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Probabilistic storage and retrieval (PSR) of unitary quantum dynamics is possible with exponentially small
failure probability with respect to the number of systems used as a quantum memory [M. Sedlák, A. Bisio,
and M. Ziman, Phys. Rev. Lett. 122, 170502 (2019)]. Here we study improvements due to a priori knowledge
about the unitary transformation to be stored. In particular, we study N → 1 PSR of qubit phase gates, i.e., qubit
rotations around the Z axis with an unknown angle, and show that if we access the gate only N times the optimal
probability of perfect retrieving of its single use is N/(N + 1). We propose a quantum circuit realization for the
optimal protocol and show that a programmable phase gate [G. Vidal, L. Masanes, and J. I. Cirac, Phys. Rev.
Lett. 88, 047905 (2002)] can be turned into a (2k − 1) → 1 optimal PSR of phase gates and requires only k
controlled-NOT gates, while having exponentially small failure probability in k.
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I. INTRODUCTION

Discovery of Shor’s algorithm [1] boosted research inves-
tigating capabilities of quantum systems for computation and
information processing. In analogy with classical computers
people envisioned a quantum computer, which would have
at its heart a quantum processor realizing a fixed unitary
transformation on data and program quantum bits (qubits).
Ideally the transformation should be universal, i.e., by choice
of the state of the program register the machine could be
programed to perform any desired (unitary) transformation on
the data qubits. However, Nielsen and Chuang [2] proved that
perfect (error-free) implementation of k linearly independent
unitary transformations requires at least a k-dimensional pro-
gram register. This observation has lead to formulation of the
no-programing theorem.

Consequently, we either look for deterministic but approxi-
mate processors [3], or we design probabilistic processors [4],
which perform the desired operation exactly and signalize it,
but they often have to signalize a failure as well. Although
some upper bounds on the achievable performance of approx-
imate or probabilistic processors exist [5] there are still gaps
between them and performance of the processors that were
found so far [6–12].

The task of storage and retrieval of unitary transforma-
tions addresses the question how quantum dynamics can be
stored into quantum states and later retrieved [13–15]. In
our previous paper [13] we investigated probabilistic storage
and retrieval (PSR) of unitary transformations, which allowed
us to find covariant probabilistic universal quantum proces-
sors with exponentially smaller program registers than those
known before. In this paper we question how the situation
changes if different prior knowledge is available. Also we aim
to present a practical description of how such probabilistic
processors can be implemented in practice using elementary
quantum gates.

Let us recall the formulation of the storage and retrieval
task. Consider a set of unitary channels on the d-dimensional
Hilbert space H. Suppose one of these channels, further de-
noted as U , is chosen uniformly randomly and we have access
only to N uses of it today. Our aim is to propose a strategy
that contains channel U N times and stores it in a state of
a quantum memory. This part of the task is called storage.
Later, after we have lost access to U , we are requested to
apply U on an unknown state ξ . Our goal is to choose a
storage and retrieval procedure in such a way that we would be
able to retrieve the action of the channel U on any state ξ . The
no-programing theorem implies the retrieval phase cannot be
perfect universally. The approximative universality was first
analyzed by Bisio et al. [14], where it was termed quantum
learning. The perfect probabilistic version of the problem,
termed probabilistic storage and retrieval of a unitary channel,
was investigated by Sedlák et al. in Ref. [13]. In this case
the goal is to retrieve the quantum channel from the quan-
tum memory only without error and with highest possible
probability, which was found to be λ = N/(N − 1 + d2). The
retrieval probability is required to be the same for all the
unitary channels U , i.e., λ = Tr[U (ξ )] ∀U .

In this paper we study how this optimal success probability
changes if we have some nontrivial a priori information about
the unitary transformation to be stored. In particular, we will
study probabilistic storage and retrieval of qubit phase gates
(initiated in Ref. [15]), i.e., qubit unitary transformations,
which in computation basis acts as

Uϕ = |0〉〈0| + eiϕ |1〉〈1|. (1)

After finding the optimal success probability and the descrip-
tion of the protocol on the abstract level, we will also search
for some efficient realization of the PSR protocol in terms of
the quantum circuit model.
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The rest of the paper is organized as follows. We use
formalism of quantum combs in Sec. II for derivation of the
optimal success probability and mathematical description of
the optimal protocol of N → 1 PSR of qubit phase gates. In
the following sections we discuss various realizations of this
protocol; however, the mathematical details of Sec. II are not
needed for their understanding. In particular, Sec. III shows
how a single use of a phase gate can be optimally stored and
retrieved using just a single-qubit storage, one controlled-NOT

(CNOT) gate, and a single-qubit measurement for retrieval.
Section IV gathers observations from Secs. II and III to de-
scribe circuit realization of the optimal N → 1 protocol via
an ancillary qudit and controlled shift gate followed by a
measurement of the qudit. Section V focuses on 2 → 1 PSR of
phase gates, i.e., a case where the gate can be accessed twice
in the storage phase. For this we minimized the CNOT gate
count by hand and we present a three-qubit quantum circuit
containing eight CNOTs. Finally, in Sec. VI we show that the
proposal of Vidal, Masanes, and Cirac [15] for realization of a
programable phase gate in fact constitutes (2k − 1) → 1 PSR
of phase gates in such a way that it performs optimally and
requires only k CNOT gates, while having exponentially small
failure probability in k.

