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Abstract. Entanglement entropy is a powerful tool to detect continuous, discontinuous and even topo-
logical phase transitions in quantum as well as classical systems. In this work, von Neumann and Renyi
entanglement entropies are studied numerically for classical lattice models in a square geometry. A cut is
made from the center of the square to the midpoint of one of its edges, say the right edge. The entan-
glement entropies measure the entanglement between the left and right halves of the system. As in the
strip geometry, von Neumann and Renyi entanglement entropies diverge logarithmically at the transition
point while they display a jump for first-order phase transitions. The analysis is extended to a classical
model of non-overlapping finite hard rods deposited on a square lattice for which Monte Carlo simulations
have shown that, when the hard rods span over 7 or more lattice sites, a nematic phase appears in the
phase diagram between two disordered phases. A new Corner Transfer Matrix Renormalization Group algo-
rithm (CTMRG) is introduced to study this model. No logarithmic divergence of entanglement entropies
is observed at the phase transitions in the CTMRG calculation discussed here. We therefore infer that the
transitions neither can belong to the Ising universality class, as previously assumed in the literature, nor

be discontinuous.

1 Introduction

The quantum entanglement between the two subsystems
A and B of a macroscopic system has attracted a consid-
erable interest in the last decade [1-3]. Besides its purely
theoretical interest, the entropy that quantifies this entan-
glement have found some applications, in particular in the
identification of phase boundaries as will be discussed in
this work. Denoting

pa = Trp [1o) (Yol (1)

the reduced density matrix of subsystem A in the ground
state |¢g) of the system, the von Neumann entanglement
entropy of the degrees of freedom of A with those of
subsystem B is defined as

Sa=—Trpalogpa (2)

while the Renyi entropies are

Sp = log Tt p'y. (3)

1—n
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In dimension 1 4+ 1 and with Open Boundary Con-
ditions, Conformal Field Theory predicts that von
Neumann entanglement entropy diverges logarithmically
when approaching a critical point [4]

—imbiy
SA—Glna—i—c (4)

where the correlation length £ scales with the control
parameter § as £ ~ |§|7¥. The prefactor is proportional
to the central charge ¢ which is a universal quantity. At
the critical point, the entanglement entropy diverges as
Sa ~ §Inl with the length ¢ of the subsystem A. Simi-

[

larly, Renyi entropies behave as S, ~ {5 (1 + %) In/l. As
observed numerically for the quantum ¢-state Potts chain
with ¢ > 4 [5], the entanglement entropy S4 displays a
jump at a first-order phase transition.

Entanglement entropies S, are easily obtained in
DMRG calculations of quantum spin chains because the
reduced density matrix p4 is computed and diagonalized
at each iteration. The approach has been extended to
two-dimensional classical systems by using the eigenvector
|tar) associated to the largest eigenvalue of the transfer
matrix to construct the density matrix as p = 1) (W]
and then the reduced density matrix p4 by a partial trace.
When the classical transfer matrix can be interpreted as
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the evolution operator in imaginary time of a 1D quan-
tum Hamiltonian [6-10], the entropy Sq4 = —Tra palnpga
measures the quantum entanglement between the degrees
of freedom lying in A with those in B. By abuse of langage,
one may say that S, measures the entanglement between
the left and right part of the strip on which the classical
system lives. The entanglement entropy has proved to be
a useful quantity in classical systems: the phase diagram
can be determined from the entanglement entropy, even
when it involves topological phase transitions [11]. In the
CTMRG algorithm, the reduced density matrix of a cut of
width L/2 in a square lattice of size L x L is constructed as
pa = C*/Tr C* [12,13]. Moreover, the CTMRG algorithm
requires the corner transfer matrix C to be diagonalized
at each iteration. Therefore, the entanglement entropy is
computed in practice as — Y, A} In A} where the \;’s are
proportional to the eigenvalues of C' with the constraint
Do A} = 1. In the thermodynamic limit, the cut is the
same as the one performed in the transfer matrix approach
so S4 measures the entanglement between the left and
right halves of the systems or, more precisely, between
the left and right halves of the equivalent quantum spin
chain.

In this work, the behavior of entanglement entropies are
studied for a model of non-overlapping k-mers deposited
on a lattice. The case k = 2 corresponds to the celebrated
dimer model that has attracted a lot of interest in the last
half-century. Besides its experimental relevance to systems
where diatomic molecules are adsorbed on a surface [14],
the full covering of a graph by dimers was mostly studied
by physicists and mathematicians from a purely theoret-
ical perspective [15,16]. Fisher [17] and Kasteleyn [18]
independently managed to express the partition function
as a pfaffian and then compute exactly the free energy
density of the model. The more general case of a mixture
of monomers and dimers was subsequently studied and,
thanks to a mapping onto an Ising model, it was shown
that the free energy density is an analytic function of the
chemical potential of the dimers [19,20]. Therefore, the
model does not undergo any phase transition. The same
conclusion was drawn for a lattice model of trimers [21].
As recently shown, a Kosterlitz-Thouless phase can nev-
ertheless be observed in the dimer model at close-packing
when an interaction is introduced between aligned dimers
on the same plaquette of the square lattice [22,23].

