
Simulation of indivisible qubit channels in collision models

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2012 J. Phys. B: At. Mol. Opt. Phys. 45 154006

(http://iopscience.iop.org/0953-4075/45/15/154006)

Download details:

IP Address: 192.33.100.79

The article was downloaded on 30/07/2012 at 16:09

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-4075/45/15
http://iopscience.iop.org/0953-4075
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS B: ATOMIC, MOLECULAR AND OPTICAL PHYSICS

J. Phys. B: At. Mol. Opt. Phys. 45 (2012) 154006 (6pp) doi:10.1088/0953-4075/45/15/154006

Simulation of indivisible qubit channels in
collision models
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Abstract
A sequence of controlled collisions between a quantum system and its environment (composed
of a set of quantum objects) naturally simulates (with arbitrary precision) any Markovian
quantum dynamics of the system under consideration. In this paper we propose and study the
problem of simulation of an arbitrary quantum channel via collision models. We show that a
correlated environment is capable to simulate non-Markovian evolutions leading to any
indivisible qubit channel. In particular, we derive the corresponding master equation
generating a continuous time non-Markovian dynamics implementing the universal NOT gate
being an example of the most non-Markovian quantum channels.

(Some figures may appear in colour only in the online journal)

1. Introduction

It is one of the basic postulates of quantum physics that the
time evolution of closed quantum systems is governed by the
Schrödinger equation [1]. As a result for any time interval
of length τ > 0, a state of a quantum system described by
a density operator � is transformed according to a unitary
conjugation

� �→ �′
τ = Uτ �U†

τ , (1)

whereUτ = e− i
�

τH , H is the (for simplicity, time-independent)
Hamiltonian of the system and � is the Planck constant.
Moreover, it is natural to assume that Uτ = UtUs, where τ =
t + s and t, s > 0 are arbitrary durations of short time intervals
that sum up to the whole time interval τ . However, if the
system is open (interacting with its environment), such simple
division of time evolution into incremental time steps does not
necessarily possess a clear meaning. It is a relatively recent
discovery [2] that certain non-unitary quantum evolutions are
indivisible into shorter ones. In order to make this statement
precise, let us introduce a mathematical framework modelling
open system dynamics over finite time intervals.

Let us assume that initially the system and its environment
are not correlated, so that the combined system–environment
initial state can be described as � ⊗ ξ (such an assumption is

quintessential in order to preserve linearity of the dynamics—
see e.g. [3] and references therein). Then the evolution of the
joint system–environment state is governed by the Schrödinger
equation and the state transformation over the time interval
[0, τ ] is described by a map

� �→ Eτ [�] = trenv[Ũτ � ⊗ ξŨ†
τ ], (2)

where ξ is the initial state of the environment and trenv

denotes the partial trace over the environmental degrees of
freedom and Ũτ is a unitary transformation describing the time
evolution of both the system and the environment. Abstracted
mathematical properties of Eτ guaranteeing the existence of
such a model for Eτ are linearity (E (X+λY ) = E (X )+λE (Y )),
complete positivity (positivity of Eτ ⊗ Id for all d) and
trace preservation (tr[Eτ [X]] = tr[X]). This result is known
as the Stinespring representation theorem [4] and the maps
Eτ with such properties we call quantum channels (see for
example [5]).

We say that a quantum channel E is divisible if E = E1◦E2,
where E1 and E2 are both non-unitary quantum channels. If this
is not the case, then we say that the channel is indivisible.
According to this definition, unitary channels are indivisible.
This may sound quite counterintuitive, especially, if we recall
how unitary operations are decomposed into gates in quantum
computation [6]. Indeed, the gate decomposition is the crucial
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tool in the analysis of quantum complexity. But let us stress
a difference between the decomposition and the divisibility
of channels. The primary task of the decomposition is to
simplify the implementation of a multipartite quantum channel
by means of elementary gates; thus, the decomposability
captures the complexity of the process expressed in terms
of the number of uses of the elementary gates. On the other
hand, the divisibility addresses a more fundamental question
of whether a given process can be understood as a sequential
concatenation of processes. If not, then it is natural to ask how
to simulate such quantum channels, in particular by means of
some ‘continuous’ time evolution.

