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1 Identities from quantum information theory

Some beautiful symmetric group identities have been found in the subject of quantum

information processing [1]. A combinatoric proof has been given [2].

The key identity is

drn(n+ 1) =
∑

R`(n+1)

dR g(r, , R) (c (R, r))2 , (1.1)

where r is a Young diagram with n boxes. R is a Young diagram with n + 1 boxes,

dr is the dimension of the irreducible representation (irrep) of the symmetric group Sn
associated with the Young diagram r, dR is the dimension of the Sn+1 irrep associated

with R. Finally, g(r, , R) is the Littlewood-Richardson coefficient coupling the V U
r ⊗ V U

with V U
R , where V U

r , V
U , V U

R are the U(N) (or GL(N)) irreps associated with the respective

Young diagrams and c (R, r) is the content (difference of the column and row number) of

the additional box in Young diagram R which is not contained in r.

2 Representation theoretic proof

Consider the tensor product of U(N) irreps.

V U
r ⊗ V U (2.1)

It is an irredicible representation of U(N) × U(N). Under the diagonal subgroup, it is

reducible. The decomposition is given by

V U
r ⊗ V U =

⊕
R`n+1

g(r, , R)V U
R (2.2)
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It follows that

N DimN (r) =
∑

R`n+1

g(r, , R)DimN R (2.3)

We also have a representation of Sn × S1 associated with (r, ). Sn × S1 is a subgroup of

Sn+1. We can induce a representation of Sn+1 from this representation of Sn× S1. This is

a reducible representation of Sn+1. The multiplicity of an irrep R in this reducible rep is

g(r, , R) (see for example [3]).

This means that

(n+ 1)dr =
∑

R`(n+1)

g(r, , R)dR (2.4)

On the l.h.s. we used the fact that the dimension of the rep of Sn+1 induced from the irrep

V Sn
r ⊗ V S1 of Sn × S1, is

|Sn+1|
|Sn × S1|

Dim(V Sn
r ⊗ V S1) =

(n+ 1)!

n!
dr = (n+ 1)dr (2.5)

On the r.h.s. we use the decomposition in terms of irreps of Sn+1.

Useful relation between DimNr and dr is

DimNr =
drfr
n!

, (2.6)

where fr is the product over the boxes of the Young diagram of (N − c ) and c = (i− j)
for a box at row i and column j.

fr =
∏
∈ r

(N − c ) =
∏
i,j

(N + j − i) (2.7)

Similarly,

DimNR =
dRfR

(n+ 1)!
. (2.8)

Thus the ratio reads

DimNR

DimNr
=

dR
dr(n+ 1)

(N − c (R, r)), (2.9)

where c (R, r) is the content of the box by which R and r differ. We can also write

c (R, r) =
∑
∈R c (R)−

∑
∈r c (r). Using the above equation in (2.3) we have

N =
∑

R`(n+1)

g(r, , R)
dR

dr(n+ 1)
(N − c (R, r)) (2.10)

Comparing this with the induction equation (2.4), we find∑
R`(n+1)

g(r, , R)c (R, r)dR = 0. (2.11)
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2.1 Trace of a sum of permutations in V
⊗(n+1)
N

In the group algebra C(Sn+m), an interesting sub-algebra is formed by the subspace which

is invariant under conjugation by elements of Sn×Sm. This is an example of what was called

a permutation centralizer algebra (PCA) in [4, 5], and which has many applications in the

study of gauge invariant operators with relevance to AdS/CFT. It is denoted A(n,m). For

m = 1 we have A(n, 1). The element
∑n

a=1(a, n+ 1), which we will use here, is an element

of A(n, 1). It is very interesting that PCAs are also finding a use in quantum information

processing (QIP). We discuss this further in section 5.

The tensor product Vr ⊗ V is a subspace of V
⊗(n+1)
N , where VN is the fundamental of

U(N).

W = V ⊗n+1
N = V ⊗nN ⊗ VN

=
⊕
r`n

(V U
r ⊗ V Sn

r )⊗ (V U ⊗ V S1) (2.12)

Consider the projector Pr in the group algebra of Sn, denoted C(Sn)

Pr =
dr
n!

