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Spin relaxation of a single electron in a weakly coupled dou-
ble quantum dot is calculated numerically. The phonon-assisted
spin flip is allowed by the presence of the linear and cubic spin–
orbit couplings and nuclear spins. The rate is calculated as a
function of the interdot coupling, the magnetic field strength
and orientation, and the dot bias. In an in-plane magnetic field,
the rate is strongly anisotropic with respect to the magnetic
field orientation, due to the anisotropy of the spin–orbit interac-

tions. The nuclear spin influence is negligible. In an out-of-plane
field, the nuclear spins play a more important role due selection
rules imposed on the spin–orbit couplings. Our theory shows
a very good agreement with data measured by Srinivasa et al.
[Phys. Rev. Lett. 110, 196803 (2013)], allowing us to extract
information on the linear spin–orbit interactions strengths in
that experiment. We estimate that they correspond to spin–orbit
lengths of about 5–15 �m.

1 Introduction Semiconductor heterostructure based
quantum dots with confined electronic spins are among the
most prominent platforms of spitronics [1, 2] and quantum
information related technology [3–6]. The lifetime of infor-
mation stored in a quantum dot spin qubit is limited by the
spin relaxation [7, 8] and decoherence [9, 10]. Whereas the
latter, mostly due to nuclear spins [11], can be suppressed by
spin echo protocols [12], the former is fundamentally limited
by the relaxation through phonons [13–16].

Phonons do not couple to the electron spin directly.
The spin relaxation is enabled by the spin–orbit inter-
actions [13, 17–21] or nuclear spins [11, 22]. Since these
spin-dependent interactions are weak, compared to the con-
finement energy, the spin relaxation is very slow (may reach
even seconds), which was one of the original motivations
to consider spin qubits. The exception happens at points in
the parameter space where levels (anti)cross. Here the spin
relaxation rate is strongly enhanced, by orders of magnitude.
Such points are called spin hot-spots.

The important influence that the spin hot-spots might
imply on the spin relaxation was recognized in bulk metals
[23] and in quantum dots [24, 25]. In the latter, this influence

is predicted to result in a very strong anisotropy in the
spin lifetimes and the exchange interaction, which should
be present generally, for various dot materials and charge
occupations [26–29]. However, it is only recently that spin
hot spots were experimentally established in gated Si and
GaAs quantum dots [30, 31].

Motivated by these recent experiments, here we inves-
tigate the spin relaxation in a single electron biased weakly
coupled double dot in GaAs [32–39]. This complements our
studies of single electron unbiased double dots [15, 25, 26]
and two electron biased double dots [28]. We investigate
the relaxation rates anisotropy with respect to the in-plane
magnetic field orientation, and compare the spin–orbit and
nuclear fields effectiveness to induce the electron spin relax-
ation in in-plane and out-of-plane magnetic fields. We explain
the observed relaxation rate intricate behavior by examining
different channels that contribute to the total rate. Finally, we
extract typical spin–orbit lengths in a GaAs quantum dot by
fitting data from a recent experiment [31].

We organize the paper as follows. The model of the dou-
ble dot, material parameters, and the numerical technique
used for computation are outlined in Section 2. Section 3
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Figure 1 The orientation of the potential dot minima (denoted as
the two circles) with respect to the crystallographic axes (x = [100]
and y = [010]) is defined by the angle δ. The magnetic field orien-
tation is given by the angle γ . The electric field E is parallel to d.

contains the numerical results for the relaxation rate for an
in-plane magnetic field, and perpendicular field, comparison
of the spin–orbit and nuclear effectiveness, and the fit of the
experimental data from Ref. [31].