II. OPTIMAL PROBABILISTIC STORAGE AND
RETRIEVAL OF PHASE GATES

In contrast to Ref. [13] we assume here that the stored
unitary channel is known to be one of the phase gates Uϕ ,
hence, an element of the U (1) subgroup rather than the whole
group U (2) of all qubit unitary gates. In what follows we
will follow conceptually the steps of Ref. [13]; however, the
structure of irreducible subspaces is different. Effectively, this
paves the way for an increase in success probability. In this
section we prove the following theorem.

Theorem 1. The optimal probability of success of N → 1
probabilistic storage and retrieval of an unknown qubit phase
gate Uϕ is psuccess = N/(N + 1).

Proof. The whole storage and retrieval protocol can be
described as follows. In the storing phase we use the N copies
of the unknown Uϕ to produce some state |ψϕ〉 ∈ HM . Dur-
ing the retrieving phase both the state |ψϕ〉 and the target
state ξ are sent as inputs to a retrieving quantum instrument
R = {Rs,R f } the output of which in the case of successful
retrieving (Rs) should be exactly Uϕ (ξ ) = Uϕ (ξ )U †

ϕ . Any pos-
sible way in which storing and retrieving can be done (parallel
or sequential application of Uϕ , or any other intermediate
approach) is mathematically described by inserting the N uses
of the unitary channel Uϕ into N open slots of a generalized
quantum instrument (see Supplemental Material of Ref. [13]
for a short review, or Refs. [16–18]) L = {Ls,L f }:

L

1
Uϕ

2 3
Uϕ

4 2N 2N+1 2N+2

· · · M

S R
(2)

where S denotes the (deterministic) storing network and R
the retrieving quantum instrument. The output system of the
storing network corresponds to the Hilbert space HM which
carries the state |ψϕ〉. In the case of successful retrieving (i.e.,
observing outcome s corresponding to both Rs and Ls) the
resulting quantum operation from L(H2N+1) to L(H2N+2) is
required to be proportional to the channel Uϕ , i.e.,

Ls ∗
(

N⊗
i=1

|Uϕ〉〉〈〈Uϕ|2i−1,2i

)
= λ|Uϕ〉〉〈〈Uϕ|2N+1,2N+2, (3)

where we used the link product formalism and the Choi op-
erator Ls = S ∗ Rs describes the successful operation of the
storing and retrieving quantum network. Thus, in this case
we know with certainty that final output of the network is
the desired state UϕξU †

ϕ ∈ L(H2N+2). By expressing the link
product in Eq. (3) explicitly the requirement of perfect proba-
bilistic storing and retrieving can be stated as

〈〈U ∗
ϕ |⊗N Ls|U ∗

ϕ 〉〉⊗N = λ|Uϕ〉〉〈〈Uϕ| ∀ϕ ∈ [0, 2π ]. (4)

We stress that the probability of success, i.e., the value of λ,
is required to be the same for all ϕ ∈ [0, 2π ]. The aim of our
analysis is to derive the optimal probabilistic quantum net-
work Ls, which obeys the constraint of Eq. (4) and maximizes
the value of λ.

Our first observation is that the operator Ls could be chosen
to satisfy the commutation relation[

Ls,U ⊗N
ϕ ⊗ U ⊗N

ϑ ⊗ (U ∗
ϕ )2N+1 ⊗ (U ∗

ϑ )2N+2
] = 0 (5)

for all ϕ, ϑ ∈ [0, 2π ]. This can be proven by showing that
any optimal strategy can be made covariant, while keeping the
same success probability. As a consequence of Eq. (5), it was
proven in Ref. [14] that the optimal storing phase is parallel,
i.e., the N uses of the unknown unitary are applied in parallel
on a quantum state |ψ〉 as shown in the following diagram:

ψϕ = ψ

1
Uϕ

2

3
Uϕ

4

...
M

= ψ

A
U⊗N

ϕ

B

A M
.

(6)

In this diagram we use labels A and B to denote all input and
output Hilbert spaces of N uses of the phase gate, respectively.

Let us now consider the decomposition of U ⊗N
ϕ ∈ L(HA)

into irreducible representations (irreps) of U (1):

U ⊗N
ϕ =

N⊕
j=0

ei jϕ ⊗ Imj , (7)

where Imj denotes the identity operator on the multiplicity
space. Let us recall that all irreps of U (1) are one dimen-
sional [dim(H j ) = 1] and ei jϕ represents the element eiϕ ∈
U (1). Equation (7) induces the following decomposition of
the Hilbert space HA:

