum system identified with 
d-dimensional complex Hilbert space Hd are represented by their 
Choi matrices [33], that are density operators � on Hd ⊗Hd satis-
fying the normalization constraint d Tr2(�) = 1, where Tr2 denotes 
the partial trace and 1 denotes the identity matrix. In particular, 
� = (E ⊗ I)[ω+], where ω+ = d−1 ∑

jk | j ⊗ j〉〈k ⊗ k| is the max-
imally entangled state, E is the channel that corresponds to the 
Choi matrix � and I denotes the identity map.
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Therefore, for GPT of quantum processes (GPTQP) the convex 
set of states is identified with the set of Choi matrices �. The pro-
cess effects are then represented by functionals f (�) = Tr(�F ), 
where F is a positive operator describing probability of an out-
come of an experiment addressing the properties of quantum 
channels. In general, the assignment of probabilities to experi-
mental outcomes consists of preparation of an input state �, ap-
plication of the channel (E ⊗ I)[�] and of applying some effect 
0 ≤ E ≤ 1, i.e. of computing Tr((E ⊗ I)[�]E). The process effect F
captures the relevant characteristics of � and E . In particular, F =
(I⊗R∗

�)[E], where R� is defined via the identity (I⊗R�)[ω+] =
� and R∗

� denotes the associated dual map [34,35], so we have 
Tr(�F ) = Tr((E ⊗I)[�]E). It is important to realize that the whole 
procedure of inputting a state and measuring the outcome is a lo-
cal process effect F in the framework of GPTQP, the application 
of the effect E to (E ⊗ I)[�] is just a part of the assignment of 
probability to the channel � (which is a state in GPTQP).

In order to discuss the non-locality phenomena for GPTQP 
we need to introduce the concept of bipartite systems and lo-
cal measurements. Naturally, these bipartite states coincide with 
bipartite channels defined on the tensor product of the under-
lying Hilbert spaces, i.e. E : S(HAB) → S(HAB), where HAB =
HA ⊗HB is the joint Hilbert space composed of subsystems A and 
B . In accordance with the single-partite case the associated Choi-
Jamiolkowski operators � = E ⊗ IAB(ω+) form a subset of density 
operators S(HAB ⊗ HAB) satisfying the constraint dAB tr2� = I AB , 
where dAB is the dimension of HA ⊗ HB and I AB denotes the 
identity operator on this Hilbert space. Local measurements on 
subsystem A are described by effects of the form F ⊗ I B ⊗ I B , 
where F is positive operator on HA ⊗ HA satisfying F ≤ I A ⊗ �
with � ∈ S(HA). Analogously one identifies local measurements 
on subsystem B . Measurements performed on subsystem A and 
subsystems B individually and recording outcomes a and b, respec-
tively, consists of effects of the form Xa ⊗ Yb . Unlike for states, the 
no-signaling condition p(a|X, Y ) = p(a|X) does not hold in gen-
eral, because 

∑
b tr[�(Xa ⊗Yb)] = tr[�(Xa ⊗ I ⊗�)] clearly depends 

on the normalization of the local process observable Y on the sub-
system B . It follows that nonlocal channels might be (in a sense 
naturally) signaling.

For example, consider a nonlocal unitary channel swapping 
states of the subsystems A and B . It is straightforward to see 
that changing input states on B (being part of the choice of lo-
cal observable) changes the statistics of the measurement on the 
subsystem A, because the local measurements on A are actu-
ally implemented on the input of B . In particular, setting �+ =
ωA A′

+ ⊗ ωB B ′
+ the Choi operator of the swap unitary channel is 

�SWAP = ωB A′
+ ⊗ ωAB ′

+ . A straightforward calculation gives

p(a|X, Y ) =
∑

b

Tr(�SWAP X A A′
a ⊗ Y B B ′

b )

= 1

d2

∑

jk

� jk Tr(Xa(| j〉〈k| ⊗ 1)) ,

where � jk = Tr(| j〉〈k|�) and 
∑

b Yb = 1B ⊗ �. Let us stress that 
p(a|X, Y ) depends on the normalization of the measurement Y , 
therefore we can conclude that the swap channel is signaling.

In summary, the GPTQP identifies the state space with the set 
of all Choi matrices of quantum channels. The role of process ef-
fects is played by positive operators 0 ≤ F ≤ 1 ⊗ �, for some den-
sity operator �. The process observable is a collection of process 
effects F j satisfying the normalization 

∑
j F j = I ⊗ �. The com-

position of systems is described by the standard tensor product 
of the accompanying operator Hilbert spaces. Let us note that the 
abstract process-matrix formalism introduced in Ref. [36] is gener-
alizing the operationally motivated formalism of GPTQP.
4. Channel-based CHSH no-signaling nonlocality

Although signaling nonlocal channels exist in the framework 
of GPTQP [37], from now on we will be interested only in the 
non-signaling nonlocal boxes and in the violations of the CHSH in-
equality that we can realize using the no-signaling nonlocal boxes.

