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2Department of Optics, Palacký University, 17. listopadu 1192/12, CZ-77146 Olomouc, Czech Republic

3RCQI, Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 84511 Bratislava, Slovakia
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We introduce the concept of boundariness capturing the most efficient way of expressing a given element of
a convex set as a probability mixture of its boundary elements. In other words, this number measures (without
the need of any explicit topology) how far the given element is from the boundary. It is shown that one of
the elements from the boundary can be always chosen to be an extremal element. We focus on evaluation of
this quantity for quantum sets of states, channels, and observables. We show that boundariness is intimately
related to (semi)norms that provide an operational interpretation of this quantity. In particular, the minimum error
probability for discrimination of a pair of quantum devices is lower bounded by the boundariness of each of
them. We proved that for states and observables this bound is saturated and conjectured this feature for channels.
The boundariness is zero for infinite-dimensional quantum objects as in this case all the elements are boundary
elements.
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I. INTRODUCTION

The experimental ability to switch randomly between
physical apparatuses of the same type naturally endows
mathematical representatives of physical objects with a convex
structure. This makes the convexity (and the intimately related
concept of probability) one of the key mathematical features
of any physical theory. Furthermore, the particular “convexity
flavor” plays a crucial role in the differences not only between
the types of physical objects, but also between the theories. For
example, the existence of nonunique convex decomposition
of density operators is the property distinguishing quantum
theory from the classical one [1].

Our goal is to study the convex structures that naturally
appear in the quantum theory and to illustrate the opera-
tional meaning of the concepts directly linked to the convex
structure. However, most of our findings are applicable for
any convex set. The main goal of this paper is to introduce
and investigate the concept of boundariness quantifying how
far the individual elements of the convex set are from its
boundary. Intuitively, the boundariness determines the most
nonuniform (binary) convex decomposition into boundary
elements; hence, it quantifies how mixed the element is. We
show that this concept is operationally related to specification
of the most distinguishable element (in a sense of minimum-
error discrimination probability). For instance, for states the
evaluation of boundariness coincides with the specification of
the best distinguishable state from the given one; hence, it is
proportional to trace distance [2].

The paper is organized as follows. Section II introduces the
concept of boundariness and related results in general convex
sets, the boundariness for quantum sets is evaluated in Sec. III,
and the relation to minimum-error discrimination is described
in Sec. IV. Section V briefly summarizes the main results.
The appendixes contain mathematical details concerning the
properties of weight function, characterization of the boundary
elements of all considered quantum sets, and numerical details
of the case study.

II. CONVEX STRUCTURE AND BOUNDARINESS

In any convex set Z we may define a convex preorder �C .
We say x �C y if x may appear in the convex decomposition
of y with a nonzero weight, i.e., there exist z ∈ Z such that
y = tx + (1 − t)z with 0 < t � 1. If x �C y, then y has x

in its convex decomposition; hence, (loosely speaking) y is
“more” mixed than x. The value of t (optimized over z) can be
used to quantify this relation. Namely, for any element y ∈ Z

we define the weight function ty : Z → [0,1] assigning for
every x ∈ Z the supremum of possible weights t of the point
x in the convex decomposition of y; i.e.,

ty(x) = sup

{
0 � t < 1

∣∣∣∣ z = y − tx

1 − t
∈ Z

}
.

Obviously, ty(y) = 1 and ty(x) = 0 whenever x �C y. In
order to understand the geometry of the optimal z for a given
pair of elements x,y, it is useful to express the element z

in the form z = y + t
1−t

(y − x). As t increases, z moves in
the direction of y − x until [for value t = ty(x)] it leaves the
set Z (see Fig. 1 for illustration). If the element z associated
with ty(x) is an element of Z, then it can be identified as a
boundary element of Z. The (algebraic) boundary ∂Z contains
all elements y for which there exists x such that x �C y (let
us stress this is equivalent with the definition used in Ref. [3]).
Hence, for each boundary element y the weight function
ty(x) = 0 for some x and also the opposite claim holds; i.e., if
there exists x ∈ Z : ty(x) = 0 then y ∈ ∂Z. As a consequence,
ty(x) > 0 ∀ x ∈ Z for all inner points y ∈ Z \ ∂Z.

This motivates a definition of boundariness,

b(y) = inf
x∈Z

ty(x),

measuring how far the given element of Z is from the boundary
∂Z. Suppose x ′ belongs to the line generated by x and y, i.e.,
x ′ = y − k(y − x) (x ′ = x for k = 1 and x ′ = y for k = 0).
Then ty(x ′) � ty(x) whenever k � 1 (see Fig. 1). Hence,
the infimum can be approximated again by some boundary
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FIG. 1. Illustration of elements z and x ′ emerging in the definition
of the weight function ty(x) and in the property ty(x ′) � ty(x),
respectively.

element of Z. In other words, the value of boundariness is
determined by the most nonuniform convex decomposition
of y into boundary elements of Z; i.e., y can be, in a
sense, approximated by expressions b(y)x + [1 − b(y)]z with
x,z ∈ ∂Z. Therefore, b(y) � 1/2. See Fig. 2 for illustration of
boundariness for simple convex sets.

Lemma 1. Let y ∈ Z. The inverse x �→ 1/ty(x) of the
weight function ty is convex, i.e.,

1

ty[sx1 + (1 − s)x2]
� s

ty(x1)
+ 1 − s

ty(x2)
,

for all x1, x2 �C y, and 0 � s � 1.
Proof. For every 0 < ti < ty(xi), i = 1,2 we define zi =

y − ti
1−ti

(xi − y) ∈ Z. Further, we define x = sx1 + (1 − s)x2

and z = uz1 + (1 − u)z2, where x, z ∈ Z because s ∈ [0,1]
and

u = s 1−t1
t1

s 1−t1
t1

+ (1 − s) 1−t2
t2

∈ [0,1]. (1)

See Fig. 3 for illustration. Straightforward calculation shows
that we may write y = tx + (1 − t)z, where t−1 = st−1

1 +
(1 − s)t−1

2 . From the definition of the weight function, we have
t � ty(x). Since this holds for all 0 < ti < ty(xi), i = 1,2, we
get [ s

ty (x1) + 1−s
ty (x2) ]

−1 � ty(x), which concludes the proof. �
The following proposition is one of the key results of this

section. It guarantees that one of the elements of the optimal
decomposition (determining the boundariness) can be chosen
to be an extreme point of Z. It is shown in Appendix A that,
whenever Z ⊂ Rn for some n ∈ N, the weight function ty
is continuous if (and only if) y ∈ Z \ ∂Z. Continuity of ty
is studied in the appendixes also in a slightly more general
context.

Proposition 1. Suppose that Z ⊂ Rn is a convex and
compact set. For every y ∈ Z \ ∂Z there exists an extreme
point x ∈ Z such that b(y) = ty(x).

Proof. The continuity implies that ty acquires its lowest
value on the compact set Z; i.e., b(y) = infx∈Z ty(x) =

FIG. 2. (Color online) Contour plots of boundariness for simple
convex sets. Let us note that the maximal value of boundariness is
not the same in all of them.

FIG. 3. Illustration of the proof of Lemma 1.

minx∈Z ty(x). Since y ∈ Z \ ∂Z, we have ty(x) > 0. Moreover,
because of the convexity of x �→ 1/ty(x) proven in Lemma 1,
it follows that

min
x∈Z

ty(x) =
[

max
x∈Z

1/ty(x)
]−1

=
[

max
x∈ext Z

1/ty(x)
]−1

= min
x∈ext Z

ty(x),

where ext Z denotes the set of extreme points of Z. �
The convex sets appearing in quantum theory are typically

compact and convex subsets of Rn, meaning that the above
proposition is applicable in our subsequent analysis. It is easy
to show that, in the context of Proposition 1, for any y ∈
Z \ ∂Z and x ∈ Z there exists an element z ∈ ∂Z such that
y = ty(x)x + [1 − ty(x)]z. This, combined with Proposition 1,
yields that for any y ∈ Z \ ∂Z there is x ∈ ext Z and z ∈ ∂Z

such that y = b(y)x + [1 − b(y)]z when Z is a convex and
compact subset of Rn.

