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Quantum walks as a probe of structural anomalies in graphs
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We study how quantum walks can be used to find structural anomalies in graphs via several examples. Two
of our examples are based on star graphs, graphs with a single central vertex to which the other vertices, which
we call external vertices, are connected by edges. In the basic star graph, these are the only edges. If we now
connect a subset of the external vertices to form a complete subgraph, a quantum walk can be used to find
these vertices with a quantum speedup. Thus, under some circumstances, a quantum walk can be used to locate
where the connectivity of a network changes. We also look at the case of two stars connected at one of their
external vertices. A quantum walk can find the vertex shared by both graphs, again with a quantum speedup. This
provides an example of using a quantum walk in order to find where two networks are connected. Finally, we use
a quantum walk on a complete bipartite graph to find an extra edge that destroys the bipartite nature of the graph.
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I. INTRODUCTION

One of the most versatile quantum algorithms is the
quantum search algorithm due to Grover [1]. In its original
form, it identified which Boolean function from a particular
set was realized by a particular quantum oracle. A Boolean
function f (x) maps n-bit binary numbers to either 0 or 1, and
the particular class of Boolean functions considered by the
simplest form of the Grover algorithm is 0 for all strings except
one. We are given an oracle that realizes one of these functions;
if we input x, its output is f (x). Our task is to find which
function it realizes or, equivalently, for which input f (x) = 1,
with as few calls to the oracle as possible. Classically, one
needs an order of 2n calls, whereas on a quantum computer,
using the Grover algorithm, one needs only an order of 2n/2

calls.
A variant of the Grover algorithm was defined for searches

on graphs. First, one defines a quantum walk on a graph,
which is a quantum version of a random walk [2–6]. Then
the behavior of one of the vertices is changed so that it acts
differently from all of the others. The object is then to find
the distinguished vertex. This has been done for a number
of highly symmetric graphs, such as the hypercube [7,8],
grids in different dimensions [9,10], and the complete graph
[10,11]. The initial state of the walk cannot incorporate any
knowledge of the distinguished vertex, and it is usually an
equal superposition of all vertices, in the case of a coined
walk, or an equal superposition of all edges, in the case of a
scattering walk. The number of steps the walk must take in
order to find the distinguished vertex is of the order of the
square root of the number of vertices in the graph. Some of
the latest studies of searches on graphs have focused on how
the search is affected by the connectivity of the graph or by

disorder in the graph [12] or searching in a graph in which
there are several kinds of nonspecial vertices [13]. It should be
noted that by constructing a quantum circuit that implements a
quantum walk, these graph search problems can be rephrased
as searches involving calls to an oracle. For an explicit example
of this see [11].

More recently, it has been found that quantum walks can
find things besides distinguished vertices in a graph [14]. In
that study, walks on star graphs were examined. A star graph
has a central vertex and N edges emanating from it, each of
which is connected to its own vertex, so that the graph has
a total of N + 1 vertices. We shall call the vertices besides
the central vertex external vertices. If one adds an extra edge
connecting two of the external vertices, it is possible to find the
extra edge in approximately

√
N steps using a quantum walk.

If one adds a loop to an external vertex, the result is the same,
but if one adds a new vertex and an edge between that vertex
and one of the external vertices, the quantum walk does not
find the extra edge. So, it is unclear what kinds of structural
anomalies can be found and what kinds cannot.

Here we would like to continue our exploration of this
subject. We begin by reviewing some of the results of [14]
and presenting more details. We then move on to several
more examples. First, we consider a star graph with extra
edges added connecting external vertices so that these external
vertices form a complete graph. A complete subgraph of a
graph is known as a clique. The idea is to use a quantum
walk to find the vertices that comprise the clique. Note that
what this does is allow us to find a part of the graph in which
the structure of the network changes. In the star graph, the
external vertices are only connected to each other through the
central vertex. If we now form a region in which the density
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of connections increases, in particular in which the external
vertices are directly connected to each other, we can use a
quantum walk to find this region. Next, we consider two star
graphs joined at one of their external vertices. In this case
the walk starts on both of the stars, and we want to find the
vertex where the two star graphs are connected. This shows
that we can use a quantum walk to find where two networks
are connected to each other. Finally, we look at the case of a
complete bipartite graph. In this graph, the vertices are divided
into two sets, and each vertex in one set is connected to all of the
vertices in the other set by an edge, but no vertices within the
sets are connected. Suppose we now add one edge connecting
two vertices in one of the sets. We can use a quantum walk to
find this edge faster than we could classically.