HA :=
⊕

j

H j ⊗ Hmj , dim
(
Hmj

) = mj . (8)
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It was shown in Ref. [14] that the optimal state |ψ〉 for the
storage can be expressed in the following form:

|ψ〉 :=
⊕

j

√
p j |I j〉〉 ∈ H̃, p j � 0,

∑
j

p j = 1 (9)

where HA ⊗ HA′ ⊇ H̃ := ⊕
j H j ⊗ H j and I j denotes the

identity operator on H j . The optimal state |ψ〉 undergoes
the action of the unitary channels and becomes |ψϕ〉 :=⊕

j
√

p jei jϕ |I j〉〉. Clearly, |ψϕ〉 belongs to HM , which is a

subspace of HB ⊗ HA′ isomorphic to H̃.
We can focus our attention on the retrieving quantum in-

strument {Rs,R f } from L(HC ⊗ HM ) to L(HD):

C

Ri=r,s

D

M .
(10)

The condition that the outcome s corresponds to perfect learn-
ing becomes

Rs ∗ |ψϕ〉〈ψϕ | = TrM{Rs[(|ψϕ〉〈ψϕ|)T ⊗ IC,D]}
= 〈ψ∗

ϕ |Rs|ψ∗
ϕ 〉 = λ|Uϕ〉〉〈〈Uϕ| ∀ϕ ∈ [0, 2π ],

(11)
A

Rs

D

ψϕ
M = λ Uϕ ,

(12)

where |ψ∗
ϕ 〉 = ⊕

j
√

p je−i jϕ |I j〉〉. The optimal Rs can be cho-
sen to satisfy the following commutation relation:

[Rs,U ′
ϕU ′

ϑ ⊗ (U ∗
ϕ )C ⊗ (Uϑ )∗D] = 0,

U ′
ϕ :=

⊕
j

ei jϕ I j ⊗ I j, (13)

which is clearly the analog of Eq. (5) where U ⊗N
ϕ ⊗ U ⊗N

ϑ has
been replaced by U ′

ϕU ′
ϑ . Then, recalling that U ′

ϕ|ψ〉 = |ψϕ〉
and |ψ∗〉 = |ψ〉, from Eq. (13) we have

〈ψ∗
ϕ |Rs|ψ∗

ϕ 〉 = λ|Uϕ〉〉〈〈Uϕ| ∀ϕ ⇐⇒ 〈ψ |Rs|ψ〉 = λ|I〉〉〈〈I|.
(14)

Let us now summarize what we discussed so far by giving a
formal statement of the optimization problem for probabilistic
storage and retrieval of a qubit phase gate:

maximize
|ψ〉,Rs

λ = 1
4 〈〈I|〈ψ |Rs|ψ〉|I〉〉,

subject to 〈ψ |Rs|ψ〉 = λ|I〉〉〈〈I|,
|ψ〉 as in Eq. (9),

Rs obeys Eq. (13),

TrD[Rs] � I. (15)

Consider now the decomposition

ei jϕI j ⊗ U ∗
ϕ =

⊕
J∈J j

eiJϕIJ ⊗ Im( j)
J

,

H j ⊗ H =
⊕
J∈J j

HJ ⊗ Hm( j)
J

, (16)

where the index j labels the irreducible representations in the
decomposition of U ⊗N

ϕ and we denote with J j the set of values
of J such that eiJϕ is in the decomposition of ei jϕI j ⊗ U ∗

ϕ . It is
important to notice that the multiplicity spaces Hm( j)

J
are one

dimensional and therefore Im( j)
J

are rank 1. Then we have

U ′
ϕU ′

ϑ ⊗ U ∗
ϕ ⊗ U ∗

ϑ =
N⊕

J,K=−1

eiJϕIJ ⊗ eiKϑ IK ⊗ ImJK ,

HmJK =
⊕
j∈jJK

Hm( j)
J

⊗ Hm( j)
K

(17)

where jJK denotes the set of values of j such that
eiJϕeiKϑ is in the decomposition of ei jϕI j ⊗ ei jϑ I j ⊗ U ∗

ϕ ⊗
U ∗

ϑ . For example, for J = K = 0, . . . , N − 1 jJJ = {J, J + 1},
j−1 −1 = {0}, jNN = {N}. Since dim(Hm( j)

J
) = 1 we stress that

〈〈Im( j)
J

|I
m( j′ )

J
〉〉 = δ j, j′ , |χ〉 ∈ Hm( j)

J
⊗ Hm( j)

J
⇔ |χ〉 ∝ |Im( j)

J
〉〉 and

HmJJ = span({|Im( j)
J

〉〉}, j ∈ jJJ ).
From Eq. (17) the commutation relation of Eq. (13) be-

comes [
Rs,

N⊕
J,K=−1

eiJϕIJ ⊗ eiKϑ IK ⊗ ImJK

]
= 0, (18)

which, thanks to Schur’s lemma, gives

Rs =
N⊕

J,K=−1

IJ ⊗ IK ⊗ s(JK ),

s(JK ) ∈ L(HmJK ), s(JK ) � 0. (19)

From Eq. (19) we have that the quantum operation Rs is the
sum of the positive operators IJ ⊗ IK ⊗ s(JK ). Therefore we
have that