2 Model We consider a GaAs/AlGaAs heterojunction
with growth direction ẑ = [001]. The electrons at the inter-
face are further confined by the electrostatic field of top
gates. Using the envelope function approximation, the two-
dimensional Hamiltonian of a single electron in a biased
double dot reads as

H = T + V + HZ + Hso + Hnuc. (1)

Here T = P2/2m is the kinetic energy with the elec-
tron effective mass m, and the kinematic momentum P =
−i�∇ + eA, where e is the proton charge. The two dimen-
sional vector potential reads A = − (yBz/2) x̂ + (xBz/2) ŷ,
where x̂ = [100] and ŷ = [010]. The magnetic field is B =(
B‖ cos γ, B‖ sin γ, Bz

)
, where γ is the angle between the

in-plane component of the magnetic field and the [100]-
direction. The orbital effects of the in-plane magnetic field
are neglected [15]. The in-plane position vector is r = (x, y).
The double dot is defined by the bi-quadratic confinement
potential [40–42]:

V = �
2

2ml4
0

min
{

(r − d)2
, (r + d)2

} + eE · r. (2)

For zero electric field E, the potential minima are located
at ±d, and we call 2d/l0 the (dimensionless) interdot dis-
tance. The angle between d and [100] is denoted as δ. The
potential strength is characterized by the confinement energy
E0 = �2/ml2

0, with the confinement length l0. The electric
field E applied along d leads to an energy offset between the
potential minima, ε = 2eEd, which we call bias in further.
The geometry is summarized in Fig. 1.

The Zeeman term reads

HZ = g

2
μBB · σ, (3)

where g is the effective conduction band g factor, μB is the
Bohr magneton, and σ is the vector of the Pauli matrices.

The spin–orbit coupling, Hso = Hbr + Hd + Hd3, con-
sists of three terms, the Bychkov–Rashba, the linear,
and the cubic Dresselhaus spin–orbit coupling [1, 2]. The
Bychkov–Rashba Hamiltonian, arising from the heterostruc-
ture asymmetry, reads as [43]

Hbr = �

2mlbr

(
σxPy − σyPx

)
, (4)

where the strength is parameterized by the spin–orbit length
lbr. The bulk inversion asymmetry of the zinc-blende struc-
ture enables the Dresselhaus interaction [44]. It consists of
two terms: linear and cubic (referring to the power of the
momentum operator),

Hd = �

2mld

(−σxPx + σyPy

)
, (5)

Hd3 = γc

2�3

(
σxPxP

2
y
− σyPyP

2
x

) + H.c., (6)

respectively. The linear term is parameterized by the spin–
orbit length ld, and γc is a material parameter.

The last term in Eq. (1) describes the hyperfine interac-
tion of the confined electron with the lattice’s nuclei [45, 46],

Hnuc = β
∑

n

In · σδ (R − Rn) , (7)

where β is a constant, and In and Rn are the spin and the
position of the n-th nucleus. Here the vectors of position
are three-dimensional, R = (r, z). The electron wavefunc-
tion along the growth direction, Ψ (z), defines an effective
width hz = (∫

dz|Ψ (z)|4
)−1

[47]. We assume Ψ (z) to be the
ground state of a hard-wall confinement of width w, and get
hz = 2w/3.

The relaxation is enabled by acoustic phonons. The
electron-phonon interaction Hamiltonian reads as

Hph = i
∑
Q,λ

√
�Q

2ρVcλ

VQ,λ

(
b
†
Q,λe

iQ·R − bQ,λe
−iQ·R)

, (8)

with λ = l, t1, t2 denoting the polarization of the phonons
(one longitudinal and two transverse). The three-dimensional
phonon wave vector is Q. The phonon creation and anni-
hilation operator is given by b and b†, respectively. The
mass density of the crystal is ρ, its volume is V , and the
sound velocities are cλ. The deformation potential is VQ,λ =
σeδλ,l and the piezoelectric potential is VQ,λ = −ieh14Nλ/Q

3

with Nλ = 2
(
qxqyê

λ
z
+ qzqxê

λ
y
+ qyqzê

λ
x

)
. The unit polariza-

tion vector is êλ.
The relaxation rate for the transition from state |i〉 to

|f 〉 is calculated using the Fermi’s Golden Rule in the zero
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Figure 2 Calculated energy spectrum of a GaAs double dot as a
function of the bias ε in an in-plane magnetic field B of 7 T with
δ = γ = 45◦ and t = 0.01 meV. The states are labeled according to
their spin orientation and parity at ε = 0 (unprimed for even, primed
for odd). The inset magnifies the anticrossing. The arrows denote
the transitions that contribute to the measured relaxation rate.

temperature limit,

Γif = π

ρV

∑
Q,λ

Q

cλ

|VQ,λ|2|Mif |2δ
(
Eif − EQ

)
, (9)

where Mif = 〈
i
∣∣eiQ·R∣∣ f

〉
is the transition matrix element,

and Eif is the energy difference between |i〉 and |f 〉. To incor-
porate nuclei, we average the relaxation rate in Eq. (9) over
several (typically 50) random configurations of an unpolar-
ized nuclear bath – see Ref. [28] for details.