II. STAR GRAPHS

Throughout this paper we will be using the scattering
quantum walk in which the particle “scatters” off the vertices of
the graph [5,11]. There is another version of the discrete-time
quantum walk, known as a coined walk [2,3]. In this type
of walk, there is an extra system, the coin, that makes the
step transformation unitary and controls the dynamics of
the walk. The coined walk has been shown to be equivalent to
the scattering walk, so that which one is used is a matter of
preference [15]. We find the scattering walk more physically
motivated, and it is the one we shall use. In this walk the
particle making the walk sits on the edges of the graph instead
of the vertices. Each edge has two orthogonal states. If the edge
connects vertices j and k, then one state is |j,k〉, corresponding
to the particle going from j to k, and the other is |k,j 〉,
corresponding to the particle going from k to j . The collection
of all of these states, two for each edge, forms an orthonormal
basis for the Hilbert space in which the walk takes place. In
addition to the Hilbert space we need a unitary operator that
advances the walk one step. In the scattering walk each vertex
acts as a scattering center and is described by a local unitary
operator that maps states entering the vertex to states leaving
the vertex. The unitary operator that advances the walk one
step, U , is simply made up of the action of all of the local
unitary operators at the vertices. For a vertex j with n edges
connected to it, we will generally use the operator

U |k,j 〉 = −r|j,k〉 + t

n∑
l=1,l �=k

|j,l〉, (1)

where r = (n − 2)/n and t = 2/n. This type of vertex behaves
in the same way no matter from which edge it is entered.

As was stated in the Introduction, a star graph has a central
vertex, which we shall denote by 0, and N external vertices,
which we shall denote by 1 through N . Each of the external
vertices is connected to the central vertex by a single edge. The
dimension of the Hilbert space in which a walk on this graph
takes place is 2N . The central vertex behaves as described
in the preceding paragraph, and the behavior of the external
vertices depends on the application. Since the walk on a star
graph with an extra edge was discussed thoroughly in [14],
here we will describe what happens when we add loops to the
external vertices.

Let us first consider the case in which we add a loop to a
single external vertex, which we shall take to be vertex 1. We
shall denote the single state of the loop by |l1〉. The operator
U now acts on the states entering the external vertices as
U |0,1〉 = |l1〉, U |l1〉 = |1,0〉, and U |0,j 〉 = |j,0〉 for j � 2.
Let us now define the states

|ψ1〉 = 1√
N − 1

N∑
j=2

|0,j 〉,

|ψ2〉 = 1√
N − 1

N∑
j=2

|j,0〉 (2)

and note that

U |1,0〉 = −r|0,1〉 + t
√

N − 1|ψ1〉,
U |ψ1〉 = |ψ2〉,
U |ψ2〉 = t

√
N − 1|0,1〉 + r|ψ1〉. (3)

Now, if S is the subspace spanned by the vectors
{|0,1〉,|l1〉,|1,0〉,|ψ1〉,|ψ2〉}, we note that S is invariant under
the action of U . This implies that if the initial state of the walk
is in S, the entire walk will take place in S, which reduces
the dimension of the space we have to consider from 2N to
5. This will be a feature of all of the problems we consider
here, a drastic reduction in the size of the space due to the high
symmetry of the graph. This type of dimensional reduction
was first used by Krovi and Brun in studies of coined quantum
walks [16]. In this case, it means that U restricted to S, US , is
given by the 5 × 5 matrix

US =

⎛
⎜⎜⎜⎜⎝

0 0 −r 0 t
√

N − 1
1 0 0 0 0
0 1 0 0 0
0 0 t

√
N − 1 0 r

0 0 0 1 0

⎞
⎟⎟⎟⎟⎠ , (4)

where the basis is ordered as above in the definition of S.
The state of the walk after n steps will be Un

S |ψinit〉, where
|ψinit〉 is the initial state of the walk, and we shall assume
that |ψinit〉 ∈ S. In order to evaluate this, we want to find the
eigenvalues and eigenstates of US .

The characteristic polynomial of US is

λ5 − rλ3 + rλ2 − 1 = (λ − 1)(λ4 + λ3 + tλ2 + λ + 1) = 0.

(5)
We see immediately that λ = 1 is a root, but in order to find
the others, we shall resort to perturbation theory. If N � 1,
then t � 1, and to find our zeroth-order solution we set t equal
to 0. The equation for the remaining roots then becomes (λ +
1)(λ3 + 1) = 0, so that, to zeroth order, the remaining roots are
−1 (twice) and exp(±iπ/3). Now we need to find the lowest-
order corrections to these eigenvalues. It turns out that the only
interesting eigenvalue is −1. This is because, as we shall see,
the corrections to −1 are O(N−1/2), while the corrections to
the other eigenvalues are O(N−1). In order to obtain a quantum
speedup, we need the state to change substantially in O(N1/2)
steps. This will happen for a superposition of eigenstates whose
eigenvalues are of the form λ0 + O(N−1/2), where λ0 is the
zeroth-order eigenvalue, but not for superpositions of states
whose eigenvalues are of the form λ0 + O(N−1). In order to
find the lowest-order corrections to −1 we set λ = −1 + δλ
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and substitute it back into the fourth-order equation for λ,
keeping only lowest-order term. We find