∑
σ∈Sn

χr(σ)σ (2.13)

We choose an embedding C(Sn)→ C(Sn+1), where Sn acts on {1, 2, · · · , n} and Sn+1 acts

on {1, · · · , n, n+ 1}, and construct an element in C(Sn+1)(
Pr
dr
⊗ 1

) n∑
a=1

(a, n+ 1) (2.14)

We then consider the trace in W

trW

(
Pr
dr
⊗ 1

) n∑
a=1

(a, n+ 1) (2.15)

This is a sum of permutations in Sn ⊂ Sn+1. Doing the multiplication of Pr with∑n
a=1(a, n+ 1) and taking the trace, we get

n χr

(
1

n!

∑
σ

NCσσ

)
= n DimNr (2.16)

See appendix eq. (A.10) for the derivation.

Let us consider another way to compute the same trace. We observe that

n∑
a=1

(a, n+ 1) = T
(Sn+1)
2 − T (Sn)

2 , (2.17)
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where T
(Sn)
2 is the sum of all permutations in Sn which consist of a single swop. Using

eqs. (A.11) and (A.16) we get

trW

(
Pr
dr
⊗1

)(
T
(Sn+1)
2 −T (Sn)

2

)
=

∑
R`(n+1)

trWPR(Pr⊗1)
(
T
(Sn+1)
2 −T (Sn)

2

)

=
∑

R`(n+1)

(
χR(T

(Sn+1)
2 )

dR
−χr(T

(Sn)
2 )

dr

)
trWPR

(
Pr
dr
⊗1

)
=

∑
R`(n+1)

(−c (R,r))g(r, ,R)DimNR (2.18)

We made use of the fact

trWPR

(
Pr
dr
⊗ 1

)
= g(r, , R)DimNR (2.19)

This is a special case k = 1, n1 = n, n2 = 1 of an identity (A.27) derived in appendix A.

Now we have

nDimNr =
∑

R`(n+1)

(−c (r,R))g(r, , R)DimNR. (2.20)

Dividing by DimNr on both sides we obtain

n =
∑

R`(n+1)

(−c (r,R))g(r, , R)
dR(N − c (r,R))

dr(n+ 1)

=
∑

R`(n+1)

−Nc (r,R)g(r, , R)dR +
∑

R`(n+1)

(c (r,R))2g(r, , R)
dR

(n+ 1)dr
. (2.21)

The first term in the above equation is zero due to eq. (2.11). Thus, we get

drn(n+ 1) =
∑

R`(n+1)

(c (r,R))2g(r, , R)dR, (2.22)

which is the desired identity.

3 A generalization with Sm × Sn

Consider Sm × Sn → Sm+n and the vector space W = V ⊗m+n
N .

For Young diagrams r, s with m,n boxes respectively, consider

V U
r ⊗ V U

s =
⊕

R`m+n

g(r, s, R)V U
R (3.1)

which gives the decomposition into irreducible representations of the U(N) which acts

diagonally on V U
r ⊗ V U

s . First consider the dimension on both sides of the equation

DimNrDimNs =
∑

R`(m+n)

g(r, s, R)DimNR, (3.2)
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which is using eq. (2.6) rewritten as

(m+ n)!

m!n!
drds =

∑
R`(m+n)

g(r, s, R)dR
fR
frfs

(3.3)

On the other hand, using induction of V Sm
r ⊗ V Sn

s from Sm × Sn to Sm+n we obtain

(m+ n)!

m!n!
drds =

∑
R

g(r, s, R)dR (3.4)

The expression fR
frfs

has a large N expansion 1 + O(1/N). Comparing the two equations,

we conclude that all the 1/N corrections in

fR
frfs

=

∏
∈R

(
1− c (R)

N

)
∏
∈r

(
1− c (r)

N

)∏
∈s

(
1− c (s)

N

) (3.5)

lead to identities. For example,

0 =
∑

R`(m+n)

g(r,s,R)dR

(
−
∑
∈R
c (R)+

∑
∈r
c (r)+

∑
∈s
c (s)

)

0 =
∑

R`(m+n)

g(r,s,R)dR

( ∑
i1<i2∈R

ci1(R)ci2(R)−
∑
i∈R

∑
k∈r

ci(R)ck(r)−
∑
i∈R

∑
l∈s

ci(R)cl(s)