In numerics, we use the material parameters of bulk
GaAs: m = 0.067me, where me is the free electron mass, g =
−0.44, ρ = 5300 kg m−3, cl = 5290 m s−1, ct = 2480 m s−1,
γc = 27.5 eV Å3, σe = 7 eV, eh14 = 1.4 × 109 eV m−1, β =
1�eV nm3, and I = 3/2. The quantum dot parameters are
l0 = 34 nm (E0 = 1 meV), lbr = 2.42 �m, and ld = 0.63 �m
[48]. We use the coupling strength of 2d/l0 = 4.35, cor-
responding to a tunneling energy of t = 0.01 meV. The
orientation of the dots is along [110], i.e., δ = 45◦, unless
stated otherwise.

Since the energy spectrum of the Hamiltonian in Eq. (1)
cannot be solved for analytically, we treat it numerically
using the finite differences method with Dirichlet boundary
conditions [49] including the magnetic field via the Peierl’s
phase [50]. The resulting eigenvalue problem is then solved
using the Lanczos algorithm [51]. In the numerics we use
grid dimensions of typically around 200 × 200 grid points.
The relative error is below 10−5.

3 Results
3.1 In-plane magnetic field anisotropy Let us first

look at the dot energy spectrum. Figure 2 shows the lowest
four levels as a function of the bias for a weakly coupled dou-
ble dot. States are denoted according to their spatial inversion

Figure 3 Calculated spin relaxation rate, resolved into channels, of
a double dot as a function of detuning for δ = γ = 45◦ with B = 7 T,
t = 0.01 meV, and T = 0 K. The hyperfine coupling is neglected.
The dotted, solid, and dashed line gives Γ|↓〉→|↑〉, Γ|↓〉→|↑〉′ , and Γ ,
respectively.

parity at zero bias: states with a prime have odd, and states
without a prime have even parity. At a detuning energy of
about the Zeeman energy, ε = 0.178 meV, the states |↑〉′ and
|↓〉 form an anisotropic anticrossing due to spin–orbit cou-
pling. The anticrossing energy is maximal for an orientation
of γ = 45◦, and absent if γ = 135◦. This special point in the
spectrum is the spin hot spot [23, 25]. Here the spin orienta-
tion smoothly changes from an up to a down state and vice
versa.

We define the “spin relaxation rate” Γ according to what
is measured in corresponding experiments [31]. The initial
state for the transition is the lowest spin down state, |↓〉,
while the transition is considered as completed if the lowest
state, |↑〉, is detected. Since the transitions between spin alike
states are much faster than a duration of the measurement
cycle, they can be considered instantaneous and we have

Γ ≈ Γ|↓〉→|↑〉 + Γ|↓〉→|↑〉′ . (10)

The individual transition rates for a weakly coupled double
dot are plotted as a function of the bias in Fig. 3. The relax-
ation rate between the two lowest Zeeman split states Γ|↓〉→|↑〉
is, apart from the anticrossing, not varying much, due to the
energy difference being constant. On the other hand, the tran-
sition into the first excited state |↑〉′ is highly non-monotonic.
Initially it grows, since, as the two states become closer in
energy, it is easier to admix the spin-opposite component into
the states. If the energy difference becomes too small, the rate
drops, as now the diminishing density of states of phonons
takes over the trend. For detunings beyond the anticrossing,
the second term of the right hand side of Eq. (10) will be sup-
pressed at low temperatures, which contributes to the strong
asymmetry of the relaxation rates as a function of the bias
with respect to the position of the anticrossing.

