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We investigate relations between spatial properties of the free energy and the radius of Gaussian curvature of
the underlying curved lattice geometries. For this purpose we derive recurrence relations for the analysis of the
free energy normalized per lattice site of various multistate spin models in the thermal equilibrium on distinct
non-Euclidean surface lattices of the infinite sizes. Whereas the free energy is calculated numerically by means
of the corner transfer matrix renormalization group algorithm, the radius of curvature has an analytic expression.
Two tasks are considered in this work. First, we search for such a lattice geometry, which minimizes the free
energy per site. We conjecture that the only Euclidean flat geometry results in the minimal free energy per site
regardless of the spin model. Second, the relations among the free energy, the radius of curvature, and the phase
transition temperatures are analyzed. We found out that both the free energy and the phase transition temperature
inherit the structure of the lattice geometry and asymptotically approach the profile of the Gaussian radius of
curvature. This achievement opens new perspectives in the AdS-CFT correspondence theories.
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I. INTRODUCTION

The thermodynamic properties and the phase transition
phenomena of various physical systems on two-dimensional
non-Euclidean surfaces have attracted the attention of many
theorists and experimentalists for a couple of decades. Espe-
cially, the studies of the hyperbolic surfaces, i.e., the negatively
curved geometry, exhibit the increasing interest in theoretical
research of quantum gravity, where the anti-de Sitter (AdS)
hyperbolic spatial geometry plays its essential role. Thus,
the mutual interplay among condensed matter physics, the
general theory of relativity, and conformal field theory (CFT)
enriches the interdisciplinary research [1]. Among them, let
us mention experiments on magnetic nanostructures [2–4],
soft materials of a conical geometry [5], lattice dislocations
of the solid-state crystals, quantum gravity [6,7], and complex
networks [8,9], where neural networks with the non-Euclidean
geometry belong to as well.

A typical theoretical example of such a hyperbolic surface
geometry is a two-dimensional discretized hyperbolic lattice
with a constant negative Gaussian curvature. We consider
an infinite set of such hyperbolic lattices constructed by
the regular tessellation of congruent polygons, which are
connected without empty spaces at the lattice sites (the
vertices) with fixed coordination numbers. The hyperbolic
lattices of finite sizes are known for their enormous numbers
of boundary sites. The number of the boundary sites is always
larger than the remaining number of all the inner sites. Or,
equivalently, if one gradually increases the size of a hyperbolic
lattice by regularly adding the outermost layers, the total
number of the (boundary) sites increases exponentially with
respect to the increasing radius of the lattice. Since we also
intend to determine the phase transitions of various multispin
Hamiltonians on the hyperbolic lattices, an accurate numerical
algorithm has to be used, which is also capable of treating the
models in the thermodynamic limit, where the perimeter of
the lattice (the size) is infinite. Such a condition makes the
spin systems extremely difficult to be treated numerically on

the hyperbolic lattice geometries (in general, these systems are
not integrable). Therefore, the transfer matrix diagonalization
methods are not numerically feasible (due to a nontrivial
way of the transfer matrix construction) and the Monte
Carlo simulations are not completely reliable (due to the
insufficiency of the finite-size scaling near phase transitions).

We have recently proposed an algorithm [10], which
generalized the corner transfer matrix renormalization group
(CTMRG) method [11]. So far, we applied the method to
study Ising-like systems on certain types of the hyperbolic
lattices, where either the lattice coordination number was fixed,
letting the polygons to vary [12], or we fixed the polygons
to be triangles and varied the coordination number [13]. In
the present work we expand our earlier studies to multistate
spin Hamiltonians on a much broader set of the hyperbolic
lattices so that both the coordination number q and the number
of the sides p in the polygons can vary. We describe a
unique way of deriving generalized recurrence relations for
such lattices by the CTMRG algorithm, which enable us to
study phase transitions of the M-state clock and M-state Potts
spin models (M � 2) on any lattice geometries for arbitrary
polygon number p � 4 and for an independent coordination
number q � 4.

Particular attention is focused on the analytic derivation of
the free energy per spin site via the calculation of the normal-
ized partition function by CTMRG. The free energy per site is
a well-conditioned thermodynamic function, which does not
diverge in the thermodynamic limit. The numerical calculation
of the free energy by CTMRG reaches a high accuracy, as will
be evident from singular behavior of the specific heat at a phase
transition even after taking the second derivative of the free
energy with respect to temperature numerically. (Notice that
Monte Carlo simulations are inefficient in evaluating the free
energy due to large numerical fluctuations.) The free-energy
analysis has never been considered in any non-Euclidean
systems yet.

Hence, the current numerical analysis may serve as an
appropriate, accurate, as well as complementary source of
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information for the nonintegrable spin systems. The determi-
nation of the phase transition point can be derived, for instance,
from the specific heat, which exhibits nonanalytic behavior at a
phase transition. The free energy naturally contains important
information, which reflects a rich boundary structure of the
underlying lattice. In our previous studies, we mainly used to
analyze single-site expectation values, such as the spontaneous
magnetization (measured in the lattice center only). In that
case the boundary effects are always negligibly small, and the
results are in full agreement with the known exact solution
for the Ising model on the Bethe lattice. As we show later,
having considered the boundary effects, the phase transition is
completely suppressed and can be restored by an appropriate
redefinition of the free energy. The correctness of the present
numerical calculations is compared with the exact solutions
of the phase transition in the Ising model on various types of
Bethe lattices [14].

One can reverse the order of considerations and put another
nontrivial question, which we intend to answer in the current
study. The question is associated with a particular interest in
the AdS-CFT correspondence, the so-called gauge duality [1].
A highly complicated boundary structure of a finite hyperbolic
anti-de Sitter space (locally viewed as a Minkovski-like space)
can be regarded as a spacetime for the conformal field
theory (being identical to a gravitational theory). Our work
is focused on the features of the complex boundary structures
only, and no time evolution has been considered. A simple
physical model with a spin-spin interaction network can be
used to form a regular hyperbolic (AdS) space, which can be
analyzed with sufficient accuracy. So far, there has been neither
theoretical nor numerical study aimed for the free-energy
analysis of the AdS spaces. However, we have succeeded and
gradually developed a way of the free-energy analysis of such
non-Euclidean systems. A condensed-matter point of view on
the AdS-CFT correspondence can undergo difficulties, one of
them being the problem of a preferred coordinate system, i.e.,
a lattice [15]. For simplicity, we have chosen an infinite set
of two-dimensional curved hyperbolic surfaces (AdS spaces),
where the underlying lattice geometry is not fixed at all, but
can vary by changing two integer lattice parameters p and q.
We intend to investigate how the (p,q) geometry impacts on
the total free energy (including the phase transitions) so that
the boundary effects are fully incorporated in the process.

Another question is related to a more concrete physical
problem, where we consider an M-state spin Hamiltonian
defined on all possible infinite-sized lattice geometries (p,q).
The spin network is formed in such a way that we allow
each multistate spin to interact with q nearest-neighboring
spins only with a constant interaction coupling set to the
unity. It results in hyperbolic geometries of various Gaussian
curvatures. The free-energy study of the multistate spin
systems for the classical spin system can be also generalized
to the ground-state energy study for the quantum spin system,
as we mention later. We also answer the question of which of
the (p,q) lattice geometries can minimize the free energy per
site.

The paper is organized as follows. In Sec. II we briefly
define the regular (p,q) lattice geometries. In the Sec. II A, the
multistate spin clock and Potts Hamiltonians are defined. A
concise graphical representation of the recurrence relations is

derived in Sec. II B (this part can be skipped as it explains
an algorithmic structure of the corner transfer tensors in
details). Having derived the recurrence relations, we check the
correctness of the CTMRG algorithm in Sec. III by calculating
the phase transitions of the simple Ising model on sequences
of selected (p,q) lattices. The entire Sec. III can be also
skipped since it is devoted to comparing numerical accuracy of
the developed algorithm at phase transitions with the exactly
solvable cases on the Bethe lattices. The analytic derivation of
the free energy per site, which is the core of this study, is given
in Sec. IV. The numerical results are presented in Sec. V, where
the phase transitions of the multistate spin models on the (p,q)
lattice geometries are analyzed by the free energy per site and
the related specific heat. The concept of the bulk free energy is
defined in order to extract the correct information on the phase
transition, provided that the boundaries effects are suppressed.
The two-dimensional surface profiles of the free energy with
respect to the geometry parameters p and q are calculated. The
main purpose is to study relations between the surface profiles
of the free energy and the radius of the Gaussian curvature in
the asymptotic (p,q) limit. We observe that the free energy
per site can asymptotically reflect the geometrical structure of
the spin-spin interactions being associated with the underlying
lattice geometry. Moreover, we show that the phase transition
temperatures can also copy the (p,q) lattice geometry as the
free energy does. In Sec. VI we discuss our results.

II. MODEL AND METHOD

The idea of replacing the standard transfer matrix for-
mulation of classical spin systems by the alternative corner
transfer matrix method originates in Baxter’s proposal of
treating spin Hamiltonians [14]. The reformulation of Baxter’s
analytical study into the numerical CTMRG algorithm was first
performed by Nishino and Okunishi [11], who combined the
corner transfer matrix formalism with the numerically effective
density matrix renormalization group method [16]. In 2007,
the CTMRG algorithm was generalized and applied to the Ising
model on the pentagonal hyperbolic lattice with the constant
coordination number four [10].