On the other hand, a gas of infinitely long rigid
polymers is expected to undergo an entropy-driven first-
order transition between an isotropic and a nematic
phase [24,25]. A discretization of the orientation of the
polymers does not change this conclusion [26]. In 2D, a
generalization of the Mermin-Wagner theorem forbids the
existence of a nematic phase that would break the sym-
metry under rotation [27,28]. Monte Carlo simulations of
infinitely thin needles have however shown the existence
of a Berezinskii-Kosterlitz-Thouless transition [29]. For
discrete orientations of the needles, the Mermin-Wagner
theorem does not hold anymore and a nematic phase may
be observed.

One may therefore assume that rigid finite poly-
mers, consisting in £ monomers aligned on the lattice,
should display an isotropic-nematic phase transition for

Eur. Phys. J. B (2020) 93: 134

sufficiently large enough k. In 2007, Ghosh et al. argued
that such a model should actually undergo two phase tran-
sitions as the chemical potential is increased [31]. Like
infinitely long rigid polymers, k-mers are first expected to
undergo a transition between an isotropic and a nematic
phase. When approaching close-packing at high chem-
ical potential, the system is expected to return to an
isotropic phase. Using Monte Carlo simulations, Ghosh et
al. showed that this scenario is indeed observed for k > 7.
However, such Monte Carlo simulations based on local
removal/deposition of a single k-mer are very difficult
due to a large autocorrelation time. Nevertheless, the first
isotropic-nematic transition was shown to be continuous
with critical exponents compatible with the Ising univer-
sality class on the square lattice and the three-state Potts
model one on the triangular lattice [32-35]. This criti-
cal behavior is explained by the fact that, in the nematic
phase, the Z, symmetry of the different orientations of
the k-mers is spontaneously broken [36]. There are ¢ = 2
possible orientations on the square lattice and ¢ = 3 on
the triangular lattice. Later a cluster algorithm updat-
ing k-mers along a whole row or column of the lattice
was introduced [37] and allowed for studying the model
at high densities. The second nematic-isotropic transition
was shown to be continuous too but the estimated criti-
cal exponents are incompatible with the Ising universality
class. The possibility of a cross-over to Ising universality
class at large length scales is however not excluded by the
authors.

In this study, the k-mer model is considered on the
square lattice. A new Corner Transfer Matrix Renor-
malization Group (CTMRG) is introduced to cope with
the fact that the Corner Transfer Matrix of the k-mer
model is not symmetric for k£ > 2, in contrast to usual
lattice spin models. The details of the algorithm are
presented in the first section along with the Boundary
Conditions chosen to break the symmetry and the dif-
ferent observables estimated to characterize the phase
transitions. In particular, the entanglement entropies are
introduced. Results for the Ising, Potts and clock mod-
els, undergoing respectively continuous, discontinuous and
two Berezinskii-Kosterlitz-Thouless transitions, are dis-
cussed to allow further comparisons with the 7-mer model.
In the second section, numerical data for the 6, 7 and
8-mer models are presented and discussed. In agree-
ment with previous Monte Carlo simulations, the order
parameter and the entropy reveals the existence of a
nematic phase for k£ > 7. In the third section, numer-
ical evidence is given that the entanglement entropies
of k-mer model does not diverge at the transitions.
Conclusions follow.

2 Numerical methodology

In 1968, Baxter introduced the first Matrix-Product-State
algorithm for the monomer-dimer model on the square
lattice [38]. As in DMRG to be introduced 25 years
later [39-42], the ground state of the classical trans-
fer matrix is approximated by a Matrix-Product-State
(MPS). The optimization of this MPS is performed by
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alternating between the transfer matrices generating the
lattice horizontally and vertically respectively. The con-
vergence to a machine-precision accuracy is extremely
fast, mainly due to the fact that the model is not criti-
cal. Two of the tensors forming the MPS turn out to be
corner transfer matrices. Shortly after the introduction of
DMRG, an algorithm, based on this corner transfer matrix
and known as Corner Transfer Matrix Renormalization-
Group algorithm (CTMRG), was introduced for classical
systems [43]. Neither the Baxter algorithm nor CTMRG
can be applied to k-mers with k& > 2 because the corner
transfer matrix is not symmetric in this case. In this paper,
a new CTMRG is introduced for the k-mer model. The
symmetry of the corner-transfer matrix is not required
anymore. The algorithm exploits the mirror symmetry
under reflection with respect to the horizontal or vertical
axis to greatly improve the convergence.

2.1 Corner transfer matrix renormalization group
algorithm

Each vertex of the square lattice is given a statistical
weight w(s1, s2, $3, 84) which depends on the states s1, sa,
s3 and sy of the four incoming bonds. The elements of the
transfer matrix 1" are defined as the statistical weight of
a single row (or column) of vertices. They can be written
as a product of w’s. Using the notations of Figure 1, these
elements reads

T85(517525 s ;5/175/23 < )
= H w(s1, 87,8, 86)w(s2, S8,55,87) ... ()
86,875

Note that the transfer matrix still depends on the state
s5 of the pending bond at the top. Depending on the spe-
cific type of boundary conditions we intend to impose,
the appropriate setting of the state sg needs to be taken.
The elements of the corner transfer matrix C(sq,s2,...;
s, 85,...) are the statistical weights of a square (see
Fig. 1) [44]. Boundary Conditions have been applied to
the bonds on the two opposite sides of the square.