Dynamics of open quantum systems is modelled by the
so-called master equations that are usually derived under
the assumption of Markovianity [7, 8]. Mathematically, this
means that a one-parametric set of channels Et , being the
solution of the Markovian master equation (equivalently the
Lindblad master equation), satisfies the semigroup property
Es ◦ Et = Es+t for all s, t � 0 and the initialization condition
limt→0 Et = I. Formally, we can write Et = eLt , where L is
known as the Lindbladian. We say a channel E is Markovian
if there exist the Lindbladian L and time τ such that E = eLτ .
Otherwise, the channel is called non-Markovian. Let us note
that all indivisible channels are non-Markovian, but there are
divisible non-Markovian channels [2, 9].

Simple collision models, in which the system’s evolution
is modelled via a sequence of (weak) interactions of the system
with sequentially selected particles from the environment,
provide a natural playground for simulations of quantum
dynamics of open quantum systems. It is known (see, for
instance, [10, 11]) that these models can approximate (with
arbitrary precision) any evolution governed by a Lindblad
master equation [12, 13], i.e. implement any Markovian
quantum channel. Our aim in this paper is to investigate
whether a general quantum channel (in particular an indivisible
one) can be simulated in the framework of simple collision
models. Let us note that a related collision model was studied
in [14], where the authors derived master equations for a family
of correlated memory evolutions with Markovian dependences
between subsequent (memory) channel inputs. In this paper,
we concentrate on the collision model (simulating non-
divisible evolutions) generating the memory effects between
the system (individual channel input) and its environment.

The rest of this paper is structured as follows. In section 2,
we define the framework of collision models and introduce
the concept of stroboscopic simulations. In section 3, we
design a collision model for implementation of all indivisible
qubit channels. Finally, we discuss our results and present
conclusions of our investigation in section 4.

2. Simple collision model

By a collision model of a specific system dynamics, we
understand a sequence of interactions (collisions) between the
system and particles from the environment. Essential property
of the model considered in this paper is that each particle of
the environment interacts with the system at most once, while
the environment particles do not interact between themselves.

ρ U U · · · U ρn

ωn

Figure 1. Schematic illustration of a simple collision model.

More formally, let Uj be a bipartite unitary operator describing
an individual collision between the system particle and the
jth particle of the environment. The collision model is a
concatenation of unitary channels U1 . . .Un (see figure 1). Let
us denote by ωn the initial state of the environment composed
of n particles and by � the initial state of the system.

Suppose � → �t = Et (�) is a solution of some Lindblad
master equation. The question we would like to answer is:
‘How to simulate the process Et in the framework of a collision
model?’ Let us assume that Uδ and ξ determine the Stinespring
dilation of Eδ . Then the sequence of concatenations of Uδ

applied in each step jointly on the system and a ‘fresh’ particle
from the environment in the state ξ results in a discrete
evolution

� �→ �n = En
δ (�) = trenv[(U1 . . .Un)(� ⊗ ξ⊗n)(U1 . . .Un)

†],

(3)

where Uj = Uδ ⊗ I j and I j denote the identity operator on
all particles of the environment but the jth one. As a result
the described collision model stroboscopically simulates the
continuous Markovian evolution, i.e. for all δ > 0 we have
Et ≈ En

δ with n = [t/δ] ([x] denotes the nearest integer to x).
The parameter δ determines the quality of the (stroboscopic)
approximation of the time-continuous (Markovian) dynamics
Et for t � 0.

It was shown in [15] that if U is a controlled unitary
operator, then the sequence of collisions simulates the pure
decoherence process, in which the diagonal elements of
density operators (with respect to the so-called decoherence
basis) are preserved, while the off-diagonal ones vanish
exponentially. Setting U to be the partial SWAP interaction
[16, 17], the system exponentially converges to the original
state of the particles in the reservoir. The information about
the original state of the system is diluted into the correlations
among all particles. Because of these features the process
is called quantum homogenization and represents a quantum
information analogue of the thermalization process, in which
the temperature is replaced by the concept of quantum state.