The essence of the CTMRG algorithm rests in finding the
recurrence relations, which are used for the extension of the
corner transfer matrices. Before we propose a unified CTMRG
algorithm for any classical spin system on the hyperbolic
lattice surfaces, we describe the lattice geometry that is
gradually built up by polygons. Let the lattice be made by the
regular polygonal tessellation with the constant coordination
number. Each lattice geometry is characterized by the Schläfli
symbol (p,q), where p is associated with the regular polygon
of p sides (the p-gon in the following) with the constant
coordination number q.

There are three possible scenarios of creating the lattice
geometry (p,q) for the integers p > 2 and q > 2. (1) The con-
dition (p − 2)(q − 2) = 4 gives rise to the two-dimensional
Euclidean flat geometry. In this study, we consider only the
square lattice (4,4), which satisfies the condition, and the
remaining triangular (3,6) and honeycomb (6,3) Euclidean
lattices will be studied elsewhere. (2) If (p − 2)(q − 2) > 4,
the infinite set of the hyperbolic geometries can satisfy the
condition. Although such lattices of infinite size define various
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two-dimensional curved surfaces, the entire infinite hyperbolic
lattice can be spanned in the infinite-dimensional space only; it
it commonly associated with the Hausdorff dimension, which
is infinite. None of the hyperbolic lattices can be endowed in
the three-dimensional space. (3) The condition (p − 2)(q −
2) < 4 corresponds to only five finite-sized spherically curved
geometries, which are trivial and are not considered in the
current study.

A. The lattice model

Each vertex of the infinite (p,q) lattice, built up by the
p-gons with the fixed coordination number q, represents a
classical multispin variable σ interacting with the q nearest-
neighboring spins. The HamiltonianH(p,q) can be decomposed
into the sum of identical local Hamiltonians Hp acting
exclusively on the local p-gons, which are considered to be
the basic elements in the construction of the entire lattice. In
particular, the decomposition of the full Hamiltonian is

H(p,q){σ } =
∑
(p,q)

Hp[σ ], (1)

where the sum is taken through the given lattice geom-
etry (p,q) accordingly. The simplified spin notations [σ ]
and {σ }, respectively, are ascribed to the p spins within
each local Hamiltonian Hp[σ ] ≡ Hp(σ1σ2 · · · σp) and the
infinitely many spins {σ } of the entire system H(p,q){σ } ≡
H(p,q)(σ1σ2 · · · σ∞). We consider two types of the multistate
spin models: the M-state clock model with the local Hamilto-
nian

Hp[σ ] = −J

p∑
i=1

cos

[
2π

M
(σi − σi+1)

]
(2)

and the M-state Potts model

Hp[σ ] = −J

p∑
i=1

δσi ,σi+1 , (3)

where σp+1 ≡ σ1 within the p-gon, and where each M-state
spin variables σ = 0,1,2, . . . ,M − 1. (Thus, the Ising model
is associated with M = 2.) We consider the ferromagnetic
interaction J to avoid frustration.

Let the Boltzmann weight WB[σ ] = exp(−Hp[σ ]/kBT )
be defined on the p-gon of the local Hamiltonian, where kB

and T correspond to the Boltzmann constant and temperature,
respectively. Dimensionless units are used by setting J =
kB = 1. In general, the Ising model on the hyperbolic lattices
(p,q) is not exactly solvable, except for special asymptotic
cases, on the Bethe lattices (when p → ∞), as discussed and
numerically checked in Sec. III.

We employ the generalized CTMRG algorithm as a pow-
erful numerical tool to study the phase transitions on the
arbitrary lattice geometries (p,q). The CTMRG algorithm
is an RG-based iterative numerical method, which makes
it possible to evaluate the partition function Z and the
thermodynamic functions within high accuracy [17]. Let each
CTMRG iteration step be enumerated by an integer variable k.
At the very beginning of the iterative process, the lattice size
of the (p,q) geometry is as small as the size of q connected
p-gons around a single central spin and is referred to as the

first iteration step with k = 1. In the second iteration step,
k = 2, the lattice can expand its size, i.e., the number of the
spin sites, either as a power law [only for the Euclidean (4,4)
lattice] or the size grows exponentially [for all the remaining
(p,q) hyperbolic cases]. The lattice size increases with respect
to the number of the Boltzmann weights (or, equivalently, with
respect to the total number of the spin sites). Since we are are
interested in the phase transition studies, the thermodynamic
limit requires to take the thermodynamic limit k → ∞, which
is equivalent to the case when the iterative process proceeds
until all of the thermodynamic functions (normalized to the
spin site) converge completely.

B. Recurrence relations

By the end of Sec. II, we derive the recurrence relations,
which are required for the construction of the CTMRG
algorithm. The consequent Sec. III serves as a benchmark,
where the Ising model on (p,q) lattices is treated by CTMRG
and its high numerical accuracy is confirmed by calculating
the analytically solvable Ising model on the Bethe (∞,q)
lattices. Finally, the three subsections in Sec. IV systematically
build up a general formula of the free energy for an arbitrary
(p,q) geometry. All of these three sections briefly summarize
the algorithmic essence of CTMRG, which is necessary for
understanding its mathematical concept. Thus, the readers can
freely omit these sections and proceed from Sec. V.

The complete expansion (iteration) process is given by
recurrence relations, as we specify below. For the more
instructive understanding, the derivation of the recurrence
relations is structured into the following three steps:

(i) (4,4), (5,4), and (4,5),
(ii) (4,4) → (5,4) → (6,4) → · · · → (∞,4),
(iii) (p,q).
Figure 1 depicts three typical lattices in the first two iteration

steps (k = 1 and k = 2). The shaded p-gons represent the
corresponding finite lattice made of the Boltzmann weights
WB at given k. The surrounded p-gons shown in white color
around the shaded ones stand for the consequent iteration
steps. The spin variables σ are positioned on the vertices of
the polygons, and the sides of the p-gons correspond to the
constant nearest-neighbor spin coupling J = 1. Notice that the
sizes and the shapes of the polygons are kept equal for each
lattice geometry (p,q), and we display each hyperbolic lattice
geometry in the Poincare disk representation [18], which
projects the entire hyperbolic lattice onto the shown unitary
circles. As the consequence of that projection, the sizes of
the p-gons get deformed and shrunk from the lattice center
toward the circumference of the circle. The circumference is
associated with the lattice boundary in the infinity.

(i) The iterative expansion process is formulated in terms
of the generalized corner transfer matrix notation (for details,
see Refs. [10,12,13,19]), where the corner transfer tensors Cj

and the transfer tensors Tj expand their sizes as the iteration
step (indexed by j ) increases, i.e., j = 1,2,3, . . . ,k

Cj+1 = WBT 2
j Cj

Tj+1 = WBTj

}
for (4,4), (4)
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FIG. 1. The illustration of the three selected lattice geometries
(4,4), (5,4), and (4,5). The first two CTMRG iteration steps k = 1
(left) and k = 2 (right) show the building process of the lattices
by means of the p-gonal Boltzmann weight tessellation with the
uniform coordination number q. The Boltzmann weights for given k

are represented by the shaded regular (congruent) p-gons.

Cj+1 = WBT 3
j C2

j

Tj+1 = WBT 2
j Cj

}
for (5,4), (5)

Cj+1 = WBT 2
j C3

j

Tj+1 = WBTjCj

}
for (4,5). (6)

The tensors are initialized to the Boltzmann weight and C1 =
T1 ≡ WB.

The recurrence relations in Eqs. (4)–(6) are written in a
simplified form; it means we excluded the indexing of the
lattice geometry (p,q) they depend on. Hence, we omit the
lattice superscript so that C(p,q)

j → Cj and T (p,q)
j → Tj . The

partition function, Z [k]
(p,q), in the final kth iteration step is

given by the configuration sum (or, equivalently, by the trace)
of the product of the q corner transfer tensors, which are

concentrically connected around the central spin site of the
lattice [10],

Z [k]
(p,q) = Tr[e−H(p,q)/T ] = Tr (CkCk · · · Ck︸ ︷︷ ︸

q

) ≡ Tr (Ck)q . (7)

The evaluation of the partition function via the product of the
Boltzmann weights of the p-gonal shape can be also expressed
graphically, which may serve as a visual simplification of
Eq. (7). For instance, the size of the square lattice (4,4) in the
second iteration step, k = 2, corresponds to the evaluation of
the partition function Z [k=2]

(4,4) . This is equivalent to the product
of the 16 Boltzmann weights in accord with the respective
lattice shown in Fig. 1, i.e.,

Z [2]
(4,4) = Tr (C2)4 = Tr

(
WBT 2

1 C1

)4 = Tr (WB)16. (8)

Thus, the power of WB matches the total number of the shaded
squares in Fig. 1 for given k. The number of the square-shaped
Boltzmann weights obeys the power law 4k2 being the number
of the squares on the (4,4) lattice for given k.

The partition functions of the two hyperbolic lattices (5,4)
and (4,5), as selected within (i), are evaluated analogously. The
lattice size in the second iteration step, k = 2, is graphically
sketched in Fig. 1 and is related to taking the configuration
sum over the product of the shaded p-gons. For the instructive
purpose, the two respective partition functions for k = 2 satisfy
the expressions

Z [2]
(5,4) = Tr (C2)4 = Tr

(
WBT 3

1 C2
1

)4 = Tr (WB)24 (9)

and

Z [2]
(4,5) = Tr (C2)5 = Tr

(
WBT 2

1 C3
1

)5 = Tr (WB)30, (10)

where the powers ofWB on the right hand side of the equations
count the number of the p-gonal Boltzmann weights. We
recall that the total number of the Boltzmann weights grows
exponentially with respect to the iteration step k. The analytic
formula of the exponential dependence of the total number of
the spin sites on k is derived in the following section, where
the free energy is examined in detail.