Suppose that y ∈ Z \ ∂Z, where Z ⊂ Rn is a convex and
compact set. Let x ∈ ext Z be an element, whose existence
is guaranteed by Proposition 1, such that b(y) = ty(x). If one
had b(y) = 0, this would mean that ty(x) = 0, implying that x

does not appear in any convex decomposition of y. This yields
the counterfactual result y ∈ ∂Z. Hence, b(y) > 0 for any
nonboundary element y ∈ Z, and we see that, in the context of
Proposition 1, b(y) = 0 if and only if y ∈ ∂Z. Compactness
is an essential requirement for this property. Consider, e.g., a
convex set Z ⊂ Rn that has a direction; i.e., there is a vector
v ∈ Rn and a point y ∈ Z \ ∂Z such that y + αv ∈ Z for
all α > 0. Such set is not compact and one easily sees that
b(y) = 0.

Remark 1: Evaluation of boundariness. In practice, it is
useful to think about some numerical way to evaluate the
boundariness. It follows from the definition of boundariness
that for any element y ∈ Z written as a convex combination
y = tx + (1 − t)z with z ∈ ∂Z the value of t [being ty(x)
in this case] provides an upper bound on the boundariness;
hence, t ≡ ty(x) � b(y). Suppose we are given y and choose
some value of t . Recall that for a fixed y ∈ Z and for every
x ∈ Z the element zt (x) = (y − tx)/(1 − t) leaves the set Z

for t = ty(x). Therefore, if we choose t � b(y) implying t �
ty(x), then zt (x) ∈ Z for all x ∈ Z. However, if it happens that
t > b(y), then for some x we find t > ty(x) and, consequently,
zt (x) /∈ Z. Even more, according to Proposition 1 such x

[determining the element zt (x) out of Z] can be chosen to be
extremal. In conclusion, if t > b(y), then there exist x ∈ extZ
such that zt (x) = (y − tx)/(1 − t) /∈ Z.

This observation provides the basics of the numerical
method we used to test whether a given value of t coincides
with b(y). In particular, for any y we start with the maximal
value of t = 1/2 (if we do not have a better estimate) and
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decrease it until we reach the value of t for which zt (x) ∈ Z

for all x ∈ extZ. Equivalently, we may start with t = 0 and
increase its value until we find t for which zt+ε(x) /∈ Z for
some x ∈ extZ and ∀ ε > 0.

In what follows we formulate a proposition that relates the
value of boundariness to any (bounded) seminorm defined on
the (real) vector space V containing the convex set Z.

Proposition 2. Consider a (semi)norm p : V → [0,∞) such
that p(x) � a for all x ∈ Z with some a � 0. Then

p(x − y) � 2a[1 − ty(x)] � 2a[1 − b(y)] (2)

for all x, y ∈ Z.
Proof. Pick x, y ∈ Z. The last inequality in (2) follows

immediately from the definition of boundariness so we
concentrate on the first inequality. If ty(x) = 0 then the
claim is trivial and follows from the triangle inequality for
the seminorm. Let us assume that ty(x) > 0 and pick t ∈
[0,ty(x)). According to the definition of the weight function,
we have z(t) = (1 − t)−1(y − tx) ∈ Z. It follows that x − y =
(1 − t)[x − z(t)], yielding

p(x − y) = (1 − t)p(x − z(t)) � (1 − t)[p(x) + p(z(t))]

� 2a(1 − t).

As we let t to approach ty(x) from below, we obtain the first
inequality of (2). �

In Sec. IV we employ this proposition to relate the
concept of boundariness to the error rate of minimum-error
discrimination in cases of quantum convex sets of states,
channels, and observables. Briefly, the optimal values of
error probabilities are associated with the so-called base
norms [4,5]; thus, setting p(x − y) = ‖x − y‖Z in Eq. (2), we
obtain an operational meaning of boundariness. Let us stress
that the base norm ‖x − y‖Z can be introduced only if certain
conditions are met.

In particular, let us assume that the real vector space V

is equipped with a cone C ⊂ V ; i.e., C is a convex set such
that αv ∈ C for any v ∈ C and α � 0. Moreover, we assume
that C is pointed, i.e., C ∩ (−C) = {0}, and generating, i.e.,
C − C = V . Further, suppose Z ⊂ C is a base for C, i.e., Z is
convex and for any v ∈ C there are unique x ∈ Z and α � 0
with v = αx. Especially when x ∈ Z, there is no non-negative
factor α �= 1 such that αx ∈ Z. Moreover, it follows that
0 /∈ Z.

Let us note that all quantum convex sets are bases for
generating cones for their ambient spaces. For example, the
set of density operators S(H) on a Hilbert space H is the
base for the cone of positive trace-class operators which, in
turn, generates the real vector space of self-adjoint trace-
class operators. This is the natural ambient space for S(H)
rather than the entire space of self-adjoint bounded operators,
although the value for the boundariness of an individual state
does not change if the considered ambient space is larger than
the space of self-adjoint trace-class operators.

Whenever Z is a base of a generating cone in V one can
define the base norm ‖ · ‖Z : V → [0,∞). In particular, for
each v ∈ V

‖v‖Z = inf
λ,μ�0

{λ + μ|v = λx − μy for some x,y ∈ Z}.

By definition, ‖x‖Z � 1 for all x ∈ Z; hence, according to
Proposition 2,

‖x − y‖Z � 2[1 − b(x)]. (3)

If Z defines a base of a generating pointed cone in V the
weight function ty(x) has a relation to Hilbert’s projective
metric. Details of this relation are discussed in Appendix B.
Since members of a base Z can be seen as representatives of
the projective space PV , the projective metric also defines a
way to compare elements of Z which can be used to relate this
metric to distinguishability measures [5].

III. QUANTUM CONVEX SETS

There are three elementary types of quantum devices:
sources (states), measurements (observables), and transforma-
tions (channels). They are represented by density operators,
positive-operator valued measures, and completely positive
trace-preserving linear maps, respectively (for more details,
see, for instance, [6]).

A. States

Let us illustrate the concept of boundariness for the convex
set of quantum states, i.e., for the set of density operators,

S(Hd ) = {� : � � O,tr[�] = 1},
where � � O stands for the positive-semidefiniteness of the
operator �. Suppose that the Hilbert space Hd is finite
dimensional with the dimension d. The boundariness b(�)
determines a decomposition (it need not be unique) of the
state � into boundary elements ξ and ζ :

� = b(�)ξ + [1 − b(�)]ζ.

A density operator belongs to the boundary if and only if it has a
nontrivial kernel (i.e., it has 0 among its eigenvalues, for details
see Appendix C 1). In other words there exists vectors |ϕ〉 and
|ψ〉 such that ξ |ϕ〉 = 0 = ζ |ψ〉, respectively. Therefore,

λmin � 〈ψ |�|ψ〉 = b(�)〈ψ |ξ |ψ〉,
λmin � 〈ϕ|�|ϕ〉 = [1 − b(�)]〈ϕ|ζ |ϕ〉,

where λmin is the minimal eigenvalue of �. Moreover, since
〈ϕ|ζ |ϕ〉 � 1 and 〈ψ |ξ |ψ〉 � 1 (because � � I ) it follows that
boundariness is bounded in the following way:

λmin � b(�) � 1 − λmin. (4)

The upper bound in (4) holds trivially, because, in general,
the boundariness is smaller than or equal to 1/2. On the other
hand, the tightness of the lower bound (4) is exactly what we
are interested in.

Based on our general consideration (Proposition 1) we
know we may choose ξ to be the extremal element, i.e., a
one-dimensional projection. Set ξ = |ψ〉〈ψ |, where |ψ〉 is the
eigenvector of � associated with the minimal eigenvalue λmin.
Then

� = λmin|ψ〉〈ψ | + (1 − λmin)
� − λmin|ψ〉〈ψ |

1 − λmin
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is the convex decomposition of � into boundary elements
saturating the above lower bound; hence, we have just proved
the following proposition.

Proposition 3. The boundariness of a state � of a finite-
dimensional quantum system is given by

b(�) = λmin,

where λmin is the minimal eigenvalue of the density
operator �.

Thus, the minimal eigenvalue possesses a direct operational
interpretation of the mixedness of the density operator.
Indeed, the maximum b(�) = 1/d is achieved only for the
maximally mixed state � = 1

d
I . The infinite-dimensional case

is somewhat trivial, because, according to Proposition 1 in the
appendixes, all infinite-dimensional states are on the boundary;
i.e., ∂S(H∞) = S(H∞). Consequently, the boundariness of
any state in this case is zero.

