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Abstract
The uniform two-dimensional variational tensor product state is applied to the
transverse-field Ising, XY, and Heisenberg models on a regular hyperbolic
lattice surface. The lattice is constructed by tessellation of the congruent pen-
tagons with the fixed coordination number being four. As a benchmark, the
three models are studied on the flat square lattice simultaneously. The mean-
field-like universality of the Ising phase transition is observed in full agreement
with its classical counterpart on the hyperbolic lattice. The tensor product
ground state in the thermodynamic limit has an exceptional three-parameter
solution. The variational ground-state energies of the spin models are calculated.

Keywords: tensor product state, quantum spin systems, non-Euclidean
geometry, phase transition

(Some figures may appear in colour only in the online journal)

1. Introduction

The tensor product state (TPS) has been proved to be an appropriate ansatz for obtaining a
ground-state of strongly correlated quantum systems. Numerous computational approaches
and methods have been developed and successfully applied to one-dimensional (1D) and two-
dimensional (2D) quantum systems [1–3]. The main purpose of this work is to address the
TPS to 2D spin systems on a non-trivial lattice configuration, which is represented by an
infinite hyperbolic surface. The lattice is made from the pentagonal tessellation and forms a
negatively curved surface of the constant Gaussian curvature. Such a lattice geometry has not
yet been considered for 2D quantum systems in the thermodynamic limit. Lacking infor-
mation on constructing an appropriate numerical algorithm for the pentagonal lattice is given.

The adherence to the mean-field-like universality class was concluded in the 2D classical
Ising systems on various types of hyperbolic lattices. The mean-field-like behavior of the
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phase transition exponents is caused by the non-Euclidean geometry of the underlying lattices
[4–6], and is not related to the analysis by the mean-field approximation. The classical spin
systems have been analyzed by the corner transfer matrix renormalization group (CTMRG)
method [7], which is a variant of the DMRG for 1D quantum systems [8]. Now, we extend
our earlier studies, which dealt with the classical spin systems, to quantum spin systems on
the curved pentagonal lattice surface.

We, therefore, propose an approximative scheme of the round-a-face TPS, which is
related to the standard vertex type TPS with two-state auxiliary variables [1, 2]. Our main
intention is to approximate the ground state of spin-1

2
models by a minimal number of

variational parameters. Improvements of the numerical accuracy go beyond the scope of
this work.

The paper is organized in the following way. Section 2 specifies the model Hamiltonians
on the Euclidean and the non-Euclidean lattices. The variational approach is discussed with
respect to the TPS approximation. A short description of the numerical algorithm and dis-
cussion of tensor symmetries are included within two subsections. The numerical results are
analyzed in section 3, and we comment the results in section 4.

2. The model

We calculate the ground-state energy of the quantum Ising, XY, and Heisenberg models on
two different lattices: the Euclidean square lattice and the hyperbolic pentagonal lattice.
Figure 1 depicts the two lattice types constructed by tessellation of the congruent polygons:
either by the squares (p = 4) shown on the left or by the pentagons (p = 5) on the right. The
alternating gray-white color scheme of the polygons is chosen for improving the visibility
only. The spin variables are located on the vertices of the regular polygons with the constant
coordination number, which is equal to four in both cases. We study properties of the spin
system in the thermodynamic limit, i.e., the number of the lattice vertices is infinite. The
Hamiltonian  of the three models defined on the both lattices can be expressed in the
following compact form

Figure 1. The Euclidean square lattice geometry (p = 4) and the pentagonal hyperbolic
lattice geometry (p = 5). Notice that the hyperbolic lattice is made of the regular
pentagons of the equal size and shape. Nevertheless, the mapping of the lattice onto the
Poincare disk depicts them deformed with exponentially decreasing sizes toward the
circle boundary.
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where Gk
p( ) represents the local Hamiltonian of the p-sided polygon, the lattice is constructed

from, and k marks the position of the polygon on the lattice. The summation runs over all the
positions of the polygons k .