〈ψ |Rs|ψ〉 = λ|I〉〉〈〈I| ⇐⇒

〈ψ |IJ ⊗ IK ⊗ s(JK )|ψ〉 = λJK |I〉〉〈〈I| ∀J, K (20)

since |I〉〉〈〈I| is a rank 1 operator.
From the identity I j ⊗ I = ⊕ j

J= j−1 IJ ⊗ Im( j)
J

(we recall
that Im( j)

J
has rank 1), we obtain

|ψ〉|I〉〉 =
N⊕

j=0

j⊕
J= j−1

√
p j |IJ〉〉

∣∣Im( j)
J

〉〉
(21)

=
N⊕

J=−1

⊕
j∈jJJ

√
p j |IJ〉〉

∣∣Im( j)
J

〉〉 =
N⊕

J=−1

|IJ〉〉|φJ〉,

|φJ〉 : =
⊕
j∈jJJ

√
p j

∣∣Im( j)
J

〉〉
. (22)

Using Eq. (19) in Eq. (15) we obtain

λJK = δJKλJ , λ =
N∑

J=−1

λJ , (23)

λJ = 1

4
〈φJ |s(JJ )|φJ〉 (24)
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where the λJK ’s were defined in Eq. (20). It is now easy to
show that we can assume

Rs =
⊕

J

IJ ⊗ IJ ⊗ s(J ), (25)

s(J ) :=
∑

j, j′∈jJJ

s(J )
j j′

∣∣Im( j)
J

〉〉〈〈
I
m( j′ )

J

∣∣. (26)

Indeed, let R′
s = ⊕

JK IJ ⊗ IK ⊗ s′(JK ) be the optimal retriev-
ing quantum operation and let us define linear operators Rs =⊕

J IJ ⊗ IJ ⊗ s(J ) where s(J ) = s′(JJ ) and R′′
s = ⊕

J �=K IJ ⊗
IK ⊗ s(JK ). Since both Rs and R′′

s are positive and Rs + R′′
s =

R′
s, we have that normalization condition TrD[R′

s] � I im-
plies TrD[Rs] � I , TrD[R′′

s ] � I , i.e., Rs and R′′
s are quantum

operations. Finally, from Eq. (24) we have that 〈ψ |Rs|ψ〉 =
〈ψ |R′

s|ψ〉, thus proving that also {Rs, |ψ〉} is an optimal solu-
tion of the optimization problem (15).

If Rs is of the form of Eq. (25) we can express the constraint
of Eq. (14) in terms of the operators s(J ) as follows:

s(J )
j, j′ = μJ√

p j p j′
J = 0, . . . , N − 1, s(−1) = s(N ) = 0,

(27)

where μJ is some number, which must be non-negative due to
positive semidefiniteness of RS . The proof of Eq. (27) is given
in the Appendix.

Fulfillment of Eq. (27) guarantees the perfect storing and
retrieving of phase gates and we can rewrite the probability of
success as

λ =
N−1∑
J=0

1

4

∑
j, j′∈jJJ

√
p j

μJ√
p j p j′

√
p j′ =

N−1∑
J=0

μJ , (28)

where we used Eqs. (24) and (27).
Let us now consider the trace nonincreasing constraint for

the retrieving quantum operation, which for the Choi operator
reads TrD[Rs] � I . Since Rs satisfies Eq. (13), we have that
[TrD[Rs],U ′

ϕU ′
ϑ ⊗ (U ∗

ϕ )C] = 0 implies

TrD[Rs] =
N⊕

J=−1

⊕
j∈jJJ

IJ ⊗ I j s(J )
j j . (29)

From Eq. (29) we have

TrD[Rs] � I ⇔ s(J )
j j � 1 J = −1, . . . , N, ∀ j ∈ jJJ . (30)

Thanks to Eq. (27) the above can be expressed as inequalities
between μJ and p j as

μJ � p j, ∀ j ∈ jJJ , J = −1, . . . , N. (31)

Collecting Eqs. (28), (31), and (9) the optimization of
perfect probabilistic storing and retrieving can be reduced to

maximize
μJ ,p j

λ =
N−1∑
J=0

μJ ,

subject to 0 � μJ � p j, ∀ j ∈ jJJ , J = 0, . . . , N − 1,

pj � 0,
∑

j

p j = 1. (32)

Storage phase Retrieving phase

FIG. 1. Optimal 1 → 1 PSR of phase gates.

Let us write inequalities that are given by Eq. (31). For any
J = 0, . . . , N we have

μJ � pJ , (33)

μJ−1 � pJ . (34)

We define non-negative coefficient fJ ∈ [0, 1] for J =
0, . . . , N via the formula fJ = (N − J )/N . We can multiply
Eq. (33) by fJ , and Eq. (34) by 1 − fJ , and sum them up for
all J . We obtain

N∑
J=0

fJ μJ + (1 − fJ ) μJ−1 �
N∑

J=0

pJ = 1. (35)

The above inequality can be rewritten as
∑N−1

J=0
N+1

N μJ � 1,

which proves that λ � N/(N + 1).
Let us mention that the coefficient fJ was intentionally

chosen so that the coefficient multiplying μJ is constant and
we get an upper bound on λ in Eq. (32).

