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Abstract

We prove a generalized version of a previously conjectured inequality by Zhang et al (Zhang et al 2018
Phys. Lett. A 382, 1516-23) for the quantum addition operation defined by Datta et al (Audenaert et al
2016 J. Math. Phy. 57,052202) in the context of proving an entropy power inequality for qubits. We
also show that the quantum addition operation commutes with an incoherent channel, which may
have possible implications for resource theories of coherence in optical settings.

Shannon proposed [1] an entropic power inequality (EPI) for classical continuous random variables, where the
addition of two random variables was taken in the sense of convolution. Shannon’s conjectured entropy power
inequality for continuous random variables X, Y with probability densities px and pyrespectively, in terms of the
differential entropy H was expressed in the following form

eHOOKY) > pHX) 4 pH(Y) (1)

where denotes the convolution operation on the probability densities px, py. Various proofs of this inequality,
beginning with the original proof by Stam [2] have come up over the years [3-5]. A quantum generalization of
the above inequality was obtained for the continuous variable (CV) systems considering the beamsplitter
merging operation as the analogue of convolution [6]. Datta, Ozols and Audenart [7] have recently found the EPI
for finite dimensional quantum systems through the qudit addition channel [8]. A conditional EPIis also
discussed in recent literature [9]. Essentially, this channel can be realized as a unitary evolution in C* @ C¢
followed by tracing out the ancilla qudit. Let p € B(C?), o € B(C¥) be two qudit states. Then the quantum
addition channel is a completely positive trace preserving (CPTP) map

t[Up @ Ul = pB, 0=ap+ (1 — a)o —iJal —a)lp, ol, @

where the unitary U, is the partial swap channel, i.e. U, = V& I + iV 1 — a S, where the parameter o € [0,1]
is the weight of the addition, and S is the two qudit swap gate sz: 19 (Gl @ 17) (i|. The Kraus operators
corresponding to this map are expressible in the form

K, = val® (n|+iV1 — a(n] @ L 3)

Ithas been proven in [7] that for any concave function fwhich depends solely on the spectrum of a state p, the
following relation holds true for o € [0,1]

flpBy o) = af(p) + (A — a)f (o). 4)

If fis chosen as the exponential of the von Neumann entropy, we obtain the qudit analog to the classic EPI. For
another suitable choice of f, the resulting inequality is a qudit analog of the entropic photon number
inequality [7, 10].

© 2020 The Author(s). Published by IOP Publishing Ltd
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1. A reverse entropy power inequality

The entropic power inequality puts a lower bound on the entropy of the output of the qudit addition channel. In
this section, we attempt to find an upper bound to the entropy of the output of the qudit addition channel.

Theorem (Reverse EP equality). If p and o are two qudit states and B,, denotes quantum addition with weight
a € (0, 1), then the following equality holds

S(ap+ (1 =)o) = S(p By ollap + (A — @)o) + S(p BHa 0), 6)
where S(...) denotes the von Neumann entropy, and S(...||...) denotes the quantum relative entropy.

Proof. Let us first analyze the difference in von Neumann entropies between the results of classical mixture and
quantum addition of states pand o.

S(ap + (1 — a)o) — S(p B, o)

=S(pBa o+ iJad — a)[p, o) — S(p By 0)

= tr[(p B, 0)log(p By )] — trl(p B, o + iJa(l — @) [p, oDlog(p B, o + iJad — @) [p, o]
= tr[(p B, 0)log(p B, 0)] — tr[(p B, 0)log(p By o + ifa(l — a)[p, o])]

— trliyja(l — a)[p, allog(ap + (1 — a)o)]

=S(p B, ollap + (1 — a)o) — trlia(l — a)[p, olloglap + (1 — a)o)]

(6)
Now, let us concentrate on the second term. Since « p + (1 — ) o is a positive semidefinite matrix, its
logarithm, say K, is Hermitian and commutes with @ p + (1 — «) 0. Thus,
1 —«
K, p] = — (K, o] ()
Armed with this result, we now simplify the second term in the following way.
tr[[p, ollog(ap + (1 — a)o)] = tr[poK] — tr[opK]
= tr[oKp] — tr[opK]
= tr[o[K, p]]
— 1Tk, o)
o
= 1= atr[aKa — 00K]
«
—0. (8

Here we have used the cyclicity of trace as well as the commutation relation in (7). Thus, the second term in the
remainder vanishes and the proofis complete. 0

Animmediate corollary to the theorem above is the following inequality for arbitrary o € [0,1], which was
conjectured [11] to hold for arbitrary qudit systems when o« = %

Corollary. If p and o are two qudit states, then
S(pHa o) < S(ap + (1 — a)o). )

This result follows from the relation (5) and the non-negativity of quantum relative entropy. It is easy to see that
for a € (0,1), this inequality is strict if p and o do not commute. This we term as the reverse entropy power
inequality. Thus quantum addition of two density operators results in a density operator whose entropy is always
lower compared to the corresponding classical mixture. One may thus wonder, does this difference in entropy
capture some quantumness ?

2. Quantum addition commutes with incoherent channels

Now we go on to show the second result in the paper, which proves that the quantum addition operation
commutes with the free operations in the resource theory of quantum coherence [12, 13], viz. the incoherent
operations (IOs).
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Lemma. If 0 is an incoherent state and A denotes an incoherent channel, then the following equality holds
A(p) Ha Alo) = Alp Ba 0) (10)

Proof. The Kraus operators { K;} corresponding to the IO A are known to be expressible in the form
K; = 3, dilm) (k|, where 7 is a one-to-one mapping [14]. LHS of the equality to be proved reads as

A(p) By A(o) = al(p) + (1 — a)A(o) — iya(l — @) [A(p), A(0)] (11)
.Now, let us focus on the quantity A(p) A(o), which equals
Ap)A(o) = Z KipK; KjoK; ¥

= Z >~ Kipd|m) (mldjnlm,) (nlodlt) (]

ij mnt

=33 Kipdiydjdijlm) (mylm,) (nlolt) (m|

ij mnt

- Z Z K; pd::;djmd i|m) (mlolt) (m]

ij  mt

= >3 Kipodjdimdijlm) (ml|t) (m|"co is incoherent

ij mt

= Z Z Kipad;:ndjmd;kmlm> (Tl
= ZZKipad,» [Zd d*] (T
= Z(Kipaz dk|m) <7Tm|)

=>_ KipoK]
= A(po) (12)
Similarly one can prove that A(c p) = A(0) A (p). The equality to be proved now follows in a straightforward
way. U

This result above shows that the qudit addition a.k.a. partial swap channel commutes with an IO. For CV
settings, the beamsplitter operates as a similar channel to the qudit addition channel described here. Thus, it may
be interesting to check whether the free operations in resource theory of coherence for CV systems do also
commute with the beamsplitter channel, when one of the inputs in the beamsplitter happen to be free in that
formulation of the resource theory of coherence, e.g, a quantum optical coherent state or a thermal state.
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