p
The polygon on the kth position is described by the ordered

set of spin indices k1, k2, ..., kp, see figure 2, where ki stands for the unique number which is
assigned to the corresponding vertex within the labeling scheme of the lattice vertices. The
local Hamiltonian has the expression
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i
are the Pauli operators, and the spin indices obey the cyclic condition kp+1

≡ k1. The x-component of the external magnetic field is described by the variable h, and the
spin couplings Jxy and Jz specify the three models. In particular, Jxy = −Jz = 1, and h = 0
describe the Heisenberg model, Jxy = 1 and Jz = h = 0 specify the XY model, whereas
Jxy = 0, Jz = 1 with an arbitrary h lead to the transverse field Ising model (TFIM)1 [9]. Since
the ferromagnetic ordering of the models leads to a simpler TPS formulation, we have opted
for the positive coupling, Jxy = 1, and we consider dimensionless units throughout the entire
work. The constant prefactors J

2
and h

8
reflect the sharing of the spin couplings and the

magnetic field, respectively, if the Hamiltonian is formed by the polygonal tessellation in
equation (1).

Our objective is to obtain the ground-state of the system

lim 3
N

Np p 1 2

N

N

1 2

1 2 ( )å s s sF = F
s s s

s s s

¥






in the thermodynamic limit by a variational minimization of the ground-state energy
normalized per bond

Figure 2. Graphical representation of the local Hamiltonian Gk
p( ) with its particular

shape; the square (p = 4) on the left and the pentagon (p = 5) on the right.

1 The Hamiltonian energy spectrum remains identical if Jxy = ±1 provided that Jz = 0 or −1 (for h = 0) because the
lattice is bipartite. Note, that generalization to the antiferromagnetic ordering is trivial for the square geometry,
however, the pentagonal lattice geometry would result in strong frustration for all of the models.
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where N stands for the total number of the lattice spins, σj, j = 1, ..., N, marks one of the two
base states  or  of the jth lattice spin and Nb denotes the total number of the bonds (the
nearest-neighbor pairs). In order to simplify the numerical calculation, we approximate pF
by a TPS ,pY which is given by the product of the identical tensors Wp of the same

polygonal structure as either of the two local Hamiltonians Gk
p( ) has (see figure 2). The p-rank

tensors depend on p spin-1

2
variables labeled by indices k1, ..., kp with two base states kis = 

or . The p individual spin variables are grouped into a single one with 2p base configurations
denoted as {σk} to simplify the notations if necessary. It means that the tensor element
W Wkp p({ })s º k k1 2(s s  .kp )s For instance, there are 32 base spin configurations for the
pentagons, which can be represented in the arrow notation as ,{ }     ,{ }    

,{ }     ..., .{ }     Thus, the approximative ground state in the form of the
polygonal TPS2 [1] has the following form in the thermodynamic limit

Wlim , 5
N k
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where the sum runs over the 2N base spin states. Since the TPS pY has the product structure
of the identical tensors Wp, the variational problem in equation (4) is in the thermodynamic
limit equivalent to the minimization of the local energy of an arbitrary bond in the lattice
center (to avoid boundary effects)
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where ℓ is the index of a polygon containing the selected central bond and the factor 2/p
reflects that each polygon contains p bonds shared with neighboring polygons. Moreover, the
product structure of pY enables us to express the denominator
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as sole functions of the tensor elementsWp({σ}), where we removed the subscript k due to the
uniform TPS. Here, Gℓ

p
,ℓ ℓ

( )( )
{ } { }s s¢ stands for the corresponding matrix element of the local

Hamiltonian G ,ℓ
p( )

,k k{ } { }d s s¢ is the Kronecker symbol, and k ℓp⧹{ } denotes the set of all
polygon indices except for the index ℓ.