+
∑
k∈r

∑
l∈s

ck(r)cl(s)+
∑
k∈r

(ck(r))
2+
∑
l∈s

(cl(s))
2+

∑
k1<k2∈r

ck1(r)ck2(r)+
∑

l1<l2∈s
cl1(s)cl2(s)

)
(3.6)

There will also be higher order equations: at each order in 1/N the equation involves

Littlewood-Richardson coefficients and Young diagram contents, hence just data pertaining

to the symmetric groups. All the equations arise from the large N expansion of

0 =
∑

R`(m+n)

g(r, s, R)dR

(
fR
frfs

− 1

)
. (3.7)

Now consider the trace

trW

((
Pr
dr
⊗ Ps
ds

)(
T
(Sm+n)
2 − T (Sm)

2 − T (Sn)
2

))
. (3.8)

We observe that

(
T
(Sm+n)
2 − T (Sm)

2 − T (Sn)
2

)
=

m∑
a=1

m+n∑
b=m+1

(a, b) (3.9)
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It follows that

trW

((
Pr
dr
⊗ Ps
ds

)(
T
(Sm+n)
2 − T (Sm)

2 − T (Sn)
2

))
=

1

m!n!

∑
σ1∈Sm

∑
σ2∈Sn

χr(σ1)χs(σ2)trW

(
(σ1 ⊗ σ2)

m∑
a=1

m+n∑
b=m+1

(a, b)

)
=

mn

m!n!

∑
σ1∈Sm

∑
σ2∈Sn

χr(σ1)χs(σ2)N
Cσ1+Cσ2−1

= N−1mn DimNr DimNs (3.10)

On the other hand, using (A.11), (A.12) and (A.27), we derive

trW

((
Pr
dr
⊗ Ps
ds

)(
T
(Sm+n)
2 − T (Sm)

2 − T (Sn)
2

))
=

∑
R`(m+n)

g(r, s, R)DimNR

(
−
∑
∈R
c (R) +

∑
∈r
c (r) +

∑
∈s
c (s)

)
(3.11)

Comparing (3.10) and (3.11), we have

(m+ n)!

(m− 1)!(n− 1)!
= N

∑
R`(m+n)

g(r, s, R)
dR
drds

fR
frfs

(
−
∑
∈R
c (R) +

∑
∈r
c (r) +

∑
∈s
c (s)

)
(3.12)

Consider the large N expansion.

fR
frfs

= 1 +
1

N

(
−
∑
∈R
c (R) +

∑
∈r
c (r) +

∑
∈s
c (s)

)
+O

(
1

N2

)
(3.13)

Fraction fR
frfs

is the only term in the summand of the r.h.s. in (3.12) which contains N

dependence. Considering the order N term of the r.h.s. , we get zero using the first identity

in (3.6). Considering the constant term, we get

(m+ n)!

(m− 1)!(n− 1)!
=

∑
R`(m+n)

g(r, s, R)
dR
drds

(
−
∑
∈R
c (R) +

∑
∈r
c (r) +

∑
∈s
c (s)

)2

. (3.14)

Equivalently,

(m+ n)!

(m− 1)!(n− 1)!
drds =

∑
R`(m+n)

g(r, s, R)dR

(
−
∑
∈R
c (R) +

∑
∈r
c (r) +

∑
∈s
c (s)

)2

.

(3.15)

Now it is easy to see that this is a generalization of (2.22).
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4 Multi-partite generalization

Consider Sn1 × . . .× Snk → Sn1+...+nk and tensor space W = V ⊗n1+...+nk
N .

For Young diagrams r1, r2, · · · , rk with n1, n2, · · · , nk boxes, we have representations

V U
r1 , V

U
r2 , · · · , V

U
rk

of U(N). Considering the decomposition of the tensor product under the

diagonal action of U(N), we have

V U
r1 ⊗ V

U
r2 ⊗ · · · ⊗ V

U
rk

=
⊕

R`n1+···+nk

g(r1, r2, · · · , rk;R)V U
R (4.1)

The multiplicities g(r1, · · · , rk;R) can be expressed in terms of Littlewood-Richardson co-

efficients. For example

g(r1, r2, r3;R) =
∑

S`n1+n2

g(r1, r2;S)g(S, r3;R) (4.2)