The partition function can be decomposed into one ver-
tex, four transfer matrices T; and four corner transfer
matrices C; as (Fig. 2)

>

§1,52,53,54

Z= w(s1, s2, $3,84) Tr [Tf101T25202T§3C’3T45404]

(6)
The four parameters s1, So, S3, and s4 of the vertex corre-
spond to the states of the bonds at the right, top, left and
bottom of the vertex. This decomposition is diagrammat-
ically represented on Figure 2. The thin lines on the figure
correspond to bonds that carry a single degree of freedom.
The thick lines carry renormalized states. In the follow-
ing, we are interested in systems for which the statistical
weight of a vertex is symmetric up to a local operation
under a mirror transformation with respect to both the
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Fig. 1. Diagrammatic representation of the vertex w (left),
the transfer matrix 7" (center) and the corner transfer matrix
C (right). Each black circle denotes a weight w(s1, s2, 3, 54).
The crosses means that some specific boundary conditions are
applied: the state of the bond can be fixed or a sum can be
performed over all possible values. The sum over the states of
all the internal bonds is implicit.

vertical and horizontal axis:

w(s1,52,53,54) = ¥ Ph(s1,51)Ph(s3, 53)w(sh, 52,51, 54),

s ,sh
w(s1,52,83,81) = Y Po(sa,sh)Po(sa, sh)w(s1, sh, 3, 55)
sh,s)
(7)
with
p, = P, P =1, P, =Pf, Pl =1

(8)
For spin models, the matrices P, and P, are equal to the
identity. For k-mer models, it will not be the case anymore.
The transfer matrices T; and the corner transfer matrices
C; are also expected to be symmetric under these two
mirror transformations. As a consequence, it is sufficient
to consider C;7 and the two transfer matrices Ty and T5.
Other matrices will be reconstructed from these three. The
first step of the algorithm consists in extending the corner
transfer matrix by adding the two transfer matrices, T}
and T5, and a vertex w:

C{((S4, 35)’ (53’ 88)) =

Z w(81782,83,84) (9)

5$1,52,56,57

x 17" (s5,56)C1(s6,57)T57 (57, 58)

(s4,85) denotes a product state constructed from the
states s4 and s5. The process is represented diagrammat-
ically on the figure (second diagram from the left on the
top row). To reduce the dimension of C7, a decomposition
into singular values (SVD) is performed on C. The latter
is replaced by a diagonal matrix whose elements are the
largest singular values A:

U™ (59, (s4,55))C1 (54, 85), (53, 58))

011(897310) = S4, S5
X V((53558),510) = Nsg0sg,510-

(10)
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Fig. 2. Diagrammatic description of the CTMRG algorithm for the k-mer model. On the left, the partition function Z is
decomposed into 8 tensors, 4 transfer matrices 7; and 4 corner transfer matrices C;. The 4-leg black circle represents the
statistical weight w on the central vertex. On each internal line, a sum over all possible states is implicitly performed. Thick
lines are associated to renormalized states while thin lines were not renormalized yet. In the general case, the tensors 7; and
C; are independent. At the center of the first line, the corner transfer matrix C; is first extended by contraction with the two
transfer matrices 71 and T> and a weight w. The resulting tensor is decomposed into singular values (SVD) corresponding to
changes of basis U and VT on its two external legs. Similarly, the transfer matrices Ty and T, are extended by contraction
with a weight w and the same change of basis U or V is applied. Without any truncation of U and V', the partition function
is unchanged. On the right of the first and second lines, the horizontal and vertical mirror operators P are extended and the
change of basis is applied. Using these mirror symmetries, the corner transfer matrices C2, C's and C4 can be constructed from
C1. Transfer matrices T3 and T4 are obtained from 77 and 75.

The number of singular values that are kept, and therefore extended as
the dimension of C7, is a fixed parameter. The transfer
matrices 77 and T5 are then extended by contraction with

a single vertex:

Py
P

((s1,52), (53,84)) = Py(s1,53)P1(52, 84),

((51,52), (53,54)) = Pn(s1,53)Pa(s2,54)  (13)

T{™ ((54,55)s (52, 56)) = > w(s1, 52,53, 54) T (85, 56),

S1

T3 ((s1,55), (s3,86)) = Z w(s1, 82,83, 4)T5° (85, 56),

. (11)

i.e. P = P, ® Py and P} = P}, ® P5 and then renormalized
as

P =UTPU, Py =vPvT. (14)

Finally, the other transfer matrices are given by

and then renormalized by performing the appropriate cy = P201T’ cl = Plch, ch = ClTP1 _ PQCéT.

basis change:

T = UTT{*U. T = vty (12)
To construct the other transfer matrices, the mirror trans-
formations need to be extended and renormalized too.

Setting initially P, = P, and P, = P}, the matrices are

(15)

The algorithm can be iterated either until the lattice
size reaches the desired one or until thermodynamic aver-
ages become stable, i.e. lattice size independent, up to
some accuracy. The number of iterations needed for con-
vergence depends strongly on the proximity of a phase
transition and on the number of states kept during the
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renormalization process. In the case of the k-mer model,
we observed that convergence depends also on the bound-
ary conditions. A faster convergence is usually obtained
with random initial tensors. However, thermodynamic
averages display oscillations as the lattice size is increased
and for many points of the phase diagram, mostly in the
nematic phase, we were not able to reach convergence at
large number of states. Therefore, in the following, the
study is limited to finite-size systems.