Consequently, the minimization over the set of variational parameters p
1 2Fs s s¥ in

equation (4) is replaced by a much simpler problem

2 The non-physical (auxiliary) states in the TPS language are represented as states with two degrees of freedom only.
Such an approximation enhances the mean-field behavior around the criticality and is a compromise to make the
calculations feasible numerically due to the exponentially increasing complexity of the hyperbolic lattice structure.
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where we minimize over 2p tensor elements Wp({σ}) only. This set can be further reduced if
additional constraints are taken into account. The translational and rotational symmetries
shrink them to three variational parameters, provided that the ground state pY is evaluated at
zero magnetic field, i.e., no symmetry-breaking mechanism is present in the system. The
calculation of the numerator Wp( ({ })) s and the denominator Wp( ({ })) s in equation (9) is
carried out separately by means of a numerical algorithm described below.

Thus defined TPS approach offers a new perspective of estimating the 2D quantum
systems on hyperbolic surfaces. Such a significant approximation is sufficient only for the
case of p = 5 since we have observed a weak entanglement and non-critical behavior of the
classical Ising model on variety of hyperbolic lattices in our earlier studies [4–6]. An
exponential decay of the density matrix spectra and the correlation function result in the phase
transition, where the correlation length 1x is finite, reaching its maximal value at the phase
transition [17]. For this reason, we apply the current scheme of TPS as it can be a sufficient
approximation for the ground-state properties of the models on the pentagonal lattice.
(However, the square lattice requires to consider a larger dimension in the tensors W4, see
[13] and [16].)

2.1. The TPFV algorithm

We refer to the algorithm as the tensor product variational formulation (TPVF) and it consists
of two parts. The first one evaluates the ratio in equation (9) by applying the CTMRG method
[7] separately to the numerator and the denominator for a given set of the tensor elements
Wp({σ}). The second part contains a multi-dimensional minimizer, the Nelder–Mead simplex
algorithm [10–12], which uses the first part to search for the optimized set of the tensor
elements Wp({σ}), which minimize the ratio in equation (9). The minimizer starts from an
initial simplex in the space of free variational parameters, one vertex of which is specified by
the initial tensor elements Wp({σ}). The simplex undergoes an iterative sequence of size
changes and moves towards lower energies and stops if the energy in equation (9) converged.

The CTMRG was originally developed to study 2D classical spin systems. Primarily, it
evaluates the partition function (preferably, in the thermodynamic limit) as the configuration
sum of the tensor product of the Boltzmann weights WB. The central idea of this study is to
apply CTMRG to quantum systems by replacing the concept of the Boltzmann weight WB

from the classical statistical mechanics by the tensorsWp. In order to do this, let us introduce a
double-layer tensor p with the tensor elements

Figure 3. The double-layer tensor structure of k k4({ }) s s¢ on the left and k k5({ }) s s¢
on the right.
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Notice that there are 22p double-layer base spin configurations .k k{ }s s¢ Figure 3 graphically
depicts the double-layer tensors p at the position k, where each shaded polygonal area
represents Wp. Thus, in the language of the classical statistical mechanics, the general
expression for the denominator Wp p p( ({ })) s = Y Y in equation (7) corresponds to a
tensor product object, which is equivalent to the partition function of a (non-physical)
classical Hamiltonian given by the product of the tensors .p

This generalization of the Boltzmann weight enters the CTMRG algorithm for both the
lattice geometries and the consequent numerical calculation yields the denominator

Wp( ({ })) s for the given set of the tensor elements Wp({σ}) according to equation (7). A
similar approach can be also used to determine the numerator W ,p( ({ })) s as it differs from

Wp( ({ })) s only by the additional double-layer structure at the central position ℓ containing
the local Hamiltonian G .ℓ

p( ) The detailed survey of the CTMRG algorithm is explained in
[4, 5, 7] for both the square and the pentagonal lattices. We point out only the most relevant
part of the CTMRG algorithm in the following.

