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Abstract. We study the ground entangled state of the one-dimensional
spin-1/2 Ising ferromagnet at its transverse-field critical point. When
this problem is expressed in terms of independent fermions, we show
that the usual thermostatistical sums emerging within Fermi-Dirac
statistics can, for an L-sized subsystem, be indistinctively taken up
to L terms or up to lnL terms, providing a neat understanding of the
origin of the logarithmic scaling of the entanglement entropy in the
system. This is interpreted as a compact occupancy of the phase-space
of the L-subsystem, hence standard Boltzmann-Gibbs thermodynam-
ics quantities with an effective system size V ∝ lnL are appropriate
and are explicitly calculated. The calculations are then to be done in
a Hilbert space whose effective dimension is 2lnL instead of 2L. In this
we can assume ergodicity. Our analysis suggests a scenario where the
physical systems are essentially grouped into three classes, in terms of
their phase-space occupancy, ergodicity and Lebesgue measure.

1 Introduction

The Boltzmann-Gibbs (BG) theory refers to ensembles, which constitute pillars of
statistical mechanics [1]. The microcanonical ensemble, for example, is associated with
the set of points in the phase-space in which one can choose a given total energy. In
this case, the ergodic hypothesis is assumed a priori, in which the trajectories of the
particles cover the hypersurface of the phase-space corresponding to that energy in a
time scale sufficient to carry out measurements. In many cases, it is not necessary for
the system to cover the entire phase-space associated with the ensemble in question,
but only a finite part of it, for instance half of it. A typical example is usual phase tran-
sitions. Below a certain critical temperature, the system has a spontaneous symmetry
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breaking and effectively occupies only half the phase-space. However, we may still
assume the ergodic hypothesis in this half, and thus remain within the BG theory.

A more complex situation occurs in disordered glass-like systems [2], in which
the particles cover a small volume of the phase-space corresponding to a vanishing
Lebesgue measure [3]. In this case, we can think of two situations: (i) the particles
have trajectories that cover a compact subspace of the total phase-space, or, (ii) the
particles have trajectories that do not cover the total phase-space, at all relevant time
scales, and it is not possible to identify a compact subspace. In studies of conserva-
tive nonlinear dynamical systems, some examples of this latter situation have been
found [4]. In this case, ergodicity might be broken in such a complex manner that the
use of BG theory may be not legitimate. Weak chaotic regimes have been found and
the q-statistical generalization [5] of the BG theory has emerged as an appropriate
description.

For quantum statistical physics ergodicity has its own nuances in a world where
trajectories are not well-defined. For example, the impossibility of energy and particle
transport through the total system can lead, among other things, to the breakdown
of ergodicity [6–8]. One of the lines of analysis of the ergodicity of quantum physical
systems is the study of the entanglement entropy [9–15].

Here, we construct the standard Boltzmann-Gibbs approach associated with
the effective tight-binding Hamiltonian, coming from entanglement analysis of the
one-dimensional transverse-field spin-1/2 Ising ferromagnet at its zero-temperature
critical point [16,17]. We consider an L-sized subsystem of a N -sized ring, and trace
over the states of (N − L) spins, with N →∞. The full N -system is in a pure state,
but the L-system is in a statistical mixture due to the entanglement of the ground
state. Thus, the subsystem (L-system) can be presented as a finite temperature free
fermions system.

The entropy of the subsystem is known to follow the area law with a logarithmic
correction, i.e. a behavior qualitatively different from the volume law. We show that
the nature of the states is such that a part of the fermionic modes is practically
trapped in their ground states while their respective excited states are physically
unattainable. These modes thus constitute a frozen, thermodynamically inactive, part
of the phase-space. In this sense, particles are localized, however without destroying
the nature of the phase-space occupancy, covering a compact subspace of the total
phase-space. Therefore, the BG theory can continue to be legitimately used. In this
case, we can recover extensivity for physical quantities such as the entropy, which can
be made to grow linearly with the system size, if one redefines the size of the system
so that it does not count the thermodynamically inactive modes.

We emphasize that, in this work, by the expression phase-space we shall mean
either a proper classical phase-space, or a quantum mechanical Hilbert space.

