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Electric control of tunneling energy in graphene double dots
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We theoretically investigate the spectrum of a single electron double quantum dot, defined by top gates in a
graphene with a substrate-induced gap. We examine the effects of electric and magnetic fields on the spectrum of
localized states, focusing on the tunability of the interdot coupling. We find that the substrate-induced gap allows
for electrostatic control, with some limitations that for a fixed interdot distance, the interdot coupling cannot
be made arbitrarily small due to the Klein tunneling. On the other hand, the proximity of the valence band in
graphene allows for new regimes, such as an npn double dot, which have no counterparts in GaAs.
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I. INTRODUCTION

Graphene is an outstanding material in many respects [1–4].
The unique band structure of graphene—a linear dispersion,
which can be described by the Dirac equation of massless
particles [3,4]—has attracted research efforts to utilize its
electronic properties for novel devices and applications [5,6].
Since the experimental discovery in 2004 [7,8], graphene
research has grown remarkably. Graphene is also discussed
in the context of quantum information processing [9–11], with
electrons confined in a graphene-based quantum dot. Defining
gated dots electrostatically in bulk graphene is problematic due
to the Klein tunneling [12]. The limitations can be overcome
in the presence of a gap [13], an energy splitting of the valence
and conduction band. It arises from transverse confinement
in nanoribbons with certain boundaries [9,14], or from an
underlying substrate [15,16].

Another standard technique to create quantum dots is to
cut a structure with the desired geometry from a flake of
graphene [1,17–19]. However, so far there are no techniques
for creating boundaries with atomic precision. The precise ter-
mination of the lattice, on the other hand, has qualitative
consequences on the confined structure spectra [20–22]: the
gap can be induced or closed, and midgap, highly localized,
states can arise [23]. In addition, results of theoretical
models of different sophistication (DFT vs tight-binding vs
continuous Dirac equation) can also differ qualitatively in these
aspects [21,24]. Our choice to consider a gap-based dot is also
to avoid all such model ambiguities [25].

Graphene single dots have been intensively investigated
during the last years [4,9,13,14,25–29]. We extend those
works by theoretical investigations of the dot-dot coupling,
an essential ingredient for quantum computation [30,31]. The
system we consider consists of two graphene dots that are
laterally coupled via a tunable barrier [32]. Both the dots
and the barrier are defined in an infinite sheet of graphene
by electric gates, with the Klein tunneling suppressed by a
substrate-induced mass.

We find that the setup we choose allows for electrostatic
control over the interdot tunneling. Compared to GaAs dots,
the most important difference is the fact that the Klein
tunneling results in a minimum below which the interdot

tunneling cannot be tuned. This minimum is set by the gap
and the dot geometry (the interdot distance) and can be further
suppressed by a perpendicular magnetic field. On the other
hand, the presence of the valence band states allows for
interesting regimes of operation of a double dot, which have no
analogs in semiconductor quantum dots in GaAs or Si [33,34].

This article is organized as follows. Section II contains
the model where we discuss the details of the electrostatic
confinement potential and also comment on the numerical
implementation. The numerical results and their analysis for
a single dot are given in Sec. III. The main focus of the work
is Sec. IV, where we analyze the tunneling energy and its
electrostatic tuning. We conclude in Sec. V.

II. MODEL

We consider an infinitely large sheet of gapped graphene
with a constant mass term �. The mass, which can be induced
by a substrate, e.g., boron nitride, leads to a gap of 2�, which
separates the valence and conduction band at the K and K ′
points of the Brillouin zone [15,16]. For numerical calculations
we diagonalize the tight-binding Hamiltonian [3,28]

H =
∑

i

(Vi − �)a†
i ai +

∑
i

(Vi + �)b†i bi

−
⎛
⎝∑

〈i,j〉
tij a

†
i bj +

∑
〈〈i,j〉〉

t ′ij (a†
i aj + b

†
i bj ) + H.c.

⎞
⎠ , (1)

with the annihilation (creation) operators a(†) and b(†) for the
sublattices A and B. The parameter tij describes the nearest,
and t ′ij the next-nearest neighbor hopping. The on-site energies
account for a position-dependent electrostatic potential V and
the mass term �. A magnetic field is included using the Peierls
phase [35] induced by the vector potential A through tkl =
t exp[(ie/�)

∫ rl

rk
A · dr], and similarly for t ′.