Nonlocal boxes induced by quantum processes within GPTQP 
are described by a resource process state � being associated with 
a bipartite channel E and a specification of a pairs of two-valued 
process observables A, A′ and B, B ′ used by Alice and Bob, respec-
tively. Within the framework of CHSH we assume the outcomes 
of all the observables are taking values ±1. Consequently, such 
process-based nonlocal boxes lead to probabilities P (±, ±|A, B) =
Tr(�A± ⊗ B±). The expectation value for X ⊗ Y equals

〈X ⊗ Y 〉� = Tr(�(Xa ⊗ Yb)) =
∑

a,b=±1

abP (a,b|X, Y ) .

Our goal is to find the maximal value of the CHSH expression 〈(A +
A′) ⊗ B + (A − A′) ⊗ B ′〉� for choices of � and A, A′, B, B ′ . In what 
follows we will give an example achieving the value of 4 that is 
known to be the algebraic maximum.

Denote by |0〉, |1〉 the vectors forming the computational ba-
sis of qubit Hilbert space H2. Consider a two-qubit measure-and-
prepare channel in which, each of the qubits is (independently) 
measured in the computational basis and subsequently (based on 
the observed outcomes j, k ∈ {0, 1}) the two-qubits are prepared in 
a fixed two-qubit state. In particular, ξcor = 1

2 (|00〉〈00| + |11〉〈11|)
if jk = 0 and ξacor = 1

2 (|01〉〈01| + |10〉〈10|) if jk = 1. These output 
states describe the (classically) correlated and anticorrelated state 
of two qubits, respectively. In summary, the total action of such 
channel leads to the following state transformation

E[�] = (1 − κ)ξcor + κξacor

where κ = �11,11 = 〈11|�|11〉.
In more technical terms, this channel acts as follows E[X] =

(trX − κ)ξcorr + κξacor, thus, Choi operator reads � = ξ AB
κ ⊗ I A′ B ′

where ξκ = [(1 − κ)ξcorr + κξacor]. Then

p(a|X, Y ) = Tr(�(X A A′
a ⊗ 1B ⊗ �B ′

))

= Tr((ξ AB
κ ⊗ 1A′

)(X A A′
a ⊗ 1B) ⊗ �B ′

)

= Tr((ξ AB
κ ⊗ 1A′

)(X A A′
a ⊗ 1B))

= p(a|X) ,

thus, it is independent on the choice of measurement Y on the 
subsystem B. In a similar fashion one can show that the same 
holds for the choice of the measurement X on the subsystem A. 
Consequently, the considered channel E is no-signaling.

In order to perform Bell like experiment we need to specify lo-
cal process measurements of such nonlocal channel. Let us denote 
by Zψ a process measurement, in which the quantum channel acts 
on the single qubit test state |ψ〉 and the output system is mea-
sured in σz basis. Bare in mind that both inputting the testing state 
|ψ〉 and measuring in σz basis are parts of the local process mea-
surement. Moreover in the case that we will present, inputting the 
state |ψ〉 can be identified with pressing certain button on the PR 
box. This also shows that the process measurement is a local ac-
tion.

Suppose that on both sides one may perform either Z0, or 
Z1 process measurement, thus, the test states are |0〉, or |1〉, re-
spectively. In the settings of Bell inequalities X, Y ∈ {Z0, Z1} and 
x, y = {±1}. We have everything we need to evaluate the con-
ditional probabilities P (x, y|X, Y ) and, subsequently, evaluate the 
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CHSH expression. Let us denote by E( jk) = E(| j〉〈 j| ⊗ |k〉〈k|). For 
measurement choices Z j, Zk with jk = 0 we obtain

P (+,+|Z j, Zk) = 〈00|E( jk)|00〉 = 〈00|ξcor|00〉 = 1

2
P (+,−|Z j, Zk) = 〈01|E( jk)|01〉 = 〈01|ξcor|01〉 = 0

P (−,+|Z j, Zk) = 〈10|E( jk)|10〉 = 〈10|ξcor|10〉 = 0

P (−,−|Z j, Zk) = 〈11|E( jk)|11〉 = 〈11|ξcor|11〉 = 1

2
.