δλ = ±i

√
t

3
, (6)

which is O(N−1/2). The corresponding eigenvectors are

|v+〉 = 1√
6

⎛
⎜⎜⎜⎜⎜⎝

1

−1

1

−i
√

3/2

i
√

3/2

⎞
⎟⎟⎟⎟⎟⎠ , |v−〉 = 1√

6

⎛
⎜⎜⎜⎜⎜⎝

1

−1

1

i
√

3/2

−i
√

3/2

⎞
⎟⎟⎟⎟⎟⎠ ,

(7)
with |v+〉 corresponding to −1 + i

√
t/3 and |v−〉 correspond-

ing to −1 − i
√

t/3.
Now, for the initial state of our walk, let us choose the state

|ψinit〉 = 1√
2N

N∑
j=1

(|0,j 〉 − |j,0〉)

= 1√
2N

(|0,1〉 − |1,0〉)

+
√

N − 1

2N
(|ψ1〉 − |ψ2〉), (8)

which we can see is in S. Noting that

|ψ1〉 − |ψ2〉 = i(|v+〉 − |v−〉), (9)

we see that that the initial state is approximately equal to a
superposition of two eigenvectors,

|ψinit〉 = i√
2

(|v+〉 − |v−〉) + O(N−1/2). (10)

If we now express −1 ± i
√

t/3 ∼= − exp(∓iθ ), where θ =√
t/3, we find that

Un|ψinit〉 ∼= i√
2

(−1)n(e−inθ |v+〉 − einθ |v−〉)

∼= (−1)n√
3

⎛
⎜⎜⎜⎜⎜⎝

sin(nθ )

− sin(nθ )

sin(nθ )√
3/2 cos(nθ )

−√
3/2 cos(nθ )

⎞
⎟⎟⎟⎟⎟⎠ . (11)

Examining the form of Un|ψinit〉, we see that when nθ =
π/2 [this implies n is O(N1/2)], the particle is either on
the edge connected to the loop, with probability 2/3, or on
the loop itself, with probability 1/3. Now, in measuring where
the particle is, we assume that we do not have access to the
loop, otherwise we would know where it is, but we do have
access to all of the edges. Therefore, if we measure the position
of the particle after a number of steps satisfying nθ = π/2, we
will with a probability of 2/3 find the particle on the edge
connected to the loop. With a probability of 1/3, however,
we will find no particle at all, and in that case we run the
walk one more step, after which the particle will be on the
edge connected to the loop. Therefore, by running the walk for

O(N1/2) steps, we have found which edge is connected to the
loop with a probability close to 1.

In comparing this procedure to a classical search for the
loop, we shall assume that classically the graph is specified by
an adjacency list, which is an efficient specification for sparse
graphs. For each vertex of the graph, one lists the vertices
that are connected to it by an edge. This list can include the
vertex itself, which means that there is a loop connected to that
vertex. Searching this list classically would require O(N ) steps
to find the loop, while the quantum procedure will succeed in
O(

√
N ).

The pattern of this calculation will be repeated for the other
examples we discuss. First, one finds an invariant subspace of
small dimension in which the walk takes place. Next, one diag-
onalizes the unitary operator that advances the walk one step,
U , in that subspace. This typically involves a perturbative
approach to finding the eigenvalues and eigenstates. The
zeroth-order solutions are found by looking at the N →
∞ limit, and the small parameter in which one does the
perturbation expansion is a power of 1/N . It is the eigenvalues
that are degenerate to zeroth order that lead to the interesting
parts of the Hilbert space. One then identifies an appropriate
initial state and calculates the action of Un on that state. Since
this pattern holds for all of our calculations, we will present
mainly the results in the body of the paper and describe some
of the details in the Appendix.

Before leaving the star graph proper, let us look at one more
example, which was also discussed in [14]. Suppose that all
of the external vertices except one, which we shall take to be
vertex 1, have loops and we want to find which vertex does
not have a loop. Actually, we have to be a bit more careful
in our description because we are now going to assume we
have access to the loops, so if there were one missing, we
would know where it is. What we assume is that all of the
external vertices are connected to loops, but the one connected
to vertex 1 is a dummy loop. In particular, we assume that
U |0,j 〉 = |lj 〉 and U |lj 〉 = |j,0〉 for j � 2, and for vertex 1,
U |0,1〉 = eiφ|1,0〉 and U |l1〉 = |l1〉. One only gets a quantum
speedup for particular values of φ.

This also reduces to a five-dimensional problem. The
invariant subspace in this case is spanned by the vectors
{|0,1〉,|1,0〉,|ψL〉,|ψ1〉,|ψ2〉}, where |ψ1〉 and |ψ2〉 are as
before and

|ψL〉 = 1√
N − 1

N∑
j=2

|lj 〉. (12)

We find that the characteristic equation of U restricted to the
invariant subspace only has double roots in the N → ∞ limit
if φ is π , π/3, or −π/3, and these are the values of φ for
which we obtain a quantum speedup. In the case that φ = π

the appropriate initial state is given by

|ψinit〉 = 1√
3N

N∑
j=0

(|0,j 〉 + |j,0〉 + |lj 〉), (13)

and the particle becomes localized on the edge with the
dummy loop after n = (π/2)

√
3/t = O(N1/2) steps. For φ =

±π/3 different initial states are required, but the results are
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FIG. 1. A star graph with a clique, in this case a triangle.

qualitatively the same. The details of the case φ = π are given
in the Appendix.