The concept of CTMRG is built on corner transfer tensors j
n( ) and transfer tensors ,j

n( )
where j = 1, 2, K, p. Each of the (corner) transfer tensors is composed of the polygon
representing tensors p via recurrence relations indexed by the iteration step n (as specified
later). Further details of the construction of the transfer tensors are given in [4, 7]. As a result,
the (corner) transfer tensors represent a specific lattice sector formed by the corresponding
polygons. The square and the pentagonal lattices are constructed from a central polygon
surrounded by the alternating sectors represented by the tensors j

n( ) and .j
n( ) The central

polygon is represented by the tensor p or W G Wℓ
p

p p
( )* in the structure of the denominator

Wp( ({ })) s and the numerator W ,p( ({ })) s respectively. Figure 4 illustrates the situation

Figure 4. The graphical illustration of the denominator in equation (11) for p = 4 (left)
and p = 5 (right). The central polygon tensor p is surrounded by p identical (corner)
transfer tensors j

n( ) and j
n( ) bordered by the red thick curves within the nth iteration

step in accord with equations (13) and (14). The light blue and the white polygons,
respectively, correspond to j

n( ) and j
n( ) with the gradually decreasing iteration step (n)

towards the lattice boundary, where n = 1. Note that the tensors j
n( ) and j

n( ) are not

localized on single polygons only (as briefly depicted), but all of the tensors for n = 1,
2, K, n − 1 including p are recursively inherited in accord with equations (13)
and (14).
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for the case of W .p( ({ })) s Consequently, the relations (7) and (8) for the denominator
Wp( ({ })) s and the numerator W ,p( ({ })) s if formulated in the CTMRG language of the

(corner) transfer tensors, take the form
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The tensors j
n( ) and j

n( ) expand their sizes iteratively, following the recurrence relations
[4, 5]
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where the transfer tensors satisfy the cyclic condition .n n
0 p
( ) ( ) º The infinite TPS geometry

is built up gradually by increasing the iteration step n 2, ,= ¼¥ which induces an
exponential increase of the degrees of freedom of the (corner) transfer tensors. The
calculations are kept numerically feasible by means of the renormalization group procedure,
which integrates out the least probable configurations in the tensors determined by the
reduced density matrix [7, 8].

The recurrence relations are initialized in the first iteration step, n = 1 by construction of
the tensors j

n 1( ) = and j
n 1( ) = from the tensor p for all j = 1, 2,K, p. If the spin variables kis

are explicitly included in the tensors, we have
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Table 1. The full spin configurations for p = 4 sorted by θj. The last column lists the
reduced parameter set aℓ with ℓ j p jmin , .{ }= -

j W4(θj) j k k k k1 2 3 4{ }q s s s sº aℓ

0 W4(θ0) { }    a0
1 W4(θ1) { }    { }    { }    { }    a1
2 W4(θ2) { }    { }    { }    { }    a2
2′ W4(θ2′) { }    { }    a2¢

3 W4(θ3) { }    { }    { }    { }    a1
4 W4(θ4) { }    a0
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2.2. The tensor symmetries

As mentioned earlier, let the polygon base spin configuration k k k k1 2 p{ } ( )s s s sº  be given in
the spin-arrow notation. Let function θj return all such configurations for which the integer
number j counts the number of the spins aligned upward as listed in tables 1 and 2. Each line
in the tables contains such spin configurations, which are identical with respect to the rota-
tional symmetry operations of the p-sided polygon. We make a difference between the spin
configurations θj and jq ¢ when j = 2 (or j = 3 for the case of p = 5) as they are not rotationally
equivalent. The prime symbol is used for such configuration (and its rotations), in which
either the two (j = 2) or three (j = 3) spins, aligned upward in each polygon, cannot be
grouped together (or equivalently, if the alternating spin alignment is maximal).

As a consequence, we count six or eight distinguishable configurations 0 pq q for p = 4
and p = 5, respectively. These configurations determine the number of the variational
parameters Wp(θj) used in the calculation of the TFIM. If, however, the spontaneous sym-
metry-breaking does not affect the solution, the total number of the variational parameters
decreases down to four parameters for the Hamiltonian models (for both lattices p). Therefore,
the spin-inversion symmetry reduces the variational parameters due to the absence of the
preferred direction of the spontaneous magnetization. In particular, the spin configuration
probability for the pairs θ0 and θp, θ1 and θp−1, etc becomes identical, which can be formally
generalized into the equations