2.2 Statistical weight of a vertex

In the monomer-dimer model, each site of the lattice is
occupied by a monomer. Dimers correspond to a bond
joining two neighboring sites. A monomer can belong at
most to one dimer. A configuration of the system is there-
fore given by the set of bonds on which lies a dimer. A
state, 0 or 1, is assigned to all bonds of the lattice. 0 indi-
cates the absence of a dimer while 1 corresponds to the
presence of a dimer. On a given site, the statistical weight
of an isolated monomer is

w(0,0,0,0) = 1, (16)

while for a monomer that belongs to an horizontal dimer

w(1,0,0,0) = w(0,0,1,0) = e"* (17)
and to a vertical dimer
w(0,1,0,0) = w(0,0,0,1) = e*v. (18)

All other elements of w are zero. Note that the factor
B = 1/kpT has been absorbed into the definition of the
chemical potentials pp, and p,.

A k-mer correspond to a sequence of k aligned
monomers on the lattice. It can also be seen as a sequence
of k — 1 dimers on k — 1 successive bonds of the lattice.
The different dimers forming a k-mer needs to be distin-
guished. Therefore, a bond can be in k possible states. The
state 0 denotes the absence of any dimer on the bond.
Therefore, a vertex with four bonds in the state 0 sig-
nals the presence of an isolated monomer. The associated
statistical weight is

w(0,0,0,0) = 1. (19)
The k-mers are decomposed into k — 1 dimers labeled 1
to kK — 1 from left to right and bottom to top. For an
horizontal k-mer, the statistical weights are

w(1,0,0,0) = w(2,0,1,0) = ...
=w(k—1,0,k —2,0) = w(0,0,k — 1,0) = e"" (20)

while, for a vertical dimer, the non-vanishing elements are

w(0,1,0,0) = w(0,2,0,1) = ...
= w(0,k—1,0,k—2) =w(0,0,0,k — 1) = e (21)

The image of a k-mer under a mirror transformation is
still a k-mer but with dimers labeled in the reversed order.
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Therefore, the mirror tensors P, and P, satisfies

Phoy(k—1,1)=Py(k—2,2)=...=1 (22)
and all other elements vanish.

To be able to compare the entropy and the entangle-
ment entropy of k-mer model with those of well-known
lattice spin models, the algorithm was also applied to the
g-state Potts and clock models. In both cases, a ¢-state
spin degree of freedom is placed on each bond of the
square lattice. The vertex considered above is therefore
a plaquette of four spins. The statistical weight is

V(Sl;32)+V(32733)+V(53754)+V(54,51)] /kT

(23)
where V (s, s') = d5,¢ for the Potts model and V(s,s’) =
cos 27“(5 — &) for the g-state clock model.

w(81,82,83784)=e[

2.3 Boundary conditions

Different boundary conditions can be imposed to the sys-
tem, provided that they are symmetric under horizontal
and vertical mirror transformations. For Open Boundary
Conditions (OBC), the initial 77 and C; tensors are

11 (54, 82) = Zw(sl, $2, 83, 54),

S1

Ci(ss,83) = Y w(s1,52,53,54).

51,52

(24)

For Fixed Boundary Conditions (FBC) in the state s = 1
for example, they are chosen to be

T‘ls3 (S4a S2> = w(17 52, 83, 54)7 Cl<s47 83) = ’LU(l, 17 837(8245))
In the k-mers model with k£ > 7, the system is expected
to be in a nematic phase for intermediate chemical poten-
tials. In the latter, the k-mers are mostly either horizontal
or vertical (Zs symmetry). In the second case, horizon-
tal bonds are in the state 0 while vertical ones are in
states between 1 and k. To break the Zo symmetry of the
nematic phase, mixed boundary conditions are imposed on
the system. On the left and right boundaries, the horizon-
tal bonds are forced to be in the state 0. On the upper and
lower boundaries, vertical bonds can be in any of the states
1 to k — 1 but not 0. This conditions are implemented in
the initial tensors as

k—

Ci(sa,83) = Y w(0, 52,53, 54),

=

»
N
—_

(

T1% (54,52) =

=)

,82783784>,

g

E
[ay

T254(81,83) = w(81,82783,84). (26)

w
Il
Jan

2

Other initial tensors are obtained by applying the mirror
transformations (15).
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2.4 Observables

The free energy density f can be estimated from the
partition function Z. However, the convergence of this
estimator is quite slow. A much faster convergence is
obtained with the estimator
f=—logmaxT. (27)
Finite differences of this free energy at two close chemical

potentials p and p+ Ap give access to the average density
of k-mers

_oF o fletAp) — Fw) 5
(n) = —5- ~— : (28)
ou Ap

This estimator is quite stable with Ay ~ 1072, It is nev-
ertheless more convenient to measure the average density
on the central vertex. The statistical weight on the central
vertex is indeed easily computed as

1
p(81782383784) = Egzu(51782383784)

X Tr [T7 C\ Ty Co T3 C3T3* Cy | (29)

which corresponds to connecting the four arms of the cen-
tral vertex to four Transfer Matrices and inserting four
Corner Transfer Matrices to recover the square lattice.
The construction is similar to (6) for the partition func-
tion. At the nth iteration of the algorithm, the total lattice
size is therefore L = 2n 4 3. Average densities of horizon-
tal (vertical) k-mers (ny) ({(n,)) are computed on the two
horizontal (vertical) bonds of the central vertex as

<nh,v> =Tr PR, (30)
where ny,_, (51, S2,83,54) = 1 when there is an horizontal
(vertical) dimer in the bond configuration (si, se, s3, S4).
Due to the boundary conditions imposed to the system,
these two densities take different values in the nematic
phase. An order parameter is then defined as