III. STAR GRAPH WITH A CLIQUE

Now suppose that we start with a star graph with N edges,
and we add extra edges to it. The case of one extra edge was
dealt with in [14], but now we wish to add enough edges so
that a subset of the external vertices form a complete graph, or
clique (see Fig. 1). In particular, we shall assume that vertices
1 through M form the clique, i.e. each of these vertices is
connected to all of the other vertices in the set {1,2, . . . ,M} as
well as to the central vertex. We will also assume that M � N .
This graph can be viewed as a network in which most of the
participants are only connected through the central vertex but
there is a subset of participants who are directly connected to
each other. The object is to find the vertices in the clique.

In this case, the operator U acts as follows:

U |j,0〉 = −r|0,j 〉 + t

N∑
k=1,k �=j

|0,k〉,

U |0,j 〉 = −r̃|j,0〉 + t̃

M∑
k=1,k �=j

|j,k〉 for 1 � j � M,

U |0,j 〉 = |j,0〉 for M + 1 � j � N,

U |j,k〉 = −r̃|k,j 〉 + t̃ |k,0〉 + t̃

M∑
l=1,l �=j,l �=k

|k,l〉

for 1 � j,k � M, (14)

where r and t are as before and r̃ = (M − 2)/M and t̃ = 2/M .
We choose the initial state to be

|ψinit〉 = 1√
2N

N∑
j=1

(|0,j 〉 − |j,0〉), (15)

and after running the walk for

n = π
√

N

2

√
2M − 1

2M(M − 1)
(16)

steps, the particle is located on one of the edges connecting
the clique and the central vertex with a probability of (2M −

FIG. 2. Two star graphs connected at one of their external vertices.

2)/(2M − 1) [up to terms of order (M/N)1/2], and it is located
on one of the edges of the clique itself with a probability of
1/(2M − 1). We assume that we do not have access to the
edges of the clique itself, so that when we measure the position
of the particle, we either find it on one of the edges emanating
from the central vertex, or we do not find it at all because it is
on one of the edges of the clique. Note that the probability of
the particle being on one of the edges of the clique decreases
as the size of the clique increases.

Classically, one would have to search the adjacency list
of the graph in order to find a vertex that is a member of
the clique, and one would have to check O(M/N) elements.
This compares to the O(

√
M/N) steps the quantum walk must

make in order to find one of the vertices in the clique. Once
one finds one vertex in the clique, the rest are found by reading
off the vertices adjacent to that vertex from the adjacency list
in both the classical and quantum cases.

IV. TWO STARS

Now let us look at a different problem. We have two stars,
each with N edges. They share one external vertex, so the stars
are connected, but we do not know which vertex (see Fig. 2).
The object is to find the shared vertex.

Let us denote the central vertices of the two stars by A

and B. In order to analyze a quantum walk on this graph, we
shall assume that they share vertex 1. The external vertices
of the first star (with central vertex A) are {1,2, . . . ,N}
and those of the second star (with central vertex B) are
{1,N + 1,N + 2, . . . ,2N − 1}. The quantum walk in which
we are interested takes place in an eight-dimensional invariant
subspace spanned by the vectors |ψ1〉 = |A,1〉, |ψ2〉 = |1,A〉,
|ψ3〉 = |B,1〉, |ψ4〉 = |1,B〉, and

|ψ5〉 = 1√
N − 1

N∑
j=2

|A,j 〉,

|ψ6〉 = 1√
N − 1

N∑
j=2

|j,A〉,
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|ψ7〉 = 1√
N − 1

2N−1∑
j=N+1

|B,j 〉,

|ψ8〉 = 1√
N − 1

2N−1∑
j=N+1

|j,B〉. (17)

These eight vectors form an orthonormal basis for the invariant
subspace. All of the vertices behave as before except for vertex
1. We shall assume that the particle is transmitted at vertex 1;
that is, there is no amplitude for it to be reflected there. That
means that

U |ψ1〉 = |ψ4〉, U |ψ3〉 = |ψ2〉. (18)

The operator that advances the walk one step acts on the other
basis vectors in the invariant subspace as

U |ψ2〉 = −r|ψ1〉 + t
√

N − 1|ψ5〉,
U |ψ4〉 = −r|ψ3〉 + t

√
N − 1|ψ7〉,

U |ψ5〉 = |ψ6〉,
U |ψ6〉 = r|ψ5〉 + t

√
N − 1|ψ1〉,

U |ψ7〉 = |ψ8〉,
U |ψ8〉 = r|ψ7〉 + t

√
N − 1|ψ3〉, (19)

where, as before, t = 2/N and r = (N − 2)/N .
We now start the particle in the state

|ψinit〉 = 1

2
√

N

⎡
⎣ N∑

j=1

(|A,j 〉 + |j,A〉) − (|1,B〉 + |B,1〉)

−
2N−1∑

j=N+1

(|B,j 〉 + |j,B〉)
⎤
⎦ , (20)

that is, a superposition of all of the edge states in the first
star minus a superposition of all of the edge states in the
second. We find that, after n = π

√
N/2 steps, the particle is

located with high probability [1 − O(N−1/2)] on either the
edge between vertices 1 and A or the edge between vertices
1 and B. Therefore, using the quantum walk, we can find
the external vertex the star graphs have in common with
O(

√
N ) steps, whereas, classically, we would have to search

the adjacency lists of the external vertices of one of the stars,
which means searching a combined list containing N + 1
items (one item from each of the vertices connected only to
the central vertex and two items from the vertex connected to
both central vertices). Therefore, the quantum walk gives us a
quadratic speedup.