(ii) We recently investigated the Ising model on an infinite
sequence of hyperbolic lattices [12], for which the coordi-
nation number was fixed to q = 4, whereas the size of the p-
gons increased p = 4,5,6, . . . ,∞. The generalized recurrence
relations satisfying the lattices (p � 4,4) are summarized into
a more compact form,

Cj+1 = WBT p−2
j Cp−3

j ,

Tj+1 = WBT p−3
j Cp−4

j .
(11)

We conjectured [12] that the Ising model realized on the
sequence of the lattices {(4,4),(5,4),(6,4), . . . ,(∞,4)} con-
verges to the Bethe lattice with the coordination number q = 4
exponentially with the increasing p. In other words, the Bethe
lattice is actually identical with the lattice geometry (∞,4). We
showed, when evaluating all the thermodynamic functions,
that any lattice geometry (p � 15,q = 4) was numerically
indistinguishable from the Bethe lattice with high accuracy
[12]. In particular, having evaluated the phase transition
temperature T

(∞,4)
pt of the Ising model on the Bethe lattice,

which had been numerically realized on the (15,4) lattice

042123-4



FREE-ENERGY ANALYSIS OF SPIN MODELS ON . . . PHYSICAL REVIEW E 93, 042123 (2016)

geometry, the numerical accuracy of the CTMRG algorithm
resulted in Tpt = 2.885 39. The Ising model on the Bethe
lattice is an exactly solvable system with the phase transition
temperature Tpt = 1/ ln

√
2, as derived by Baxter [14].

(iii) Now we generalize the recurrence relations by con-
sidering arbitrary p-gons p � 4 as well as the coordination
number q � 4. Having analyzed all the geometrical lattice
structures (p,q) of the polygonal tailing, it straightforwardly
leads to the recurrence relations

Cj+1 = WBT p−2
j C(p−2)(q−3)−1

j ,

Tj+1 = WBT p−3
j C(p−3)(q−3)−1

j .
(12)

The calculation of the partition functionZ for any (p,q) lattice
geometry in the kth iteration step remains identical to Eq. (7).
Therefore, the expectation value 〈O〉 of a local observable O

is evaluated directly. The typical example is the spontaneous
magnetization M = 〈σc〉 measured in the center of the lattice
(p,q), where the spin variable σc is positioned. If evaluated in
the thermodynamic limit, we obtain

M(p,q) = 〈σc〉 = Tr[σc e−H(p,q)/T ]

Tr[e−H(p,q)/T ]
= Tr [σc(C∞)q]

Z [∞]
(p,q)

(13)

for arbitrary (p,q).

III. PHASE TRANSITION ANALYSIS

For instructive reasons, we have selected the three nontrivial
hyperbolic lattices (4,7), (7,4), and (7,7), which are shown
in Fig. 2 in the Poincaré representation. We calculated the
spontaneous magnetization M(p,q), which is plotted on the
upper graph in Fig. 3 including the case of the Euclidean
(4,4) lattice, which serves as as a benchmark since this case
is exactly solvable. We have shown [12,13,19] that the Ising
model on certain types of the hyperbolic lattices belongs to
the mean-field universality class. Now we expand our analysis
for arbitrary (p � 4,q � 4) lattices. The spontaneous mag-
netization follows the scaling relation M(p,q) ∝ (T (p,q)

pt − T )β

at the phase transition temperature T
(p,q)

pt , yielding the mean-
field magnetic exponent β = 1

2 whenever (p − 2)(q − 2) > 4.
Recall that the Ising (not the mean-field) universality class
is solely reproduced for the Ising model on the Euclidean
lattices; in this case, it is on the square lattice (4,4), where we
confirmed that M(4,4) ∝ (T (4,4)

pt − T )
1
8 . This is unambiguously

FIG. 2. The Poincaré disk representation of the three hyperbolic
lattices chosen for the analysis of the thermodynamic functions of the
spin model.
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FIG. 3. The spontaneous magnetization with respect to tempera-
ture for the Euclidean square lattice as well as for the three hyperbolic
lattices depicted in Fig. 2.

manifested by the linear dependence of M8
(4,4) on temperature

T � T
(4,4)

pt , as depicted on the lower left graph in Fig. 3.
On the other hand, the mean-field universality class with

β = 1
2 can be read off by plotting M2

(p,q) for T � T
(p,q)

pt ,
which is obvious from the linear decrease of the spontaneous
magnetization approaching the phase transition temperature
T

(p,q)
pt , as shown on the two lower graphs on the right side in

Fig. 3.
The mean-field-like feature of the spin model is always

realized on the hyperbolic lattices. We point out here that such
a mean-field-like behavior is not caused by an insufficient
numerical accuracy. The numerical results are fully converged;
any additional increase of the number of the states kept in
the renormalization group algorithm does not improve any of
the thermodynamic functions. Therefore, the reason for the
mean-field-like feature rests in the exceedance of the critical
lattice dimension dc = 4 because the Hausdorff dimension is
infinite for all the hyperbolic lattices in the thermodynamic
limit. The claim is identical to that of the exact solution of the
Ising model on the Bethe lattice, where the analytically derived
mean-field exponents on the Bethe lattice have nothing to do
with the mean-field approximation of the model at all [14].
Instead, the mean-field-like feature is caused by the hyperbolic
lattice geometry, which is accompanied by the absence of the
divergent correlation length at the phase transition [13].

Asymptotic lattice geometries

Let us investigate the phase transitions of the Ising model
on the asymptotic lattice geometries as illustrated in Fig. 4.
In our earlier studies, we presented two distinct scenarios: (1)
the coordination number was fixed to q = 4 while the p-gons
gradually expanded p = 4,5,6, . . . ,∞; and (2) we formed the
triangular tessellation, p = 3, and the coordination number
varied q = 6,7,8, . . . ,∞. In both the cases a substantially dif-
ferent asymptotic behavior of the phase transition temperatures
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FIG. 4. The Poincaré representation of the asymptotic hyperbolic
lattices (∞,7) on the left, (7,∞) in the middle, and (∞,∞) on the
right.

was observed [12,13]. In the former case, the phase transition
temperature converges to the Bethe lattice phase transition
T

(p,4)
pt → 2

ln 2 . In the latter case, the triangular tessellation of
the lattice types (3,q � 3) led to a linear divergence of the
phase transition temperature T

(3,q)
pt ∝ q. These findings remain

valid for arbitrary (p,q) lattices. As examples we selected the
hyperbolic lattices (7,q) and (p,7) with p,q = 4,5,6, . . . ,∞,
as depicted in Fig. 4.
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FIG. 5. The temperature dependence of the spontaneous magne-
tization toward the asymptotic lattice geometries plotted in Fig. 4. The
insets of the top panel show the fast convergence of the magnetization,
and the model on the lattice (7,7) exhibits almost identical behavior
as the lattice (∞,7). The top and the bottom graphs, respectively,
describe the linear increase of the phase transitions if the model is
studied on the lattices (7,q) and (q,q) for q = 4,5,6, . . . ,∞.

The two upper upper graphs in Fig. 5 show a fast
convergence of the magnetization and the phase transition
temperatures T

(p,7)
pt toward the Bethe lattice (∞,7) with the

coordination number seven. The fast convergence means that
the phase transition temperature on the (7,7) lattice is almost
indistinguishable from those on the consequent (p > 7,7)
lattices. We obtained the asymptotic phase transition temper-
ature T

(p→∞,7)
pt → 5.944 002, which is in accurate agreement

with the general formula for the Bethe lattice phase transition
temperature [14],

lim
p→∞ T

(p,q)
pt = 1

ln
√

[q/(q − 2)]
. (14)

The middle graph in Fig. 5 shows the spontaneous magne-
tization M(7,q) on the lattices made from septagonal (p = 7)
tiling for the gradually increasing coordination number q =
4,5,6, . . . ,∞. The phase transition temperature diverges lin-
early. The result can be generalized, and the linear asymptotic
divergence is present,

T
(p,q	4)

pt ∝ q, (15)

irrespective of p. Finally, if both lattice parameters are set
to be equivalent, p ≡ q, the scenario with the increasing
coordination number and fixed p-gon is dominant over that one
with the fixed q and increasing p. The bottom graph in Fig. 5
depicts the case of the (q,q) lattices for q = 4,5,6, . . . ,13,
which also satisfies the linearity T

(q,q)
pt ∝ q.

The mean-field universality is induced by the hyperbolic
geometry of the curved two-dimensional surface, which can
be spanned only in the infinite-dimensional space in the
thermodynamic limit. In order to examine the asymptotic
lattice geometries shown in Fig. 4 in detail, we first consider
the Ising model on the Bethe lattices (∞,q). The shortened
linear decrease of the squared order parameters M2

(∞,q) ∝
(T (∞,q)

pt − T ) toward the phase transition points is plotted on
the top graph in Fig. 6 for q = 4,5,6, . . . ,13 and confirms the
mean-field nature.