The rest of this work is organized as follows: In Section 2 we present the transverse-
field Ising model, a brief review of the entanglement analysis and a numerical study
at critical point for this model. Section 3 describes the construction of the standard
Boltzmann-Gibbs approach associated with the effective tight-binding Hamiltonian,
coming from entanglement analysis of the transverse-field Ising model, where we
emphasize the adequacy of an effective system size. Finally, Section 4 closes the work
with our concluding remarks.

2 The transverse-field Ising model and entanglement analysis

2.1 Literature review

The one-dimensional transverse-field spin-1/2 Ising ferromagnet with N sites is
described by the following Hamiltonian [16]
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Ĥ = −
N−1∑
i=0

(
σxi σ

x
i+1 + λσzi

)
, (1)

where σαi is the αth Pauli matrix at site i and λ denotes the magnetic field along
the z direction. The Hamiltonian (1) can be diagonalized by a Jordan-Wigner
transformation [17].

The ground-state properties of this model strongly depend on λ. A zero-
temperature quantum phase transition occurs when λ = 1 in the N → ∞ limit.
The ground-state behavior is further revealed by the interplay between entanglement
and the ground-state structure [14]. Right at the critical point, λ = 1, the spins are
mostly entangled and, in this case, it is possible to define a proper entanglement
witness which brings about signatures of a quantum phase transition.

One of the most commonly-used entanglement measures for such a task is the
von Neumann entropy of a subsystem, also referred to as the entanglement entropy
in the literature [9–15]. Given a system in a pure state, it quantifies how much its
subsystem, which can be properly described by a reduced density matrix, is entangled
with the remaining part of the system. For a spin chain with N sites, we obtain the
state describing a given block of L spins ρL by tracing out the subsystem of length
(N − L) of the overall density matrix ρN . We have taken the thermodynamic limit
(N →∞).

The von Neumann entanglement entropy reads [10]

SvN (L, λ) = −Tr[ρL ln(ρL)]. (2)

Note that many other entanglement measures can be defined [20], such as the
Rényi entropy [18,19] and the related q-entropy [5] which we discuss later. Regardless
of the choice though, all the relevant information is contained in the reduced density
matrix ρL.

We stress that, when quantifying entanglement via the von Neumann entropy,
there is no need to impose extra conditions in order to establish a connection with
thermodynamics. Here, we will show the entanglement entropy naturally assumes
the role of thermodynamic entropy as well, by allowing for extensive thermodynamic
variables corresponding to an effective volume of the system.

Away from the critical point, that is λ 6= 1 (recall that L → ∞), it is possible
to express ρL as a tensor product of density matrices accounting for uncorrelated
spinless free fermionic modes [13], i.e, ρL = ⊗nρ̃n. The energy of a fermion present
in the nth mode reads

ελ(n) =

{
(2n+ 1)ελ, for λ < 1,
2nελ, for λ > 1,

(3)

with n = 0, 1, 2, . . . and

ελ = π
I(
√

1− y2)

I(y)
, (4)

where

I(y) =

∫ 1

0

dx√
(1− x2)(1− y2x2)

(5)
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is the complete elliptic integral of the first kind and y = min[λ, λ−1], where the density
matrices read

ρ̃n =
1

1 + e−ελ(n)

(
1 0
0 e−ελ(n)

)
. (6)

Once we have obtained the reduced density matrix, we can calculate the von
Neumann entropy for, say, λ > 1, using

SvN (∞, λ) =
∞∑
n=0

[
ln
(
1 + e−2nελ

)
+

2nελ
1 + e2nελ

]
. (7)

In the vicinity of the critical point (λ → 1), we have that ελ → 0 and the sum
above can be approximated by the integral

SvN (∞, λ) '
∫ ∞
0

dx

[
ln
(
1 + e−2xελ

)
+

2xελ
1 + e2xελ

]
(8)

SvN (∞, λ) ' π2

12ελ
→∞. (9)

Note that the asymptotic result of equation (9) remains valid if one takes the λ < 1
variants of equations (7) and (8) and Taylor expands the result of the so obtained
integral around ελ = 0. With respect to the λ > 1 case, the said expansion differs
only by extra O(ε0λ) and higher-order terms, which are discarded in the asymptotic
result anyway. Similarly to the von Neumann entropy, one can unveil the behavior of
the Rényi and of the q-entropy by a similar procedure [21,22].