V. COMPLETE BIPARTITE GRAPH

We will now consider a type of graph that is actually a
generalization of a star graph. A bipartite graph is one in
which the vertices are divided into two sets, and only vertices
in different sets are connected by edges; there are no edges
between vertices in the same set. A complete bipartite graph
is one in which each element in one set is connected to all of
the elements in the other set. In the case of a star graph, one
set contains only the central vertex and the other contains the
external vertices. We shall assume that there are N1 vertices

in set 1 and N2 vertices in set 2, so that there are N1N2 edges
in total. The vertices in set 1 will be labeled 1,2, . . . ,N1, and
those in set 2 will be labeled N1 + 1,N1 + 2, . . . ,N1 + N2.
Finally, we will add one more edge, between vertices 1 and 2.
This edge destroys the bipartite character of the graph. What
we want to determine is whether a quantum walk can help
us find this edge. It could, in principle, be between any two
vertices in set 1 or between any two vertices in set 2. However,
we are going to analyze a situation in which the symmetry
between the two sets is broken. In particular, we are going to
assume N1 � N2, so that the extra edge is in the bigger set.
So, in conducting a search what we are trying to do is to find
an extra edge in set 1.

We need to define a quantum walk on this graph. There
are now three sets of transmission and reflection coefficients.
We have t1 = 2/N2 and r1 = (N2 − 2)/N2 for the vertices
{3,4, . . . ,N1},

U |j,k〉 = −r1|k,j 〉 + t1

N1+N2∑
l=N1+1,l �=j

|k,l〉, (21)

where N1 + 1 � j � N1 + N2 and 3 � k � N1, and we have
t2 = 2/N1 and r2 = (N1 − 2)/N1 for the vertices in set 2,

U |j,k〉 = −r2|k,j 〉 + t2

N1∑
l=1,l �=j

|k,l〉, (22)

where 1 � j � N1 and N1 + 1 � k � N1 + N2. Finally, we
have the transmission and reflection coefficients for the
vertices attached to the extra edge, t̃ = 2/(N2 + 1) and r̃ =
(N2 − 1)/(N2 + 1),

U |j,1〉 = −r̃|1,j 〉 + t̃ |1,2〉 + t̃

N1+N2∑
l=N1+1,l �=j

|1,l〉,

U |j,2〉 = −r̃|2,j 〉 + t̃ |2,1〉 + t̃

N1+N2∑
l=N1+1,l �=j

|2,l〉, (23)

where N1 + 1 � j � N1 + N2 and

U |1,2〉 = −r̃|2,1〉 + t̃

N1+N2∑
l=N1+1

|2,l〉,

U |2,1〉 = −r̃|1,2〉 + t̃

N1+N2∑
l=N1+1

|1,l〉. (24)

We find that in this case there is an invariant subspace of
dimension 5 in which the walk takes place.

Our next step is to find the characteristic equation for the
resulting 5 × 5 matrix for U restricted to that subspace and
then, in order to find the zeroth-order solution, take the limit
as the number of vertices goes to infinity. Now, however,
we have two parameters, N1 and N2, so there are different
ways in which we could let the number of vertices go to
infinity. As was mentioned earlier, we shall look at the case
N1 → ∞ and N2 fixed for our zeroth-order solution and then
calculate corrections to it. This result will correspond to the
case N1 � 1.
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We now start the walk in the state

|ψinit〉 = 1√
2N1N2

N1∑
k=1

N1+N2∑
j=N1+1

(|j,k〉 − |k,j 〉), (25)

and let it go for

n = π

4

√
N1(N2 + 2) (26)

steps. We then find that the particle is on the extra edge with a
probability of N2/(N2 + 2) and on one of the edges connected
to the vertices linked by the extra edge with a probability of
2/(N2 + 2). As usual, we assume that when we measure the
position of the particle, we do not have access to the extra edge,
so that if the particle is on the extra edge, we will simply not
find it. Classically, the adjacency list for this graph contains
2N1N2 + 2 elements, and since we know that the extra edge
is in set 1, we would only have to search half of them, i.e.,
the entries corresponding to the vertices in set 1. Quantum
mechanically, after making approximately

√
N1N2 steps, our

probability of ending up on an edge connected to one of the
vertices connected to the extra edge is 2/(N2 + 2), so in order
to have a high probability of ending up on such an edge, we
would have to repeat the walk approximately N2 times, for a
total number of steps of order N2

√
N1N2. The ratio of the total

number of steps in the quantum walks to the number of items
in the adjacency list is approximately