The spin–orbit enabled relaxation rate as a function of
detuning and orientation of an in-plane magnetic field is

© 2014 The Authors. Phys. Status Solidi B is published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-b.com
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Figure 4 Calculated spin relaxation of a double dot as a function
of detuning and orientation of the in-plane magnetic field B = 7 T,
with δ = 45◦, t = 0.01 meV, and T = 0 K. The hyperfine coupling
is neglected. The corresponding energy spectrum (at γ = 45◦) is
shown in Fig. 2. The rate is plotted according to the color scale
on the right in inverse seconds. The labeled contours represent
equirelaxation lines.

plotted in Fig. 4. It shows the anisotropic relaxation land-
scape and the existence of two principal axes for the in-plane
magnetic field orientation: parallel (γ = 45◦) and perpendic-
ular (γ = 135◦) to the dot main axis d. For small detunings,
and in the vicinity of the spin hot spot at ε = 0.178 meV, the
relaxation rate is strongly suppressed if γ = 135◦. On the
other hand, the relaxation rate for large detunings is minimal
if γ = 45◦, as here the system has single dot character. This
directional switch of the axis of minimal relaxation has previ-
ously been found in two-electron double dots [28, 52] and can
be understood from the effective, spin–orbit induced, mag-
netic field [26]. It is only for γ = 135◦ that changing between
unbiased and highly biased configurations can be achieved
without passing through a regime of strongly enhanced spin
relaxation. This feature is known as an easy passage [26].

3.2 Spin–orbit versus nuclear fields Let us now
comment on the role of nuclei and how the presented results
are altered in the presence of hyperfine-induced spin relax-
ation. For the double quantum dot considered above, we
find that the relaxation rates due to the nuclei are typi-
cally 2 orders of magnitude smaller than the rates given
in Fig. 4. The exception occurs at the spectral anticrossing
(ε ≈ 0.178 meV) because the states |↓〉 and |↑〉′ are always
coupled by the nuclear spins irrespective of the orientation
of the in-plane magnetic field. Thus, the hyperfine-induced
spin relaxation becomes dominant at the anticrossing along
the easy passage, where the spin–orbit contribution to the
relaxation is of the order of 105 s−1. However, the impact
here is rather small, as we show now.

We present the spin relaxation rates enabled by either
spin–orbit coupling or hyperfine coupling for the double dot
with parameters given above in Figs. 5 and 6, respectively.
The in-plane magnetic field orientation for this comparison
is chosen to be γ = 45◦, i.e., away from the easy passage.

Figure 5 Calculated spin relaxation of a double dot as a func-
tion of detuning and magnitude of the in-plane magnetic field with
t = 0.01 meV, B = 7 T, δ = γ = 45◦, and T = 0 K. The hyperfine
coupling is neglected. The rate is plotted according to the color
scale on the right in inverse seconds. The labeled contours represent
equirelaxation lines.

We see that the spin–orbit contribution is dominant over the
whole parameter range. The spike in the relaxation rate map
of Fig. 6 becomes relevant only in the easy passage con-
figuration (or for magnetic fields below 2 T). However, we
find that the impact on the total relaxation rate is rather weak
because of the small width of the spike. Particularly, the spike
is hardly visible for magnetic fields of 6 T or more.

3.3 Perpendicular magnetic field For complete-
ness, we now consider a symmetric double quantum dot in
an external magnetic field perpendicular to the dot plane.
We focus on the dependence of the spin relaxation on the
magnetic field magnitude and the interdot distance, and com-
pare the impact of spin–orbit and hyperfine coupling on the
relaxation rates. For more on biased dots in perpendicular
magnetic fields, see Ref. [53].

Figure 6 Same as Fig. 5, but now only hyperfine coupling is con-
sidered (no spin–orbit coupling). The cellular structure of the plot
around the anticrossing is a finite resolution artifact, not a physical
effect.

www.pss-b.com © 2014 The Authors. Phys. Status Solidi B is published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 7 Spin relaxation of a double dot as a function of perpen-
dicular magnetic field and interdot coupling. The rate is given in
s−1. The solid lines represent equirelaxation lines. The relaxation
rate was calculated considering only the spin–orbit coupling.

Perpendicular magnetic field has also orbital effects,
resulting in an effective confinement length [25] lB =(
l−4
0 + B2e2/4�2

)−1/4
. This effectively changes the interdot

coupling, and the tunneling energy decreases. The positions
of the level crossings in the energy spectrum are therefore
strongly dependent on both the interdot distance and the
magnetic field strength.