At the critical point, a similar analysis can be carried out. By considering now
an L-sized subsystem, its reduced density matrix ρL is obtained from the following
matrix [10,12]

ΓL =


Π0 Π1 · · · ΠL−1

Π−1 Π0

...
...

. . .
...

Π1−L · · · · · · Π0

 , (10)

where

Πl =

(
0 −4

π(2l+1)
−4

π(2l−1) 0

)
. (11)

An orthogonal matrix transforms ΓL into a block-diagonal matrix with purely
imaginary eigenvalues ±iνn (n = 1, .., L).

The 2L eigenvalues of ρL are given by

µx1x2...xL =
∏
n

1 + (−1)xnνn
2

(12)

where xn = 0, 1 ∀n.
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Fig. 1. (a) Positive eigenvalues of ΓL/i as a function of (2n+ 1)/2L for L = 1000, 2000 and
3000. Lower symbols (black online) represent the results obtained by numerical diagonaliza-
tion, while the upper ones (red online) denote the theoretical result νn = tanh[(2n+ 1)εL/2],
where εL is given by equation (17). (b) The same as in panel (a) but the abscissa is
(2n+ 1)/2V with V = 1.77 ln(L). n = 0, .., L− 1. Curves in both panels represent the the-
oretical results plotted for real values of the abscissa variable. Due to εL ∝ V with an
L-independent proportionality constant, the argument of the theoretical νn is a constant
(say α-) multiple of the abscissa variable in panel (b). Hence, in panel (b), all theoretical νn
lie on a single L-independent curve, tanh[α . ]. In the L → ∞ limit, the numerical values
will touch the theoretical curve at points coinciding with the respective theoretical values
of νn.

2.2 Numerical analysis at the critical point

In Figure 1a we show the positive eigenvalues νn of ΓL/i, depicted by the lower
symbols (black online), obtained through a straightforward numerical diagonalization
for various block sizes. Analogously to the λ 6= 1 case, at the critical point the model
can also be mapped onto a system featuring spinless free fermions and thus ρL =
⊗nρ̂n, where ρ̂n has a form analogous to that of equation (6), with ελ(n) being
replaced by a so far undefined symbol εL(n). It is well known [23] that the single-mode
energies εL(n) can be obtained by the inverse of the expression

νn = tanh[εL(n)/2] (13)

from the numerically acquired values νn. Note that the {εL(n)} are sometimes, and
more correctly, referred to as single-particle pseudoenergies in the literature due to
being the eigenvalues of the so-called effective single-particle Hamiltonians, we refer
to them simply as energies for the sake of brevity.

Figure 2 shows the quantity εL(n) as a function of L. For all L that we were able to
access numerically, we obtained a non-linear single-mode energy spectrum. However,
for the low-lying energies – roughly defined as those associated with the modes having
non-negligible contribution to the entropy of the subsystem – the non-linearity was
vanishing with increasing L. The numerics strongly suggests a linear spectrum in this
low-lying part of the spectrum at infinite L. The difference εL(n) − εL(n − 1) as a
function of n is shown in Figure 3 for different values of L. We observe that with
increasing L this difference tends to a constant value, and for each sufficiently large
L we can replace the function εL(n) by an expression linear in n for a vanishingly
small fraction of all modes – those within 0 ≤ n/L ≤ V/L, where V ∝ ln(L) will
be obtained later on. Combining this numerical evidence with the above analytical
results for the relation between the coefficients of the linear expression, for large L,
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Fig. 2. εL(n) as a function of L for different values of n.