(31)

The entropy of the central vertex embedded in the rest of
the system can also be computed as

>

51,52,53,54

S=- p(51,82,53,84)10gp(51,82753,84) (32)

using the statistical weight (29). It is a strictly local quan-
tity that should not be confused with the entropy per site.
S is nevertheless expected to be singular at phase tran-
sitions. To allow for comparison and identify the nature
of the phase transitions of the 7-mer model, different spin
models undergoing second-order, first-order and topologi-
cal phase transitions were studied using the same CTMRG
algorithm. As shown on Figure 3, a break in the slope of
S can be observed at the critical temperature of the Ising
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Fig. 3. Entropy at the central vertex (top) and von Neumann
entanglement entropy (bottom) of the 2-state Potts model
(equivalent to the Ising model) with Fixed Boundary Con-
ditions versus the inverse of the temperature 8 = 1/kpT.
The different curves correspond to the different lattice sizes
indicated in the legend. The data were computed with 32
states.

model. In the paramagnetic phase, the data shows that S
behaves as |3 — S| In |8 — 8| over a broad range of tem-
peratures. This is also the case in the paramagnetic phase
with Open Boundary Conditions. For the 7-state Potts
model, which undergoes a first-order phase transition, the
entropy S displays a jump at the transition temperature
(Fig. 4). In the clock model, the entropy is observed to
increase with the lattice size in the intermediate critical
phase (Fig. 5).

2.5 Entanglement entropies
As mentioned in the introduction, an L x L square lattice

is considered and a cut of size L/2 is made from the cen-
ter of the square to the midpoint of one of its edges (see
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Fig. 4. Entropy of the central vertex (top) and von Neumann
entanglement entropy (bottom) of the 7-state Potts model with
Fixed Boundary Conditions versus the inverse of the tem-
perature 3 = 1/kgT. The different curves correspond to the
different lattice sizes indicated in the legend. The data were
computed with 147 states.

Fig. 6). L/2 bonds are pending above the cut and L/2
below. Consider a partially summed partition function

2;};22 of the system as a function of the not summed-
up states s, Sz, ... above the cut and s, sb, ... below the
cut. The partition function Z can be reconstructed in the
following

~ ! ’
o 87,85,
Z = E Zshsz,.“ 551,52,...,5’1,5/2,,..' (33)
$1,82,...,81,85,...
The quantity
NS/ S/
Z5182)
A _ 81,82,
pA(81752,...,31752,...)—T (34)
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—— L=31
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0.6 -

0.4 -

0.2 -

Fig. 5. Entropy of the central vertex (top) and von Neumann
entanglement entropy (bottom) of the 7-state clock model with
Fixed Boundary Conditions versus the inverse of the tem-
perature 3 = 1/kpT. The different curves correspond to the
different lattice sizes indicated in the legend. The data were
computed with 343 states.

can be interpreted as the elements of a reduced den-
sity matrix. The definition of the entanglement entropy
between the degrees of freedom lying in the left and right
halves of the system follows:
Sa=—Trpalnpy. (35)
By construction, the partition function of the square lat-

tice with a cut is given by the fourth power of the Corner
Transfer Matrix [30]:

C4
T T ov

PA (36)

For spin models (Ising, Potts, clock, ...), the entangle-
ment entropy is easily computed from the eigenvalues of
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Fig. 6. Cut made on the right side of a square lattice defines
the reduced density matrix p4 in order to measure the entan-
glement entropy between the degrees of freedom lying on the
left and the right rectangular-shaped halves of the square
lattice.

the Corner Transfer Matrix. Taking the partial sum of
the four Corner Transfer Matrices, cf. equations (34) and
(36), results in the reduced density matrix p4 well-known
in CTMRG [43]. In the case of the k-mer model, the cor-
ner transfer matrices C; are not symmetric. Nevertheless,
the relations (15) show that the reduced density matrix
can be written as

pa = C4C3C,Cy = (CTCy)2. (37)
The matrix CT Cy is symmetric and its eigenvalues are the
square of the singular values of C; computed at each iter-
ation. Therefore, the von Neumann entanglement entropy
is easily computed as

Sa=—Y AllnA} (38)

where the A;’s are proportional to the singular values of
C, with the constraint >, A} = 1. The Renyi entropy is
defined as

1 n
Sy, = 1771111[221\;L }

(39)

In contrast to the entropy of the central vertex previously
defined, the entanglement entropy is a non-local quantity
that depends on long-range correlations in the system.
Numerical data for the 2-state Potts model (equiva-
lent to the Ising model) are presented on the right of
Figure 3. As the lattice size is increased, the peak of the
entanglement entropy becomes sharper and occurs at a
temperature closer to the critical point 3. = In(1 + v/2) ~
0.881. Numerical data for the entanglement entropy of the
7-state Potts model, which undergoes a first-order phase
transition at 8; = In(1 4+ v/7) ~ 1.294, are presented on
the right of Figure 4. A sharp peak and a discontinuity are
observed at the transition temperature. Finally, the entan-
glement entropy of the 7-state clock model is presented
on Figure 5. As shown in [13], the entanglement entropy
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Fig. 7. On the top figure, Finite-Size Scaling of the von
Neumann entanglement entropies Sa of the ¢ = 2, 3 and 4-
state Potts models at their critical point 8. = log(1 + /q).
The continuous lines are linear fits of the data. The central
charges, estimated from the slopes, are given in the legend.
On the bottom figure, the effective charges extracted from a
linear fit of the Renyi entropies S, are plotted versus n. The
expected values are displayed as dashed lines.

grows with the lattice size in the whole intermediate crit-
ical phase. The two Kosterlitz-Thouless phase transitions
are revealed by two peaks observed respectively with FBC
and OBC.