By considering the dimensions on the two sides of (4.1), we have

DimNr1 . . .DimNrk =
∑

R`(n1+...+nk)

g(r1, . . . , rk;R)DimNR (4.3)

Using (2.6) the above equation can be rewritten as

(n1 + . . .+ nk)!

n1! . . . nk!
dr1 . . . drk =

∑
R`(n1+...+nk)

g(r1, . . . , rk;R)dR
fR

fr1 . . . frk
(4.4)

Now we switch to considering the induction of representations of symmetric groups

associated with the above Young diagrams. Using induction of V
Sn1
r1 ⊗ . . . ⊗ V Snk

rk from

Sn1 × . . .× Snk to Sn1+...+nk we have

(n1 + . . .+ nk)!

n1! . . . nk!
dr1 . . . drk =

∑
R

g(r1, . . . , rk;R)dR (4.5)

Comparing equations (4.4), (4.5) we have

0 =
∑

R`(n1+...+nk)

g(r1, . . . , rk;R)dR

(
1− fR

fr1 . . . frk

)
(4.6)

Again we consider a large N expansion of

fR
fr1 . . . frk

=

∏
∈R

(
1− c (R)

N

)
∏
∈r1

(
1− c (r1)

N

)
. . .
∏
∈rk

(
1− c (rk)

N

) (4.7)

Validity of eq. (4.6) for all N ≥
∑k

j=1 nj leads to identities for every power of 1/N . For

example, the 1/N terms give

0 =
∑

R`(n1+...+nk)

g(r1, . . . , rk, R)dR

(
−
∑
∈R
c (R) +

k∑
i=1

∑
∈ri

c (ri)

)
(4.8)
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It is useful to be explicit about the embedding of Sn1 × · · ·Snk in Sn1+···nk . Let Sn1 be the

group of permutations of [n1] = {1, 2, · · · , n1}. Let Sn2 be the group of permutations of

[n2] = {n1 + 1, · · · , n1 + n2}. And Sni for 1 ≤ i ≤ k be the group of permutations of

[ni] = {n1 + n2 + · · ·ni−1 + 1, · · · , n1 + n2 + · · ·+ ni} (4.9)

We also let Sn1+n2+···n1+n2+···nk be the group of permutations of {1, 2, · · · , n1+n2+· · ·+nk}.
Let us evaluate the trace

trW

((
Pr1
dr1
⊗ . . .⊗ Prk

drk

)(
T
(Sn1+...+nk )

2 −
k∑
i=1

T
(Sni )
2

))
(4.10)

in two ways. We observe that

T
(Sn1+...+nk )

2 −
k∑
i=1

T
(Sni )
2 =

k−1∑
i=1

k∑
j=i+1

∑
a∈[ni]

∑
b∈[nj ]

(a, b). (4.11)

Direct calculation (analogous to eq. (3.11)) gives

trW

((
Pr1
dr1
⊗ . . .⊗ Pnk

dnk

)(
T
(Sn1+...+nk )

2 −
k∑
i=1

T
(Sni )
2

))

=
1

n1! . . . nk!

∑
σ1∈Sn1

. . .
∑

σk∈Snk

× χr1(σ1) . . . χrk(σk) trW

(σ1 ⊗ . . .⊗ σk)
k−1∑
i=1

k∑
j=i+1

∑
a∈[ni]

∑
b∈[nj ]

(a, b)


=

∑k−1
i=1

∑k
j=i+1 ninj

n1! . . . nk!

∑
σ1∈Sn1

. . .
∑

σk∈Snk

χr1(σ1) . . . χrk(σk) N
Cσ1+...+Cσk−1

=

∑k−1
i=1

∑k
j=i+1 ninj

N
DimNr1 . . .DimNrk (4.12)

On the other hand, using (A.11), (A.12) and (A.27), we have

trW

((
Pr1
dr1
⊗ . . .⊗ Pnk

dnk

)(
T
(Sn1+...+nk )

2 −
k∑
i=1

T
(Sni )
2

))

=
∑

R`(n1+...+nk)

g(r1, . . . , rk, R)DimNR

(
−
∑
∈R
c (R) +

k∑
i=1

∑
∈ri

c (ri)

)
(4.13)

Comparing (4.12) and (4.13), we havek−1∑
i=1

k∑
j=i+1

ninj

 (n1 + . . .+ nk)!