B. Observables

In quantum theory, the statistics of measurements is fully
captured by quantum observables which are mathematically
represented by positive-operator valued measures (POVMs).
Any observable C with finite number of outcomes labeled
as 1, . . . ,n is represented by positive operators (called effects)
C1, . . . ,Cn ∈ L(H), such that

∑
j Cj = I . Suppose the system

is prepared in a state �. Then, in the measurement of C, the
outcome j occurs with probability pj = tr[�Cj ]. The set of
all observables with the fixed number n of outcomes is clearly
convex. We interpret C = tA + (1 − t)B as an n-outcome
measurement with effects Cj = tAj + (1 − t)Bj .

Let us concentrate on the finite-dimensional case H = Hd

and denote by σ (C) the union of all eigenvalues (spectra) of
all effects Cj of a POVM C and denote by λmin the smallest
number in σ (C). An observable C belongs to the boundary if
and only if [3] λmin = 0; this is also proved in Appendix C 2.
Using the same argumentation as in the case of states, we find
that

λmin � b(C). (5)

Suppose |ψ〉 is the eigenvector associated with the eigen-
value λmin of the effect Ck for some value of k ∈ {1, . . . ,n}.
Define an extremal (and projective) n-valued observable A (in
accordance with Proposition 1):

Aj =
⎧⎨
⎩

|ψ〉〈ψ | if j = k,

I − |ψ〉〈ψ | for unique j �= k,

O otherwise.
(6)

The observable B with effects

Bj = 1

1 − λmin
(Cj − λminAj )

belongs to the boundary because

(1 − λmin)Bk|ψ〉 = Ck|ψ〉 − λminAk|ψ〉 = 0;

hence, 0 ∈ σ (B). Using these two boundary elements of the
set of n-valued observables, we may write C = λminA +
(1 − λmin)B; hence, the lower bound (5) can be saturated and
we can formulate the following proposition.

Proposition 4. Given an n-valued observable C of a finite-
dimensional quantum system, the boundariness equals

b(C) = λmin,

where λmin is the minimal eigenvalue of all effects C1, . . . ,Cn

forming the POVM of the observable C.

C. Channels

Transformation of a quantum system over some time
interval is described by a quantum channel mathematically
represented as a trace-preserving completely positive linear
map. It is shown in Appendix C 3 that for infinite-dimensional
quantum systems the boundary of the set of channels coincides
with the whole set of channels; hence, the boundariness
(just like for states) vanishes. Therefore, we focus on finite-
dimensional quantum systems, for which the channels can be
isomorphically represented by so-called Choi-Jamiolkowski
operators. In particular, for a channel E on a d-dimensional
quantum system, its Choi-Jamiolkowski operator is the unique
positive operator E = (E ⊗ I)(P+), where P+ = |ψ+〉〈ψ+|
and |ψ+〉 = 1√

d

∑d
j=1 |j 〉 ⊗ |j 〉. By definition, E belongs to

a subset of density operators on Hd ⊗ Hd satisfying the
normalization tr1E = 1

d
I , where tr1 denotes the partial trace

over the first system (on which the channel acts).
While the extremality of channels is a bit more complicated

than for the states, the boundary elements of the set of channels
can be characterized in exactly the same way as for states. In
fact, E is a boundary element if and only if the associated Choi-
Jamiolkowski operator E contains zero in its spectrum (see
Appendix C 3). Given a channel E we may use the result (4)
derived for density operators to lower bound the boundariness

λmin � b(E), (7)

where λmin is the minimal eigenvalue of the Choi-
Jamiolkowski operator E. However, since the structures of
extremal elements for channels and states are different, the
tightness of the lower bound (7) does not follow from the
consideration of states. Surprisingly, the following example
shows that this is indeed not the case.

Case study: Erasure channels. Consider a qubit “erasure”
channel Ep transforming an arbitrary input state � into a
fixed output state ξp = p|0〉〈0| + (1 − p)|1〉〈1|, 0 < p < 1/2,
inducing Choi-Jamiolkowski operator Ep = ξp ⊗ 1

2I . In order
to evaluate boundariness of the channel Ep, according to
Proposition 1, it suffices to inspect convex decompositions

Ep = tF + (1 − t)G, (8)

where F corresponds to an extremal qubit channel and G is a
channel from the boundary. Our goal is to minimize the value
of t ≡ tEp

(F) over extremal channels F in order to determine
the value of boundariness.

The extremality conditions (linear independence of the
set {A†

jAk}jk) implies that extremal qubit channels can be
expressed via, at most, two Kraus operators Aj . Consequently,
the corresponding Choi-Jamiolkowski operators are either
rank-1 (unitary channels) or rank-2 operators. In what follows
we discuss only the analysis of rank-1 extremal channels,
because it turns out that they are minimizing the value of
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FIG. 4. (Color online) The strict difference between the bound-
ariness b (upper line) and minimal eigenvalue λmin (lower line) for
erasure channels is illustrated. Let us stress that the difference is not
negligible and it is maximal for value p = 1/4.

weight function tEp
(F). The details concerning the analysis

of rank-2 extremal channels (showing they cannot give
boundariness) are given in Appendix D.

Any qubit unitary channel F(ρ) = UρU † is represented
by a Choi-Jamiolkowski operator F = |U 〉〈U |, where |U 〉 =

1√
2
(|u〉 ⊗ |0〉 + |u⊥〉 ⊗ |1〉) is a maximally entangled state and

|u〉 ≡ U |0〉, |u⊥〉 ≡ U |1〉. Our goal is to evaluate t for which
the operator G specified in Eq. (8) describes the channel G
from the boundary. This reduces to analysis of eigenvalues
of (1 − t)G that reads {p,1 − p, 1

2 (1 − 2t − √
D), 1

2 (1 − 2t +√
D)}, where D = (1 − 2p)2 + 4t2. It is straightforward to

observe that they are all strictly positive for t < p(1 − p); thus,
the identity t = p(1 − p) defines the cases when channels G
belong to the boundary of the set of channels independently of
the particular choice of the unitary channel F . In conclusion,
all unitary channels determine the same value of t = p(1 − p);
hence, the boundariness of erasure channels equals b(Ep) =
p(1 − p).

The example of a qubit “erasure” channel Ep illustrates (see
Fig. 4) that, unlike for states and observables, the boundariness
of a channel E may differ from the lower bound (7) given by
the minimal eigenvalue of the Choi operator E. This finding
is summarized in the following proposition.

Proposition 5. For qubit “erasure” channels Ep with 0 <

p < 1/2 the boundariness is strictly larger than the minimal
eigenvalue of the Choi-Jamiolkowski operator. In particular,
b(Ep) = p(1 − p) > λmin = p/2.

Further, we investigate for which channels (if for any) the
lower bound on boundariness is tight, i.e., when b(Ep) = λmin.
A trivial example is provided by channels from the boundary
for which b(Ep) = λmin = 0, but are there any other examples?
Consider a channel E such that the minimal eigenvalue
subspace of the associated Choi-Jamiolkowski operator E

contains a maximally entangled state. Then a decomposition
with t = λmin exists and it corresponds to a mixture of a unitary
channel (extremal element) and some other channel from the
boundary. On the other hand, if the subspace of the minimal
eigenvalue of E does not contain any maximally entangled
state, it is natural to conjecture that the boundariness will be
strictly greater than λmin. The following proposition proves
that this conjecture is valid.

Proposition 6. Consider an inner element E of the set
of channels such that the minimal eigenvalue subspace of
its Choi-Jamiolkowski operator E does not contain any
maximally entangled state. Then its boundariness is strictly
larger than the minimal eigenvalue; i.e., b(E) > λmin.

Proof. We split the proof into two parts. First, we prove
tE (F) > λmin for any unitary channelF and then we prove it for
any other channel F . Let us write the spectral decomposition
of operator E as

E =
r∑

k=1

λkPk, (9)

where the eigenvalues λk > 0 are nondecreasing with k

(i.e., λ1 = λmin), Pk are the projectors onto eigensubspaces
corresponding to λk and

∑
k Pk = I is the identity operator

on Hd ⊗ Hd . Since E is an inner point λ1 �= 0. The Choi-
Jamiolkowski operators associated with unitary channels F
have the form F = |ϕ〉〈ϕ|, where |ϕ〉 is a maximally entangled
state. The assumption of the proposition implies that P1|ϕ〉 �=
|ϕ〉. In order to prove that tE (F) > λmin it suffices to show
that there exists t > λmin such that E − tF � 0 [implying
G = (E − tF )/(1 − t) describes a quantum channel G]. It is
useful to write

|ϕ〉 = √
α|v〉 + √

1 − α|v⊥〉, (10)

where 0 � α < 1, P1|v〉 = |v〉, and P1|v⊥〉 = 0. Define a posi-
tive operator X = λ1|v〉〈v| + λ2|v⊥〉〈v⊥| and write E − tF =
E − X + X − tF . The operator E − X is clearly positive.
Further, we show that X − tF is positive when we set
t = λ1λ2/[λ1 + (λ2 − λ1)α] > λmin and, as a consequence,
E − tF � 0. By definition, X − tF acts nontrivially in two-
dimensional subspace spanned by vectors |v〉 and |v⊥〉. Within
this subspace it has eigenvalues 0 and λ2 + λ1 − t > 0; hence,
it is positive. This concludes the first part of the proof
concerning decompositions with unitary channels.