For the dot potential V we use a barbell-like shape with
circular disks, aligned along the x axis. The potential profile
is defined by [r = (x,y)]

V (r) = V0ξdot(r) + V1 max{|ξbar(r)| − |ξdot(r)|,0}, (2)
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FIG. 1. (Color online) Illustration of the electrostatically defined
graphene double dot. The top gates (colored/shaded regions) define
the area of confinement, which can be adjusted for the circular dots
via V0 (blue areas/circles) and the bridge between the dots via V1

(red area/center) separately. In numerics, we terminate the grid at a
distance δ beyond the structure potential boundary, and we introduce
a slightly increased mass at the edge of the grid (the outer black line).

with the left and right dot defined by

ξdot(r) = max{ξl(r),ξr (r)}, (3)

where

ξl,r (r) = {1 + exp[(rl,r − R)/β]}−1. (4)

This represents two single dots with radius R, positioned
at r l,r = r ± (d,0), so that 2d is the interdot distance. The
parameter β is introduced to smoothen potential edges. The
interdot barrier of width w is described by

ξbar(r) = {1 + exp[(−w/2 − y)/β])}−1

×{1 + exp[(y − w/2)/β]}−1

×{1 + exp[(−d − x)/β]}−1

×{1 + exp[(x − d)/β]}−1. (5)

The geometry is shown in Fig. 1, and the potential V (r)
[Eq. (2)] is sketched in Fig. 2. The potential V0 represents the
single dot confinement depth, while V1 sets the barrier height.
In experiments we envisage they are controllable individually
by a corresponding local metallic gate, tuning them with
respect to the global chemical potential μ. For the following
discussion we assume the graphene is undoped, so that μ is in
the middle of the gap 2�. We measure all energies from there
(μ = 0).

FIG. 2. (Color online) Illustrative plot of the potential landscape
V (r) [Eq. (2)] for parameters V0 = −V1 and w = 2R.

In the numerics we diagonalize the Hamiltonian [Eq. (1)]
with typically 95 000 carbon atoms. The grid is extended by
δ = 25 nm around the potential barbell to ensure convergence.
The finite size of the grid in our numerical calculation leads
to edge states at the boundary [21,28] that would not exist in
an extended graphene sheet. To remove these artificial edge
states from the calculated spectra, we introduce an additional
mass term of 0.3� at the grid boundary (sketched by the
black line in Fig. 1). This trick improves the diagonalization
times drastically, without any influence (as we checked) on the
confined states we discuss here.

For the quantitative analysis we use the following material
parameters. The hoppings are t = 3090 meV, and t ′ = 0.05t .
The graphene lattice constant is 0.246 nm, and the mass is
taken as � = 30 meV, according to Ref. [15]. Unless stated
otherwise, we choose the structure parameters as follows: R =
25 nm, d = 55 nm, and V0 = −60 meV. The thickness of the
barrier is w = 2R, with a potential strength V1 to be specified.
For V1 = 0 the barrier area potential is aligned with the bulk.
The smoothening parameter is β = 0.01R.

III. RESULTS: SINGLE DOT

First, we show how the confinement is created. We start with
the example of a single dot that is d = 0, V1 = 0 and consider
only a variable depth V0. If V0 = 0, the system is a sheet of
graphene with a constant energy gap of 2� = 60 meV. States
with energies |E| > � are extended states of bulk graphene.
Consider now V0 is decreased. The conduction band is locally
shifted towards lower energies, as shown in Fig. 3, within the
area set by the dot radius R. Localized states with discrete
energies inside the band gap appear [9]. This is analogous to
an n-type dot in GaAs [33,36].

To describe the localized states spectrum, we define a set
of characteristic energies, depicted in Fig. 3. The ground-state
energy ε0 is the energy difference between V0 and the lowest
localized state. The latter is separated from the first excited
state by the excitation energy εex. The ionization energy, which
we define as the minimal energy required for an excitation

FIG. 3. (Color online) Schematic energy diagram of a single dot.
Within the diameter of 2R, the energy bands are shifted by the
confinement depth V0 (this figure corresponds to V0 < 0). The ground
state is offset from the band bottom by ε0 (ground-state energy) from
the nearest localized state by εex (excitation energy) and from the
nearest extended state by εion = min(ε′,ε′′) (ionization energy).
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FIG. 4. Calculated energy spectrum of a single dot as a function of
the confinement depth V0. For V0 > 0(V0 < 0), the holes (electrons)
are localized in the dot. The gray regions represent extended states.
The characteristic energies are indicated.

from the localized ground state to an extended state, is εion =
min(ε′,ε′′), where ε′ and ε′′ are the energy differences between
the localized ground state and the conduction and valence band
edge, respectively.