Now we specify the linear divergence of T
(∞,q)

pt ∝ q in
detail. It can be easily derived in the asymptotic regime for the
Ising model on the Bethe lattice if q 	 4 so that

T
(∞,q	4)

pt → q − 1, (16)

where we have made use of

T
(∞,q)

pt = 1

ln
√

q

q−2

≡ 1

arctanh
(

1
q−1

) ≈ q − 1 (17)

if q 	 4. The inset of the top graph in Fig. 6 shows the
asymptotic behavior of M2

(∞,q) with respect to the rescaled
horizontal axis T − (q − 1). The data in the inset fully satisfy
the limit in Eq. (16). We support the data of the Ising model
on the lattice geometry (∞,100), which tend to reach the
asymptotic geometry (∞,∞) as shown in the inset since
limq→∞ T

(∞,q)
pt − (q − 1) = 0.

The numerical data at the phase transition are also verified
by the specification of the linear dependence of the transition
temperatures T

(∞,q)
pt on q. In general, let us assume a q-
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FIG. 6. The top graph shows the temperature dependence of a few
nonzero values of the squared magnetization approaching the phase
transition from the ordered phase T � T

(∞,q)
pt for the lattices p = 20

and 4 � q � 13 obtained by CTMRG, which accurately reproduce
the Bethe lattice. The inset shows the same data in detail, rescaled to
temperatures T − (q − 1). In the bottom graph, the linearity of T

(∞,q)
pt

on the Bethe lattice is satisfied with increasing q. The lower right inset
shows the convergence of the effective exponent α

(∞,q)
eff → 1 in the

log-lin scale. The upper left inset displays the numerical accuracy by
evaluating the relative error for the phase transition temperature on
the Bethe lattices.

dependent effective exponent α
(∞,q)
eff ,

1 + T
(∞,q)

pt ∝ qα
(∞,q)
eff . (18)

The fast convergence of α
(∞,q)
eff → 1 with the increasing q

is depicted in the inset on the lower right graph in Fig. 6,
for the additional data with the coordination numbers q =
20, 40, 60, 80, and 100. The phase transition temperatures of
the Ising model on the Bethe lattices reach the sufficiently high
numerical accuracy with respect to Eq. (14). The relative error
is as small as εTpt

≈ 10−5 if calculated at the phase transition

temperature T
(∞,q)

pt , as shown in the upper left inset of Fig. 6.
(The inset demonstrates the lowest numerical accuracy, which
is known to occur at phase transitions.)

Up to this point we have verified the correctness of the
recurrence relations by evaluating the phase transition points.
We have compared our results with the exact solutions on the
Bethe lattices and evaluated the largest numerical errors at
the phase transitions. In the following, we proceed with the
derivation of the free energy with respect to (p,q).

IV. FREE-ENERGY CALCULATION

Let the free energy for any lattice geometry (p,q) [cf.
Eq. (7)] be normalized per lattice spin site to avoid any
divergences associated with the thermodynamic limit. The free
energy per site, expressed as a function of the iteration step k,

has the form

F [k]
(p,q) = − T

N [k]
(p,q)

lnZ [k]
(p,q) ≡ −T ln Tr (Ck)q

N [k]
(p,q)

. (19)

The normalization of the free energy per spin site is given
by a nontrivial integer function N [k]

(p,q), which counts the total
number of the spin sites with respect to given k and (p,q).
The free energy per site plays a crucial role in the current
analysis since one can derive all the thermodynamic functions
from it in order to determine the phase transition accurately.
On the contrary to the magnetization, the free energy involves
the boundary effects.

A direct numerical calculation of the free energy per site
in Eq. (19) frequently results in an extremely fast divergence
of the partition function F [k]

(p,q), as well as the total number of

sitesN [k]
(p,q) on hyperbolic lattices whenever k � 10. Therefore,

the numerical operations with the tensors Ck and Tk require to
consider an appropriate norm (normalization) in each iteration
step k. Two types of the norm are at hand. If introducing a
vector A with N entries (a1a2a3 . . . aN ), the two norms are

‖A‖1 = max {|ai |}Ni=1,

‖A‖2 =
√√√√ N∑

i=1

a2
i .

(20)

Since any tensor can be “reshaped” into a vector (by grouping
all the tensor indices into the single one), we can also reshape
any corner transfer tensor C1(σ1σ2 · · · σp) with the p tensor
indices σ and represent the tensor in the vector form with
N = Mp entries, where each index is an M-state spin variable
σ = 0,1, . . . ,M − 1. Any of the two norms is appropriate to
choose in the numerical analysis. We have used the “max”
norm ‖ · ‖1 in CTMRG due to its simplicity and robustness
against computational over(under)flows. Let the positive real
numbers ck = ||Ck||1 and tk = ||Tk||1 be the k-dependent
normalization factors of the respective tensors Ck and Tk so
that the normalized tensors are written as

C̃k = Ck

||Ck||1
≡ Ck

ck

,

T̃k = Tk

||Tk||1
≡ Tk

tk
.

(21)

For clarity, we again split the free-energy analysis into
three parts as we have done above. First, the free energy
per site is derived for an arbitrary M-state spin model on
the Euclidean square lattice (4,4) by means of the recurrence
relations in Eq. (4). In the following, the hyperbolic lattice
(5,4) is considered, and a recurrence formalism of the free
energy is given for k = 3, which is associated with a graphical
description of the lattice for the direct visual comparison.
Finally, we generalize the free-energy calculation for any (p,q)
lattice geometry.

A. Free energy on (4,4) lattice

The number of the spin sites N [k]
(4,4) satisfies the power law

with respect to the iteration step k on the square lattice (cf.
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Fig. 1),

N [k]
(4,4) = (2k + 1)2. (22)

As the lattice size expands its size with growing k, the nor-
malization factors start accumulating recursively. For instance,
the explicit expression for the free energy in the third iteration
step gives F [3]

(4,4) = −T ln Tr (C3)4/72, where each of the four
central corner tensors C3 is recursively decomposed into the
product of the normalized tensors C̃2 and T̃2, which again
depend on C̃1 and T̃1 with regard to Eq. (4). The recurrence
relations result in the nested dependence of the normalization
factors ck and tk . Hence, the decomposition of one of the four
normalized corner transfer tensors on the square lattice gives

C̃3 = C3

c3

= WBT̃ 2
2 C̃2

c3

= WBT 2
2 C2

t2
2 c2c3

= WB(WBT̃1)
2(WBT̃ 2

1 C̃1

)
t2
2 c2c3

= W4
BT 4

1 C1

t4
1 t2

2 c1c2c3

= W9
B

t4
1 t2

2 t0
3 c1

1c
1
2c

1
3

, (23)

and it has the identical graphical representation depicted in
Fig. 7 on the left. Thus, Eq. (23) can be read in a way where
the single corner tensor C3 is composed of the nine Boltzmann
weights denoted by the power in the numerator, whereas
the denominator counts the multiplicity of the normalization
factors ck and tk for k = 1,2,3, in accord with Fig. 7.
Substituting C3 into Eq. (7), we get the explicit expression
for the free energy per site when k = 3

F [3]
(4,4) = −4T

72
ln

⎛⎝Tr C̃3

3∏
j=1

cj t
2(3−j )
j

⎞⎠. (24)

The generalized form of the free energy per site for the
arbitrary k, written in terms of the normalization factors of the

FIG. 7. The graphical representation of the corner transfer tensor
C3 for the square lattice (4,4) on the left and for the hyperbolic lattice
(5,4) on the right, respectively, in accord with Eqs. (4) and (5) for
k = 3. We use the dark and the bright shaded p-gons in order to
distinguish clearly between Ck and Tk , respectively.

four central tensors C̃k , is

F [k]
(4,4) = −4T ln Tr C̃k

(2k + 1)2
− 4T

∑k−1
j=0 ln ck−j + ln t

2j

k−j

(2k + 1)2
(25)

noticing that the tensors Ck and Tk functionally depend on the
tensors from the previous iteration steps k − 1,k − 2, . . . ,1.
To be more specific, for given k = 3, the nested dependence,
C3[C2(C1,T 2

1 ),T 2
2 (T 2

1 )], is explicitly involved in accord with
Eq. (23). Hence, the same recurrence nested dependence is
inherited into the normalization factors ck and tk , which are
also functions of temperature.

The normalization we have thus introduced causes that the
three terms (real numbers) ck , tk , and Tr C̃k converge if k →
∞. This property is useful for the derivation of a simplified
free-energy formula with the known analytic background [14].
We denote the three converged real values in the following
Tr C̃∞ = z, c∞ = c, and t∞ = t . Numerically, it means that
from a certain (finite) threshold, the iteration step k∗, any
further increase of the iteration steps above k∗ does not affect
the fixed values so that Tr C̃k�k∗ = z, ck�k∗ = c, and tk�k∗ = t .
After a short algebra, if considering the thermodynamic limit
k → ∞, the free energy per site in Eq. (25) is simplified to the
final form,

F [∞]
(4,4) = −T ln t. (26)

Here t is nothing but the largest eigenvalue of the standard
transfer matrix [14] defined between two adjacent infinite rows
(or columns) of spins, which are given by the infinite product
of the four-site (square) Boltzmann weights T∞ = ∏

WB.
The largest eigenvalue of the standard transfer matrix T∞ is
equivalent to the normalization factor t irrespective of the two
norms we have defined in Eq. (20) on the square lattice.