n1! . . . nk!
(4.14)

= N
∑

R`(n1+...+nk)

g(r1, . . . , rk, R)
dR

dr1 . . . drk

fR
fr1 . . . frk

(
−
∑
∈R
c (R) +

k∑
i=1

∑
∈ri

c (ri)

)

– 8 –
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Consider the large N expansion.

fR
fr1 . . . frk

= 1 +
1

N

(
−
∑
∈R
c (R) +

k∑
i=1

∑
∈ri

c (ri)

)
+O

(
1

N2

)
(4.15)

In eq. (4.14) the only term in the summand of the r.h.s. , which contains N dependence is

the fraction fR
fr1 ...frk

. Considering the order N term of the r.h.s. , we get zero using the first

identity in (4.8). Considering the constant term, we getk−1∑
i=1

k∑
j=i+1

ninj

 (n1 + . . .+ nk)!

n1! . . . nk!
(4.16)

=
∑

R`(n1+...+nk)

g(r1, . . . , rk, R)
dR

dr1 . . . drk

(
−
∑
∈R
c (R) +

k∑
i=1

∑
∈ri

c (ri)

)2

This can be equivalently rewritten ask−1∑
i=1

k∑
j=i+1

ninj

 (n1 + . . .+ nk)!

n1! . . . nk!
dr1 . . . drk (4.17)

=
∑

R`(n1+...+nk)

g(r1, . . . , rk, R)dR

(
−
∑
∈R
c (R) +

k∑
i=1

∑
∈ri

c (ri)

)2

Wee see that this is a generalization of (3.15).

5 Permutation centralizer algebras, composite gauge invariant operators

and AdS/CFT

The identities above have been derived by calculating the trace in tensor spaces of some

elements in the group algebra of Sn1+n2+···+nk , which are invariant under conjugation of

by permutations in Sn1 × Sn2 × · · ·Snk . Let us specialise to the case k = 2. The subspace

of C(Sm+n) which is invariant under conjugation by Sm × Sn forms an algebra which

has been studied in detail in [4, 5]. The motivation came from the role these played in

the construction of bases of gauge invariant operators which diagonalise an inner product

coming from free quantum field theory [6–10]. Key insights into the construction of these

bases came from the physics of strings attached to branes in the context of the AdS/CFT

correspondence [11–13].

Consider quantum fields X,Y which are N ×N matrices transforming in the adjoint

of a U(N) gauge symmetry.

X → UXU †

Y → UY U † (5.1)

For large N , the space of gauge invariant operators is in 1-1 correspondence with the el-

ements of A(m,n). One way to count the dimension of this space is to count the traces,

– 9 –
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which amounts to counting cyclic words built from two letters. As explained in the refer-

ences above (and reviewed in [14]) the dimension of the space of gauge invariant operators

is also given in terms of Littlewood-Richardson coefficients g(R1, R2, R3) which are mul-

tiplicities for the U(N) representation associated with Young diagram R3 (having m + n

boxes) to appear in the tensor product of R1⊗R2, where R1 and R2 have m and n boxes.

Dim(A(m,n)) =
∑
R1`m
R2`n

∑
R3`m+n

(g(R1, R2, R3))
2 (5.2)

The finite N counting is given simply by restricting R3 to have no more than N rows. This

follows by application of Schur-Weyl duality. The reason these permutation equivalences

arise in constructing gauge invariants is that if we consider a general operator

Xi1
j1
· · ·Xin

jn
Y
in+1

jn+1
· · ·Y in+m

jn+m
(5.3)

the upper indices transform in V ⊗(m+n) of U(N). The lower indices transform as V̄ ⊗(m+n).

The invariants of U(N) are obtained by contracting with Kronecker δ’s. As a result, we

can construct a gauge invariant for every permutation σ ∈ Sm+n.

Oσ(X,Y ) = Xi1
iσ(1)
· · ·Xin

iσ(n)
Y
in+1

iσ(n+1)
· · ·Y in+m

iσ(n+m)
(5.4)

The bosonic symmetry leads to an equivalence

Oσ(X,Y ) = Oγσγ−1(X,Y ) (5.5)

for all γ ∈ Sm×Sn. Fourier transformation on A(m,n) using representation theory of sym-

metric groups leads to a Young diagram basis QR3
R1,R2;ν1,ν2

, with 1 ≤ ν1, ν2 ≤ g(R1, R2, R3).