Figure 4 shows the calculated energy spectrum of a single
dot as a function of the confinement depth V0. The dot is of n

type for V0 < 0, and p type for V0 > 0, since the localized state
is built from the lowest states of one (conduction) band, and the
highest states of another (valence) band, respectively. Neglect-
ing the small next-nearest neighbor hopping t ′, the Hamilto-
nian [Eq. (1)] has exact symmetry H (V,B) → −H (−V,−B)
upon replacement (ai,bi) → (bi, − ai). This translates into
a one to one correspondence between low-energy holelike
dot states at |V0| and electronlike states at −|V0|. From now
on we therefore arbitrarily fix V0 negative. There is another,
quasi-time-reversal, symmetry which connects states at the K

valley with ones at K ′ with opposite total angular momentum
Jz [37]. As a consequence, in zero magnetic field all states are
twofold degenerate. In general, this degeneracy is a serious
obstacle for quantum computation, as it impairs control over
the exchange energy [36,38]. Fortunately, in graphene this
degeneracy is split by a finite magnetic field (see below), which
couples to the orbital momentum Jz [13]. This is in contrast
to the silicon-based dots, where such a direct control knob for
the valley splitting does not exist.

Using the data from Fig. 4, we plot the characteristic
energies in Fig. 5. We observe that the relative ground-
state energy ε0 increases nonlinearly as the dot potential
decreases, while the excitation energy εex, which is in our
example only defined for V0 � −42.5 meV, is roughly con-
stant. The ionization energy εion peaks at about V0 = −60 meV,
where the ground state is exactly in the middle of the
gap. Since we adopt a cylindrical potential shape in our
model, the spectrum we obtain is rather different to the one
usually met in semiconductor quantum dots with a harmonic
confinement. There the energy levels are equidistant, and the
ground-state energy is half of the excitation energy [39,40].
Also, here the lowest localized state hits the bulk band at about
V0 = −100 meV. The localized state then necessarily becomes
occupied in undoped graphene and may easily hybridize with
extended states. This is another difference to semiconductor

-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0
V0 [meV]

0

5

10

15

20

25

30

35

40

en
er

gy
 [m

eV
]

ε0
εex
εion

FIG. 5. Relative ground-state energy ε0 (dash-dot line), excitation
energy εex (dashed line), and ionization energy εion (dotted line) as a
function of the confinement depth V0.

quantum dots, where the equivalent energy scale is given by
the band gap, which is of the order of a few eV [41].

The energy spectrum as a function of a perpendicular mag-
netic field is shown in Fig. 6. The magnetic field lifts the valley
degeneracy by breaking the time-reversal symmetry [13].
Landau levels tend to form [42]. For our dot parameters the
magnetic length lB = √

�/(eB) is of the order of the dot radius
R for reasonable magnetic fields [26]. More precisely, lB is
81, 26, and 8 nm for a magnetic field of 0.1, 1, and 10 T,
respectively, to be compared to a dot radius of R = 25 nm.
The “zero-mode” Landau level [13,43] forms at the valence
band edge (−30 meV) from K ′ valley states.

IV. RESULTS: DOUBLE DOT

In this section we study the localized states in a double
dot configuration [44–47]. The dot schematic energy diagram
is shown in Fig. 7. The corresponding spectrum, varying the
barrier height while keeping the dots confinement depths fixed
(V0 = −60 meV), is in Fig. 8. Take first the V1 = 0 point.
Here the states in the left and right dots are well isolated by
the barrier. The small remaining coupling splits the system
eigenstates into symmetric and antisymmetric combinations
of the single dot states. They are labeled as 2 and 3 in Fig. 8,
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FIG. 6. Calculated energy spectrum of a single dot
(V0 = −60 meV) as a function of a perpendicular magnetic
field. The valley index of the lowest states is indicated by K/K ′.
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FIG. 7. (Color online) Schematic energy diagram of a double dot.
The energy is shifted locally by V0 for the dots, and by V1 for
the barrier (this figure corresponds to V0 < 0 < V1). The interband
tunneling from the left to the right dot via the barrier is indicated by
black arrows.

and we define the tunneling energy as twice their energy
difference [48]. The latter is one possible characterization of
the interdot coupling [49] and in further we investigate the
degree of control over it by electric and magnetic fields.
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FIG. 8. (Color online) (a) Calculated energy spectrum of a dou-
ble dot (2d = 110 nm, V0 = −60 meV) as a function of the barrier
potential V1. The red (2) and blue (3) lines denote the dot ground state
and the first excited state, respectively. Half of their energy difference
is the tunneling energy T . The shaded region between those two
states and the vertical line at V1 = 0 are a guide for the eye. The
green curve (1) denotes the highest localized state of the barrier. The
dashed line is the top line for V0 > 0 from Fig. 4. (b) The tunneling
energy replotted from the data in (a). Line with symbols is a fit from
the model described below Eq. (6).