In both examples described above, it is assumed that the
initial state of the reservoir is factorized, i.e. ωn = ξ⊗n. In
this factorized setting, the channel E1 is called a generating
channel of the collision process. Indeed, if this is the case, then
the induced discrete dynamics En ≡ En

1 fulfils the conditions
of a discrete semigroup, i.e. En ◦ Em = En+m for all positive
integers n, m. Without loss of generality, we may set E0 = I.
It is important to stress that such a semigroup feature does
not guarantee that the discrete dynamics stroboscopically
approximates some Markovian continuous-time evolution. In
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other words, the generated channels En are not necessarily
Markovian. For instance, by definition indivisible channels
Eindivisible can be elements of a discrete semigroup only as the
generating channels, i.e. Eindivisible = E1.

But what if a general initial state of the environment
is allowed? Could we then find a way to stroboscopically
simulate (using the collision model) a continuous-time
evolution leading to an arbitrary quantum channel?

Let us formulate the problem: we say that E is a
stroboscopically simulated channel if for every n there exists
a bipartite interaction U (between the system and a specific
particle from the environment) and an initial state ωn of the
environment is such that En ≡ E , where

En(�) = trenv[(U1 . . .Un)(� ⊗ ωn)(U1 . . .Un)
†],

and Uj = U ⊗ I j. If the channel can be approximated in
the introduced sense, then the collision models reveal the
characteristic features of Markovian dynamics even for non-
Markovian channels. In particular, the process can be realized
in arbitrarily small (non-unitary) steps although the steps
themselves are not described by valid channels. Our aim is to
address the question of which channels can be stroboscopically
simulated. In what follows we will focus on implementation of
indivisible quantum channels, which are, intuitively, the ‘most
non-Markovian’ examples of quantum evolutions.

3. Stroboscopic simulation of indivisible qubit
channels

The existence of indivisible channels was observed for the
first time in [2], where the authors analysed qubit channels in
detail. In particular, they found that indivisible qubit channels
are unitarily equivalent to the subclass of Pauli channels

E (�) = qxσx�σx + qyσy�σy + qzσz�σz, (4)

where qx, qy, qz are positive (qxqyqz 	= 0) and qx +qy +qz = 1.
For instance, the choice qx = qy = qz = 1/3 defines the best
quantum approximation ENOT of the universal quantum NOT
gate for a qubit FNOT : � �→ (I − �) [18, 19]. The question
is: How to stroboscopically simulate some continuous time
dynamics leading to these channels?

Suppose that the environment is composed of three-
dimensional quantum systems (qutrits). Then one of the
possible dilations for indivisible qubit channels is the
following: E (�) = trenv[C� ⊗ ωC†], where C = σx ⊗ |x〉〈x| +
σy ⊗ |y〉〈y| + σz ⊗ |z〉〈z| is a controlled unitary interaction
and ω satisfies the conditions 〈k|ω|k〉 = qk for k = x, y, z.
We assume that |x〉, |y〉, |z〉 form an orthonormal basis of the
qutrit’s Hilbert space. Let us stress that C is not only unitary,
but also Hermitian. Therefore Uη = eiηC = cos ηI + i sin ηC
defines a family of interactions. Moreover, each member of
this family is a controlled-U operator, Uη = ∑

k eiησk ⊗ |k〉〈k|.
Consider a model generated by collisions Uη. The

concatenation of n such collisions implements a global (system
plus environment) unitary transformation

Uη,1 . . .Uη,n =
∑

k

exp[inησk] ⊗ |k⊗n〉〈k⊗n|. (5)

Suppose ωn is the initial state of the environment composed of
n qutrits such that 〈k⊗n|ωn|k⊗n〉 = qk. After the nth collision,
the system evolution reads

En(�) = trenv[(Uη,1 . . .Uη,n)(� ⊗ ωn)(Uη,1 . . .Uη,n)
†]

=
∑

k

qk exp[inησk]� exp[−inησk],

hence setting the strength of the interaction η = π/(2n); the
resulting collision model simulates the implementation of any
indivisible qubit channel in n steps.