W W a

W W

,

1. 16

j p j j p j

j p j

p p min ,

p p( ) ( )
( ) ( )

( )

{ }

( )

q q

q q

= º

= º¢ ¢

- -

-

There are the three equations in the upper expression defining the new variational parameters
a0, a1, a2, and one equation in the lower expression for a ,2¢ which has already been eliminated
from the set of the free parameters by putting a 12 º¢ being the normalization condition inWp.
Hence, the three free variational parameters suffice to approximate the ground-state wave
function of the models with no spontaneous symmetry-breaking phases. For the same reason,
if we consider the system without the spin-inversion symmetry, there are either five or seven
free variational parameters for p = 4 or p = 5, respectively, excluding the normalization
parameter W 1.p 2( )q º¢

The number of the operations performed by the implementation of the Nelder–Mead
algorithm we used scales linearly with the number of the free variational parameters [11]. Of
course, increasing the number of the parameters prolongs the computational time, and may
encounter numerical instability caused by trapping the system in a local minimum of the

Table 2. The spin configurations for p = 5 as in table 1.

j W5(θj) j k k k k k1 2 3 4 5{ }q s s s s sº aℓ

0 W5(θ0) { }     a0
1 W5(θ1) { }     { }     { }     { }     { }     a1
2 W5(θ2) { }     { }     { }     { }     { }     a2
2′ W5 2( )q ¢ { }     { }     { }     { }     { }     a2¢

3 W5(θ3) { }     { }     { }     { }     { }     a2
3′ W5 3( )q ¢ { }     { }     { }     { }     { }     a2¢

4 W5(θ4) { }     { }     { }     { }     { }     a1
5 W5(θ5) { }     a0
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energy, rather than approaching to the correct global minimum, which corresponds to E .p
0
( )

On the other hand, a faster Nelder–Mead optimization enables to improve the accuracy by
increasing the number of the CTMRG states kept (the effective block spin states [7, 8]) and
make TPVF more efficient.

3. Numerical results

As we have mentioned earlier, we consider two types of the lattices. The Euclidean one is
defined on the regular square lattice characterized by p = 4, which serves as a reference for
the hyperbolic pentagonal lattice with p = 5 (see figure 1), which is of our main interest. First,
we start analyzing the ground-state properties of the TFIM in details, where the number of the
variational parameters Wp(θj) is either five (for p = 4) or seven (for p = 5), respectively,
excluding the normalization parameter W 1.p 2( )q º¢ We analyze the TFIM and its phase
transition by the following three ways: (1) by evaluating the optimized parameters Wp (θj), (2)
by the expectation value of the magnetization constructed from the ground state ,pY and (3)
by the ground-state energy per bond E p

0
( ) and its second derivative. Second, we reduce the

number of the free variational parameters down to three (if all symmetries are considered) and
calculate the ground-state energies of the XY and Heisenberg models.

In our numerical calculations we keep at most 20 effective block spin states [7], which is
sufficient to reach more than six-digit convergence in Wp( ({ })) s and W .p( ({ })) s Notice
that the numerical accuracy is mainly given by the uniform TPS approximation. Further
improvement of the numerical accuracy requires to consider a non-uniform TPS (i.e. violation
of the translational lattice symmetry), and a gradual expansion of the tensor order by
implementation of auxiliary variables [13] is necessary. This is, however, beyond the scope of
our interest.

Figure 5. The magnetic field dependence of the six variational parameters W4(θj) on the
reference square lattice (p = 4). The singular behavior corresponds to the phase
transition critical field hc

(4) ≈ 3.158.
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The Nelder–Mead algorithm has been tested for various initial conditions, most of them
leading to the identical results. Typically, we started with a simplex, where we set all the
coordinates of one of its vertices to unity (the vertex coordinates represent the free variational
parameters Wp(θj)). The initial simplex size was set to 0.1 [10, 11].