A. nn′n coupling regime

Consider first lowering the barrier between the dots by
making V1 negative. The tunneling energy increases due
to increasing quantum mechanical overlap of isolated dot
eigenstates. In the same time, the energy distance to the next
orbital level decreases. This is expected, as at V1 ∼ V0 =
−60 meV the system resembles more a prolongated single
dot, rather than a tunnel coupled double dot. For even larger
negative V1 the lowest states are more and more localized in
the barrier itself and the system qualitatively changes back
to a single dot—the tunneling energy saturates and energy
distance to the next level increases. This behavior, referred to
as the nn′n coupling [50], is analogous to a GaAs dot.

B. Coupling minimum

Consider now that, starting again from zero, V1 is increased.
In GaAs, such an increase of the barrier between the two dots
makes the tunneling smaller (exponentially). Such high sensi-
tivity of the interdot coupling to electrostatic potential [51,52]
is at the heart of the versatile control of spin qubits in GaAs
dots. Looking at Fig. 8(b), however, a decrease in tunneling
with V1 is very modest and soon changes into an increase
(the tunneling reaches minimum at V1 = 6 meV, which is
3 μeV below its value of 110 μeV at V1 = 0). This turn in
trend is caused by the presence of the p-like (valence) states
localized inside the barrier [9], through which the n-like dot
states are coupled effectively. This is referred to as the npn

coupling [23,50]. The arising limit-from-below on the interdot
coupling, which can be considered as the manifestation of the
Klein paradox [12], then possibly imposes a serious limitation
on the extent of control over the double dot states. It is
important to understand what parameters set the achievable
coupling minimum.

We expect the minimum to occur, very roughly, when
the dot confined state is energetically halfway between the
barrier conduction and valence bands. For our parameter
V0 = −60 meV, resulting in ε0 = 30 meV, this estimate gives
the minimum at V1 = 0, which is close to the value observed
in numerics. The value of the minimal tunneling will decrease
with the barrier height and length. The former is proportional
to the induced mass �, while the latter is given by the
interdot distance. This is confirmed in Fig. 9, where a drop
of tunneling with the interdot distance is demonstrated. Al-
ternatively to changing the electrostatic barrier, the tunneling
can be suppressed by a perpendicular magnetic field [53].
Localization of electrons by its orbital effects, demonstrated by
the tunneling suppression, was studied in detail in GaAs [52]
and silicon [54] quantum dots. Our expectation of an analogous
behavior in graphene is confirmed by numerical results, shown
in Fig. 10. There it is shown that the perpendicular field of few
Tesla suppresses the tunneling by 1–2 orders of magnitude,
depending on the barrier potential.

C. npn coupling

Let us finish the analysis of the effects of the barrier
potential V1, now considering the npn coupling regime. It
is signaled by a change in the trend of the interdot coupling,
which starts to increase upon increasing the barrier height. In
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FIG. 9. (Color online) Calculated energy spectrum of a double
dot (V0 = −60 meV, V1 = 0) as a function of the interdot distance
2d . The red and blue curves give the localized ground and first excited
state, respectively. The tunneling energy T is indicated.

Fig. 8 this happens at V1 ≈ 6 meV. Beyond this point, the left
and right single dots are coupled most effectively through the
p-like localized state formed in the barrier, tagged as line 1 in
Fig. 8(a). In this regime the double dot low-energy spectrum
is well characterized considering three states (the left dot, the
right dot, and the barrier), with the neighboring pairs coupled
by a tunneling matrix element τ . To demonstrate this, we replot
the three energies from Fig. 8 into Fig. 11 and fit them with
the spectrum of the following Hamiltonian:

H =

⎛
⎜⎝

0 τ 0

τ ε τ

0 τ 0

⎞
⎟⎠. (6)