Now let us assume that the channel F is not unitary.
Since the Choi-Jamiolkowski operator F associated with the
channel F is a density operator, it follows that its maximal
eigenvalue μmax � 1 (saturated only for unitary channels). Set
t = λmin/μmax. Then, for nonunitary channels t > λmin and
since 0 < λmin � 1/d2 � μmax, it follows that 0 < t � 1. For
all vectors |ϕ〉

〈ϕ|E − tF |ϕ〉 � λmin − λmin

μmax
μmax = 0, (11)

and, therefore, G = (E − tF )/(1 − t) � 0, too. As in the
first part of the proof, this means that tE (F) > λmin for
all nonunitary boundary channels F , because we found
decomposition E = tF + (1 − t)G with t > λmin.

The above two parts of the proof show that tE (F) > λmin for
the channel E of the claim and for any channel F . The claim
follows from the observation that, according to Proposition 1,
b(E) = tE (F) for some (extreme) channel F and, especially
for this optimal channel, tE (F) > λmin. �

IV. RELATION TO MINIMUM-ERROR DISCRIMINATION

Quantum theory is known to be probabilistic; hence,
individual outcomes of experiments have typically very limited
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(if any) operational interpretation. One example of this type
is the question of discrimination among a limited number
of quantum devices. In its simplest form the setting is the
following. We are given an unknown quantum device, which
is with equal prior probability either A or B (A and B are
known to us). Our task is to design an experiment in which we
are allowed to use the given device only once and we are asked
to conclude the identity of the device. Clearly, this cannot be
done in all cases unless some imperfections are allowed. There
are various ways to formulate the discrimination task.

The most traditional [1,2] one is aimed to minimize the
average probability of error of our conclusions. Surprisingly,
the success is quantified by norm-induced distances [7];
hence, the discrimination problem provides a clear operational
interpretation of these norms. We may express the optimal
error probability of minimum-error discrimination as

perror(A,B) = 1
2

(
1 − 1

2‖A − B‖) , (12)

where the type of the norm ‖A − B‖ depends on the considered
problem.

Recently, it was shown in Ref. [4] that in general convex
settings the so-called base norms are solutions to minimum-
error discrimination problems. In particular, it was also shown
that base norms coincide with the completely bounded (CB)
norms in the case of quantum channels, states, and observables;
thus, according to Proposition 2 and Eq. (3) the following
inequality holds:

‖A − B‖Z ≡ ‖A − B‖cb � 2[1 − b(A)] .

In rest of this section we illustrate that for quantum structures
the base norms (being completely bounded norms) and
boundariness are intimately related. We investigate how tight
the above inequalities are for particular quantum convex sets.

A. States

Let us start with the case of quantum states, for which
the CB norm coincides with the trace norm (see, for in-
stance, [4,7]), i.e., ||A||tr = tr[|A|]. Recall that the conclusion
of Proposition 2, when applied for states, is

‖� − ξ‖tr � 2[1 − b(�)]. (13)

Using the absolute scalability of the norm the roles of � and ξ

can be exchanged and from (12) and (13) it follows that

perror(�,ξ ) � 1
2 max{b(�),b(ξ )};

i.e., the mixedness of states measured by their boundariness
lower bounds the optimal error probability of discrimination
between them. Moreover, for a given state � we may write

min
ξ

perror(�,ξ ) � 1
2b(�),

hence interpreting the boundariness as the limiting value
of the best distinguishability of the state � from any other
state. In other words, the boundariness determines the in-
formation potential of the state as the distinguishability of
states is the key figure of merit for quantum communication
protocols [8].

As before, let |ψ〉 be the state for which �|ψ〉 = λmin|ψ〉.
It is straightforward to see that

‖� − |ψ〉〈ψ |‖tr = 2(1 − λmin).

Hence, the upper bound (13) can be saturated and we have
proven the following proposition.

Proposition 7. For a given state �,

sup
ξ

‖� − ξ‖tr = 2[1 − b(�)].

In particular, this implies that the states from the boundary
[with b(�) = 0] can be used as noiseless carriers of bits of
information as for each of them one can find a perfectly
distinguishable “partner” state.

B. Observables

For observables we may formulate an analogous result.
Proposition 8. Suppose that C is an n-valued observable.

Then

sup
A

‖C − A‖ = 2[1 − b(C)],

where ‖ · ‖ is the base norm (identified with completely
bounded norm) for observables.

Proof. We prove that A defined in Eq. (6) yields the
supremum of the claim. Let us recall that |ψ〉 (used in definition
of A) is the vector defined by the relation Ck|ψ〉 = λmin|ψ〉 for
some k. According to Proposition 2,

‖C − A‖ � 2(1 − λmin), (14)

where the norm ‖C − A‖ (the base norm = completely
bounded norm = diamond norm) can be evaluated as [4]

‖C − A‖ = sup
�

∑
j

|tr[�(Cj − Aj )]|.

Assuming � = |ψ〉〈ψ | we obtain

‖C − A‖ � 1 − λmin +
∑
j �=k

〈ψ |Cj |ψ〉

because 〈ψ |Aj |ψ〉 = 0 for j �= k, 〈ψ |Ak|ψ〉 = 1, and
〈ψ |Ck|ψ〉 = λmin. Moreover, since

∑
j �=k〈ψ |Cj |ψ〉 = 1 −

〈ψ |Ck|ψ〉 = 1 − λmin we find that for the chosen observables
C, A we have ‖C − A‖ � 2(1 − λmin). Combining this with
the lower bound (14) valid for any observable, we have proven
the proposition. �

C. Channels

For channels the boundariness is not given by minimal
eigenvalue of the Choi-Jamiolkowski operator. Actually, we
are missing an analytical form of the channel’s boundariness.
Hence, in general, the saturation of the inequality

sup
F

‖E − F‖cb � 2[1 − b(E)] (15)

is open and we chose to test the saturation of the bound for the
examples of quantum channels that we studied in Sec. III C. Let
us stress that analytical expressions of the completely bounded
norm are rather rare, but there exist efficient numerical methods
for its evaluation [9].
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For the qubit “erasure” channel Ep that transforms an
arbitrary input state � into a fixed output state ξp = p|0〉〈0| +
(1 − p)|1〉〈1| the completely bounded norm ‖Ep − F‖cb can
be expressed as

‖Ep − F‖cb = sup
‖ψ‖=1

‖(Ep − F) ⊗ I(|ψ〉〈ψ |)‖tr, (16)

where I is the qubit identity channel and |ψ〉 is a two-qubit
state. Choice of F = I and

|ψ〉 =
√

1 − p|0〉 ⊗ |0〉 + √
p|1〉 ⊗ |1〉 (17)

lower bounds the norm in (15) by 2[1 − p(1 − p)] as can
be seen by direct calculation. Due to the result b(Ep) =
p(1 − p) from Sec. III C this can be equivalently written
as 2[1 − b(Ep)] � supF ‖Ep − F‖cb, which implies that the
bound (15) is tight for the channel Ep.

Let us further consider the class of channels whose Choi
operator E contains some maximally entangled state |φ〉 in
its minimal eigenvalue subspace. For these channels b(E) =
λmin (see Sec. III C). Choose F to be a unitary channel,
i.e., F = |φ〉〈φ|, and set |ψ〉 = 1/

√
2(|0〉 ⊗ |0〉 + |1〉 ⊗ |1〉)

(maximally entangled state). Then

‖E − F‖tr = ‖(E − F) ⊗ I(|ψ〉〈ψ |)‖tr � ‖E − F‖cb,

and direct calculation gives ‖E − F‖tr = 2(1 − λmin) =
2[1 − b(E)]. Altogether, we have shown

2[1 − b(E)] � sup
F

‖E − F‖cb, (18)

which means that for this type of channels the bound (15) is
tight.