Fig. 3. The difference εL(n) − εL(n − 1) as a function of n for L = 100 (black circles),
L = 400 (red downward-pointing triangles), L = 1000 (green squares), L = 2000 (yellow
diamonds), L = 3000 (pink hexagons), and L = 4000 (blue upward-pointing triangles).

and for the relevant range of the values of n, we can write the energy spectrum as

εL(n) ≈ (2n+ 1)εL. (14)
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Such linear spectrum was obtained by Peschel [23] for a matrix commuting with
ΓL, the spectrum of which he showed to be proportional to the spectrum of ΓL if one
restricts oneself to the low lying part of the spectra. We obtained the free parameter
εL ≡ εL(0) theoretically, observing that εL → 0 for L → ∞, so that, analogously to
equations (7), (8), and (9), we can write

SvN (L, 1) ' π2

12εL
. (15)

Using that [10,13]

SvN (L, 1) ' 1

6
ln(L), (16)

we obtain

εL '
π2

2 ln(L)
. (17)

Our analytical results for the eigenvalues of ΓL/i, based on equation (13) and on
the spectrum given by equations (14) and (17), are represented by the upper shapes
(red online) in Figure 1a, while the actual eigenvalues, obtained by numerical diago-
nalization of ΓL/i, are represented by the shapes (black online) below the analytical
ones. Note that the match between the analytical values and the numerical values is
far from perfect due to finite-size effects. The entropy in equation (16) is an asymp-
totic expression neglecting O(1) terms. In other words, our analytical result is only
an asymptotic one, and the condition ln(L) � 1 is implicitly assumed. That condi-
tion is clearly not quite met at ln(3000) ≈ 8, hence a deviation from the asymptotic
behavior in the plotted finite-size regime is to be expected.

The numerics further shows that, for large enough L, the values of εL(n) beyond
the low-lying part of the single-particle spectra are in fact lower bounded by the
linear relation in equation (14). Moreover, the probability of a fermion being present
in the mode n is given by (1− tanh[εL(n)/2]/2) ' exp[−εL(n)]/2, and thus vanishes
approximately exponentially in n already for high enough modes of linear spectra,
and even faster for the corresponding modes of the exact spectra. Therefore, only a
vanishing error will be introduced in terms of the entropy of the subsystem, or in
terms of the expectation value of energy, if the spectra are truncated beyond their
low lying parts. Let us stress that the region of higher energies is thus thermodynam-
ically irrelevant, and can be dropped from the description altogether for large enough
L-systems, as we shall confirm below.

3 The standard Boltzmann-Gibbs approach associated with the
effective model

We can think of the problem not solely for the purpose of entanglement analysis, but
also regarding the spin block as a physical system of interest by itself. In general, for
an arbitrary system, the entanglement entropy of the subsystem does not equal its
thermodynamic entropy. However, in the present study, we show that this equality
is valid. Thus, it becomes relevant to discuss its thermodynamic properties, which is
carried out in what follows. We have a system of L free fermions whose Hamiltonian
reads as

ĤL = EL

L−1∑
n=0

(2n+ 1)ĉ†nĉn, (18)
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where ĉ†n (ĉn) are the creation (annihilation) fermionic operators at site n for a

one-dimensional lattice. EL = εLε0, where both ε0 and ĤL have the dimension of
energy.

The Hamiltonian (18) represents tightly-bounded electrons in a uniform electric
field [24,25]. This model has been extensively studied, both on theoretical and exper-
imental grounds (see, e.g., [26,27]). Our case, however, embodies the limit of localized
atomic electrons, where nearest-neighbor hopping is neglected. In this extreme limit,
the equidistant energy levels are identified as Stark ladders [28]. The concept of
Stark ladder was put forward by Wannier [29] and confirmed experimentally in sev-
eral setups, for instance, in GaAs-GaAlAs superlattices subjected to electric fields
[26] and in an elastic-rod apparatus [27].