Finally, we finish the proof of Theorem 1 by showing that
the obtained upper bound can be saturated. One can simply
choose

p j = 1

N + 1
j = 0, . . . , N,

μJ = 1

N + 1
J = 0, . . . , N − 1 (36)

and check that conditions in Eq. (32) are satisfied and λ =
N/(N + 1). Knowledge of μJ and p j allows us to completely
specify the state |ψ〉 and the retrieving operation Rs sufficient
for building the complete storing and retrieving strategy. �

III. 1 → 1 OPTIMAL CIRCUIT REALIZATION

It follows from Theorem 1 that in case of one to one storing
and retrieval the success probability equals psuccess = 1/2.
Such success probability can be easily obtained (see Fig. 1) if
we apply the gate on a state |+〉 = (|0〉 + |1〉)/

√
2 and feed

the resulting state |ψϕ〉 = (|0〉 + eiϕ|1〉)/
√

2 as a program
state into the CNOT gate. Unitary operator C⊕ representing the
CNOT gate acts on two qubits as | j〉 ⊗ |k〉 �→ | j〉 ⊗ | j ⊕ k〉.
We usually say that the first qubit is the control qubit and the
second one is called the target qubit.

Properties of the CNOT gate C⊕ as a probabilistic program-
able processor were studied by Vidal, Masanes, and Cirac
[15], who exploited this device for probabilistic program-
able implementation of phase gates. In particular, assume the
control qubit is initialized in state |ξ 〉 = α|0〉 + β|1〉 and the
target qubit stores the action of Uϕ , i.e., it is in the state |ψϕ〉.
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Then

C⊕(|ξ 〉 ⊗ |ψϕ〉)

�→ 1√
2

(α|00〉+αeiϕ |01〉+β|11〉+βeiϕ |10〉

= Uϕ|ξ 〉 ⊗ 1√
2
|0〉 + U−ϕ|ξ 〉 ⊗ 1√

2
|1〉 . (37)

We see that measurement of the second (target) qubit in the
computational basis will yield both outcomes with the same
probability 1/2. Outcome zero indicates the implementation
of Uϕ was successful, because the first qubit is collapsed into
the desired state Uϕ|ξ 〉. Otherwise, the resulting state is rotated
in the opposite direction U−ϕ|ξ 〉.

IV. N → 1 REALIZATION VIA AN ANCILLARY QUDIT

The aim of this section is to generalize the construction
presented in the previous section for general N . Thanks to
U (1) irreps being one dimensional it is not necessary to use
an ancillary system in parallel with the unknown gate Uϕ for
the input state |ψ〉. Thus, instead of taking |ψ〉 as in Eq. (9)
we can take |ψ〉 = ∑N

j=0
1√

N+1
|v j〉 ∈ HA, where |v j〉 is any

normalized vector defining an irrep ei jϕ of U (1) in HA, i.e.,
any element of the computational basis with j ones. The
reason is that a fixed unitary can interlink those two (N + 1)-
dimensional subspaces and the value of the amplitudes

√
p j =

1/
√

N + 1 follows from the proof of Theorem 1.
Let us define a virtual qudit (D-dimensional Hilbert

space) identified with the subspace VD = span{|v j〉}N
j=0 of

dimension D = N + 1 and denote its basis states as {|t〉 ≡
|vt 〉}N

t=0. We denote by PD = ∑N
t=0 |t〉〈t | the projector onto

VD, and by P⊥
D = I − PD the projector onto its orthocomple-

ment. During the storage |ψ〉 ∈ VD ⊂ HA evolves into |ψϕ〉 =
1√

N+1

∑N
j=0 ei jϕ |v j〉 ∈ VD. We can now define a channel E ,

which maps states from HA to states on VD and on subspace
VD acts as identity. This is achieved by

E (ρ) = PD ρ PD + Tr(ρP⊥
D )|t0〉〈t0|, (38)

where ρ ∈ L(HA) and |t0〉 is some state in VD. In par-
ticular, Tr(|ψϕ〉〈ψϕ|P⊥

D ) = 0, thus E (|ψϕ〉〈ψϕ |) = |ψϕ〉〈ψϕ |,
since |ψϕ〉 ∈ VD.

Next, we define a control shift-down gate C� as a bipartite
gate with a control qubit and a target qudit via the formula

C�|c〉 ⊗ |t〉 �→ |c〉 ⊗ |t � c〉. (39)

Qubit

Qudit

Storage phase

Retrieving phase

FIG. 2. Optimal N → 1 PSR of qubit phase gates using a single
qudit and one control shift-down gate (see text for details).