Consequently,

〈Z0 ⊗ Z0〉� = 〈Z0 ⊗ Z1〉� = 〈Z1 ⊗ Z0〉� = 1 ,

For the remaining choice Z1, Z1 one finds

P (+,+|Z1, Z1) = 〈00|E(11)|00〉 = 〈00|ξacor|00〉 = 0

P (+,−|Z1, Z1) = 〈01|E(11)|01〉 = 〈01|ξacor|01〉 = 1

2

P (−,+|Z1, Z1) = 〈10|E(11)|10〉 = 〈10|ξacor|10〉 = 1

2
P (−,−|Z1, Z1) = 〈11|E(11)|11〉 = 〈11|ξacor|11〉 = 0

and 〈Z1 ⊗ Z1〉� = −1. Therefore,

〈(Z0 + Z1) ⊗ Z0 + (Z0 − Z1) ⊗ Z1〉� = 4 .

In conclusion, this proves that the designed experiment achieves 
algebraic maximum of CHSH quantity, thus, overcoming the 
Tsirelson bound valid for quantum states and demonstrating the 
existence of PR box. Let us recall that the induced probabilities 
P (x, y|X, Y ) and the channel E are indeed no-signaling.

5. Protocol for probabilistic spatially non-local implementation 
of the nonlocal channel

Although the employed channel E is no-signaling, it is non-
local. Since we do not have access to long-range interaction, its 
spatial distribution is extremely limited. To implement the non-
local channel � we are going to use a modified version of the 
protocol for probabilistic storing and retrieving of unitary channels 
[38]. The idea is as follows: in quantum teleportation there is a 
one in four chance that one does not have to do any corrections to 
the resulting state. In this case, we can first input one part of an 
entangled state into the channel (store the action) and later with 
some probability teleport the input state into the channel (retrieve 
the action).

To be exact, the protocol (depicted in Fig. 1) consist of two par-
ties, say Alice and Bob, both having in their possession a maximally 
entangled state |φ+〉 = 1√

2

∑
i j |i ⊗ i〉〈 j ⊗ j|. In the first step (that 

corresponds to the preparation phase of the nonlocal resource), 
both Alice and Bob take one of the two particles forming their re-
spective maximally entangled pair and input this particle into the 
channel � and they receive back the respective output. After the 
first step, the laboratories of Alice and Bob may be spatially sep-
arated, each holding a pair of particles representing (storing) the 
nonlocal resource and a Bell measurement device MBell perform-
ing measurement in the Bell basis |φ+〉, |φ−〉, |ψ+〉, |ψ−〉.

Let us note that the shared resource state �E = (I ⊗ E ⊗
I)(|φ+〉〈φ+| ⊗ |φ+〉〈φ+|) (with I denotes the identity map) stor-
ing the action of E reads

�E = 1

4

(|0〉〈0| ⊗ ξcor ⊗ |0〉〈0| + |0〉〈0| ⊗ ξcor ⊗ |1〉〈1|+
|1〉〈1| ⊗ ξcor ⊗ |0〉〈0| + |1〉〈1| ⊗ ξacor ⊗ |1〉〈1|).
Fig. 1. The protocol for implementing a nonlocal channel � with inputs |ϕA 〉 and 
|ϕB 〉 using probabilistic channel storing. |�+〉 denote the Bell states, M denotes the 
measurement in Bell basis.

Let us stress that the state �E is a classically correlated state and 
that it has zero quantum discord [39–41], hence, the storage cre-
ates purely classical correlations between the involved qubits. The 
protocol (in the forthcoming step) will work the same way if the 
classically correlated and uncorrelated states are replaced by en-
tangled correlated and anticorrelated states, e.g. ξcor = |�±〉〈�±|
and ξacor = |ψ±〉〈ψ±|, respectively. But there is no need to involve 
entanglement.

One may object that presharing the state �E is not a local pro-
cedure and requires communication. However, any entanglement-
based protocol (teleportation, key distribution, etc.) that requires 
entangled states requires the parties to preshare the entangled 
state before running the protocol.

In the second step Alice and Bob access the nonlocal box, i.e. 
both of them prepare input states |ϕA〉 and |ϕB〉 (both being ei-
ther |0〉, or |1〉). Further they perform measurement MBell on their 
input state and on the remaining (unused) particle of the maxi-
mally entangled pair. If both of them observe the outcome |φ+〉, 
they are left with the output of the channel E applied on |ϕA〉 and 
|ϕB〉. This output is stored in the remaining unmeasured qubits 
and they may continue with the CHSH test.

Let us stress that measuring the outcomes |φ−〉 corresponds 
to situation when Alice and Bob inputs are σz rotated, however, 
since their inputs are either |0〉, or |1〉, they remain unchanged 
(σz|ϕA〉 = |ϕA〉 and σz|ϕB〉 = |ϕB〉). In other words also the si-
multaneous observations of outcome |φ−〉 or observation of any 
combinations of the outcomes |φ+〉 and |φ−〉 correspond to a suc-
cessful run of the protocol.