We plot the spin relaxation rates of a double dot in a
perpendicular magnetic field for the cases of either spin–orbit
coupling or hyperfine coupling in Figs. 7 and 8, respectively.
Without the nuclear field (Fig. 7), the first hot spots of the
single dot (d = 0) are at B ≈ 4.5 T, B ≈ 7.9 T, etc. We find
that the spikes in the relaxation rate map in Fig. 7 generally
become less pronounced for stronger magnetic fields. Except
for the first anticrossing at B ≈ 4.5 T, the level crossings for
interdot distances 2d/l0 � 2 (T � 0.2 meV) are found at a
constant magnetic field.

Switching off the spin–orbit coupling and considering
only the coupling to the nuclei (Fig. 8), we find more spikes in

Figure 8 Spin relaxation of a double dot as a function of perpen-
dicular magnetic field and interdot coupling. The rate is given in
s−1. The solid lines represent equirelaxation lines. The relaxation
rate was calculated considering only the hyperfine coupling.

the relaxation rate map as compared to Fig. 7. The difference
between the influence of nuclei and spin–orbit coupling is
due to the chosen confinement profile. Namely, in a parabolic
well, the linear-in-p spin–orbit interactions couple only Fock-
Darwin states with orbital momentum differing by 1 [54].
Additional selection rules discriminate between the Rashba
and Dresselhaus spin–orbit interactions, based on their differ-
ent rotational symmetry [55, 56], though this is not crucial
here. Rather, here the rotational symmetry shows up in a
very strong suppression of the width of higher anticrossings
induced by the spin–orbit interaction. On the other hand,
there are no such selection rules for unpolarized nuclei and
in this case the widths of consecutive anticrossings decay
much slower. This is so since components of the hyper-
fine field perpendicular to the external magnetic field will
cause an enhancement of the relaxation at a level crossing.
There is no reason why fluctuations along any axis should
be suppressed in an unpolarized nuclear ensemble with ran-
dom thermal fluctuations. Since the parabolic confinement is
believed to be a good description of the low lying part of the
spectrum, we conclude that the hyperfine-induced spin relax-
ation plays a more important role if the external magnetic
field is perpendicular.

We note that the qualitatively different look of the fig-
ures for an in-plane and perpendicular magnetic field is due
to the strong orbital effects of the latter compared to only
the Zeeman effects of the former. The orbital energy shifts
move the states much faster through anticrossings, result-
ing into more regions of strongly enhanced relaxation rates
on Figs. 7 and 8 compared to Figs. 5 and 6. The enhance-
ment lines in Fig. 8 therefore map the accidental crossings of
eigenstates, induced by changes in the inter dot coupling and
orbital effects of the magnetic field. At each such crossing,
random fluctuations of the nuclear spins strongly perturb the
electron spin, leading to strong relaxation rate enhancement.

3.4 Extracting spin–orbit lengths from Ref. [31]
Having available a quantitatively faithful theory, we fit the
data measured in Ref. [31], an experiment on the spin relax-
ation in a single electron weakly coupled GaAs double dot.
We aim at extraction of the spin–orbit lengths. Despite their
crucial importance for spintronics applications and theory,
their values are not reliably established in small (occupied by
few electrons) quantum dots, where the strong confinement
may renormalize the values extrapolated from measurements
in quantum wells or bulk.

Ref. [31] gives the following experimentally accessible
parameters: the confinement energy of 1 meV, the tunneling
energy of 8 �eV, the magnetic field of 6.5 T, applied along
the dot main axis, γ = δ, and the anticrossing occurring at
the detuning of 0.136 meV. They translate into the following
parameters of our model: l0 = 34 nm, g = −0.364, and d =
76.5 nm. For m, γc, and phonon characteristics we use the
bulk values, as given below Eq. (9). Finally, we use a finite
temperature of 0.25 K, and neglect nuclear spins.