Suppose that the state on which the retrieved gate should act is
again a pure state |ξ 〉 = α|0〉 + β|1〉. The control shift-down
gate C� the control qubit of which is in a state |ξ 〉 and the
target qudit of which is in the state |ψϕ〉 acts as

C�(|ξ 〉 ⊗ |ψϕ〉) �→ α|0〉 ⊗ 1√
N + 1

N∑
t=0

eitϕ |t〉 + β|1〉

⊗ 1√
N + 1

(
N∑

t=1

eitϕ |t − 1〉 + |N〉
)

= Uϕ|ξ 〉 ⊗ 1√
N + 1

N−1∑
t=0

eitϕ |t〉

+ U−Nϕ|ξ 〉 ⊗ eiNϕ

√
N + 1

|N〉. (40)

The last step of the implementation (see Fig. 2
for illustration) is a measurement of the qudit in its
computational basis {|t〉}N

t=0. The probability of observ-
ing outcome t is 1/(N + 1) and it is calculated as
Tr {C�[|ξ 〉〈ξ | ⊗ E (|ψϕ〉〈ψϕ |)]C†

� I ⊗ |t〉〈t |}. The postmea-
surement state of a qubit is in the case of outcome t =
0, . . . , N − 1 the same and reads

Uϕ|ξ 〉〈ξ |U †
ϕ = Tr2{C�[|ξ 〉〈ξ | ⊗ E (|ψϕ〉〈ψϕ|)]C†

� I ⊗ |t〉〈t |},
(41)

while for outcome t = N the qubit collapses into a state
U−Nϕ|ξ 〉〈ξ |U †

−Nϕ . At this point it is easy to see that the pre-
sented implementation of the storage and retrieval of the phase
gate would work also for mixed input states ξ due to linearity
of quantum mechanics. We conclude that the presented real-
ization succeeds with optimal probability N/(N + 1), since
this is the total probability of obtaining a result other than
t = N .

V. 2 → 1 CIRCUIT REALIZATION

This section focuses on the case where the gate Uϕ can be
accessed twice in the storage phase. We present a design of
the optimally performing circuit, which follows the ideas from
the previous section, but our aim here is to decompose all the
operations into elementary quantum gates [19]. The first part
of the circuit (see Fig. 3) formed by a CNOT gate, Ry(π/4) =
exp[i π

8 σy], Ry(−π/4), and a one-qubit gate

M =
⎛
⎝ 1√

3

√
2
3√

2
3

−1√
3

⎞
⎠ (42)

transforms the second and third qubit from state |00〉 into state

|ψ〉 = 1√
3

(|00〉 + |10〉 + |11〉). (43)

The action of the phase gate Uϕ on the second and third
qubit leads to a state |ψϕ〉 = 1√

3
(|00〉 + eiϕ |10〉 + ei2ϕ |11〉).

We chose subspace V3 = span{|00〉, |10〉, |11〉} as our virtual
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Storing 
phase

Retrieving phase

FIG. 3. Optimal 2 → 1 PSR of phase gates using two CNOT

gates, two Toffoli gates, and three fixed one-qubit gates.

qutrit. Using σx and two CNOT gates one can construct a shift-
down operation in the V3 subspace as it is illustrated in Fig. 4.
In the retrieving part we can perform the controlled shift-down
gate [see Eq. (39)] by simply adding a control qubit to those
three gates (see Fig. 3). The resulting quantum circuit for
2 → 1 PSR of phase gates contains two Toffoli gates, two
CNOT gates, and three fixed one-qubit gates. The success or
failure of the retrieval is determined by the outcomes of the
measurement of the second and third qubit in the computa-
tional basis. Outcome 01 never appears, 11 corresponds to
failure, and 00 and 10 signalize successful retrieval of the
phase gate. One can verify by a direct calculation that the
success probability is 2/3 and the related postmeasurement
state is Uϕ|ξ 〉.

Finally, the two Toffoli gates can be decomposed into el-
ementary gates. Exact implementation of each Toffoli gate
requires six CNOT gates [20]. However, we can be more effi-
cient, because we have two Toffoli gates next to each other.
We can employ a three-CNOT circuit (see Ref. [19], p. 16)
that differs from the Toffoli gate only by a phase of one state
(|100〉 �→ −|100〉). Luckily, this unwanted additional phase
can be in our case canceled (by suitable choice of the first
and the second control qubit when using Ref. [19], p. 16)
as we had two Toffoli gates next to each other. In this way
six CNOT gates can be saved. The resulting quantum circuit is
depicted in Fig. 5. One can verify by a direct calculation that
the unitary transformation performed by the two Toffoli gates
(from Fig. 3) is exactly reproduced by the last six CNOT gates
surrounded by eight one-qubit gates in Fig. 5. We conclude
that we designed a quantum circuit containing eight CNOT

gates and 11 fixed one-qubit gates, which performs optimal
2 → 1 PSR of phase gates.

FIG. 4. Small quantum circuit performing shift-down operation
in the subspace V3 = span{|00〉, |10〉, |11〉} of two qubits.

Storing phase Retrieving phase

FIG. 5. Optimal 2 → 1 PSR of phase gates using eight CNOT

gates and 11 fixed one-qubit gates. The color coding of one-qubit
gates is the same as in Fig. 3.

VI. (2k − 1) → 1 REALIZATION: EFFICIENT CIRCUIT

Designing a quantum circuit build from elementary gates
and achieving optimal N → 1 PSR of phase gates for arbitrary
N seems to be a challenging task. Already for 2 → 1 PSR of
phase gates as we saw in the previous section it is not easy
to find a circuit containing a low number of CNOT gates. For
this reason it seems rather surprising if we manage to find the
whole family of circuits with the lowest possible complexity
optimally realizing the task.