√
N2/N1. Therefore, if

N1 � N2, quantum walk gives us an advantage.
Suppose, however, that we are faced with a different

problem. We are given a complete bipartite graph that may
or may not have an extra edge in set 1 that renders it no longer
bipartite. What we would like to determine is whether there is
an extra edge or not, and we do not care where it is. In that
case, we only need to run the quantum walk a number of times
of order 1. If, after such a walk, we cannot find the particle,
we know it is on the extra edge, so the graph does indeed
possess such an edge. This would require

√
N1N2 steps of a

quantum walk. Classically, we would still have to search the
adjacency list, which has approximately N1N2 items. For this
problem, the quantum walk provides a greater speedup, the
ratio of the number of steps of the quantum walk to the items
in the adjacency list is (N1N2)−1/2, but the classical procedure
will give us more information. It will tell us where the edge is,
while the quantum procedure will only tell us whether there is
such an edge.

VI. CONCLUSION

We have studied a number of examples in which a quantum
walk can find a structural anomaly in a graph more efficiently
than a classical search can. In most cases, the anomaly was
an extra edge or a set of extra edges. The case of two stars
was somewhat different in that there we found which two
edges were linked, or, looking at it from the point of view
of vertices, which vertex had two edges instead of one edge
attached to it.

These examples suggest that there is a class of graphs whose
structure can be usefully and efficiently probed by quantum
walks. What the general features of this class are we do not
know. It would be useful to identify features of a graph that
would indicate that some of its properties can be ascertained

by running a quantum walk on it. That remains a topic for
future work.

Recently, there has been considerable experimental work
on quantum walks on a number of different systems [17–22].
All but the last of these have been quantum walks on a line.
The paper by Schreiber et al. reported on an implementation
of a two-dimensional quantum walk [22]. The rapid progress
in this area leads us to hope that walks on more complicated
geometries can be implemented, which would open the door
to performing quantum walk searches. This could make some
of the results presented in this paper accessible to experiment.
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APPENDIX

1. One missing loop

As was noted in the main text, this walk takes place in a five-
dimensional invariant subspace spanned by the orthonormal
basis {|0,1〉,|1,0〉,|ψL〉,|ψ1〉,|ψ2〉}. In this basis, ordered as in
the previous sentence, we have that

US =

⎛
⎜⎜⎜⎜⎝

0 −r 0 t
√

N − 1 0
eiφ 0 0 0 0
0 t

√
N − 1 0 r 0

0 0 0 0 1
0 0 1 0 0

⎞
⎟⎟⎟⎟⎠ . (A1)

The characteristic equation of US is

λ5 + reiφλ3 + −rλ2 − eiφ = 0, (A2)

which in the N → ∞ limit becomes (λ3 − 1)(λ2 + eiφ) = 0.
From this we see that 1 will be a double root of this equation
if φ = π , e2πi/3 will be a double root if φ = π/3, and e−2πi/3

becomes a double root if φ = −π/3. For the case φ = π we
find that the relevant eigenvalues and eigenstates are

|v+〉 = 1

2

⎛
⎜⎜⎜⎜⎜⎝

1

−1

i
√

2/3

i
√

2/3

i
√

2/3

⎞
⎟⎟⎟⎟⎟⎠ for λ = 1 + i

√
t
3 ,

|v−〉 = 1

2

⎛
⎜⎜⎜⎜⎜⎝

1

−1

−i
√

2/3

−i
√

2/3

−i
√

2/3

⎞
⎟⎟⎟⎟⎟⎠ for λ = 1 − i

√
t
3 . (A3)

We now choose

|ψinit〉 = 1√
3N

N∑
j=0

(|0,j 〉 + |j,0〉 + |lj 〉)

= −i√
2

(|v+〉 − |v−〉) + O(N−1/2), (A4)
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and setting θ = √
t/3, this yields

Un|ψinit〉 = 1√
2

⎛
⎜⎜⎜⎜⎜⎝

sin(nθ )

− sin(nθ )√
2/3 cos(nθ )√
2/3 cos(nθ )√
2/3 cos(nθ )

⎞
⎟⎟⎟⎟⎟⎠ + O(N−1/2). (A5)

From this equation we see that when nθ = π/2, the particle
is, with probability close to 1, located on the edge with the
dummy loop. The cases φ = ±π/3 yield different eigenvalues
and eigenstates and hence require different initial states, but
the results are qualitatively the same; the particle is with a
probability close to 1 on the edge connected to the dummy
loop after O(N1/2) steps.

2. Star graph with a clique

This problem possesses a five-dimensional invariant sub-
space S. Define

|ψ1〉 = 1√
M

M∑
j=1

|0,j 〉,

|ψ2〉 = 1√
M

M∑
j=1

|j,0〉,

|ψ3〉 = 1√
M(M − 1)

M∑
j=1

M∑
k=1,k �=j

|j,k〉,

|ψ4〉 = 1√
N − M

N∑
j=M+1

|0,j 〉,

|ψ5〉 = 1√
N − M

N∑
j=M+1

|j,0〉. (A6)

These vectors are orthonormal and constitute a basis for S.
With this ordering, the matrix for US is⎛
⎜⎜⎜⎜⎝

0 tM − 1 0 0 t
√

M(N − M)
−r̃ 0 t̃

√
M − 1 0 0

t̃
√

M − 1 0 r̃ 0 0
0 t

√
M(N − M) 0 0 1 − tM

0 0 0 1 0

⎞
⎟⎟⎟⎟⎠ .