V. SUMMARY

Convexity is one of the main mathematical features of
modern science and it is natural to ask how the physical
concepts and structures are interlinked with the existing convex
structure. Using only the convexity we introduced the concept
of boundariness and investigated its physical meaning in
statistical theories such as quantum mechanics. Intuitively, the
boundariness quantifies how far an element of the convex set
is from its boundary. The definition of the boundary is based
solely on the convexity and no other mathematical structure of
the set is assumed.

We have shown that the value of boundariness b(y)
identifies the most nonuniform convex decomposition of inner
element y into a pair of boundary elements. Further, we showed
(Proposition 1) that for compact convex sets such optimal
decomposition is achieved when one of the boundary points is
also extremal. This surprising property simplifies significantly
our analysis of quantum convex sets and allows us to evaluate
the value of boundariness.

In particular, we have found that, in contrast to the case
of states and observables, for channels the general lower
bound on boundariness (b � λmin) given by the minimal
eigenvalue of the Choi-Jamiolkowski representation is not
saturated (see Sec. III). We illustrated this feature explicitly
for the class of qubit “erasure” channels Ep mapping whole
state space into a fixed state ξp = p|0〉〈0| + (1 − p)|1〉〈1|
(0 < p < 1/2). The boundariness of this channel was found

to be b(Ep) = p(1 − p) > λmin = p/2 (Proposition 5). We
showed that the saturation of the bound is equivalent with exis-
tence of maximally entangled state in the minimal eigenvalue
subspace of the channel’s Choi-Jamiolkowski operator. Let us
stress that the boundariness vanishes for infinite-dimensional
systems, because the associated convex sets contain no interior
points (discussed in Appendix B).

Concerning the operational meaning of boundariness, we
first demonstrated that the boundariness can be used to upper
bound any (semi)norm-induced distance, provided that the
(semi)norm is bounded on the convex set. An example of
such norm is the base norm which is induced solely by
the convex structure of the set. Recently, it was shown
in Ref. [4] that for the sets of quantum states, measure-
ments and evolutions base norms coincide with so-called
completely bounded norms. These norms are known [7,10]
to appear naturally in quantum minimum-error discrimina-
tion tasks. As a result, this connection provides a clear
operational interpretation for the boundariness as described
in Sec. IV.

More precisely, if we want to determine in which of the
two known (equally likely) possibilities A or B an unknown
state (or measurement, or channel) was prepared and given to
us, the probability of making an erroneous conclusion exceeds
one half times the boundariness for any of the elements A

and B. For a generic pair of possibilities A and B this bound
is not necessarily tight; however, if we keep A fixed, then
the boundariness of A is proportional to the minimum-error
probability discrimination of A and the most distinguishable
quantum device from A. To be precise, this was shown only for
states and observables (in which case the analytic formula for
boundariness was derived), but we conjecture that this feature
holds also for quantum channels. We verified this conjecture
for erasure channels and the class of channels containing
a maximally entangled state in the minimum eigenvalue
subspace of their Choi-Jamiolkowski operators.

In conclusion, let us mention a rather intriguing observation.
In all the cases we have met, the “optimal” decompositions
(determining the value of boundariness) contain pure states,
sharp observables, and unitary channels. In other words,
only special subsets of extremal elements (for observables
and channels) are needed. This is true for all states and
for all observables. The case of channels is open, but no
counterexample is known. This observation suggests that
the concept of boundariness could provide some operational
meaning to sharpness of observables and unitarity of evolution.

ACKNOWLEDGMENTS

The authors would like to thank Teiko Heinosaari for stimu-
lating this work and insightful discussions. This work was sup-
ported by COST Action No. MP1006 and VEGA 2/0125/13
(QUICOST). E.H. acknowledges financial support from the
Alfred Kordelin foundation. M.S. acknowledges support by
the Operational Program Education for Competitiveness-
European Social Fund (Project No. CZ.1.07/2.3.00/30.0004)
of the Ministry of Education, Youth and Sports of the Czech
Republic. M.Z. acknowledges the support of Projects GACR
P202/12/1142 and RAQUEL.

062303-7
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APPENDIX A: PROPERTIES OF THE WEIGHT FUNCTION

The purpose of this appendix is to prove results that are
needed for Proposition 1. Let us first recall a few basic
definitions in linear analysis. Suppose that V is a real vector
space. For a subset X ⊂ V we denote by VX the smallest
affine subspace of V containing X. For any x ∈ X, the linear
subspace VX − x is just the linear hull of X − x, where we
introduced the notation X − x ≡ {y − x | y ∈ X}. We say that
U ⊂ V is absorbing if for every v ∈ V there is α > 0 such
that α−1v ∈ U ; especially 0 ∈ U . The following lemma gives
another characterization for the boundary of a convex set Z,
which is useful for studying the continuity properties of the
weight function.

Lemma 2. Suppose that Z is a convex subset of a real vector
space V . An element y ∈ Z is inner, i.e., y ∈ Z \ ∂Z if and
only if Z − y is absorbing in the subspace VZ − y.

Proof. Let us assume that y is an inner point of Z and
suppose that v ∈ VZ − y. For simplicity, let us assume that v �=
0. The convexity of Z − y and the definition of VZ yield that
there are d+, d− ∈ Z − y and λ+, λ− � 0, where λ+ > 0 or
λ− > 0 such that v = λ+d+ − λ−d−. The fact that y is an inner
point implies that when d− ∈ Z − y, then ∃q > 0 such that
−qd− ∈ Z − y. Hence, v = αd, where α = λ+ + λ−/q > 0,
d = λ+

α
d+ + λ−

qα
(−qd−) ∈ Z − y, which proves that Z − y is

absorbing in VZ − y. Suppose now that Z − y is absorbing in
VZ − y and x ∈ Z, so that x − y = d ∈ Z − y. Also, −d ∈
VZ − y and because Z − y is absorbing, there is α > 0 such
that −α−1d ∈ Z − y, i.e., y − α−1d = z ∈ Z and

y = 1

1 + α
x + α

1 + α
z.

This means that for all x ∈ Z, x �C y, i.e., y /∈ ∂Z. �
The weight function can be associated with a function called

the Minkowski gauge. This connection gives more insight in
the properties of the weight function in the infinite-dimensional
case. When A is an absorbing subset of a real vector space W ,
we may define a function PA : W → R,

PA(w) = inf{α � 0 | α−1w ∈ A}, w ∈ W.

PA is called the Minkowski gauge of A. For basic properties
of this function, we refer to [11]. If A is convex, then PA is a
convex function, and

{v ∈ W | PA(v) < 1} ⊂ A ⊂ {v ∈ W | PA(v) � 1}.
When A is an absorbing convex balanced subset, PA has many
properties reminiscent to a norm, whose unit ball is A. When W

is a (locally convex) topological vector space, the Minkowski
gauge PA is continuous if and only if A is a neighborhood of
the origin.

Suppose that Z is a convex subset of a real vector space V

and y ∈ Z. The basis for connecting a Minkowski gauge to the
weight function ty is provided by the following observation:
Consider a vector y − x ∈ VZ − y, where x ∈ Z. As can be
seen from Fig. 5, the scaling factor α that shrinks or extends
this vector to the border of the set Z − y defines a point z(t),
which determines the value of the weight function ty . These
considerations can be formulated mathematically as follows.
Pick t ∈ [0,ty(x)) and define z(t) = (1 − t)−1(y − tx) ∈ Z.
Now z(t) − y = t(1 − t)−1(y − x) ∈ Z − y. As t approaches

FIG. 5. The scalar α extending y − x from the starting point y

to the boundary coincides with the Minkowski gauge PZ−y(y − x)
and the decomposition of y with respect to this boundary point and x

gives the value ty(x) of the weight function.

ty(x) from below, α(t) = (1 − t)/t decreases and from this we
see that [1 − ty(x)]/ty(x) = PZ−y(y − x) or, when we denote
the Minkowski gauge PZ−y : VZ − y → [0,∞) of Z − y by
py(x) ≡ PZ−y(y − x),

ty(x) = 1

1 + py(x)
. (A1)

According to Lemma 2 the gauge py is well defined, when
y ∈ Z \ ∂Z. From the convexity of the Minkowski gauge
we again see that x �→ 1/ty(x) = 1 + py(x) is convex on Z

whenever y ∈ Z \ ∂Z. We immediately see that, in the case
of a topological vector space V , whenever y ∈ Z \ ∂Z, the
weight function ty is continuous if and only if the Minkowski
gauge py is continuous, i.e., Z − y is a neighborhood of the
origin of VZ − y. In finite-dimensional settings, any convex
absorbing set is a neighborhood of origin (as one may easily
check). Thus, we obtain the following result needed for proving
Proposition 1.