As mentioned in the introduction, at the critical point
the entanglement entropies are expected to scale with the

length ¢ of the cut as
c 1

On Figure 7, the entanglement entropies S4 and Sy are
plotted versus the logarithm of the size L of the cut for
the ¢ = 2, 3 and 4-state Potts models at their critical

SA ~ glnf, (40)
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point. As expected, the entropies display a linear behavior
with log L. Assuming that, for the von Neumann entan-
glement entropy S4, the prefactor is the same as in the
strip geometry (40), the estimates of the central charge
are compatible with the known values ¢ = 1, 4/5 for the
2 and 3-state Potts models respectively. The data for the
4-state Potts model, whose central charge is known to be
c = 1, are slightly away from the theoretical prediction,
maybe due to the fact that the critical point is actually
a tricritical point involving stronger corrections. For the
Renyi entropy S,,, the expected prefactor is recovered for
values of n around n ~ 1/2. For larger values of n, strong
deviations are observed.

2.6 Convergence and error bars

Provided that there is no source of systematic deviations
(due to insufficient thermalization or lack of ergodicity),
error bars in Monte Carlo simulations result only from
statistical fluctuations. The latter can be made as small
as desired by increasing the number of Monte Carlo steps.
In CTRMG, the only source of error is the truncation of
the Corner Transfer Matrix. The dimension of the lat-
ter increases exponentially fast with the lattice size. If
all states were kept, the calculation would be exact. By
increasing the number of states kept at each truncation,
the deviation from the exact result can be made smaller.
However, in contrast to Monte Carlo simulations, it is
not, possible to estimate the systematic deviation intro-
duced by the truncation of the Corner Transfer Matrix.
Therefore, in the rest of the paper, the observables are
usually plotted for different number of states to show the
convergence of the data.

In DMRG studies, the level of approximation is often
quantified with the so-called truncation error. The latter
is defined as the sum of the eigenvalues of the density
matrix that are discarded. The equivalent of the density
matrix in CTMRG is C*, the fourth power of the Corner
Transfer Matrix. In our implementation, a Singular Value
Decomposition of C' is performed at each iteration and
a small number m of singular values A are kept while
the rest is discarded and the matrices are truncated. A
possible definition of a truncation error for CTMRG is
therefore

N
A
oo it
Y

The smallest the truncation error and the more accrate
the simulation. However, it is not possible to establish
a simple relation between the truncation error and the
error bar on the observables computed in CTMRG (free
energy, order parameter entanglement entropy, ...). It is
a major drawback of the method, shared with DMRG and
all Matrix-Product and Tensor-Network algorithms. In
the simulations whose results are presented in the paper,
only the m largest singular values of the Corner Transfer
Matrix are computed at each iteration using the Arpack
library. To discuss the behavior of the truncation error
with the simulation parameters, we have implemented a
(slower) version of the code where all singular values are
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Fig. 8. Truncation error of the 7-mer model versus the number
of states m for 4 = 0,0.6 and 1.2 and a lattice size L = 51.

computed (with Lapack). It allows for the computation
of the truncation error at each iteration but for smaller
systems.

As can be seen on Figure 8 for the 7-mer model, the
truncation error increases very rapidly with the chemi-
cal potential. The accuracy is therefore expected to be
much better in the low-density phase than in the high-
density phase. The truncation error displays a decay with
the number of states m which is close to a power-law. For
w = 1.2, the exponent of this power-law decay is —1.8.

3 Numerical evidences of phase transitions
in the k-mer model

The 7-mer model is studied by means of the CTMRG
algorithm keeping a number of states equal to 343, 686 or
1029. During each simulation, the calculation is stopped
after 14, 28, 56, 112, 224 and 448 iterations, which corre-
sponds respectively to lattice sizes 31, 59, 115, 227, 451
and 899. The different observables are then computed. To
allow for comparison, the 6-mer and 8-mer model were
also studied. In the latter, 512 states were kept and the
observables were computed for the lattice sizes 35, 67, 131,
259, 515 and 1027. For the former, 648 states were kept
and the observables were computed for the lattice sizes
27, 51, 99, 195, 387 and 771.

3.1 Average density

As shown on Figure 9, the average total density (n) =
(ny) + (nn) (30) of 7-mers increases monotonously with
the chemical potential p. For negative chemical poten-
tials, the average density depends only very weakly on the
lattice size. In the intermediate range 0.2—1.0, stronger
finite-size effects are observed for the smallest lattice size,
L = 31. For large chemical potentials, finite-size correc-
tions are again weaker but a different sign than in the
intermediate region. The assumption of the existence of
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Fig. 9. Average density of the 7-mer model model versus the
chemical potential ;1 per monomer. On the top figure, the data
were computed using CTMRG with 1029 states and the differ-
ent curves correspond to different lattice sizes L as indicated
by the legend. On the bottom figure, the lattice size is fixed
to L = 899 but different numbers of states were kept in the
CTMRG algorithm (343 in black, 686 in red and 1029 in green).

three different phases, as made in the literature on the
basis of Monte Carlo simulations, would fit with these
observations. Note that the same observations can be
made from the data of the 8-mer model. For the 6-mer
model, for which no transition is expected, finite-size
effects are nevertheless observed at intermediate chemical
potentials.

