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Abstract
Weprove a generalized version of a previously conjectured inequality by Zhang et al (Zhang et al 2018
Phys. Lett.A 382, 1516–23) for the quantum addition operation defined byDatta et al (Audenaert et al
2016 J.Math. Phy. 57, 052202) in the context of proving an entropy power inequality for qubits.We
also show that the quantum addition operation commutes with an incoherent channel, whichmay
have possible implications for resource theories of coherence in optical settings.

Shannon proposed [1] an entropic power inequality (EPI) for classical continuous random variables, where the
addition of two random variables was taken in the sense of convolution. Shannon’s conjectured entropy power
inequality for continuous randomvariablesX,Ywith probability densities pX and pY respectively, in terms of the
differential entropyHwas expressed in the following form

+e e e 1H X Y H X H Y* ( )( ) ( ) ( )

where denotes the convolution operation on the probability densities pX, pY. Various proofs of this inequality,
beginningwith the original proof by Stam [2] have come up over the years [3–5]. A quantumgeneralization of
the above inequality was obtained for the continuous variable (CV) systems considering the beamsplitter
merging operation as the analogue of convolution [6]. Datta,Ozols andAudenart [7] have recently found the EPI
forfinite dimensional quantum systems through the qudit addition channel [8]. A conditional EPI is also
discussed in recent literature [9]. Essentially, this channel can be realized as a unitary evolution in Ä d d

followed by tracing out the ancilla qudit. Let r sÎ Î  ,d d( ) ( ) be two qudit states. Then the quantum
addition channel is a completely positive trace preserving (CPTP)map

r s r s ar a s a a r sÄ = = + - - -a a aU U itr 1 1 , , 22[ ( ) ] ( ) ( ) [ ] ( )†

where the unitaryUα is the partial swap channel, i.e. a a= + -a U i S1 , where the parameterαä [0,1]
is theweight of the addition, and S is the two qudit swap gate å ñá Ä ñá= i j j ii j

d
, 1∣ ∣ ∣ ∣. TheKraus operators

corresponding to thismap are expressible in the form

a a= Ä á + - á Ä K n i n1 . 3n ∣ ∣ ( )

It has been proven in [7] that for any concave function fwhich depends solely on the spectrumof a state ρ, the
following relation holds true forαä [0,1]

r s a r a s+ -a f f f1 . 4( ) ( ) ( ) ( ) ( )

If f is chosen as the exponential of the vonNeumann entropy, we obtain the qudit analog to the classic EPI. For
another suitable choice of f, the resulting inequality is a qudit analog of the entropic photon number
inequality [7, 10].
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1. A reverse entropy power inequality

The entropic power inequality puts a lower bound on the entropy of the output of the qudit addition channel. In
this section, we attempt tofind an upper bound to the entropy of the output of the qudit addition channel.

Theorem (Reverse EP equality). If r and s are two qudit states and a denotes quantum additionwithweight
a Î 0, 1( ), then the following equality holds

ar a s r s ar a s r s+ - = + - +a a S S S1 1 , 5( ( ) ) ( ∣∣ ( ) ) ( ) ( )

where S ...( ) denotes the vonNeumann entropy, and S ... ...( ∣∣ ) denotes the quantum relative entropy.

Proof. Let usfirst analyze the difference in vonNeumann entropies between the results of classicalmixture and
quantumaddition of states ρ andσ.
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Now, let us concentrate on the second term. Sinceαρ+(1−α)σ is a positive semidefinitematrix, its
logarithm, sayK, is Hermitian and commutes withαρ+(1−α)σ. Thus,

r
a

a
s= -

-
K K,

1
, 7[ ] [ ] ( )

Armedwith this result, we now simplify the second term in the followingway.
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Herewe have used the cyclicity of trace aswell as the commutation relation in (7). Thus, the second term in the
remainder vanishes and the proof is complete. ,

An immediate corollary to the theorem above is the following inequality for arbitraryαä [0,1], whichwas
conjectured [11] to hold for arbitrary qudit systemswhen a = 1

2
.

Corollary. If r and s are two qudit states, then

r s ar a s+ -a S S 1 . 9( ) ( ( ) ) ( )

This result follows from the relation (5) and the non-negativity of quantum relative entropy. It is easy to see that
forαä (0,1), this inequality is strict if ρ andσ do not commute. This we term as the reverse entropy power
inequality. Thus quantum addition of two density operators results in a density operatorwhose entropy is always
lower compared to the corresponding classicalmixture. Onemay thuswonder, does this difference in entropy
capture some quantumness ?

2.Quantumaddition commuteswith incoherent channels

Nowwe go on to show the second result in the paper, which proves that the quantumaddition operation
commutes with the free operations in the resource theory of quantum coherence [12, 13], viz. the incoherent
operations (IOs).
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Lemma. If s is an incoherent state and L denotes an incoherent channel, then the following equality holds

r s r sL L = La a  10( ) ( ) ( ) ( )

Proof.TheKraus operators Ki{ }corresponding to the IOΛ are known to be expressible in the form
p= å ñáK d ki k ik k∣ ∣, whereπ is a one-to-onemapping [14]. LHS of the equality to be proved reads as

r s a r a s a a r sL L = L + - L - - L La i1 1 , 11( ) ( ) ( ) ( ) ( ) ( ) [ ( ) ( )] ( )

. Now, let us focus on the quantityΛ(ρ)Λ(σ), which equals
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Similarly one can prove thatΛ(σρ)=Λ(σ)Λ (ρ). The equality to be proved now follows in a straightforward
way. ,

This result above shows that the qudit addition a.k.a. partial swap channel commutes with an IO. ForCV
settings, the beamsplitter operates as a similar channel to the qudit addition channel described here. Thus, itmay
be interesting to checkwhether the free operations in resource theory of coherence for CV systems do also
commutewith the beamsplitter channel, when one of the inputs in the beamsplitter happen to be free in that
formulation of the resource theory of coherence, e.g, a quantumoptical coherent state or a thermal state.
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