First, the energy offset of the p state is well approximated
by the single dot ground-state energy ε(V1) ≈ −� + V1 −
ε0(V1). This is shown by plotting the approximation (that
is, the top line for V0 > 0 from Fig. 4) as a dashed line in
Fig. 8(a). We note that this is rather a coincidence, as the
effective dot shape of the p region is different from the single
dot considered before (though both of these energies should
indeed scale similarly, as the areas of the dot and the barrier
are comparable in our model). However, for our purpose of
extracting the tunneling matrix element τ we can still make
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FIG. 10. Calculated tunneling energy T for a graphene double
dot (2d = 110 nm, V0 = −60 meV) as a function of perpendicular
magnetic field for two values of the barrier potential.
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FIG. 11. (Color online) Eigenenergies of the states 1, 2, and 3,
taken from Fig. 8 (solid lines) and from the analytical model,
described below Eq. (6) (lines with circles). A linear trend δε =
0.0593V1, fitted from the exact values of the level 2 energy, was
added to all fitted values.

use of this fact and need not fit the energy offset of the p

state separately. Second, the tunneling matrix element τ is
obtained from the width of the anticrossing of lines 1 and 3 [at
V1 ≈ 60 meV in Fig. 8(a)], from where we get τ ≈ 2.5 meV.
With this, basically a single parameter fit, we obtain a very
good agreement with the exact numerics, as seen in Fig. 11,
not only close to the anticrossing, but through out the whole
npn regime. The model starts to deviate only once higher
excited p states in the barrier anticross with the n-like dot
states (beyond V1 � 70 meV). The correspondence for lower
V1 is demonstrated by comparing the exact tunneling energy
with the one obtained from our model [Eq. (6)], which we
do in Fig. 8(b). Since at its minimum the tunneling energy
does not differ from the model by more than a factor of two,
we estimate that throughout the npn region τ does not vary
more than by a factor of 1/

√
2. This stability of the tunneling

matrix element over a very large range of gate voltages is
perhaps surprising, but welcomed as it justifies the analysis of
the double dot structure in terms of isolated eigenstates of the
dots and the barrier.

We finish with a note that the system in the npn regime
seems well suited for adiabatic passage protocols [55–57].
Namely, these are based on a Hamiltonian such as Eq. (6) if
one can control the two matrix elements independently. Such
a control might be possible using an electric field E applied
along the dot axis, which changes the Hamiltonian from Eq. (6)
into

H =

⎛
⎜⎝

−eEd τ ′ 0

τ ′ ε τ ′′

0 τ ′′ eEd

⎞
⎟⎠. (7)

The important feature is that the electric field shifts the dot and
barrier states in opposite directions, as they are n- and p-like,
respectively. This will change the tunneling matrix elements
in an asymmetric way, e.g., τ ′ > τ > τ ′′. Based on numerical
results (not shown) we find that, unfortunately, in our model
the single dot confinement edges are so steep that the electric
field induced asymmetry in τ ′ is too small compared to the
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energy shifts ±eEd and therefore not suitable for adiabatic
passage protocols. Namely, the latter require an efficient way
to independently tune τ ′ and τ ′′, well into the limits τ ′ 	 τ ′′
and τ ′ 
 τ ′′, and without simultaneously inducing substantial
energy offsets between the states. Other potential profiles
might be better suited for this task.

V. CONCLUSIONS

We investigated the energy spectrum of gated single and
laterally coupled double quantum dots in gapped graphene. For
the single dot, we presented the characteristic energies of the
localized states: the ground-state energy, the excitation energy,
and the ionization energy. We also showed the influence of a
perpendicular magnetic field, including the lifting of the valley
degeneracy.

We primarily focused on the interdot coupling in a double
dot configuration, the control over which is crucial for few
electron quantum dot states manipulations. The extent of the
electrical control over the electron tunneling in graphene is a
priori not clear, because of the Klein tunneling effect. Our

results suggest that these limitations are to a large extent
overcome in gapped graphene and the interdot tunneling
can be varied, for reasonable parameters, by orders of
magnitude. The most important difference to a GaAs dot is
that in a graphene dot there is a minimum below which the
tunneling cannot be reduced. This is due to the presence of
states localized in the barrier, what can be seen as an artifact of
the Klein tunneling. The achievable coupling minimum is set
by the dot geometry and the substrate-induced gap. For these
parameters fixed, the tunneling can be further reduced by a
perpendicular magnetic field. The presence of the states in the
barrier, on the other hand, offers new regimes of operation,
unaccessible to GaAs material, such as the npn double dot.
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