The thermodynamic properties of the free fermions at temperature T are
determined from the partition function of the canonical ensemble

Z(L) = Tr[e−βĤL ] =
L−1∏
n=0

(
1 + e−β(2n+1)EL

)
, (19)

where β = 1/(kBT ). We obtain the Helmholtz free energy

F (L) = − 1

β
ln[Z(L)] = − 1

β

L−1∑
n=0

ln
[
1 + e−β(2n+1)EL

]
(20)

and the internal energy

U(L) = − ∂

∂β
ln[Z(L)] =

L−1∑
n=0

(2n+ 1)EL
1 + eβ(2n+1)EL

. (21)

As in equation (8), the above sums can be approximated by integrals and we
obtain

F (L) ' − π2

24ELβ2
= − 1

12β2ε0
ln(L) (22)

and

U(L) ' π2

24ELβ2
=

1

12β2ε0
ln(L) . (23)

Consequently, it becomes straightforward to obtain the entropy, which reads

S(L) =
1

T
[U(L)− F (L)] ' kB

6βε0
ln(L). (24)

One can recover the entanglement entropy by assuming βε0 = 1 and thus
SvN (L, 1) ' kB

6 ln(L). We can also write the Rényi [18] and q-statistics entropies
[21] as

SRα (L, 1) =
1

1− α
ln[Tr(ρL)α] ' (α+ 1)

12α
ln(L) (25)
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Fig. 4. Number of thermodynamically relevant modes L̃ versus the block size L. Inset:
fitting L̃ = 1.77 lnL+ 2.88 (r2 = 0.999999) for L > 300.

and

Sq(L, 1) =
1− Tr(ρL)

q

q − 1
� L( 1

q−q) 1
12 − 1

1− q
, (26)

respectively.
Note that the q-entropy can be used by satisfying the requirement of extensivity,

i.e., ( 1q − q) 1
12 = 1, hence qc =

√
37− 6 � 0.08 [21]. In this case,

Sqc(L, 1) � L, (27)

and the desired thermodynamic extensivity is recovered.
As known in the literature, this system has an effective number of unattain-

able physical energy states, corresponding to the vanishing eigenvalues of the density
matrices [12]. Another way to put this is by thinking that we have a set of free-
fermionic modes frozen in the ground state that depends on the manner through
which entanglement was established in the original problem. Therefore, since only a
part of the free fermions becomes thermodynamically accessible, only a subset of the
modes effectively contributes to the entropy of the subsystem.

This holds both for the effective model discussed above, as well as for the exact
critical Ising model. Figure 4 shows the number of thermodynamically relevant modes
L̃ versus the block size L for the exact critical Ising model. For L > 300, we obtain
numerically (see inset of Fig. 4)

L̃ = 1.77 lnL+ 2.88 (r2 = 0.999999). (28)

The points in Figure 4 have been obtained as follows: at infinite (practically
at a high enough) precision the positive eigenvalues of ΓL/i obtained numerically
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fulfil the strict inequality 0 < ν(n) < 1 for arbitrary finite L. For any fixed computer
precision there will exist an integer L′ such that, for each L > L′, some of the positive
eigenvalues will be numerically indistinguishable from 1. Assuming ν(n) ordered in

an ascending order for each L as before, then L̃ in Figure 4 denotes the largest n such
that ν(n) 6= 1 if performing the spectrum computation at the given precision, which
we have chosen to be the single precision (binary32 floating-point format).

In other words, since the probability of the nth single-particle mode to be occu-
pied is given by (1 − ν(n))/2, at the chosen precision the L̃th mode is the last one
contributing to the entropy, or to expectation value of energy (note that each mode’s
ground state (pseudo)energy is chosen to be 0). Moreover, also the collective contri-

bution of the remaining L− L̃ modes – obtained by calculating contributions of the
individual modes “exactly” and applying the numerical rounding only to the sum of
those individual contributions – would still be negligible (see the discussion at the

end of Sect. 2.2). Hence L̃ represents the effective size of the system at the chosen
precision, as far as thermodynamical description is concerned.