Proposition 9. Suppose that Z ⊂ Rn for some n ∈ N. The
weight function ty is continuous if and only if y ∈ Z \ ∂Z.

The quantum physical sets of states, POVMs, and channels
are all compact (even in the infinite-dimensional case with
respect to suitable topologies), implying that, e.g., Proposition
1 is applicable for the sets of (finite dimensional) quantum
devices.

APPENDIX B: RELATION TO HILBERT’S
PROJECTIVE METRIC

The weight function is also related to the Hilbert’s projec-
tive metric. Suppose C ⊂ V is a pointed generating cone of a
real vector space V (see definition in Sec. II). We may define
the functions

inf(v/w) = sup{λ ∈ R | v − λw ∈ C},
sup(v/w) = inf{λ ∈ R | λw − v ∈ C},

v, w ∈ V . Through these functions, one can define
Hilbert’s projective metric h : V × V → [0,∞], h(v,w) =
ln [sup(v/w)/ inf(v/w)], which can be lifted into a well-
defined metric in the projective space PV ; for more on this
subject, see [5,12,13].

When Z is a base for C, one can easily show that, for
x, y ∈ Z, inf(y/x) = sup{t ∈ [0,1) | y − tx ∈ C}. Moreover,
if x, y ∈ Z and y − tx ∈ C for some t ∈ [0,1), then y − tx =
sz for some (unique) s � 0 and z ∈ Z. If s �= 1 − t , then one
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sees that both y ∈ Z and

1

s + t
y = t

s + t
x + s

s + t
z (B1)

belong to Z, contradicting the fact that Z is a base. Hence,
s = 1 − t and

inf(y/x) = sup{t ∈ [0,1) | y − tx ∈ (1 − t)Z} = ty(x).

Similarly, the convex function x �→ 1/ty(x) is associated with
the sup-function.

APPENDIX C: BOUNDARY OF QUANTUM CONVEX SETS

The question of the boundary elements for states, observ-
ables, and channels can be treated in a unified way as all
these objects can be understood as transformations represented
by completely positive linear maps. In this section, we give
conditions of being on the boundary for all relevant quantum
devices. For the sake of brevity, we characterize the boundary
for all relevant quantum convex sets in one go. This, however,
necessitates the use of a Heisenberg picture which is used only
in this section.

Let us fix a Hilbert space H and a unital C∗-algebra
A. We say that a linear map � : A → L(H) is completely
positive (CP) if for any n = 1, 2, . . . and a1, . . . , an ∈ A and
|v1〉, . . . , |vn〉 ∈ H,

n∑
j,k=1

〈vj |�(a†
j ak)|vk〉 � 0.

For any CP map � there is a Hilbert space M, a linear map J :
H → M, and a linear map π : A → L(M) such that π (1) =
IM, π (a†) = π (a)† and π (ab) = π (a)π (b) for all a, b ∈ A
(i.e., π is a unital *-representation of A on M) that constitute
a minimal Stinespring dilation for �. This means that �(a) =
J †π (a)J for all a ∈ A and the subspace of M generated by
the vectors π (a)J |v〉, a ∈ A, and |v〉 ∈ H is dense in M.

In what follows, we only study unital CP maps, i.e.,
�(1A) = IH. We denote the set of all unital CP maps � :
A → L(H) by CP(A;H). Since the set CP(A;H) is convex,
it is equipped with the preorder �C . We denote � =C � if
� �C � and � �C �. For any � ∈ CP(A;H) we may define
the set

F(�) = {� ∈ CP(A;H) | � �C �}.
Let us fix a minimal dilation (M,π,J ) for �. Let us define
F (�) as the set of positive operators E ∈ L(M) such that
Eπ (a) = π (a)E for all a ∈ A and J †EJ = I . The following
proposition is essentially due to [14].

Proposition 10. Suppose that � ∈ CP(A;H) is equipped
with the minimal dilation (M,π,J ). The sets F(�) and F (�)
are, in one-to-one correspondence, set up by

�(a) = J †π (a)EJ, � ∈ F(�), E ∈ F (�), (C1)

for all a ∈ A.
Lemma 3. Suppose that �,� ∈ CP(A;H) and fix the

minimal dilation (M,π,J ) for �. Now � =C � if and
only if there is E ∈ F (�) with bounded inverse such that
�(a) = J †π (a)EJ for all a ∈ A.

Proof. Case � = � is obvious. Let us concentrate on the
case � �= �.

Let us assume that � =C �. Because, especially, � �C �,
there is an operator E ∈ F (�) such that �(a) = J †π (a)EJ

for all a ∈ A. Denote the closure of the range of
√

E by ME

and the projection of M onto this subspace by PE . Since
E commutes with π , also PE commutes with π , and we
may define the map πE : A → L(ME), πE(a) = PEπ (a)|ME

.
Also define JE = √

EJ . It is straightforward to check that the
triple (ME,πE,JE) constitutes a minimal dilation of �. Since
also � �C � and � �= �, it follows that there is t ∈ (0,1)
and � ′ ∈ CP(A;H) such that � = t� + (1 − t)� ′. In other
words, there is a number t ∈ (0,1) such that the map � ′,

� ′(a) = 1

1 − t
(� − t�) = 1

1 − t
J †π (a)(E − tI )J, a ∈ A,

is completely positive or, equivalently, E � tI . Hence, E has
a bounded inverse.

Suppose that E ∈ F (�) is as in the first part of the proof
and E−1 ∈ L(M). From Proposition 10 it follows immediately
that � �C �. Denote E′ = PEE−1|ME

. We have E′ � 0,
J
†
EE′JE = J †J = I , and

E′πE(a) = PEE−1π (a)|ME
= PEE−1π (a)EE−1|ME

= PEE−1Eπ (a)E−1|ME
= PEπ (a)E−1|ME

= πE(a)E′

for all a ∈ A, so that E′ ∈ F (�) when we fix the dilation
(ME,πE,JE) for �. Furthermore,

J
†
EπE(a)E′JE = J †π (a)

√
EE−1

√
EJ = J †π (a)J = �(a)

for all a ∈ A. According to Proposition 10 this means that
� �C �. �

We denote the spectrum of an operator E ∈ L(M) on a
Hilbert space M by sp(E). The following proposition, which
is an immediate corollary of the previous lemma, characterizes
the boundary elements of the set of unital CP maps.

Proposition 11. Suppose that � ∈ CP(A;H). The map �

is on the boundary of CP(A;H) if and only if there is � ∈
CP(A;H) with a minimal dilation (M,π,J ) such that � �C

� and � corresponds to an operator E ∈ F (�) with 0 ∈ sp(E).
Proof. The condition � ∈ ∂CP(A;H) is equivalent with

the fact that there is � ∈ CP(A;H) such that � �C � but
� ��C �. Indeed, if � ′ ∈ CP(A;H) is such that � ′ ��C �,
we may define � = 1

2� + 1
2� ′ so that � �C �. Moreover, if

� �C �, it would follow that � ′ �C � �C �, yielding � ′ �
�, yielding a contradiction. Suppose that � ∈ CP(A;H) is
such that � �C � and � ��C � and � has the minimal
dilation (M,π,J ) and � corresponds to the operator E ∈
F (�) according to Eq. (C1). According to Lemma 3, the
condition � ��C � is equivalent to E not having a bounded
inverse or, in other words, 0 ∈ sp(E). �

The CP maps of quantum physics are normal. This is
because in this section we have described our quantum devices
jointly in the Heisenberg picture and, in order to transcend
to the Schrödinger picture, we generally need normality.
However, when H and A are finite dimensional the maps
� ∈ CP(A;H) are automatically normal. The results of this
section also hold for the restricted class of normal elements in
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CP(A;H) because this class is a face of CP(A;H); i.e., if �

is normal and �′ �C � then also �′ is normal.

1. States

Suppose that K is a Hilbert space. We denote the set of
states by S(K) containing positive trace-class operators on K
with trace 1. The states are in one-to-one correspondence with
the normal (completely) positive unital maps ϕ : L(K) → C,
i.e., the set of normal elements in CP(L(K);C).