B. Free energy on (5,4) lattice

We now consider the other example. It is instructive to
express graphically the complete structure of the normalized
corner tensor C̃3 on the hyperbolic lattice (5,4) as depicted in
Fig. 7 on the right. The structure agrees with the recurrence
relations in Eqs. (5). The analogous decomposition of C̃3 into
the normalization factors cj and tj (for j = 1,2, . . . ,k) gives

C̃3 = C3

c3

= WBT̃ 3
2 C̃2

2

c3

= WBT 3
2 C2

2

t3
2 c3c

2
2

= WB

(
WBT̃ 2

1 C̃1

)3(WBT̃ 3
1 C̃2

1

)2

t3
2 c2

2c3

= W6
BT 12

1 C7
1

t12
1 t3

2 c7
1c

2
2c3

= W25
B

t12
1 t3

2 t0
3 c7

1c
2
2c

1
3

. (27)

Evidently, the power in the Boltzmann weight completely
reproduces the pentagonal lattice structure (5,4) shown in
Fig. 7. The powers associated with the normalization factors
also coincide with the number of the individual tensors
depicted graphically.

We denote the powers in the factors cj and tj for j =
1,2, . . . ,k, respectively, by the integer exponents nk−j+1 and
mk−j+1, which are indexed in the reverse order for the later
convenience of writing the expressions in a simpler form. In
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particular, the integer exponents in the denominator of Eq. (27)
satisfy the ordering t

m3
1 t

m2
2 t

m1
3 c

n3
1 c

n2
2 c

n1
3 . They are also used in

the computation of the total number of the spin sites N [k]
(5,4) via

the relation

N [k]
(5,4) = 1 + 4

k∑
j=1

3nj + 2mj . (28)

At the same time, the integer exponents nj and mj have to
satisfy the recurrence relations

nj+1 = 2nj + mj, n1 = 1,

mj+1 = 3nj + 2mj, m1 = 0.
(29)

Since the entire lattice (5,4) is made by tiling the four corner
tensors Ck meeting at the central spin site (cf. Fig. 1), the
number 1 and the prefactor 4 (in front of the summation) in
Eq. (28), respectively, correspond to the central spin and the
four joining tensors (q = 4). The remaining two prefactors 3
and 2 under the summation in Eq. (28) count those spin sites,
which are not shared by the two attached pentagonal tensors
Cj and Tj (j = 1,2, . . . ,k), respectively. [A deep analysis of
the (5,4) lattice is inevitable to understand all the details.]

The free energy per site at given k on the hyperbolic lattice
(5,4) can be expressed in the following generalized form:

F [k]
(5,4) = −4T ln Tr C̃k

N [k]
(5,4)

− 4T
∑k−1

j=0 ln c
nj+1

k−j + ln t
mj+1

k−j

N [k]
(5,4)

. (30)

The first term converges to zero with increasing k, i.e.,

lim
k→∞

4T ln Tr C̃k

N [k]
(5,4)

= 0, (31)

since the normalized partition function Z̃ [∞]
(p,q) ≡ Tr C̃∞ is

bounded at any temperature in the thermodynamic limit,

1 � Z̃ [∞]
(p,q) � M, (32)

for an arbitrary M-state spin system. The lower and the
upper bounds correspond to the limits limT →0 Z̃ [∞]

(p,q) = 1 and

limT →∞ Z̃ [∞]
(p,q) = M , respectively. Finally, the number of spin

sites in the denominator of the first term grows exponentially
N [k]

(5,4) ∝ 3.7k , as plotted in Fig. 8.
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[k ] ∝ 3.7322k

N(7, 7)
[k ] ∝ 22.956k

FIG. 8. The exponential dependence of the total number of the
spins on the iteration number k (the least-squares fitting in the log-log
plot) for the two lattices (5,4) and (7,7).

C. Free energy on ( p,q) lattices

The generalization of the free-energy calculation for any
(multistate) spin model on an arbitrary lattice geometry (p �
4,q � 4) is straightforward and requires a careful graphical
analysis of many lattice geometries, which is beyond the scope
of this work for its extensiveness. The free energy per spin for
a finite k has the generalized form

F [k]
(p,q) = −qT ln Tr C̃k

N [k]
(p,q)

− qT
∑k−1

j=0 ln c
nj+1

k−j + ln t
mj+1

k−j

N [k]
(p,q)

k	1= −qT
∑k−1

j=0 nj+1 ln ck−j + mj+1 ln tk−j

N [k]
(p,q)

, (33)

where the total number of the spin sites is expressed as

N [k]
(p,q) = 1 + q

k∑
j=1

(p − 2)nj + (p − 3)mj, (34)

and the integer variables nj and mj satisfy more complex
recurrence relations,

nj+1 = [(p − 2)(q − 3) − 1]nj + [(p − 3)(q − 3) − 1]mj,

mj+1 = (p − 2)nj + (p − 3)mj,
(35)

n1 = 1,

m1 = 0.

The evaluation of Eq. (34) is carried out numerically, and a
strong exponential behavior occurs with increasing p and q.
Figure 8 shows the log-log plot of the exponential increase of
the total number of the sites N [k]

(7,7) > N [k]
(5,4).

The final expression for the free energy in Eqs. (33)–(35)
also includes the case of the Euclidean lattice (4,4). The
complete equivalence with Eq. (25) can be easily verified
if considering that nj = nj−1 = · · · = n1 ≡ 1 and mj =
2nj−1 + mj−1 = 2(j − 1) + m1 ≡ 2j − 2, which reduce the
exponential dependence of the total number of the spin sites
back to the power-law behavior in Eq. (22),

N [k]
(4,4) = 1 + 4

k∑
j=1

2nj + mj ≡ (2k + 1)2. (36)

V. RESULTS

Having defined the free energy per site for the lattice
geometries (p,q), we analyze the phase transition of spin
models in the thermodynamic limit on the four representative
lattices (4,4), (4,7), (7,4), and (7,7) we have used earlier.
We have shown that the phase transition temperatures Tpt,
calculated by the spontaneous magnetization M(p,q) at the
lattice center, correctly reflected the bulk properties, and the
boundary effects were eliminated. In other words, if various
types of the boundary conditions (such as free and fixed ones)
are imposed, the phase transition of the Ising model is not
affected provided that we evaluated the expectation value 〈σc〉
in Eq. (13). The correctness and high numerical accuracy has
been compared with the exactly solvable Ising model on Bethe
lattice [14].
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FIG. 9. The free energy from Eq. (33) and the specific heat from
Eq. (37) vs temperature on the selected lattices (4,4), (4,7), (7,4),
and (7,7). The inset of the bottom graph shows the details of the
broadened specific heat maxima.

A. Absence of phase transition on non-Euclidean lattices

The top graph of Fig. 9 shows the free energies on the
four representative lattices, which are evaluated by Eq. (33). A
phase transition can be associated with a singular (nonanalytic)
behavior of the specific heat being the second derivative of the
free energy with respect to temperature,

C
[∞]
(p,q) = −T

∂2

∂T 2
F [∞]

(p,q). (37)

The temperature dependence of the specific heat of the
Ising model on the respective four lattices is plotted on the
bottom graph in Fig. 9. Evidently, we find the nonanalytic
behavior on the square lattice (4,4) with the diverging peak
at the temperature, which corresponds to the exact critical
temperature Tc = 2/ ln(1 + √

2).
However, none of the three hyperbolic lattice geometries

results in an analogous nonanalytic peak at the phase transition
temperatures T

(p,q)
pt we had calculated from the spontaneous

magnetization plotted in Fig. 3. Instead, a broad maximum
appears for the particular lattices, which does not correspond
to the correct phase transition temperatures we had detected
earlier.

Strong boundary effects on the hyperbolic lattices prevent
the Monte Carlo (MC) simulations from the accurate analysis
of phase transition phenomena on the hyperbolic lattices
[20–23]. The necessity to subtract a couple of boundary site
layers were performed to detect the correct bulk properties
[24]. If defining a ratio of the boundary sites to the total number
of sites, the ratio converges to zero in the Euclidean case,
whereas it goes to nonzero values on the hyperbolic lattices in
the thermodynamic limit.

Notice that we had previously studied the phase transition
phenomena by means of the order parameter (the spontaneous
magnetization), the nearest-neighbor correlation function (the
internal energy), and the entanglement entropy. These thermo-

dynamic functions were evaluated at the central part of the
infinitely large hyperbolic lattices, where the effects of the
boundary conditions were explicitly disregarded.

B. The bulk free energy

In order to specify the phase transition temperature on the
hyperbolic lattices correctly, the free energy has to be modified
by reducing the boundary layers from the total free energy.
With each next iteration step k + 1, the CTMRG algorithm
expands the lattice size by increasing and pushing the boundary
sites farther from the lattice center. This expansion process can
be regarded as an additional spin layer (the shell), which is
composed of the tensors C1 and T1 multiplying its number in
accord with the recurrence relations, and the q tensors Ck+1 are
included in the center of the lattice at the same time; cf. Fig. 7.
Hence, the lattice can be thought of as a concentric system
of the shells indexed by j so that the j th shell contains the
spin sites, which separate the spin sites in the tensors Cj and
Tj from the spin sites in the tensors Cj−1 and Tj−1 on a given
(p,q) geometry (cf. Fig. 7). Such a structure of the concentric
shells in the kth iteration step ascribes the outermost shell to
j = 1 toward the innermost (nontrivial) shell j = k (leaving
the central spin site apart), which is related to the way of
counting the total number of the spin sites in Eq. (34).