3.2 Order parameter of the nematic phase

On Figure 10, the order parameter @) (31) of the 7-mer
model is plotted versus the chemical potential. Figure 10
(right) shows that the location of the phase boundaries
depends non only on the lattice size but also on the
number of states kept during the CTMRG calculation.
Despite the important computational effort devoted to

Eur. Phys. J. B (2020) 93: 134

Fig. 10. Order parameter of the nematic phase of the 7-mer
model versus the chemical potential p per monomer. On the
top figure, the data were computed using CTMRG with 1029
states and the different curves correspond to different lattice
sizes L as indicated by the legend. On the bottom figure, the
lattice size is fixed to L = 899 but different numbers of states
were kept in the CTMRG algorithm (343 in black, 686 in red
and 1029 in green).

this study, an extrapolation of the chemical potentials at
the transition remains elusive. For sufficiently large lattice
sizes, the same shape as observed in Monte Carlo simu-
lations [31] is obtained with CTMRG. For a lattice size
L = 899 and keeping 1029 states during the renormaliza-
tion of the corner transfer matrix, the boundaries of the
nematic phase, signaled by a non-vanishing order param-
eter @, can be estimated at the chemical potentials per
monomer f; =~ 0.46 and pe ~ 0.91. The second value is
quite far from the Monte Carlo estimate ug ~ 0.795 [37].
However, Figure 10 shows that the nematic phase tends to
shrink as the lattice size is increased so an extrapolation
may eventually give a closer estimate of uo in the thermo-
dynamic limit. The average densities at the transitions are
estimated to be (n1) ~ 0.83 and (ng) ~ 0.91 to be com-
pared with the Monte Carlo estimates (ni) ~ 0.745 and
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Fig. 11. Order parameter of the nematic phase of the 6-mer
model (top) and of the 8-mer model (bottom) versus the chem-
ical potential p per monomer. The data were computed using
CTMRG with 648 states for the 6-mer model and 512 for the
8-mer model. The different curves correspond to different
lattice sizes L as indicated by the legend.

(ng) ~ 0.915(15). In contrast to the chemical potentials,
the CTMRG and Monte Carlo estimates of the density at
the second transition are nicely compatible due to the fact
that the average density varies slowly with the chemical
potential.

For comparison, the order parameter ) of the 6-mer and
8-mer models are presented on Figure 11. In the case of the
6-mer model, the order parameter vanishes as the lattice
size is increased indicating the absence of any intermedi-
ate nematic phase. In contrast, in the case of the 8-mer
model, the order parameter saturates over a wide range
of chemical potentials.

3.3 Entropy of the central vertex

In the k-mer model, a single monomer lies on each site of
the square lattice. Therefore, the entropy of the central
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vertex is a local quantity, as the average density. Consid-
ering the fact that a site may be empty with a probability
1 — (n) or occupied by any of the k possible monomers
forming either a horizontal or a vertical k-mer with a
probability (n)/2k, the entropy of the central vertex is

Sopc = —(1 = (n))In(1 — (n)) — 2k x %ln%'

(41)
In the nematic phase, the Zs orientational symmetry
between horizontal and vertical k-mers is broken by FBCs
and only one orientation of the k-mer is allowed. The
entropy of the central vertex is then expected to be

(n)

_ (n)
S=—-(1-(n)In(l —(n)) —k x ?ln7. (42)

The entropy per monomer S/(n) of the 7-mer model is
plotted on Figure 12. In the case of OBCs (presented in
the inset), the curves are nicely compatible with (41) for
sufficiently large number of states. Finite-Size corrections
remain small. With FBCs, a depletion appears in an inter-
mediate range of chemical potentials. The entropy of the
central vertex is close to (42) in this depletion while it
remains nicely compatible with (41) outside. The exis-
tence of an intermediate nematic phase, sensitive to the
boundary conditions unlike the two disordered phases,
explains the numerical data. Like the order parameter,
the depletion becomes thinner as the lattice size or the
number of states is increased. For 1029 states, the curves
of the two largest lattice sizes collapse between u; ~ 0.47
and py =~ 0.75. The first chemical potential is compati-
ble with the location of the isotropic-nematic transition
as estimated above from the order parameter ). The sec-
ond is smaller than the previous estimate but closer to the
Monte Carlo estimate pg =~ 0.795 [37].

For comparison, the entropies of the central vertex for
the 6-mer and 8-mer models are presented on Figure 13.
In the case of the 6-mer model, the entropy per monomer
S/(n) is compatible with (41) for all considered chemical
potentials. There is no signature of a nematic phase in this
case. For the 8-mer model, the entropy S displays a wide
flat depletion where it is compatible with (42). For large
chemical potential, the entropy of the central vertex has
not returned to the value predicted by (41), as expected in
the disordered phase. It is not clear whether the transition
nematic-isotropic is absent or the number of states is still
too small to achieve convergence.