Similarly, one can obtain the effective system size for the effective model, i.e.
assuming linear single-particle spectra. Only in this case, it is also possible to obtain
an analytical result. As in the exact critical Ising case, we search for the last mode,
denoted ñ′ = L̃′−1, with a non vanishing occupation probability (we use primed vari-
ables, (.)′, to distinguish the effective model quantities from those of the exact critical
Ising case). Assuming that the single-mode occupation probabilities are expressed
with a d-digit precision, the largest excitation probability that will be interpreted by
the computer as vanishing is 10−d/2 := ∆. Thus we are searching for the n fulfilling
the equation

1

2
(1− νn) = ∆, (29)

where the LHS is the nth mode’s occupation probability, the RHS is the maximal
rounding error for that quantity, defined earlier, and with νn defined in equation (13).
Formally, then,

L̃− 1 ≡ ñ = ε−1L (2arctanh[1− 2∆]), (30)

where ε−1L (.) is the inverse function of εL(n) from equation (13). For the exact crit-
ical Ising model the two latter functions are unknown analytically. However, for
the effective model (asymptotically for the relevant energies of the exact model),
by inverting the linear-spectrum expression in equations (14) and (17), one obtains
ε−1L (x) = ln(L)x/π2 − 1/2. Thus, from equation (30) we have for the effective model

L̃′ = ñ′ + 1 =
2arctanh[1− 2∆]

π2
lnL+

1

2
. (31)

To make contact with the numerically obtained effective size L̃ of the exact criti-
cal Ising block result of equation (28), one has to use, in equation (30), the maximal
rounding error ∆ corresponding to the precision with which the mode excitation
probabilities were numerically obtained. This is not trivial – the chosen single numer-
ical precision is guaranteed to provide 6 significant decimal digits of precision for
the decimal input data (defined as the guaranteed precision kept in a conversion
decimal→binary→decimal), however without a detailed analysis it is not clear how
the rounding errors propagate in the spectra computations.
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Nevertheless, the actual rounding error of the excitation probabilities obtained in
the single-precision numerical calculations can be estimated by performing all the cal-
culations one more time with a higher precision (say double precision) and inferring
the single-precision result rounding error from comparing the two – the correct single-
precision ∆ being such that if one interpreted the higher-precision ground-states
probabilities smaller then ∆ as vanishing, one would exactly recover the L̃(L) depen-
dence in equation (28) that was obtained numerically in the original, single-precision,
calculation.

Using the procedure just described we obtain ∆ ≈ 5.32 × 10−8. Plugging that
into equation (31) we obtain the effective system size of the effective model at single
precision to be

L̃′ ≈ 1.697 ln(L) +O(1), (32)

which is the result valid asymptotically for the exact critical Ising model as well. The
result is not far from the scaling in equation (28) obtained numerically for the exact
critical Ising case with access to finite L ≤ 3000, the origin of the discrepancy being
the finite-size effects manifested already in Figure 1.

Clearly, the slopes in equations (32) and (28) will depend on the precision chosen.
The slope in equation (28) will also depend on the said final-size effects that will dis-
appear gradually with L approaching the regime where ln(L)� 1. For large enough
L at any finite numerical precision used for the computer calculations, we expect the
numerical result to approach the analytical one, equation (32) and, L̃ ∝ lnL to always
hold asymptotically. The choice of the numerical precision thus has no influence on
the qualitative features we point out next.

Figure 1b shows νn (also featured in Fig. 1a) now as a function of (2n+ 1)/(2V ),
where V ≡ 1.77 lnL. We can observe a collapse such that the νn of the effective
model now lie on a single curve independent of L, which is a consequence of the
fact that the abscissa variable (2n + 1)/(2V ) is a multiple of the argument of the
function in equation (13) for the linear single-particle spectra of the effective model.
For the exact critical Ising model the relevant part of the spectra is described by
equation (14) exactly only in the thermodynamical limit, therefore for finite L we
observe finite-size deviations from the collapse curve that are diminishing with as the
system size increases, as expected. Both for the effective model and asymptotically
for the exact model, the entire physical behavior of the subsystem composed by L
fermionic modes can be completely evaluated by considering only the first V modes,
where, for the effective model,

L−1∑
n=0

ln
[
1 + e−β(2n+1)EL

]
∼=
V−1∑
n=0

ln
[
1 + e−β(2n+1)EV

]
(33)

and

L−1∑
n=0

(2n+ 1)EL
1 + eβ(2n+1)EL

∼=
V−1∑
n=0

(2n+ 1)EV
1 + eβ(2n+1)EV

. (34)

This allows us to write

ĤV = EV

V−1∑
n=0

(2n+ 1)ĉ†nĉn. (35)
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Using this expression, we confirm that the results of equations (22), (23), (24),
(25), and (26) are precisely the same.