If the integer 	 denotes the 	 outermost shells j =
1,2, . . . ,	 < k, we can introduce a new quantity, the bulk free
energy B[k,	]

(p,q), which defines the free energy of the k − 	

inner shells. It is given by the subtraction of the free energy
contributing from the 	 outer shells from the total free energy.
In particular, the bulk free energy in the kth iteration step is

B[k,	]
(p,q) = F [k]

(p,q) − F∗ [k,	]
(p,q) , (38)

where the asterisk in the second term denotes the free energy
of the 	 outermost shells so that

F∗[k,	]
(p,q) = −qT

∑k−1
j=k−	 nj+1 ln ck−j + mj+1 ln tk−j

N ∗ [k,	]
(p,q)

(39)

and

N ∗[k,	]
(p,q) = q

k∑
j=k−	+1

(p − 2)nj + (p − 3)mj . (40)

For the tutorial purpose, we set 	 = k
2 and study the ther-

modynamic limit k → ∞. (The nontrivial dependence of the
bulk free energy on 	 is to be thoroughly studied elsewhere
[25].) Following the remarks below Eq. (33) and without loss
of generality, we omit the first term in Eq. (39) as the term
converges to zero after a few iterations.

Figure 10 (the top graph) shows the bulk free energy for
the Ising model on the four representative lattices in the
thermodynamic limit, i.e.,

B[∞]
(p,q) ≡ lim

k→∞
B[k,k/2]

(p,q) . (41)

In the case of the Euclidean lattice, we get B[∞]
(4,4) ≡ F [∞]

(4,4)
since the thermodynamic properties in the bulk are not
affected by the boundary conditions. However, the bulk
free energy calculated on the hyperbolic lattices exhibits a
remarkable singularity occurring exactly at the phase transition
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FIG. 10. The bulk free energy (the top graph) and the bulk specific
heat (the bottom graph) vs temperature for the Ising model on
the lattices (4,4), (4,7), (7,4), and (7,7). The vertical dotted lines
accurately correspond to the phase transition temperatures we have
obtained from the spontaneous magnetization in Fig. 3.

temperature. The typical structure of the free energy does not
change irrespective of the type of the boundary conditions
applied (free and fixed ones). The maxima of the bulk specific
heat,

C
[∞]
B (p,q) = −T

∂2

∂T 2
B[∞]

(p,q), (42)

plotted in the bottom graph of Fig. 10, accurately correspond
to the phase transition temperatures T

(p,q)
pt we have studied in

Sec. II. The discontinuous jump of the bulk specific heat is
associated with the typical mean-field universality behavior
[13,19], and the vertical dotted lines serve as guides for
the eye to help locate the phase transition temperature. It is
worth pointing out the identical determination of the phase
transition temperatures, as we have obtained independently by
the spontaneous magnetization in Fig. 3.

Our definition of the bulk free energy contains lots of
interesting features. For instance, the 	-dependence enables
us to observe and explain the way the lattice boundary affects
the central bulk part of the lattice and the phase transition if
an additional magnetic field is imposed on the boundary spins
only. Such a study is to be published elsewhere [25]. We do
not follow Baxter’s proposal of calculating the free energy,
which is defined by numerical integrating the spontaneous
magnetization with respect to a magnetic field [14]. Although
such an approach can be numerically feasible and can be
also used to reproduce all the well-known results for the
Bethe lattices, it cannot reflect many aspects of the boundary
effects which play the significant role on the hyperbolic (p,q)
geometries.

C. Free energy versus lattice geometry

Having been motivated by the correspondence between the
anti-de Sitter spaces and the conformal field theory of the

quantum gravity physics, one can put the question “Given an
arbitrary spin system on an infinite set of (p,q) geometries,
which lattice geometry minimizes the free (ground-state)
energy?” This is certainly a highly nontrivial task to be
explained thoroughly. Nevertheless, we attempt to answer
the question in the following for a particular set of curved
lattice surfaces we have been considering. This helps us give
an insight into the role of the space geometry with respect
to the microscopic description of the spin interacting system.
Although we currently consider the free energy of the classical
spin lattice systems, we have been recently studying the
ground-state energy of the quantum spin systems on the lattices
(p � 4,4), which also exhibit qualitatively identical features as
studied in this work [26,27]. For this reason, the free energy for
classical spin systems and the ground-state energy of quantum
spin systems are mutually related.

The free energy per site F [∞]
(p,q) converges to a negative value

F [∞]
(p,q) < 0 at finite temperatures T < ∞ in the thermodynamic

limit. Scanning the entire set of the (p � 4,q � 4) geometries,
we show in the following that the free energy per site reaches
its minimum on the square lattice only,

F [∞]
(4,4) = min

(p�4,q�4)

{
F [∞]

(p,q)

}
, (43)

at any fixed temperature T . Therefore, we plot the shifted free
energy per site, F [∞]

(p,q) − F [∞]
(4,4) � 0, for clarity of the figures.

Figures 11 and 12 show the shifted free energy for the Ising
(M = 2) model at lower and higher temperatures, respectively.
These numerical calculations unambiguously identify the
square lattice geometry, which minimizes the free energy per
spin site. The free energy per site at fixed T becomes less
sensitive for higher values of p and q. We observe a weak
increasing tendency in the free energy if p increases at fixed q;
it grows logarithmically as discussed later. The free energy gets
saturated to a constant in the opposite case when q increases at
fixed p. It is worth mentioning that the presence of the phase
transition does not affect the free energy minimum observed
on the Euclidean square lattice. Moreover, as the temperature
grows, the difference between the free energies on the square
and the hyperbolic lattices weakens.
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FIG. 11. The free energy per site as a function of the lat-
tice geometry (p,q) at the selected lower temperatures T = 1, 2,
and 3.
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FIG. 12. The same as in Fig. 11 for T = 10 and 20.

It is instructive to generalize the free-energy features of
the Ising model to the other spin models, the M-state clock
and M-state Potts models. The high-temperature asymptotics
of the free energy for the multistate spin models on the
referenced hyperbolic lattice (7,7) is depicted on the top graph
of Fig. 13. The free energy exhibits an asymptotic behavior at
higher temperatures for a fixed lattice geometry (p,q). It is a
consequence of the thermodynamic limit measured deeply in
the disordered phase, where T � T

(p,q)
pt ≈ q. Then the tensors

C∞ and T∞ prefer higher symmetries (on the contrary, fewer
symmetries occur in the ordered phase if the spontaneous
symmetry breaking is present). The higher symmetries cause
that the normalization factors ck→∞ → Mp−2 and tk→∞ →
Mp−3 above T � 2q, recalling that the exponents p − 2 and
p − 3 are associated with the number of the summed up
M-state spins in the tensors [cf. also Eq. (34)]. Substituting
ck = Mp−2 and tk = Mp−3 into Eq. (33), one obtains the
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FIG. 13. The high-temperature asymptotics of free energy per
site (top graph) and the entropy (bottom graph) applied to the lattice
(7,7). The full and the dashed lines correspond to the M-state clock
and the M-state Potts models, respectively, where M = 2,3, . . . ,7.
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FIG. 14. The free energy for the seven-state clock and Potts
models at T = 5, which do not differ from the Ising model (M = 2)
in Figs. 11 and 12 qualitatively.

high-temperature expression

lim
k→∞
T �2q

F [k]
(p,q) ∝ −T ln M. (44)

The asymptotic linearity of the free energy is examined by the
entropy

S [∞]
(p,q) = −∂F [∞]

(p,q)

∂T
, (45)

which gets saturated so that S [∞]
(p,q) → ln(M) at T � 2q. The

bottom graph in Fig. 13 satisfies this condition and can be
considered as an independent confirmation of the correct
calculation of the free energy per site in Eq. (33). The high-
temperature asymptotic behavior of the entropy is explicitly
plotted to show that exp {S [∞]

(p,q)} = M for the given set of the
M-state spin models.

Figure 14 shows the free energy per site with respect to
(p,q) for the seven-state clock and the seven-state Potts models
at T = 5. Clearly, the free energy reaches its minimum on
the square lattice for the both spin models. Having scanned
the multistate spin variables M = 2,3, . . . ,7 (not shown) for
various temperatures T , the free energy remains minimal on
the square lattice (4,4).

D. Relation between energy and curvature

The studied (p,q) lattices can be exactly characterized by
the radius of Gaussian curvature [28], which has the analytical
expression

R(p,q) = − 1

2 arccosh
[ cos( π

p
)

sin( π
q

)

] . (46)

For later convenience we include the negative sign in R(p,q).
The radius of curvature for the square lattice geometry (4,4)
diverges, R(4,4) → −∞, while the remaining hyperbolic lattice
geometries (p,q) are finite and nonpositive. The analytical
description in Eq. (46) results in a constant and position-
independent curvature at any position on the infinitely large
lattices (p,q). It is a consequence of the constant distance
between the lattice vertices for all geometries (p,q), which is
equivalent to keeping the spin-spin coupling to be J = 1 in
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FIG. 15. The functional dependence of the Gaussian radius of
curvature R(q,p) plotted in the dual lattice geometry (q,p).

all the numerical analysis of the spin systems on the (p,q)
lattices.