(A7)
The characteristic polynomial for this matrix is

λ5 + (t̃ − 1)λ4 + [2(M − 1)t + t̃ − 2]λ3

−[2(M − 1)t + t̃ − 2]λ2 − (t̃ − 1)λ − 1 = 0, (A8)

which in the N → ∞ limit becomes

λ5 + (t̃ − 1)λ4 + (t̃ − 2)λ3 − (t̃ − 2)λ2 − (t̃ − 1)λ − 1 = 0.

(A9)
The N → ∞ equation has a double root of −1. Setting λ =
−1 + δλ, we find that

δλ = ±i

√
2M(M − 1)

(2M − 1)N
≡ ±iθ. (A10)

The eigenvectors corresponding to these eigenvalues are

|v+〉 =
√

M − 1

2(2M − 1)

⎛
⎜⎜⎜⎜⎜⎝

1

1

−1/
√

M − 1

−i
√

(2M − 1)/(2M − 2)

i
√

(2M − 1)/(2M − 2)

⎞
⎟⎟⎟⎟⎟⎠ (A11)

for λ = −1 + iθ and

|v−〉 =
√

M − 1

2(2M − 1)

⎛
⎜⎜⎜⎜⎜⎝

1

1

−1/
√

M − 1

i
√

(2M − 1)/(2M − 2)

−i
√

(2M − 1)/(2M − 2)

⎞
⎟⎟⎟⎟⎟⎠ (A12)

for λ = −1 − iθ . For the initial state we choose

|ψinit〉 = 1√
2N

N∑
j=1

(|0,j 〉 − |j,0〉)

= i√
2

(|v+〉 − |v−〉) + O(
√

M/N). (A13)

We then find that, up to terms of order (M/N)1/2,

Un|ψinit〉 = (−1)n
√

M − 1

2M − 1

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

sin(nθ )

sin(nθ )

−(M − 1)−1/2 sin(nθ )√
2M−1

2(M−1) cos(nθ )

−
√

2M−1
2(M−1) cos(nθ )

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(A14)
Therefore, when nθ = π/2, we find that the particle is on one
of the edges going from the central vertex to the clique with a
probability of (2M − 2)/(2M − 1) and a probability of being
on the clique itself of 1/(2M − 1).

3. Two stars

The dimension of this problem can be reduced still further,
from 8 to 4. If we define the vectors

|w1〉 = 1√
2

(|ψ1〉 − |ψ3〉),

|w2〉 = 1√
2

(|ψ5〉 − |ψ7〉),

|w3〉 = 1√
2

(|ψ2〉 − |ψ4〉),

|w4〉 = 1√
2

(|ψ6〉 − |ψ8〉), (A15)

then we find that the action of the unitary operator U is given
by

U |w1〉 = −|w3〉,
U |w2〉 = |w4〉,
U |w3〉 = −r|w1〉 + t

√
N − 1|w2〉,

U |w4〉 = r|w2〉 + t
√

N − 1|w1〉. (A16)
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Therefore, if our initial state is in the subspace S ′, which we
define to be the linear span of the vectors {|wj 〉|j = 1, . . . 4},
then the dynamics can be described completely within this
four-dimensional subspace. The initial state

|ψinit〉 = 1

2
√

N

⎡
⎣ N∑

j=1

(|A,j 〉 + |j,A〉) − (|1,B〉 + |B,1〉)

−
2N−1∑

j=N+1

(|B,j 〉 + |j,B〉)
⎤
⎦ (A17)

can be expressed as

|ψinit〉 = 1√
2N

(|w1〉 + |w3〉)

+
√

N − 1

2N
(|w2〉 + |w4〉), (A18)

so that it is, in fact, in S ′. Therefore, we have reduced our
problem to a four-dimensional one.

We can go even further if we look at U 2. Under the
action of U 2, the subspace S ′ splits into two two-dimensional
subspaces, one spanned by {|w1〉,|w2〉} and the other spanned
by {|w3〉,|w4〉}. In particular, we have that

U 2|w1〉 = r|w1〉 − t
√

N − 1|w2〉,
U 2|w2〉 = r|w2〉 + t

√
N − 1|w1〉, (A19)

which means that in the {|w1〉,|w2〉} subspace U 2 can be
described by the matrix

U 2 =
(

r t
√

N − 1
−t

√
N − 1 r

)
. (A20)

Similarly, we have that

U 2|w3〉 = r|w3〉 + t
√

N − 1|w4〉,
U 2|w4〉 = r|w4〉 − t

√
N − 1|w3〉, (A21)

which means that in the {|w3〉,|w4〉} subspace U 2 can be
described by the matrix

U 2 =
(

r −t
√

N − 1
t
√

N − 1 r

)
. (A22)