In Sec. III we used a programable phase gate by Vidal,
Masanes, and Cirac [15] to construct 1 → 1 PSR of phase
gates. From our perspective the main result of Vidal, Masanes,
and Cirac in their paper [15] was actually to show that with
suitable program states they can construct a probabilistic
phase gate, the failure probability of which is exponen-
tially small with respect to the number of qubits used as a
program state. They proposed an iterative procedure, where
the first step is a CNOT gate between the gate’s input |ξ 〉 and a
program state |ϕ〉 ≡ |ψϕ〉 = (|0〉 + eiϕ |1〉)/

√
2 [see Eq. (37)].

As we saw in Sec. III if measurement of the target qubit
yielded bit zero (signalizing the success) then the gate’s output
was Uϕ|ξ 〉, otherwise they proposed to feed the output state
U−ϕ |ξ 〉 again to their gate, but this time using the program
state |2ϕ〉 (see Fig. 6). The gate would again succeed or fail
with probability 1/2; thus, after k repetitions the success prob-
ability is psuccess = 1 − 1/2k . In summary, this probability is
achieved if the program register is prepared in state |� (k)

ϕ 〉 ≡
|ϕ〉 ⊗ . . . ⊗ |2k−1ϕ〉. Vidal, Masanes, and Cirac [15] showed
that their iterative scheme is optimal under the assumption that
a program state is |� (k)

ϕ 〉. However, the question whether this
program state optimally encodes the phase gate Uϕ remained
open.

In order to prepare the program state |� (k)
ϕ 〉 one clearly

needs

1 + 2 + . . . + 2k−1 =
k−1∑
m=0

2m = 2k − 1 (44)

uses of the gate Uϕ .

Try to compensate the unwanted phase

Total success probability:

Try to compensate

FIG. 6. Iterative use of a programable phase gate as proposed by
Vidal, Masanes, and Cirac in Ref. [15].
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FIG. 7. Optimal (2k − 1) → 1 PSR of qubit phase gates using k
CNOT gates and k one-qubit measurements.

Our theorem 1 implies that any procedure using the Uϕ gate
N = 2k − 1 times to probabilistically store and retrieve one
use of Uϕ can succeed with probability at most N/(N + 1) =
1 − 1/2k . This means that preparation of k qubits in the state
|+〉⊗k , production of state |� (k)

ϕ 〉 by 2k − 1-fold application
of the Uϕ gate, and iterative application of the programable
phase gate by Vidal, Masanes, and Cirac [15] constitutes (see
Fig. 7) a realization scheme for an optimal (2k − 1) → 1 PSR
of phase gates. The clear advantage of the realization scheme
described above is that it requires only k CNOT gates and k one-
qubit measurements, while having exponentially small failure
probability 1/2k in the number of qubits k, which are used for
the storage.

Can we do better? The symmetry of the problem is re-
flected by the commutation relations of the unitary group U (1)
as we detailed in the proof of Theorem 1. Since each irrep of
U (1) acts in one-dimensional (complex) subspace, the effec-
tive system used to store and retrieve Uϕ is at least D = N + 1
dimensional, if the performance should not be degraded and
the phase gate is used N times. It follows from the realization
proposed in Sec. IV that it is optimal with respect to the
dimension needed. The U (1) symmetry discussed above is
shared with the problem studied by Vidal, Masanes, and Cirac
[15]. Thus, the same dimension bound holds and requires the
minimal dimension to be 2k , because in this case N = 2k − 1.
Consequently, the whole Hilbert space of the system of k
qubits is needed to accomplish the task optimally. That is,
under the assumption of single-qubit measurements the qubit
system in the state |ξ 〉 and each of the k qubits must be part
of some interaction in the retrieval phase, i.e., the process of
retrieval consists of at least k two-qubit gates. In conclusion,
any realization cannot use less than k CNOT gates, and the
described realization (Fig. 7) is indeed optimal also in the
number of CNOT gates. Moreover, our analysis from Sec. II
answers positively the open question Vidal, Masanes, and
Cirac [15] had about the optimality of their covariant program
state.

Finally, let us discuss the relation of the above scheme
to the implementation proposed in Sec. IV. In principle, the
intermediate measurements in Fig. 7 can be deferred to the last
step at the expense of making the classical control quantum. In
such case the kth CNOT will become a k-times controlled NOT
gate. This possibility of rewriting the scheme (iterative pro-
cedure) as a fully quantum operation with measurement only

at the end was noticed already by Vidal, Masanes, and Cirac,
but it is much less favorable for implementation by current
quantum computer architectures. It is worth noting that this
fully quantum operation as a net result performs a controlled
shift-down gate on a 2k-dimensional Hilbert space of k qubits.
Thus, the scheme from Fig. 7 can be seen as a special case of
the scheme from Sec. IV, where the realization can be split
into iterative steps by making intermediate measurements.