Figure 5 and 6 illustrate behavior of the optimized variational parameters Wp(θj) in the
TFIM with respect to the external magnetic field h for the particular lattice geometry p. It is
evident that above a certain magnetic field (depicted by the vertical dotted lines), specific
pairs of the variational parameters collapse onto identical values, which yields four single
curves in this region for both the lattices. These pairs are exactly those coupled by the system
of equations (16), i.e. those representing spin configurations which are equivalent with
respect to spin inversion. The magnetic field, at which the collapse causes a singular
behavior of Wp(θj), corresponds to the quantum phase transition of TFIM at the magnetic field
h ,p

c
( ) which we analyze below. In the ordered phase at h h ,p

c
( )< the distinct optimized values

of the coupled parameters Wp(θj), as specified in tables 1 and 2, reflect the existence of the
spontaneous symmetry-breaking in the TFIM for both the lattice types. In the disordered
phase at h h ,p

c
( ) the four-parameter description coincides with the free variational para-

meters a0, a1 a2, and the normalization parameter a .2¢ This confirms the relevance of the
additional symmetries in such systems, where the spontaneous symmetry-breaking mechan-
ism is not present, such as in the XY and Heisenberg systems at the zero magnetic field.

Having evaluated the optimized free variational parameters, we can easily reconstruct the
approximative eigenstate pY as the TPS and apply it for the evaluation of the spontaneous
magnetization

S
S

, 17
k

p

p p

p p

i ( )=
Y Y

Y Y
a

a

Figure 6. The magnetic field dependence of the eight variational parameters W5 (θj) on
the hyperbolic pentagonal lattice (p = 5) with the phase transition field h 3.264.c

5( ) »
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where α = x or z. The expectation value of the spin operator Ski

a is evaluated in the central part

of the lattice in order to suppress all boundary effects. Here, S z
p denotes the order parameter

of TFIM and specifies the quantum phase transition at the phase transition field. The resulting
dependence of magnetization S z

p and S x
p with respect to the magnetic field h is shown in

figure 7. The quantum phase transition is reflected by the singular behavior of all
magnetization profiles.

Analyzing the TFIM, we calculated h 3.158c
4( ) = for the Euclidean square geometry and

h 3.264c
5( ) = for the hyperbolic pentagonal lattice. The most relevant value of the critical

magnetic field for the TFIM on the 2D Euclidean lattice (as obtained by a recent tensor RG
algorithm) yields h 3.0439c

TRG = [16]. Since the TPS is built up by the tensors W4 of the too
low dimension, the long-range order correlations are excluded [6], and the mean-field-like
dependence near the phase transition is necessarily observed. The expectation value of the
magnetization S z

p obeys the scaling relation

S h h h . 18z p
p c

p( )( ) ( )( )µ -
b

The mean-field exponent p
1

2
b = is observed regardless of the lattice geometry. As a

reference, the numerical TRG analysis gives correct 0.32954
TRGb = on the square lattice (free

of any mean-field approximations), which is also in agreement with Monte Carlo simulations
[16]. The inset of figure 7 displays the magnetization squared, which confirms the mean-field-
like behavior for both p by its linear dependence on h if approaching the phase transition. The
blue dashed lines serve as guides for the eye in order to enhance the linearity.

A more detailed analysis of the TPVF approximation near the phase transition can be
visualized by evaluating the effective (field dependent) exponent h ,p

eff ( )( )b which converges to
βp when approaching the phase transition field h p

c
( )

Figure 7. The transversal S z
p and the parallel S x

p magnetizations with respect to the

magnetic field for both lattice geometries. The inset shows the mean-field dependence
of the magnetization when approaching the transition field; the linearity is depicted by
the blue dashed lines.
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h
S h

h h
lim lim

ln

ln
19

h h

p

h h

z

pp eff
p

c
p p

c c ( )( )
( )

( )( )
( )( ) ( )

b b= =
¶

¶ - 

as plotted in figure 8. The effective exponent obviously converges to the mean-field exponent
p

1

2
b = for both lattice types if the phase transition field is approached from the ordered

phase, i.e., if h hln .p
c( )( ) -  -¥ The inset shows the same dependence on larger scales.