Representation theoretic formulae for the Fourier coefficients giving the transformation

from trace basis to the Young diagram basis are given in the papers above. Structural

questions about A(m,n), notably regarding minimal sets of generators for maximal com-

muting sub-algebras, are related to the question of how many charges (generalized Casimirs)

are needed to specify a state in the 2-matrix system [4, 15]. This can be considered to be

a measure of complexity of this state space.

A(m,n) is an example of a permutation centralizer algebra. A(n1, · · · , nk) is analo-

gously defined, and is relevant to gauge invariant operators made from k flavours of matrix

quantum fields. The elements we have used to get the identities above are in fact special

elements which are central in A(n1, · · · , nk). The central subspace is spanned by products

of elements from the centre of C(S∑
i ni

) with elements from the centre of
∏
iC(Sni). (these

properties of the centre of PCAs are explained in [4] and the special role of the centre in

terms of the complexity of correlator computations is discussed). The traces of central

elements can thus be obtained using character formulae for symmetric groups [16].

In fact any central element of A(n1, · · · , nk) will lead to an identity of the kind we

discussed in the earlier sections.

We may make a few remarks about the analogies which are emerging between quantum

information processing and gauge invariant composite quantum fields through the shared
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feature of permutation centralizer algebras and Schur-Weyl duality. In QIP, multiple uses

of a unitary operation occur in the computational tasks like oracle based algorithms, es-

timation problems or arbitrary protocols, which should perform equally well for all states

or channels.1 In QFT, these multiple uses of a unitary U arise through the action on a

polynomial composite quantum field.

We thus have a first simple interesting analogy, somewhat simplified from the above

set-up, which seems to hold promise of wider implications:

A unitary quantum channel is analogous to a unitary gauge transformation of

an elementary quantum field.

In the QIP problem, multiple uses of channels occur within multi step quantum pro-

tocols (i.e. within networks of quantum channels). In the composite operator problem

of QFT, multiple uses occur in different copies of the elementary quantum field occuring

within a composite. We thus have a second simplified analogy to think about.

A multi step quantum protocol is analogous to a composite local operator.

The simplicity of these analogies seems to suggest there should be wider applications.

For example, for the multi-partite generalization in section 4 we may ask, is there an ap-

propriate optimization task in quantum information theory involving multiple quantum

devices interacting with each other in some way, which employs the multi-partitite identi-

ties (4.17) - generalizing the use of (2.22) in perfect probabilistic storage and retrieval [1]?

As noted earlier in this section, structural questions about PCAs have been used

to characterize the complexity of quantum states in multi-matrix systems, which have a

Young diagram basis as well as a trace basis. The Schur-Weyl duality transformation

from tensor product basis to the Young diagram basis for V ⊗nN has been studied from a

quantum information perspective [22]. The question of efficient quantum circuits having

polynomial number of gates has been addressed. Similar questions can be studied for

the transformation from trace basis to Young diagram basis for multi-matrix systems.

The definition of complexity of quantum circuits requires a choice of a basic gate set. A

reasonable choice in the context of AdS/CFT would be to consider the quantum dilatation

operator at one loop and higher loops (see [23] for the 1-loop dilatation operator and [24, 25]

for applications to brane physics of the action of the one-loop dilatation operator on the

Young diagram basis). A challenge would be to identify an AdS/CFT dual for such a notion

of circuit complexity involving the quantum dilatation operator in the 2-matrix system.

As we have seen, permutation centralizer algebras, with their traces illuminating as-

pects of perfect probabilistic storing/retrieving and their structure constants having in-

formation about correlators of relevance to AdS/CFT, provide an intriguing mathemati-

cal connection between quantum information and AdS/CFT. An interesting question is

whether there is a physical interpretation of this mathematical connection between QIP

and AdS/CFT. In this connection, it is worth noting that studies of quantum state spaces

1For a broad discussion of group techniques in quantum information tasks, see [17]. For use of symmetries

in multi step quantum protocols see [18–21].
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in AdS/CFT from information theoretic perspectives have been undertaken [26–28], pri-

marily in the context of state spaces associated with invariants of a single matrix and the

related free fermion system. More broadly on this theme the work of [29] has motivated a

rich exploration of connections between AdS/CFT and quantum information. For example

it has led to the idea of space-time emerging from entanglement [30] with implications for