Proposition 12. A state � ∈ ∂S(K) if and only if ρ has 0 in
its spectrum.

Proof. First, let us assume that dimK < ∞. Suppose that
� ∈ S(K) is such that there is a unit vector |v〉 ∈ K such
that �|v〉 = 0. Let us define the operator D = |v〉〈v| − (d −
1)−1(I − |v〉〈v|). Denote the smallest nonzero eigenvalue
of � by λmin. It is easy to see that whenever ε � λmin,
� + εD ∈ S(K), but � − εD is not positive for any ε > 0.
Hence, � ∈ ∂S(K).

Suppose now � ∈ ∂S(K), i.e., there is a state σ ∈ S(K)
such that when we denote D = σ − �, then � − εD is not
positive for any ε > 0. We may write K = K+ ⊕ K0 ⊕ K−,
where K+ is the direct sum of the eigenspaces corresponding
to the positive eigenvalues of D and K0 is the kernel of D.
We infer that K+ ∩ ker � is nontrivial and hence also ker � is
nontrivial. This means that 0 is an eigenvalue of �.

Now let us assume that K is infinite dimensional. Assume
that � ∈ S(K) would be in the interior, i.e., � /∈ ∂S(K).
Then, especially, |v〉〈v| �C � for all unit vectors |v〉 ∈ K.
Whenever λ|v〉〈v| � A for some λ > 0 and some positive
A ∈ L(K), it follows [15] that |v〉 ∈ ran(

√
A) or, in other

words, |v〉 = √
A|w〉 for some |w〉 ∈ K. In the case where A is

a state operator, this result was already proven in [16]. Hence,
ran(

√
�) = K; i.e.,

√
� is surjective. If � had a nontrivial

kernel, it could not be in the interior for then |v〉〈v| ��C �

for any unit vector |v〉 ∈ ker(�). Hence, ρ is injective and so√
� is injective as well. All this implies that

√
� : K → K is a

bijection and the open mapping theorem yields that there is a
continuous inverse

√
�−1 : K → K. Hence, there is a bounded

inverse �−1 = √
�−1√�−1. However, this is impossible, since

in the infinite-dimensional case all state operators have 0 in
their spectra. �

The previous proposition tells us that the boundary of the
set of states depends dramatically on the dimensionality of the
Hilbert space: If the space is finite dimensional, boundary
states are exactly those whose kernel is nontrivial. In the
infinite-dimensional case, the set of states coincides with its
boundary.

2. Effects and finite outcome observables

Denote � = {1, . . . ,N} and define ON (H) as the set
of POVMs on H and taking values in � (N -outcome
observables), i.e., M ∈ ON (H) is a collection M = {Mj }Nj=1

of positive operators on H such that
∑N

j=1 Mj = I . It should
be noted that whenever M ∈ ON (H), then M �C EN , where
EN = {EN

j }Nj=1, EN
j = N−1I for all j = 1, . . . ,N . Note that

we may identify ON (H) with the set of normal elements

in CP(AN,H), where AN is just the algebra CN with
componentwise operations.

Proposition 13. The boundary ∂ON (H) consists of POVMs
M = {Mj } with 0 ∈ sp(Mj ) for some j = 1, . . . , N .

Proof. Endow CN with an orthonormal basis {|1〉, . . . ,|N〉}
and denote Pr = |r〉〈r|, r = 1, . . . ,N . Define the PVM
Q ∈ ON (H ⊗ CN ), Qr = I ⊗ Pr , r = 1, . . . ,N , and the
isometry J : H → H ⊗ CN , J |v〉 = N−1/2|v〉 ⊗ (|1〉 + · · · +
|N〉). It is immediately seen that (H ⊗ CN,Q,J ) is a minimal
dilation of EN = {N−1I, . . . ,N−1I }, i.e., J †QrJ = N−1I ,
r = 1, . . . ,2. Let F (EN ) be the set of positive operators E on
H ⊗ CN that commute with Q and J †EJ = I so that ON (H)
is in one-to-one affine correspondence with F (EN ). It follows
that F (EN ) consists of operators of the form

∑N
j=1 Aj ⊗ Pj ,

where Aj ∈ L(H) are positive operators with Aj � 2I . Any
M ∈ ON (H) corresponds to such an operator, where Aj =
2Mj . A POVM M is thus on the boundary if and only if the
corresponding operator 2

∑N
j=1 Mj ⊗ Pj has 0 in its spectrum.

This happens exactly when 0 ∈ sp(Mj ) for some j . �
It is often denoted O2(H) = E(H) and E ∈ E(H) are called

effects. An effect E = {E1,E2} ∈ E(H) is usually identified
with its value E1 and hence effects are characterized as positive
operators E ∈ L(H) with E � I . One easily sees from the
previous proposition that an effect E is on the boundary if and
only if 0 ∈ sp(E) or 1 ∈ sp(E).

3. Channels

In this section, we assume that H and K are (separable)
Hilbert spaces. We denote by C(K;H) the set of (normal) unital
CP maps E : L(K) → L(H) and call these maps as channels.
Note the the physical input space of these channels is H and
output is K. The minimal Stinespring dilation (M,π,J ) of a
channel E ∈ C(K;H) can be chosen so that M is separable
and π : L(K) → L(H) is a normal unital *-representation.
This means that there is a separable Hilbert space K′ such
that we may choose M = K ⊗ K′ and π (B) = B ⊗ IK′ for all
B ∈ L(K). Hence, we usually denote a minimal Stinespring
dilation of a channel E in the form (K′,J ), where J : H →
K ⊗ K′ is an isometry such that

E(B) = J †(B ⊗ IK′ )J, B ∈ L(K).

Suppose that K is infinite dimensional and E ∈ C(K;H) \
∂C(K;H). For each unit vector |v〉 ∈ K define the chan-
nel F |v〉 ∈ C(K;H) by F |v〉(B) = 〈ϕ|Bϕ〉I . The predual
map F |v〉

∗ : T (H) → T (K) of F |v〉 is given by F |v〉
∗ (T ) =

tr[T ]|v〉〈v| for all trace-class operators T ∈ T (H). It follows
that F |v〉 �C E for all unit vectors |v〉 ∈ K, which means that
for all unit vectors |v〉 ∈ K there is a number t|v〉 ∈ (0,1] such
that for all positive T ∈ T (H) and B ∈ L(K) one has

tr[T (E − t|v〉F |v〉)(B)] = tr[B(E∗ − t|v〉F |v〉
∗ )(T )] � 0,

yielding t|v〉F |v〉
∗ (T ) � E∗(T ). By picking a positive operator T

of trace one, we find that |v〉〈v| �C E∗(T ) for all unit vectors
|v〉 ∈ K when E∗(T ) is considered as a state. As in the proof
of Proposition 12, one can show that this result leads into a
contradiction. This means that if K is infinite dimensional,
C(K;H) coincides with its boundary.
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Suppose that dimK = d < ∞ and fix an orthonormal basis
{|n〉}dn=1 ⊂ K. Define for each F ∈ C(K;H) the Choi operator

E(F) = d

d∑
m,n=1

|m〉〈n| ⊗ F(|m〉〈n|) ∈ L(K ⊗ H).

Define the vector |ψd〉 = d−1/2(|1,1〉 + · · · + |d,d〉) ∈ K ⊗ K
and the isometry J : H → K ⊗ K ⊗ H with J |v〉 = |ψd〉 ⊗
|v〉 for all |v〉 ∈ H. One can easily check that the pair
(K ⊗ H,J ) constitutes a minimal dilation for the channel E ∈
C(K;H), E(B) = d−1tr[B]IH. Suppose that F ∈ C(K;H). We
find

J †[B ⊗ E(F)]J = d

d∑
m,n=1

〈ψd |B ⊗ |m〉〈n||ψd〉F(|m〉〈n|)

=
d∑

m,n,r,s=1

〈r|B|s〉〈r|m〉〈n|s〉F(|m〉〈n|)

=
d∑

m,n=1

〈m|B|n〉F(|m〉〈n|) = F(B)

for all B ∈ L(K). This means that C(K;H) = F(E) when K
is finite dimensional and the operator on the dilation space
of E corresponding to a channel F ∈ C(K;H) is the Choi
operator. Hence, we can give the following characterization
for boundary channels:

Proposition 14. Suppose that dim (K) < ∞. A channelF ∈
C(K;H) is on the boundary ∂C(K;H) if and only if the Choi
operator E(F) has 0 in its spectrum.