VII. SUMMARY

We addressed the question of efficient and optimal prob-
abilistic storing and retrieving (quantum learning) of qubit
phase gates Uϕ . The learned information is stored in a purely
quantum way (as a suitable state of a quantum memory)
and retrieved by means of programable quantum processors.
In this paper we derived the optimal success probability for
retrieval of one use of gate Uϕ , if it was applied N times in the
storing phase, i.e., N → 1 probabilistic storage and retrieval
of qubit phase gates. In comparison with the storage and
retrieval of an arbitrary qubit gate [13] the gain in the success
probability decreases with the number of uses. In particular,
for storing and retrieval of an arbitrary qubit unitary gate
the optimal success probability equals N/(N + 3), whereas it
equals N/(N + 1) if we restrict to phase gates only.

Further we investigated the question of efficient implemen-
tation of the optimal storing and retrieving protocol. For the
general N → 1 case we designed a simple circuit realization
exploiting a single controlled shift-down gate, which is a
generalization of the CNOT gate to the case of a d-dimensional
(qudit) target system. In our case this qudit is (N + 1) di-
mensional and represents the effective space needed for the
storage of the N-fold action of Uϕ . For the case of N = 2 we
analyzed explicitly decomposition of all steps of the optimal
protocol into elementary gates. We tried to minimize the num-
ber of CNOT gates and we found a three-qubit quantum circuit
containing eight CNOTs that implements the optimal 2 → 1
probabilistic storing and retrieving of qubit phase gates.

We argued that the programable processor by Vidal,
Masanes, and Cirac [15] for programing of qubit unitary
phase gates can be used to implement optimal (2k − 1) → 1
probabilistic storage and retrieval of phase gates (see Fig. 7).
Moreover, it follows from Theorem 1 and its proof that the
number of CNOT gates k it uses is minimal and the considered
program state is optimal. Hence, the open question left in
Ref. [15] is answered positively. Let us also note that with
the storage performed as in Fig. 7 the phase gates are not
employed in parallel. This adaptivity together with a special
number N = 2k − 1 of uses of the phase gate allows the size
of the program system to coincide with its theoretical mini-
mum.
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APPENDIX: PROOF OF EQ. (27)

For any J we define operator R(J )
s := IJ ⊗ IJ ⊗ s(J ). We

will perform direct calculation to evaluate 〈ψ |R(J )
s |ψ〉. Let us

denote the basis vectors of the U (1) one-dimensional irreps
and the vectors related to the decompositions (16) as follows:

|v j〉A ⊗ |0〉C = |w j〉 ⊗ | j〉,
|v j+1〉A ⊗ |1〉C = |w j〉 ⊗ | j + 1〉, (A1)

where |v j〉 ∈ H j , |wJ〉 ∈ HJ , | j〉 ∈ Hm( j)
j

, | j + 1〉 ∈ Hm( j+1)
j

.

Similarly we have

|v j〉A′ ⊗ |0〉D = |w j〉 ⊗ | j〉,
|v j+1〉A′ ⊗ |1〉D = |w j〉 ⊗ | j + 1〉, (A2)

where |v j〉 ∈ H j , |wK〉 ∈ HK , | j〉 ∈ Hm( j)
j

, | j + 1〉 ∈ Hm( j+1)
j

.

In the above notation we have |ψ〉AA′ = ⊕N
j=0

√
p j |v j〉A ⊗

|v j〉A′ .

For J = K = −1 and J = K = N the multiplicity spaces
Hm−1,−1 and HmN,N are one dimensional, thus s(−1) and s(N ) are
just numbers. Direct calculation gives

〈ψ |R(−1)
s |ψ〉 = p0s(−1)|1〉〈1|C ⊗ |1〉〈1|D,

〈ψ |R(N )
s |ψ〉 = pN s(N )|0〉〈0|C ⊗ |0〉〈0|D , (A3)

which are operators not proportional to |I〉〉〈〈I|CD = (|0〉|0〉 +
|1〉|1〉)(〈0|〈0| + 〈1|〈1|). Thus, we conclude that the perfect
storing and retrieving condition [see Eq. (20)] requires s(−1) =
s(N ) = 0.

For J = K = 0, . . . , N − 1 s(J ) is an operator in four-
dimensional multiplicity space. Due to Eq. (25) s(J ) has only
four nonzero elements, which we mark in the following way:

s(J ) =
∑

a,b∈{J,J+1}
s(J )

a,b|a〉|a〉〈b|〈b|, (A4)

where |a〉|a〉, |b〉|b〉,∈ HmJJ [see Eq. (17)] and we recall that
|Im(J )

J
〉〉 = |J〉|J〉, |Im(J+1)

J
〉〉 = |J + 1〉|J + 1〉. Direct calculation

for J = 0, . . . , N − 1 then gives

〈ψ |R(J )
s |ψ〉 = pJs(J )

J,J |00〉〈00| + pJ+1s(J )
J+1,J+1|11〉〈11|

+ √
pJ pJ+1

(
s(J )

J,J+1|00〉〈11| + s(J )
J+1,J |11〉〈00|),

(A5)

which is proportional to |I〉〉〈〈I|CD if and only if s(J )
j, j′ =

μJ/
√

p j p j′ . Here μJ is some number, which must be non-
negative due to positive semidefiniteness of RS .
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