The critical exponent on the square lattice (the black curve for p = 4) starts deviating at
around h > 2.0 from the expected exponent (estimated by the blue dashed curve), which is
known to converge to 0.32954

TRGb = [16].

Figure 8. The detailed dependence of the inverse effective magnetic exponent on the
magnetic field in the logarithmic form. The inset shows the effective exponent at wider
magnetic field scale. The blue dashed line estimates behavior of the correct effective
exponent for the Euclidean lattice.

Figure 9. The ground-state energy of the TFIM with respect to the magnetic field h. The
small difference between the two energies is plotted in the inset.
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The ground-state energies normalized per bond E p
0
( ) given by equation (9) are depicted in

figure 9. There is a tiny difference in both of the energies. Therefore, we plotted the energy
difference E E0

5
0

4( ) ( )- in the inset (which has no physical meaning) in order to point out the
difference. The two vertical lines in the inset correspond to the phase transitions (for reference
only). The magnetic susceptibility

E

h
20

p

p

2
0
2

( )
( )

c = -
¶
¶

is an independent physical quantity, which characterizes the phase transition. Figure 10 shows
the functional dependence of the susceptibility on the magnetic field. The calculation of χp

requires a precise data for the ground-state energy because of performing the second
derivative numerically. The shape of the non-diverging discontinuity in χp at the phase
transition magnetic field h p

c
( ) is the typical consequence of the mean-field universality.

The XY and the Heisenberg models are critical (at p = 4) at zero magnetic field.
Therefore, the full tensor symmetries are considered, see tables 1 and 2, resulting in the three
free variational parameters a0, a1, and a2 which is sufficient to obtain the ground-state energy

Figure 10. The magnetic susceptibility χp of the TFIM as a function of h for both
lattices.

Table 3. List of the optimized free variational parameters aj which minimize the
ground-state energy per bond E p

0
( ) on the square and pentagonal lattices for the XY and

Heisenberg models. The ground-state energies E0
MC on the square lattice are obtained

by Monte Carlo simulations [14, 15].

lattice p = 4 p = 5

model XY Heisenberg XY Heisenberg

a0 0.69333 0.50746 0.66001 0.48553
a1 0.88010 0.74826 0.83844 0.71804
a2 0.94236 0.83422 0.90733 0.80263
E p

0
( ) −1.0846 −1.3089 −1.0815 −1.2913

E0
MC −1.09765 −1.33887 — —
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per bond E .p
0
( ) Table 3 summarizes thus calculated optimized free variational tensor para-

meters and the energies. The comparison of E0
4( ) on the square lattice with the Monte Carlo

results by Sandvik [14, 15] serves as an estimate of the exact ground-state energy 0
5( ) for the

XY and the Heisenberg models on the hyperbolic pentagonal lattice, which has not been
determined yet.

4. Conclusions

We have applied the TPVF algorithm to the calculation of the quantum systems (transverse
field Ising, XY, and Heisenberg models) on the pentagonal hyperbolic lattice with the con-
stant negative Gaussian curvature and the coordination number fixed to four. As the reference
lattice, the Euclidean square lattice was taken. We have used the RG-based algorithm, which
approximates the ground state as the product of identical tensors representing the congruent
polygons; either squares (p = 4) or pentagons (p = 5) for the Euclidean or hyperbolic lattices,
respectively. We have analyzed the symmetries in the tensors. The uniform TPS reduces the
infinite number of the variational parameters in the thermodynamic limit down to six (for
p = 4) or eight (for p = 5) for the Ising model in the presence of the transverse magnetic field.
If no spontaneous symmetry-breaking mechanism is present, the number of the free varia-
tional parameters approximating the tensor product ground state further shrinks down being
three only. We have analyzed the phase transition of the Ising model by (1) the numerical
calculation of the optimized variational parameters, (2) the expectation value of the spin
polarization, (3) the phase transition magnetic exponent, (4) ground-state energy and the
magnetic susceptibility. The mean-field-like universality class was observed in the vicinity of
the phase transition magnetic fields h .p

c
( ) The ground-state energy per bond E p

0
( ) has been

evaluated for the XY model and the Heisenberg model for p = 4 and p = 5.
Our earlier studies of the classical spin lattice models on various types of the hyperbolic

surfaces [4–6] exhibited a couple of interesting features, which are important to mention here.
The classical Ising model on the pentagonal lattice results in a higher phase transition tem-
perature if compared to the Euclidean square lattice [5]. Analogously, the TFIM model in this
work also exhibits the identical feature, i.e., h h .c