AdS/CFT holography [31] and black hole physics [32].
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A some facts about U(N), Sn and the tensor product V ⊗n
N

This section is brief review of some key facts about the representation theory of symmetric

groups, Unitary groups and their relations following from Schur-Weyl duality. More details

are in mathematical physics references such as [33] or mathematics texts such as [3]. We

will start with a useful piece of notation. We will use r ` n to denote a partition r of

n. Partitions of n correspond to Young diagrams with n boxes, which have row lengths

r1 ≥ r2 ≥ · · · , with n = r1 + r2 + · · · . Young diagrams with n boxes correspond to

irreducible representations of Sn. Letting VN be the fundamental representation of U(N),

the tensor product V ⊗nN is a representation of the diagonal U(N) acting as

U ⊗ U ⊗ · · · ⊗ U (A.1)

as well as the symmetric group of all permutations of n objects (Sn). These two actions

commute with each other, which leads to Schur-Weyl duality

V ⊗nN =
⊕
r`n

V U(N)
r ⊗ V Sn

r (A.2)
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This gives the decomposition of V ⊗nN into irreducible reps of U(N) × Sn as a direct sum

labelled by Young diagrams.

A useful formula for the dimension of unitary group U(N) irreps in terms of characters

of Sn is

1

n!

∑
σ∈Sn

χr(σ)NCσ = DimNr , (A.3)

where Cσ is the number of cycles in the permutation σ. This follows from Schur-Weyl

duality (A.2). To project to a fixed Young diagram, we can use a projector element in the

group algebra

Pr =
dr
n!

∑
σ∈Sn

χr(σ)σ (A.4)

If we apply this to the states in V ⊗nN and take a trace, we need to calculate

trV ⊗n
N

(σ) = 〈ei1 ⊗ · · · ⊗ ein |σ|ei1 ⊗ · · · ⊗ ein〉

= 〈ei1 ⊗ · · · ⊗ ein |eiσ(1) ⊗ · · · ⊗ eiσ(n)〉

= NCσ (A.5)

( usual summation convention, so the i indices are summed from 1 to N). To understand

the last line, it is instructive to do some examples at n = 2. If σ = (1)(2), the trace is

δi1,i1δi2,i2 = N2 (A.6)

If σ = (12), the trace is

δi1,iσ(1)δi2,iσ(2) = δi1,i2δi2,i1 = N (A.7)

We need to understand some multiplications in the group algebra of Sn+1. The group

algebra consists of formal sums of group elements with complex coefficients. What happens

when a generic group element σ in the Sn subgroup is multiplied with (a, n + 1) for a ∈
{1, · · · , n}? Example at n = 3, with σ = (1, 2, 3)

(1, 2, 3)(2, 4) = (1, 4, 2, 3) (A.8)

The number of cycles in σ.(a, n+1) is the same as the number of cycles in σ. As a result, if

τ = σ.
n∑
a=1

(a, n+ 1)

Cτ = Cσ (A.9)

This implies that

trV ⊗n+1
N

(
Pr
dr

n∑
a=1

(a, n+ 1)

)
=

1

n!

n∑
a=1

∑
σ∈Sn

χr(σ)trV ⊗n+1
N

(σ.(a, n+ 1))

=

n∑
a=1

DimNr = nDimNr (A.10)
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Central elements ( such as T
(Sn)
2 ) multiplying a projector give normalized characters

times the projector.

T
(Sn)
2 Pr =

χr(T
Sn
2 )

dr
Pr (A.11)

To see this, note that both l.h.s. and r.h.s. are central elements in the group algebra of Sn,

as a result they are determined by their irreducible characters, and we can easily verify that

the two sides have the same irreducible characters. The normalized character is known [16]

to be the sum of contents

χr(T
Sn
2 )

dr
=
∑
∈r

(−c (r)) (A.12)

An implication of Schur-Weyl duality is that the Littlewood-Richardson coefficients

g(r1, r2;R) which give the multiplicities of U(N) tensor product decompositions

V U
r1 ⊗ V

U
r2 = ⊕Rg(r1, r2, R)V U

R (A.13)

also have an interpretation purely in terms of symmetric groups. They are the reduction

multiplicities for the decomposition of the irrep V Sn
R in terms of the subgroup Sn1 × Sn2 .