In Fig. 15 we plot the radius of curvature in the dual
geometry (q,p); i.e., the roles of p and q are swapped. It is
immediately evident that the surface shape of R(q,p) exhibits
a qualitative similarity if compared to the free energy per site
F [∞]

(p,q) we depicted in Figs. 11, 12, and 14.
Such a surprising observation opens new questions about

the relation between the energy at thermal equilibrium and
the space (lattice) geometry, which is equivalent to the
relation between the ground-state energy of quantum systems
and the underlying geometry. We, therefore, focus on the
low-temperature regime, T < 1, where the similarity is most
striking, provided that the numerical computations remain
reliable in order to avoid any under- or overflows in the transfer
tensors. For this reason, the numerical calculations require the
setting of 34-decimal-digit precision.

In Fig. 16 we plot both the free energy per site F [∞]
(p,q) at

T = 0.5 and the radius of curvature R(q,p) on the dual lattice
with respect to p (the top graph) and q (the bottom one), while
the other associated lattice parameter is fixed. The upper graph
compares the free energy per site with the radius of curvature at
fixed q∗ = 4 and q∗ = 7 when 4 � p � 30. On the other hand,
the bottom graph displays F(p∗,q) and R(q,p∗) at fixed p∗ = 4
and p∗ = 7 for 4 � q � 30. While in the former case both
the functions increase with p, in the latter case the functions
saturate and converge to constants.

It is instructive to inspect the asymptotic behavior of R(q,p).
If q is fixed to an arbitrary q∗ � 4, the logarithmic dependence
on p is present and R(q∗,p	4) → −1/2 ln[ 2p

π
cos( π

q∗ )]. Fixing
p to p∗ causes that the radius of curvature converges to
a constant so that for a sufficiently large p∗, the constant
does not depend on q and R(q	4,p∗) → −1/2 ln[ 2

sin(π/p∗) −
sin(π/p∗)

2 ] ≈ −1/ ln( 2p∗
π

)2. It is straightforward to conclude that
the asymptotics of R(q,p) is solely governed by the parameter
p, i.e., R(q	4,p	4) → −1/2 ln( 2p

π
).

Since the seemingly similar p dependence of the free energy
plotted on the upper graph in Fig. 16 does not suffice to
conjecture the identical logarithmic asymptotics as we have
derived for R(q∗,p	4), we extended our numerical calculations
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FIG. 16. The comparison of the free energy per site for the Ising
model at T = 0.5 with the Gaussian radius of curvature on the dual
geometry. The top graph shows the case of the two fixed coordination
numbers q∗ = 4 and q∗ = 7, whereas the bottom graph depicts the
opposite case when fixing the p-gons to the sizes p∗ = 4 and p∗ = 7.

of the free energy per site at larger p for the two selected
coordination numbers q∗ = 4 and q∗ = 7. Figure 17 shows the
asymptotic behavior of F [∞]

(p,q∗) and R(q∗,p) for 4 � p � 1024
at T = 0.1. The top and the bottom graphs show both the free
energy per site and the radius of curvature in the linear scale
and the log-log plot, respectively.

0 200 400 600 800 1000p

-0.8

-0.6

-0.4

-0.2

0.0

F (p
,q

*)
[∞

]    
,

R (q
*, 

p)

1 + F(p,4)
1 + F(p,7)
1 / (2 − p)

101 102 103

p

10-3

10-2

10-1

100

F (p
,q

*)
[∞

]    
 ,

R (q
*, 

p)

|1 + F(p, 4) |
|1 + F(p, 7) |
1/ (p − 2)

− ½ ∂p R -1
(q*, p)

0 200 400 600 800 1000

R(4,p)
R(7,p)

1 / ln[2(p−2)/π]−2

−R(4,p)
−R(7,p)

1 / ln(2p/π)2

10-2 100 102 104

T

10-1
100
101
102
103
104
105

|F
(1

02
4,

7)
[∞

]
|

= 1/p

FIG. 17. The asymptotic behavior of the free energy per site
F [∞]

(p,q∗) − F [∞]
(∞,q∗) for the Ising model at T = 0.1 and the Gaussian

radius of curvature R(q∗,p) for q∗ = 4 and q∗ = 7. The asymptotic
fitting functions for the energy decay as − 1

p
, where the “+” symbols

connected with the dashed line fit to the free-energy data (the circles
and the triangles). The asymptotics ∝1/ ln(2p/π )−2 of the radius
of curvature (the squares and the diamonds) is plotted by the “∗”
symbols connected with the dashed line. The inset of the top graphs
shows the temperature dependence of F [∞]

(∞,q∗). The log-log plot in the
bottom graph is used to enhance the asymptotics of the top graph.
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The least-square fitting applied to the free energy per site
gives the function 1

2−p
+ F [∞]

(∞,q∗), which correctly reproduces
the asymptotics of the free energy per site for both q∗. In
contrast to the radius of curvature, which logarithmically
converges to zero as p → ∞, the free energy per site
convergesF [∞]

(∞,q∗) = −1 for T 
 1 and is linear in temperature

F [∞]
(∞,q∗�T/2) = −T ln(M) for T 	 1 in accord with Eq. (44).

At T = 0.1 the termF [∞]
(∞,q∗) = −1.000 98 for q∗ = 4 and q∗ =

7. The inset of the top graph in Fig. 17 shows the functional
dependence of the constant F [∞]

(∞,q∗) on temperature, which
is numerically feasible up to the polygonal size p = 1024
with the sufficient accuracy (noticing a negligible dependence
on small values of q∗). The log-log plot of the lower graph
clearly demonstrates the difference in the asymptotics (p 	 4)
between the polynomial behavior of F [∞]

(p,q∗) − F [∞]
(∞,q∗) = − 1

p

and the logarithmic one R−1
(q∗,p) = − ln(2p/π )2. The thin

dotted line on the lower graph is the numerical derivative of
− 1

2R
−1
(q∗,p) with respect to p, which confirms the convergence

to the asymptotic regime p−1 of the free energy per site. We,
therefore, observe an asymptotic relation between the free
energy per site and the radius of curvature on the dual lattice
geometry,

F [∞]
(p,q) − F [∞]

(∞,q) ∝ ∂

∂p
R−1

(q,p) ≈ −π

2
exp

[
1

2
R−1

(q,p)

]
, (47)

which is valid for any fixed q � 4 and p 	 4 (typically
p � 102) at low temperatures. The free energy of the multispin
spin models (or the ground-state energy for quantum spin
systems) on the non-Euclidean lattice geometries exhibits
certain similarities with the Gaussian radius of curvature in
the asymptotic regime (p 	 4) we found out as a by-product
of our numerical analysis. The necessity of supporting our
findings theoretically is inevitable. The consequences of the
current work are expected to elicit further research, which can
bridge solid-state physics with the general theory of relativity.

Having analyzed the phase transition temperatures T
(p,q)

pt
of the Ising model with respect to the lattice geometries (p,q),
we again find another analogous relation for the scaling of the
radius of Gaussian curvature,

−1/ ln
[
T

(p,q)
pt

]2 ∝ R(p,q), (48)

as shown in Fig. 18. For better visual comparison with
Fig. 15, we plot −1/[2 ln T

(p,q)
pt ] in the dual geometry (i.e.,

the meanings of p and q are swapped in the graph). Recall
that the higher values of the coordination number q (for fixed
p) cause that T

(p,q)
pt ∝ q [cf. Eq. (15)], whereas if p increases

(at fixed q), the fast convergence to the constant in Eq. (14) is
achieved.

Hence, the evident mutual similarity of the functional p,q

dependence among the free energy per site (in Figs. 11, 12,
and 14), the radius of the Gaussian curvature (Fig. 15), and
the phase transition temperature (Fig. 18) points to a certain
related correspondence, which calls for consequent theoretical
explanations to connect these physical quantities together.
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FIG. 18. The rescaled phase transition temperatures with respect
to p and q are shown in the dual geometry (q,p) to emphasize the
similarity with the radius of Gaussian curvature in Fig. 15.

VI. CONCLUDING REMARKS

Having generalized the CTMRG algorithm to study the
multistate spin models on an infinite set of the non-Euclidean
geometries (p � 4,q � 4), we successfully analyzed the free
energy of the models with respect to the underlying lattice
geometry and temperature (including the classification of the
phase transitions). Although such an infinite set of the lattices
significantly exceeds those we had analyzed earlier [12,13], we
have been still facing a challenging task: to complete the entire
set of the regular lattice geometries (p � 3,q � 3), which
involves all three Euclidean and five spherical geometries.
To accomplish this task, a substantially different structure of
the recurrence relations of the (p � 6,3) lattice geometries is
expected to be derived.

The main purpose of this work was to derive the general
formula for the free energy per spin of the M-state clock and
Potts models on the (p,q) lattice geometries. The CTMRG
algorithm yielded a sufficiently high numerical accuracy with
respect to the exact solutions, which was demonstrated by
comparing the phase transition temperatures obtained by
CTMRG and the exactly solvable Ising models on the square
(4,4) and the Bethe (∞,q � 4) lattices. Having minimized the
free energy with respect to the lattice geometry (p � 4,q � 4),
we found out that the minimum of the (bulk) free energy per
spin site is satisfied only in the case of the Euclidean square
lattice for each fixed temperature.