In order to verify the implementation is successful Alice and 
Bob need to communicate whether they are successful on their 
sides, or not. In total, the protocol has 50% success chance for each 
of the parties, hence, overall the protocol has 25% chance of be-
ing successful. It is important to note that the transmitted classical 
bits are random and it is impossible to deduce from them the par-
ticular inputs of Alice and Bob. Once the success is confirmed they 
both can continue to perform the CHSH test, i.e. measure locally 
the remaining states by a randomly selected observable (X and Y ) 
and record the outcomes ±1.

6. Discussion

It is well known that PR boxes do exist as mathematical ob-
jects in artificial general probabilistic theories. In this work we 
have shown that PR boxes are accommodated within an existing 
formalism of quantum theory – the GPTQP, thus, PR boxes are not 
anymore purely conceptual objects appearing in thought experi-
ments. Indeed, the above equations for conditional probabilities 
show explicitly that the channel � is a mathematically faithful re-
alization of PR box.

A question that emerges is related to the interpretation of non-
locality. Unlike for the case of quantum states, it is not possible 
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to separate parts of the channel and distribute them to distant 
places. In current physics, we are lacking long-distance interac-
tions and therefore it is essentially forbidden to implement the 
PR box channel � in a spatially separated manner. However, the 
mathematical formalism of nonlocal boxes does not rely on the 
concept of space. The concept of locality can be understood purely 
in terms of subsystems, i.e. in our ability to address subsystems 
individually. Adopting such perspective we do not affect any math-
ematical statement regarding the nonlocality, thus, the existence 
of such nonlocality with respect to subsystems is of foundational 
relevance and interest. On the other side in such case the inter-
pretation of nonlocal boxes as nonlocal objects in space is not 
necessarily applicable and this fact have potential consequences 
for communication-based applications, where the spatial separa-
tion between the participants is essential.

Consequently, for sake of clarification it turns out to be im-
portant to distinguish conceptually between Bell nonlocality and 
spatial nonlocality. Having such clarification in mind we may say 
that the introduced channel � is a faithful implementation of PR 
box not reflecting the spatial nonlocality. Following this interpreta-
tion, one may wonder to which extent the spatial nonlocality of �
can be simulated. Similar question we are facing in entanglement 
swapping protocols [42,43], where we are aiming to implement the 
swap gate between spatially separated systems. Again, such trans-
formation is forbidden in universes without nonlocal interactions. 
However, having access to entanglement and communication such 
gate can be simulated (essentially by implementing the quantum 
teleportation protocol [44]). The drawback is that the gate imple-
mentation is not instantaneous. In fact, its realization is limited by 
the speed of communication, thus, by the mutual space distance 
between the systems. We have seen the same problem emerge 
in the proposed probabilistic protocol for implementing the non-
local channel �. Although the parties communicate only random 
bits to verify that the protocol has worked, the communication 
is still crucial. Yet it is an open question whether there do exist 
instantaneous implementations of the proposed nonlocal channel 
�. The reason why they might exist is that the channel � is no-
signaling channel, hence it does not transmit any information and 
it is not restricted by the speed of light. On the other side, this 
question is conceptually related to the principal universality of the 
Tsirelson’s bound that would imply limitations on any implemen-
tation of nonlocal chanels.

In practice, the proposed CHSH experiment with PR box can be 
seen as follows. Both Alice and Bob choose one random bit j and 
k (determining the input test state). If jk = 0, then (after the ac-
tion of the channel �) they observe perfectly correlated outcomes 
and if jk = 1 they found their results perfectly anticorrelated. See-
ing the whole experiment from this perspective it is natural to 
ask what is quantum in this experiment? The answer may sound 
rather surprising. The channel � can be seen as purely classical 
channel acting on a pair of classical bits and all the results derived 
for � remain valid. This is clearly very unexpected result that PR-
type nonlocality emerges already in the mathematical formalism 
of classical structures, namely for general probabilistic theory of 
classical processes. It is even more astonishing that the proposed 
probabilistic protocol for implementing the nonlocal channel � can 
be considered to be a classical protocol, although the motivation 
for it comes from quantum protocols.

In conclusion, we found that PR box can be implemented within 
general probabilistic theory of quantum and classical processes. 
This implies that superquantum no-signaling correlations are not 
forbidden in our experiments, however, also that the spatial non-
locality should be distinguished from Bell nonlocality. Our obser-
vation induces a plethora of open questions and exciting founda-
tional research directions. For example, the presented construction 
is based on measure-and-prepare channel that is in a sense classi-
cal.

One may wonder whether there are also some intrinsically non-
classical channels maximizing the CHSH expression. More general 
characterization of superquantum nonlocal boxes will be addressed 
in future work.
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