So what we are left with are two two-dimensional problems,
both of which are, mathematically, equivalent to Grover
searches. The eigenvalues of both matrices are λ = r ±
it

√
N − 1, which we shall denote by e±iθ , respectively. This

implies that θ � 2/
√

N . It is straightforward to find the
eigenvectors and to use them to raise the matrices to an
arbitrary power. We find that

U 2n|w1〉 = cos(nθ )|w1〉 − sin(nθ )|w2〉,
U 2n|w2〉 = sin(nθ )|w1〉 + cos(nθ )|w2〉,
U 2n|w3〉 = cos(nθ )|w3〉 + sin(nθ )|w4〉,
U 2n|w4〉 = − sin(nθ )|w3〉 + cos(nθ )|w4〉. (A23)

These equations imply that when nθ = π/2, our initial state
|ψinit〉 will have been transformed into (1/

√
2)(|w1〉 − |w3〉)

up to terms of order N−1/2. That means the probability that the
particle is located on the edges where the stars are connected is

almost 1. The condition nθ = π/2 implies that n = π
√

N/4,
and the number of steps in the walk is twice that, or π

√
N/2.

Note that other initial states for this walk are possible. The
state

|ψ ′
init〉 = 1√

N
|w1〉 +

√
N − 1

N
|w2〉, (A24)

which is an equal superposition of all of the outgoing states
on the first star minus all the outgoing states on the second,
will also lead to a successful search. After O(

√
N ) steps the

particle will end up, to very good approximation, in outgoing
states on the connected edges.

4. Complete bipartite graph

Define the orthonormal set

|ψ1〉 = 1√
2

(|1,2〉 + |2,1〉),

|ψ2〉 = 1√
2N2

N1+N2∑
j=N1+1

(|j,1〉 + |j,2〉),

|ψ3〉 = 1√
2N2

N1+N2∑
j=N1+1

(|1,j 〉 + |2,j 〉),

|ψ4〉 = 1√
(N1 − 2)N2

N1∑
k=3

N1+N2∑
j=N1+1

|j,k〉,

|ψ5〉 = 1√
(N1 − 2)N2

N1∑
k=3

N1+N2∑
j=N1+1

|k,j 〉. (A25)

They span an invariant subspace S of U , the operator that
advances the walk one step on a complete bipartite graph with
an extra edge. The matrix of the restriction of U to S, US , is
given by

US =

⎛
⎜⎜⎜⎝

−r̃ t̃
√

N2 0 0 0
0 0 −(r2 − t2) 0 2

√
t2r2

t̃
√

N2 r̃ 0 0 0
0 0 2

√
t2r2 0 r2 − t2

0 0 0 1 0

⎞
⎟⎟⎟⎠ . (A26)

The characteristic equation of this matrix is

(λ − 1){λ4 + (r̃ + 1)λ3 + [r̃ + 1 − t̃(r2 − t2)]λ2

+(r̃ + 1)λ + 1} = 0. (A27)

This problem has two parameters, N1 and N2, so there are
different ways to take the limit as the number of vertices goes
to infinity. We shall consider the case N1 → ∞ and N2 fixed.
This implies that to obtain our zeroth-order solution we will
let t2 → 0 and r2 → 1. In this limit, the fourth-order equation
for λ becomes

λ4 + (r̃ + 1)λ3 + 2r̃λ2 + (r̃ + 1)λ + 1 = 0. (A28)

We find that −1 is a double root of this equation, so we set
λ = −1 + δλ and substitute it into the actual characteristic
equation, keeping only the smallest terms. This gives us δλ =
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±iθ , where

θ =
√

2t2

N2 + 2
. (A29)

The corresponding eigenvectors are

|v+〉 = 1√
2(N2 + 2)

⎛
⎜⎜⎜⎜⎜⎝

−√
N2

1

1

−i
√

(N2 + 2)/2

i
√

(N2 + 2)/2

⎞
⎟⎟⎟⎟⎟⎠ (A30)

for λ = −1 + iθ and

|v−〉 = 1√
2(N2 + 2)

⎛
⎜⎜⎜⎜⎜⎝

−√
N2

1

1

i
√

(N2 + 2)/2

−i
√

(N2 + 2)/2

⎞
⎟⎟⎟⎟⎟⎠ (A31)

for λ = −1 − iθ . Both of these expressions are valid up to
corrections of order N

−1/2
1 .

For our initial state we choose

|ψinit〉 = 1√
2N1N2

N1∑
k=1

N1+N2∑
j=N1+1

(|j,k〉 − |k,j 〉)

= i√
2

(|v+〉 − |v−〉) + O(N−1/2
1 ). (A32)

After n steps, the state of the system is

Un|ψinit〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
√

N2
N2+2 sin(nθ )

1√
N2+2

sin(nθ )

1√
N2+2

sin(nθ )

1√
2

cos(nθ )

− 1√
2

cos(nθ )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A33)

Note that when nθ = π/2, the particle is on the extra edge
with a probability of N2/(N2 + 2) and on one of the edges
connected to the vertices linked by the extra edge with a
probability of 2/(N2 + 2).
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