Making use of the free energy, the boundary structure of the
hyperbolic surfaces is naturally incorporated into the solution
and carries the essential features of the AdS space. In other
words, we have initiated first steps to classify the properties
of regular hyperbolic (AdS) spaces viewed from condensed-
matter physics. The next step involves a direct numerical
calculation of the entanglement entropy of a subsystem A
in quantum Heisenberg, XY and Ising models on (4,q � 4)
lattice geometries [29]. Following these steps, we intend to
confirm a concept of the so-called holographic entanglement
entropy [30–32], where a nongravitational theory is expected
to live on the boundary of a subsystem ∂A of (d + 1)-
dimensional hyperbolic spaces. The entanglement entropy SA,
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related to a reduced density matrix of the subsystem A, can
provide an appropriate measure of the amount of information
within the AdS-CFT correspondence. The entropy SA is
proportional to a surface region ∂A (minimal area surface) in
the AdS space and is related via duality with the corresponding
d-dimensional region A defined in CFT. Our consequent study
is, therefore, focused on the analysis of the von Neumann
entanglement entropy of quantum spin systems with respect to
the underlying AdS lattice geometry. (In our earlier studies, we
analyzed the entanglement entropy of classical spin systems
on hyperbolic geometries [13,19].)

The surprising inherited physical similarity between the
lowest energy of the microscopic multispin models and
the radius of the Gaussian curvature certainly deserves a
deeper understanding and theoretical reasoning in the future.
Our numerical observations cannot unambiguously justify
our incomplete conjectures of this work. In the future, we

intend to broaden our current findings to reveal how the
intrinsic structure of the space lattice geometry as well as
the microscopic spin-interaction networks affect the lowest
energy, which incorporates information about the entire system
(including the significant influence of boundary effects on
the large scales). Our incomplete conjectures suggest that
the free-energy analysis of the simple multistate spin systems
reflects the underlying regular hyperbolic lattice structure and
is proportional to the Gaussian radius of curvature on the dual
lattice geometry.
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[29] M. Daniška and A. Gendiar (unpublished).
[30] G. ’t Hooft, in World Scientific Series in 20th Century Physics,

Vol. 4, edited by A. Ali, J. Ellis, and S. Randjbar-Daemi (World
Scientific, 1993).

[31] L. Susskind, J. Math. Phys. (N.Y.) 36, 6377 (1995).
[32] S. Ryu and. T. Takayanagi, Phys. Rev. Lett. 96, 181602 (2006).

042123-15

http://dx.doi.org/10.4310/ATMP.1998.v2.n2.a1
http://dx.doi.org/10.4310/ATMP.1998.v2.n2.a1
http://dx.doi.org/10.4310/ATMP.1998.v2.n2.a1
http://dx.doi.org/10.4310/ATMP.1998.v2.n2.a1
http://dx.doi.org/10.1023/A:1026654312961
http://dx.doi.org/10.1023/A:1026654312961
http://dx.doi.org/10.1023/A:1026654312961
http://dx.doi.org/10.1023/A:1026654312961
http://dx.doi.org/10.1063/1.1827329
http://dx.doi.org/10.1063/1.1827329
http://dx.doi.org/10.1063/1.1827329
http://dx.doi.org/10.1063/1.1827329
http://dx.doi.org/10.1063/1.2344933
http://dx.doi.org/10.1063/1.2344933
http://dx.doi.org/10.1063/1.2344933
http://dx.doi.org/10.1063/1.2344933
http://dx.doi.org/10.1103/PhysRevB.79.094419
http://dx.doi.org/10.1103/PhysRevB.79.094419
http://dx.doi.org/10.1103/PhysRevB.79.094419
http://dx.doi.org/10.1103/PhysRevB.79.094419
http://dx.doi.org/10.1016/j.physleta.2006.07.009
http://dx.doi.org/10.1016/j.physleta.2006.07.009
http://dx.doi.org/10.1016/j.physleta.2006.07.009
http://dx.doi.org/10.1016/j.physleta.2006.07.009
http://dx.doi.org/10.1016/0375-9601(86)90433-0
http://dx.doi.org/10.1016/0375-9601(86)90433-0
http://dx.doi.org/10.1016/0375-9601(86)90433-0
http://dx.doi.org/10.1016/0375-9601(86)90433-0
http://dx.doi.org/10.1016/0370-2693(96)00199-2
http://dx.doi.org/10.1016/0370-2693(96)00199-2
http://dx.doi.org/10.1016/0370-2693(96)00199-2
http://dx.doi.org/10.1016/0370-2693(96)00199-2
http://dx.doi.org/10.1103/PhysRevE.80.035101
http://dx.doi.org/10.1103/PhysRevE.80.035101
http://dx.doi.org/10.1103/PhysRevE.80.035101
http://dx.doi.org/10.1103/PhysRevE.80.035101
http://dx.doi.org/10.1103/PhysRevE.82.036106
http://dx.doi.org/10.1103/PhysRevE.82.036106
http://dx.doi.org/10.1103/PhysRevE.82.036106
http://dx.doi.org/10.1103/PhysRevE.82.036106
http://dx.doi.org/10.1143/JPSJ.76.084004
http://dx.doi.org/10.1143/JPSJ.76.084004
http://dx.doi.org/10.1143/JPSJ.76.084004
http://dx.doi.org/10.1143/JPSJ.76.084004
http://dx.doi.org/10.1143/JPSJ.65.891
http://dx.doi.org/10.1143/JPSJ.65.891
http://dx.doi.org/10.1143/JPSJ.65.891
http://dx.doi.org/10.1143/JPSJ.65.891
http://dx.doi.org/10.1143/JPSJ.66.3040
http://dx.doi.org/10.1143/JPSJ.66.3040
http://dx.doi.org/10.1143/JPSJ.66.3040
http://dx.doi.org/10.1088/1751-8113/41/12/125001
http://dx.doi.org/10.1088/1751-8113/41/12/125001
http://dx.doi.org/10.1088/1751-8113/41/12/125001
http://dx.doi.org/10.1088/1751-8113/41/12/125001
http://dx.doi.org/10.1103/PhysRevE.86.021105
http://dx.doi.org/10.1103/PhysRevE.86.021105
http://dx.doi.org/10.1103/PhysRevE.86.021105
http://dx.doi.org/10.1103/PhysRevE.86.021105
http://dx.doi.org/10.1063/PT.3.1929
http://dx.doi.org/10.1063/PT.3.1929
http://dx.doi.org/10.1063/PT.3.1929
http://dx.doi.org/10.1063/PT.3.1929
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1016/j.physa.2014.10.093
http://dx.doi.org/10.1016/j.physa.2014.10.093
http://dx.doi.org/10.1016/j.physa.2014.10.093
http://dx.doi.org/10.1016/j.physa.2014.10.093
http://dx.doi.org/10.1103/PhysRevE.90.012122
http://dx.doi.org/10.1103/PhysRevE.90.012122
http://dx.doi.org/10.1103/PhysRevE.90.012122
http://dx.doi.org/10.1103/PhysRevE.90.012122
http://dx.doi.org/10.1088/1742-5468/2006/08/P08017
http://dx.doi.org/10.1088/1742-5468/2006/08/P08017
http://dx.doi.org/10.1088/1742-5468/2006/08/P08017
http://dx.doi.org/10.1088/0305-4470/39/18/010
http://dx.doi.org/10.1088/0305-4470/39/18/010
http://dx.doi.org/10.1088/0305-4470/39/18/010
http://dx.doi.org/10.1088/0305-4470/39/18/010
http://dx.doi.org/10.1209/0295-5075/79/26002
http://dx.doi.org/10.1209/0295-5075/79/26002
http://dx.doi.org/10.1209/0295-5075/79/26002
http://dx.doi.org/10.1209/0295-5075/79/26002
http://dx.doi.org/10.1103/PhysRevE.80.021103
http://dx.doi.org/10.1103/PhysRevE.80.021103
http://dx.doi.org/10.1103/PhysRevE.80.021103
http://dx.doi.org/10.1103/PhysRevE.80.021103
http://dx.doi.org/10.1016/j.susc.2007.04.207
http://dx.doi.org/10.1016/j.susc.2007.04.207
http://dx.doi.org/10.1016/j.susc.2007.04.207
http://dx.doi.org/10.1016/j.susc.2007.04.207
http://dx.doi.org/10.1088/1751-8113/48/43/435002
http://dx.doi.org/10.1088/1751-8113/48/43/435002
http://dx.doi.org/10.1088/1751-8113/48/43/435002
http://dx.doi.org/10.1088/1751-8113/48/43/435002
http://dx.doi.org/10.1088/1751-8113/49/14/145003
http://dx.doi.org/10.1088/1751-8113/49/14/145003
http://dx.doi.org/10.1088/1751-8113/49/14/145003
http://dx.doi.org/10.1088/1751-8113/49/14/145003
http://dx.doi.org/10.1051/jphyslet:01982004308024900
http://dx.doi.org/10.1051/jphyslet:01982004308024900
http://dx.doi.org/10.1051/jphyslet:01982004308024900
http://dx.doi.org/10.1051/jphyslet:01982004308024900
http://dx.doi.org/10.1063/1.531249
http://dx.doi.org/10.1063/1.531249
http://dx.doi.org/10.1063/1.531249
http://dx.doi.org/10.1063/1.531249
http://dx.doi.org/10.1103/PhysRevLett.96.181602
http://dx.doi.org/10.1103/PhysRevLett.96.181602
http://dx.doi.org/10.1103/PhysRevLett.96.181602
http://dx.doi.org/10.1103/PhysRevLett.96.181602