The thermodynamic properties are extracted from the free energy

F (T, V ) = −k
2
BT

2

12ε0
V, (36)

such that

SBG(T, V ) = −
(
∂F

∂T

)
V

=
k2BT

6ε0
V (37)

and

U(T, V ) = F + TS =
k2BT

2

12ε0
V (38)

are extensive thermodynamic quantities. For completeness, we can also define the
intensive quantity

P (T, V ) = −
(
∂F

∂V

)
T

=
k2BT

2

12ε0
, (39)

so that we can write U = PV . All the above expressions are consistent with standard
thermodynamics.

An interesting question, which is beyond the scope of the present work, is to
analyze the transverse field Ising chain away from criticality. In this case, the system
has a strict area-law scaling that does not have a logarithmic correction. We expect
a change of the effective system size V .

4 Conclusions

The entanglement behavior of the system mandates that only a given part of energy
states is thermodynamically relevant. As a consequence, the standard BG quantities
are associated with an effective system size V ∝ lnL, and the phase-space has an
effective dimension 2lnL instead of 2L. The effective number of microstates grows with
L as a power-law, in contrast to the exponential growth corresponding to standard
nonentangled systems. This provides an understanding of the origin of the logarithmic
scaling of the entanglement entropy in the ground state of the studied system which
we expect to remain valid for other critical systems. The whole scenario is strongly
reminiscent of an usual phase transition of a spin-1/2 d-dimensional system, where

the phase-space dimension is 2L
d

in the disordered phase, and effectively 2L
d/2 in the

ordered one.
The above analysis suggests a scenario where the physical systems are essentially

grouped into three classes, in terms of their phase-space occupancy, ergodicity and
Lebesgue measure, namely (i) ergodicity occurs in the entire phase-space or in a
compact subspace whose Lebesgue measure remains different from zero in the ther-
modynamic limit; (ii) ergodicity occurs only in a compact subspace whose Lebesgue
measure vanishes in the thermodynamic limit; and (iii) ergodicity does not occur,
the trajectories covering a noncompact subspace whose Lebesgue measure vanishes
in the thermodynamic limit (typically an hierarchical structure like a multifractal).
Figure 5 illustrates these classes with examples for three different sizes of system
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Fig. 5. Classes of the phase-space trajectories covering a (a) compact subspace whose cor-
responding Lebesgue measure remains different from zero in the thermodynamic limit; (b)
compact subspace whose corresponding Lebesgue measure vanishes in the thermodynamic
limit, and; (c) noncompact subspace whose corresponding Lebesgue measure vanishes in the
thermodynamic limit. Three different size systems are presented.

volume L. Particles of the system cover the hypersurface of the phase subspace
corresponding to black color in the figure. For each class, there is an appropriate
statistical mechanics. Typical examples of the first class are physical systems with
or without usual phase transitions. The BG theory perfectly describes this class and
the von Neumann/Boltzmann entropy is an extensive thermodynamic quantity. For
systems that fall in the second class, we exhibit in the present work how the BG
theory can still be used. Here, we can find a particular value of q such that the
q-entropy satisfies the requirement of extensivity within the total volume, while the
von Neumann/Boltzmann entropy is an extensive thermodynamic quantity within an
appropriate effective volume. Some of the systems exhibiting the area-law [30,31] for
the entropy might also belong to this class. For the third class, we do not expect the
use of the BG theory to be legitimate. This is the case for say systems with long-range
interactions, for which theories such as q-statistics have been satisfactorily applied
[32–34].

Here, the ergodicity in a system whose entanglement entropy obeys the area-law
with a logarithmic correction was found by direct analysis at equilibrium. A natural
question that arises is to explore directly the dynamics on isolated quantum systems
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in the localized phase to show that ergodicity and thermalization may still exist in a
small part of a system exhibiting sub volume-law for entanglement.
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