We may express this as

V Sn
R =

⊕
r1,r2

V
Sn1
r1 ⊗ V Sn2

r2 ⊗ V R
r1,r2 (A.14)

where V R
r1,r2 is the multiplicity space, of dimension g(r1, r2, R). Considering the trace in V Sn

R

tr(Pr1 ◦ Pr2) (A.15)

we arrive at

g(r1, r2, R) =
1

n1!n2!

∑
σ1∈Sn1

∑
σ2∈Sn2

χr1(σ1)χr2(σ2)χR(σ1 ◦ σ2) (A.16)

More generally

V U
r1 ⊗ V

U
r2 ⊗ · · · ⊗ V

U
rk

= ⊕R g(r1, r2, · · · rk;R)V U
R (A.17)

and

g(r1, r2, · · · rk;R) =
∑

σ1∈Sn1

· · ·
∑

σk∈Snk

(
k∏
i=1

χri(σi)

ni!

)
χR(σ1 ◦ σ2 ◦ · · · ◦ σk) (A.18)

Let W = V ⊗nN = V
⊗(n1+n2+···+nk)
N . Consider the trace

trWPR

(
Pr1
dr1
⊗ Pr2
dr2
⊗ · · · ⊗ Prk

drk

)
(A.19)

– 14 –



J
H
E
P
0
1
(
2
0
1
9
)
1
7
0

where R is a Young diagram with n boxes, ri are Young diagrams with ni boxes, PR and

Pri are the corresponding projectors.Using Schur-Weyl duality

W = V ⊗nN =
⊕
R`n

V U
R ⊗ V Sn

R (A.20)

When the projector PR acts on W , we project to a single factor V U
R ⊗ V Sn

R . We can

decompose V Sn
R in terms of Sn1 × Sn2 × · · · × Snk . The multiplicities are the Littlewood-

Richardson coefficients.

V U
R ⊗ V

Sn
R = V U

R ⊗
⊕

r1,r2,··· ,rk

g(r1, r2, · · · , rk;R)
(
V
Sn1
r1 ⊗ V Sn2

r2 ⊗ · · · ⊗ V Snk
rk

)
(A.21)

It follows that

trWPR

(
Pr1
dr1
⊗ Pr2
dr2
⊗ · · · ⊗ Prk

drk

)
= (DimNR)g(r1, r2, · · · , rk;R) (A.22)

This is an important identity we use in the paper. To make the above proof more explicit,

we can expand the projectors in terms of characters.

trWPR

(
Pr1
dr1
⊗ Pr2
dr2
⊗ · · · ⊗ Prk

drk

)
=

∑
σ1∈Sn1

· · ·
∑

σk∈Snk

∑
σ∈Sn

dRχR(σ)

n!

(
k∏
i=1

χri(σi)

ni!

)
trW (σ(σ1 ◦ σ2 ◦ · · · ◦ σk)) (A.23)

For any permutation τ ∈ Sn, Schur-Weyl duality implies that

trW (τ) =
∑
S`n

χS(τ) DimNS (A.24)

Hence

trWPR

(
Pr1
dr1
⊗ Pr2
dr2
⊗ · · · ⊗ Prk

drk

)
=

∑
σ1∈Sn1

· · ·
∑

σk∈Snk

∑
σ∈Sn

dRχR(σ)

n!

(
k∏
i=1

χri(σi)

ni!

)∑
S`n

χS(σ(σ1 ◦ σ2 ◦ · · · ◦ σk))DimNS

(A.25)

Using the character orthogonality relation

1

n!

∑
σ

χS(σ)χR(σρ) = δRS
χR(ρ)

dR
(A.26)

which holds for any ρ ∈ Sn, we have

trWPR

(
Pr1
dr1
⊗ Pr2
dr2
⊗ · · · ⊗ Prk

drk

)
=

∑
σ1∈Sn1

· · ·
∑

σk∈Snk

∑
σ∈Sn

(
k∏
i=1

χri(σi)

ni!

)
χR(σ1 ◦ σ2 ◦ · · · ◦ σk)DimNR

= g(r1, r2, · · · , rk;R)DimNR (A.27)
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