In the case when both dimK = dK and dimH = dH are
finite, the above result means that a channel is on the boundary
if and only if its Kraus rank is strictly less than dKdH. Suppose
now that {|m〉}dHm=1 ⊂ H is an orthonormal basis. Since E(F)
is positive for any channel F , we may give it the spectral
decomposition E(F) = dK

∑r
j=1 |Lj 〉〈Lj |. Let us define the

operators Lj = ∑dH
m=1

∑dK
n=1〈n,m|Lj 〉|m〉〈n|. One may check

that the operators Kj = L
†
j constitute a minimal set of Kraus

operators for F , i.e., F(B) = ∑r
j=1 K

†
jBKj . Moreover, the

more familiar Choi operator associated with the Schrödinger
(predual) version of F is given by

C(F∗) =
dH∑

m,n=1

|m〉〈n| ⊗ F∗(|m〉〈n|) =
r∑

j=1

|Kj 〉〈Kj |,

where |Kj 〉 = ∑dH
m=1

∑dK
n=1〈n|Kj |m〉|m,n〉 = ∑dH

m=1

∑dK
n=1〈Lj |n,m〉 |m,n〉, |Kj 〉 ∈ H ⊗ K. Let us note that orthogonality

of vectors |Lj 〉 implies the orthogonality of vectors |Kj 〉, while
their norm 〈Lj |Lj 〉1/2 = 〈Kj |Kj 〉1/2 is the same. Hence, we
demonstrated the following.

Proposition 15. Suppose that dimK = dK and dimH = dH
are finite. A completely positive trace-preserving map (i.e., a
channel in the Schrödinger picture) is on the boundary of the
set of channels if and only if the rank of its Choi operator is
strictly less than dKdH.

Thus, also in the Schrödinger picture the channel is on the
boundary, when zero is the spectrum of its Choi operator.

APPENDIX D: EVALUATION OF BOUNDARINESS
FOR A QUBIT “ERASURE” CHANNEL

The aim of this appendix is to study two-element convex
decompositions of the channel Ep into extremal rank-2 qubit
channels F and channels G. Any such channel F has a Choi
matrix, which can be written in the spectral form,

F = 1
2 (1 + q)|ψ〉〈ψ | + 1

2 (1 − q)|φ〉〈φ|, (D1)

where |ψ〉,|φ〉 are mutually orthogonal unit vectors on H2 ⊗
H2 and 0 � q < 1; hence, tr[F ] = 1. Vectors |ψ〉,|φ〉 can be
written in the Schmidt form,

|ψ〉 = √
s|u〉|v〉 + √

1 − s|u⊥〉|v⊥〉, (D2)

|φ〉 = √
r|w〉|v′〉 + √

1 − r|w⊥〉|v′
⊥〉, (D3)

with 1/2 < s � 1 and 0 � r � 1. Let us note that s = 1/2
does not correspond to an extremal channel, but to a mixture
of unitary channels (i.e., it leads to r = 1/2). The condition
tr1F = 1

2I requires that |v′〉 = |v〉 and

r = 1 − (1 + q)s

1 − q
. (D4)

The orthogonality 〈ψ |φ〉 = 0 gives

0 = √
sr〈u|w〉 +

√
(1 − s)(1 − r)〈u⊥|w⊥〉. (D5)

For any two states of a qubit it holds that |〈u|w〉| = |〈u⊥|w⊥〉|.
Thus, Eq. (D5) can be satisfied only in two ways: (i) 〈u|w〉 =
−〈u⊥|w⊥〉 and rs = (1 − s)(1 − r), which is, according to
Eq. (D4), equivalent to q = 0; (ii) both overlaps in Eq. (D5)
vanish.

Let us start with case (i), i.e., both nonzero eigenvalues
of Choi operator F are equal to 1/2 and the scalar products
of vectors u,v and u⊥,v⊥ have opposite sign. Since channel G
must belong to the boundary of the set of channels, there exists
a normalized vector |ϕ〉 from the kernel of G, i.e., 〈ϕ|G|ϕ〉 =
0. We compute the expectation value of Ep along the vector
|ϕ〉. Using Eq. (8) we get

p

2
� 〈ϕ|Ep|ϕ〉 = t〈ϕ|F |ϕ〉 = tc, (D6)

where the lower bound on the left follows from the eigenvalues
of Ep being greater or equal to p/2 and we denoted c ≡
〈ϕ|F |ϕ〉. We notice that 0 < c � 1/2, because F is positive
semidefinite and its eigenvalues are zero and 1/2. From
Eq. (D6) we get the lower bound t � p/(2c) � p > p(1 − p).
In other words, the weight function tEp

(F) gives on these
channels F values higher then p(1 − p). Thus, we conclude
that the convex decompositions (8) with rank-2 channels F
having 〈u|w〉 �= 0 cannot achieve as small value of t as it is
achieved by the unitary channels.

So let us investigate case (ii) and assume 〈u|w〉 = 0.
Our aim is to show that also in this case t > p(1 − p).
Unfortunately, we were not able to solve this part of the
problem completely analytically and we had to rely on
numerical approach outlined in Remark 1. Thus, the test
whether the Choi operators G generated by operators F

and the weight p(1 − p) correspond to channels was done
numerically. More precisely, for t = p(1 − p) we calculated
the smallest eigenvalues of G for many choices of F from
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the current subclass of extremal rank-2 qubit channels and we
confirmed that, in all cases, the obtained value is non-negative;
i.e., G always corresponded to a channel. Below are some
details on how the actual test was done.

Without loss of generality, we can write

|φ〉 = √
r|u⊥〉|v〉 + eiα

√
1 − r|u〉|v⊥〉. (D7)

The Choi operator Ep is invariant under the unitary transforma-
tions I ⊗ V on the input Hilbert space. These transformations
do not change eigenvalues, so to investigate eigenvalues
of G we can equivalently investigate (I ⊗ V ) G (I ⊗ V †),
which, for V |v〉 = |0〉, is the same as choosing |v〉 = |0〉 in
Eqs. (D2) and (D7) and working directly with G. Moreover,
we parametrize the vectors |u〉, |u⊥〉 as

|u〉 = cos
θ

2
|0〉 + eiβ sin

θ

2
|1〉,

(D8)

|u⊥〉 = eiγ sin
θ

2
|0〉 − ei(γ+β) cos

θ

2
|1〉.

In this way operator

G = 1

1 − p(1 − p)
[Ep − p(1 − p)F ] (D9)

further specified by Eqs. (D1) and (D2), (D4), (D7), and (D8),
and |v〉 = |0〉 becomes a function of parameters q,s,α,β,γ,θ .
Let us note that Eq. (D4) requires parameters q and s to fulfill
s � 1/(1 + q), since one must have r � 0. Especially, q → 1
requires s → 1/2 and the operator F converges to a Choi
operator of a unitary channel. In such case we expect that λG,
the minimal eigenvalue of G, will converge to zero, because G
must converge to a boundary in the set of channels.

For this reason it is useful to plot λG as a function of q

for some choice of remaining parameters (see Fig. 6). By
numerically analyzing the actual dependence of the graphs
on the parameters s,α,β,γ,θ we observed that for a fixed q

FIG. 6. (Color online) Illustration of the dependence of the min-
imal eigenvalue λG of operator G on the parameter q depicted for
different values of the remaining parameters s, α, β, γ, θ , and p.

the minimum and the maximum value of λG can be achieved
only when s = 1/(1 + q) and θ = 0; θ = π/2, respectively.
In such case, parameters α, β, and γ do not influence λG and
it can be calculated analytically. The obtained dependencies
Gmin(p,q) and Gmax(p,q) are visualized on Fig. 6 as red
lines, which form the boundary of the area where λG, the
minimal eigenvalue of G, lies for any possible choice of its
parameters. We can show that the minimum of Gmin(p,q)
is zero and it is achieved only for q = 1 corresponding to
a unitary channel F . Similarly, all the blue points in the
Fig. 6 corresponding to the minimal eigenvalue of G for some
choice of its parameters were having λG > 0, which proves that
G � 0 in the considered range of parameters q,s,α,β,γ,θ . In
conclusion, we proved that the boundariness is indeed achieved
for decompositions containing at least one unitary channel;
thus, it reads b(Ep) = p(1 − p).
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