We keep the spin–orbit lengths lbr, ld, and the dot ori-
entation δ (the angle between the dot main axis and the

© 2014 The Authors. Phys. Status Solidi B is published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-b.com
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Table 1 Fitted spin–orbit lengths lbr and ld and the dot orientation δ

(angle between the main dot axis and [100]). Each set corresponds
to a local minimum of χ2, Eq. (11), in the parameter space. The
spin–orbit lengths are also given in alternative units through α =
�

2/2mlbr and β = �2/2mld. Our definition of the spin–orbit lengths
lso in Eqs. (4) and (5) is such that in a one dimensional model these
Hamiltonians induce a rotation of the spin by an angle 2πr/lso upon
a spatial displacement of the electron by a distance r.

set δ (◦) α (meV Å) β (meV Å) lbr (�m) ld (�m) χ2
min

1 307 −1.34 1.51 −4.2 3.8 9.66
2 60 0.65 0.89 8.8 6.4 9.69
3 62 0.55 0.82 10.3 7.0 9.71
4 203 0.34 0.67 16.7 8.4 9.76
5 294 0.48 −0.45 11.8 −12.6 9.87

crystallographic axis [100]) as fitting parameters. We adopt a
standard procedure [57] and fit by minimizing the χ2 measure

χ2 =
∑

εi

(log[Γ �(εi)] − log[Γ (εi, lbr, ld, γ)])2
. (11)

Here εi labels different measurements, and Γ � are measured
values (100 data points). Since the rates vary over orders of
magnitude, we use a logarithmic scale.

Because of a highly non-linear shape of the relaxation
rate curves, the figure of merit of the fit, the function χ2, has
many local minima in the fitting parameters space. We give
several examples in Table 1. The rather small differences in
values of χ2 in these minima mean that all these parameter
sets fit the data almost equally well. This also gives a very
crude estimate on the reliability of the extracted values of
the spin–orbit strengths – their relative sign remains unknown
and their magnitudes cannot be established better than within
a factor of 3. The fit corresponding to the parameters in the
first line of the table is plotted together with the measured
data in Fig. 9. We also plot a result of minimization with a
fixed dot orientation, δ = 45◦ = γ , which might have been
the case in the experiment [58]. This would also make the
values in lines 2 and 3 of the Table 1 more probable than
others.

4 Summary We have calculated phonon-induced spin
relaxation rates enabled via spin–orbit coupling and hyper-
fine coupling of single electron states in biased double
quantum dots. We find strong anisotropies in the relaxation
rate, due to anisotropy of the underlying spin–orbit interac-
tions, and the related spin hots and easy passages, known
from works on unbiased dots. For the spin–orbit strengths
of the order of 1 �m, chosen by fitting data measured in
Ref. [7], we find that the contribution of nuclear spins is neg-
ligible. Fitting data from a different experiment of Ref. [31],
we extract the spin–orbit lengths of the order of 10 �m, for
which nuclear spin contribution is roughly comparable to that
of the spin–orbit interactions. To nail down the spin–orbit
interactions strengths with better confidence, the measure-

Figure 9 Comparison of calculated (solid line; parameters from
the first line of Table 1) spin relaxation rates to the ones measured
in Ref. [31] (symbols). The dashed line is the result of the min-
imization with a fixed dot orientation, δ = 45◦ = γ , which gave
α = 0.84 meVÅ, and β = 0.47 meV Å.

ment of the rate as a function of the magnetic field orientation
is called for. In addition, such a measurement is ideal for
separate identification of the two linear spin–orbit strengths.

One might ask whether the bias brings in any qual-
itative features concerning the spin relaxation in double
dots. Our results suggest that the answer on this question is
negative. The spin relaxation is dominated by the spectral
anti-crossings, a feature general for both biased and un-
biased dots. From this respect, the bias is similar to the inter
dot coupling – changing any of these two parameters allows
one to drive the system into or out of an anti-crossing with
profound effects on the spin relaxation. However, the bias
is perhaps more practical, as it is expected to distort the dot
shape, and consequently the orbital wave functions, much
less than substantial changes of the inter dot barrier gate.
Strong dot shape distortions effects would convolute with
spectral changes effects. We demonstrated the usefulness of
the control over the bias, and the absence of such additional
unwanted effects, by the fitting of the experimental data,
extracting the spin–orbit lengths with a higher confidence
as was available until now.
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