4 Entanglement entropies of the k-mer
model

The von Neumann entanglement entropy is presented
on Figure 14 for the 7-mer model. Apart from the two
points out of the curve in the disordered phase, the entan-
glement entropy grows monotonously with the chemical
potential p. In particular, no peak is observed, even at
large lattice sizes, in apparent contradistinction with the
assumption that the two transitions are continuous. A
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Fig. 12. Entropy of the central vertex of the 7-mer model ver-
sus the chemical potential ;1 per monomer. On the top figure,
the data were computed using CTMRG with 1029 states and
the different curves correspond to different lattice sizes L as
indicated by the legend. On the bottom figure, the lattice size
is fixed to L = 899 but different numbers of states were kept in
the CTMRG algorithm (343 in black, 686 in red and 1029 in
green). In the inset, the same quantities are plotted but with
OBCs instead of FBCs. The two ansétze (41) and (42) are
plotted as dashed lines.

small dependence with the lattice size is observed. How-
ever, this dependence is similar to the one displayed by
the average density (Fig. 9) and differs from the one
of the T-state clock model in its critical phase (Fig. 5).
Therefore, the usual signature of a first, second order and
even Berezinskii-Thouless transition is absent in the 7-mer
model. Increasing the number of states of the CTMRG
algorithm does not change the situation. In contrast, the
entanglement entropy of a quantum state approximated
by a MPS is known to be bounded by a function of the

Eur.
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Fig. 13. Entropy of the central vertex of the nematic phase
of the 6-mer model (top) and of the 8-mer model (bottom)
versus the chemical potential ;1 per monomer. The data were
computed using CTMRG with 648 states for the 6-mer model
and 512 for the 8-mer model. The different curves correspond
to different lattice sizes L as indicated by the legend. The two
ansiatze (41) and (42) are plotted as dashed lines using the
numerical estimate of the density.

logarithm of the dimension of the auxiliary space [45-47].
A relation similar to this one should hold for the truncated
corner transfer matrices. However, it can be observed on
Figure 14 that the variation of the entanglement entropy
is very small (and mostly negative!l) when extending the
number of states from 686 to 1029. Therefore, the upper
bound on the entanglement entropy imposed by the num-
ber of states used in the calculations is not reached and
it can be considered that the estimated entanglement
entropy has already reached its exact value with the con-
sidered numbers of states. With OBC, the curve is very
similar. Only finite-size corrections seems to depend on
boundary conditions. The curves are quite similar for the
6 and 8-mer models (Fig. 15). The entanglement entropy
increases monotonously with the chemical potential. Only
the sign of the Finite-Size correction differs.
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Fig. 14. Von Neumann entanglement entropy of the 7-mer
model versus the chemical potential p per monomer. On the
top figure, the data were computed using CTMRG with 1029
states and the different curves correspond to different lattice
sizes L as indicated by the legend. On the bottom figure, the
lattice size is fixed to L = 899 but different numbers of states
were kept in the CTMRG algorithm (343 in black, 686 in red
and 1029 in green).

The entanglement spectrum p; = A}/ >, A} is plotted
on Figure 16 at different chemical potentials. No signif-
icant difference between the 6, 7 and 8-mer model can
be observed. The decay of p; with ¢ is slower than an
exponential but faster than a simple power law. More-
over, the decay becomes slower as the chemical potential
is increased. In contrast, in lattice spin models, the entan-
glement spectrum displays its slowest decay at the critical
point and the decay becomes faster as the temperature
moves away from the critical point.

5 Conclusions

The existence of two phase transitions for the k-mer model
with & > 7, as previously shown by means of Monte Carlo
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—— L=35

Fig. 15. Entanglement entropy of the 6-mer model (top) and
of the 8-mer model (bottom) versus the chemical potential u
per monomer. The data were computed using CTMRG with
648 states for the 6-mer model and 512 for the 8-mer model.
The different curves correspond to different lattice sizes L as
indicated by the legend.

simulations, is confirmed by the study of the order param-
eter and the entropy at the central vertex of a square
lattice. However, the accuracy reached by our CTMRG
computations is not sufficient to determine the critical
behavior which is associated to these transitions in order
to test the conjectures made from Monte Carlo simu-
lations. Nevertheless, in our CTMRG calculations the
entanglement entropy increases monotonously with the
chemical potential. No peak is observed at the two transi-
tions. In contrast, in the geometry considered in this work,
the von Neumann and Renyi entanglement entropies of the
g-state Potts model diverge as the logarithm of the lattice
size at the critical temperature when g < 4 and is discon-
tinuous at the first-order transition when ¢ > 4. We made
CTMRG calculations of the Ising model with a number
of states kept at each truncation of the corner transfer
matrix as small as 2 and of the 7-state Potts model with
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Fig. 16. Entanglement spectrum of the 6 (left), 7 (center), and 8-mer (right) models at the largest lattice size and with the
largest number of states considered. The different curves correspond to chemical potentials —0.4, 0, 0.48, 0.6, 0.76, 1.24, 1.92

(from bottom to top).

only 7 states. The peak is shifted and rounded but is still
present and clearly visible. We infer that the absence of
peak of the entanglement entropy in the k-mer model can-
not be explained by an insufficient number of states in our
CTMRG calculations. Moreover, Conformal Field Theory
predicts that the entanglement entropy diverges in a uni-
versal manner with the lattice size L, as ¢InL for the
von Neumann entanglement entropy and <5 (1 + %) InL
for the Renyi entropies (Fixed Boundary Conditions). It
is therefore inferred that the two transitions of the k-mer
model with £ > 7 cannot be in the universality class of the
Ising model, despite the fact that a Zs symmetry is bro-
ken in the nematic phase. Moreover, if the transitions are
continuous, their long-distance behavior probably cannot
be described by a Conformal Field Theory.
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