5
c

4( ) ( )> Classical spin systems on any
hyperbolic lattice belong to the mean-field-like universality class in accord with the current
study. The mean-field-like behavior of the exponents in the classical systems originates from
the hyperbolic lattice geometry, not from the numerical CTMRG method; the CTMRG
accurately reproduces the critical exponents on the 2D Euclidean lattices [4–6]. The low
dimension of the tensors in the TPS approximation of the round-a-face type suppresses the
quantum long-range correlations on the square lattice (p = 4) near the criticality, where we
obtained hc

4( ) deviating by 3.7% if compared to the recent numerical analysis [16]. The
discrepancy is the consequence of the low dimension of the tensor W4 appearing in the
ground-state approximation, which limits the numerical accuracy if approaching the criti-
cality, and it results in the mean-field exponent .1

2
b = Therefore, it is essential to distinguish

between the mean-field approximation of the method used and the mean-field-like behavior
caused by the hyperbolic lattice geometry. That means that we have dealt with both of the
‘mean-field’ aspects in the current study. The physical reasoning of the mean-field-like
behavior caused by the hyperbolic lattice comes from the exceedance of the critical dimen-
sionality (being dc = 3 or dc = 4, respectively, for the classical or quantum systems with the
nearest-neighbor spin couplings). Notice that the Hausdorff dimension of the pentagonal
lattice is infinite.
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Strictly speaking, classical spin systems exhibit the phase transitions exclusively in the
center of the infinite hyperbolic lattices because of strong boundary effects. The ratio between
the number of the spins on the boundary with respect to the number of the spin on the
remaining lattice area inside is ≈2.73 for the pentagonal lattice. For this reason, the hyper-
bolic lattice becomes significantly sensitive to the boundary effects [18]. On the other hand,
the boundary effects on the Euclidean lattices play no role in the thermodynamic limit when
the lattice size is expanded to infinity. If calculating the correlation length ξ on the pentagonal
lattice (the distance between two spins measured along a geodesics) for the classical Ising
model, no divergence at the phase transition was present, i.e., 0 1x< [17]. Moreover, the
correlation function was found to decay exponentially even at the phase transition, which is
the direct consequence of the finiteness of the correlation length at the phase transition (and is
related to an analogous exponential decay of the density matrix spectra) [6]. In that sense, the
phase transition on pentagonal hyperbolic surface is non-critical, and we use the term critical
for the spin models on the square (Euclidean) lattice only since it is related to the divergence
of the correlation length by definition. The identical non-critical behavior for p = 5 has also
been confirmed in this work (for instance, by evaluating the non-divergent magnetic sus-
ceptibility at h p

c
( )). It is highly non-trivial to evaluate the correlation length unambiguously as

both of the ‘mean-field’ aspects are closely related and almost impossible to be clearly
separated or distinguished.

An exponentially fast decay of the reduced density matrix spectra has been observed for
the classical systems on hyperbolic surfaces [6, 17]. Similar behavior for the quantum systems
had to be taken into a possible scenario in the current work. For all the above-mentioned
reasons, we conjecture the TPFV analysis of the models on the hyperbolic pentagonal lattice
is more accurate than on the Euclidean ones. It is caused by the mean-field-like behavior (the
mean-field-like universality) as the consequence of the pentagonal hyperbolic lattice with the
infinite Hausdorff dimension, which has been studied by the numerical improved mean-field
approximation. Our preliminary results of the identical quantum Hamiltonian on different
hyperbolic lattices (to be published elsewhere) support our claims and are in complete
agreement with the conjectures we have made for the classical spin systems.
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