3.1. Evaluation of ||E j+1 − E j||
In this section we will show that for the considered collision
model, the individual collisions induce arbitrarily small
disturbances of the system. Assume n is fixed, i.e. η = π/(2n).
After the jth interaction, the state of the system undergoes the
transformation

E j(�) =
∑

k

qk exp

[
iπ

j

2n
σk

]
� exp

[
−iπ

j

2n
σk

]

= cos2

(
jπ

2n

)
� + sin2

(
jπ

2n

) ∑
k

qkσk�σk

+ i

2
sin

(
jπ

n

)∑
k

qk[σk, �],

where [A, B] = AB − BA is the commutator of operators A, B.
Let us denote by E the target quantum channel, i.e. E = En

(we fix η = π/(2n)) and define F (·) = [F, ·] with F =
i
∑

k qkσk. Then the distance between two subsequent steps
equals

� = ||E j+1 − E j|| = ||Cj+1(I − E ) + Dj+1F ||, (6)

where

Cj+1 = cos2 ( j + 1)π

2n
− cos2 jπ

2n

= 1

2

(
cos

( j + 1)π

n
− cos

jπ

n

)
, (7)

Dj+1 = 1

2

(
sin

( j + 1)π

n
− sin

jπ

n

)
. (8)

Let us note that the norm we have in mind here is the
completely bounded norm (see for instance [20]), namely

||A|| = sup
n,X :||X ||1=1

||(A ⊗ In)(X )||1,

where || · ||1 = tr| · |.
Using the identities cos2 α = (1 + cos 2α)/2, cos α −

cos β = −2 sin
(

α+β

2

)
sin

(
α−β

2

)
, and sin α − sin β =

2 sin
(

α−β

2

)
cos

(
α+β

2

)
, we obtain

Cj+1 = − sin
(2 j + 1)π

n
sin

π

n
, (9)

Dj+1 = cos
(2 j + 1)π

n
sin

π

n
. (10)
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This allows us to conclude that the distance is bounded as
follows:

� � |Cj+1| · ||I − E || + |Dj+1| · ||F ||
� sin

π

n

(∣∣∣∣ sin
(2 j + 1)π

n

∣∣∣∣ · ||I − E ||

+
∣∣∣∣ cos

(2 j + 1)π

n

∣∣∣∣ · ||F ||
)

� K sin
π

n
(−→ 0 for n → ∞), (11)

where K � ||I − E || + ||F || � 2 + ||F || < ∞, because for
channels ||E || = 1 and ||F || < ∞. In fact, as shown in [20]
for any linear qubit map ||A|| � 2

√
2 sup||X ||1=1 ||A(X )||1;

hence, ||F || � 2
√

2 sup||X ||1=1 ||FX − XF||1 � 4
√

2 ||FX ||1
||X ||1 �

4
√

2||F||, where the relations ||FX ||1 � ||F|| · ||X ||1 and
||F|| = supψ ||Fψ ||/||ψ || � 2 were used. That is, K �
2+8

√
2, which allows us to conclude that the system’s changes

in individual steps can be made arbitrarily small as n goes to
infinity. Therefore, in this limit the evolution is continuous.

3.2. Master equation

Replacing the integer parameter j in the expression for E j by a
continuous parameter t, we formally define a one-parametric
set of channels

Et = E + cos2(αt)(I − E ) + sin(αt) cos(αt)F ,

where α = π/(2n) and linear maps E,F are defined in
the previous paragraph. Let us note that Et form the same
set of channels irrelevant of the value of α. Moreover,
this one-parametric set of channels is continuous in t and
E0 = I. A collision model (determined by the value
of α) stroboscopically simulates continuous-time quantum
evolution given by Et , where different values of α define the
quality of the simulation. In the reminder of this section, we
will derive the master equation generating Et .

Formally, the evolution of density operators is generated
by the first-order differential equation

d�t

dt
= dEt

dt
E−1

t (�t ) ≡ Lt (�t ), (12)

where

Lt (X ) = i

�

∑
j

h j[X, σ j] + 1

2

∑
j,k

c jk([σ j, Xσk] + [σ jX, σk])

(13)

is the generator of the dynamics [12, 13]. Any such
generator defines dynamics which is trace preserving and if
(time-dependent coefficients) hj, c jk are real, then also the
hermiticity of operators is preserved. If these parameters are
time independent (Lt = L) and the matrix composed of entries
c jk is positive, then the generated dynamics is also completely
positive and Markovian. In such a case we can write Et = eLt

and L is the Lindbladian.
For the sake of simplicity, let us illustrate the derivation

of the driving master equation (Lt) for the case of the target
channel E = ENOT. This channel transforms the Bloch vector

�r into �r′ = −�r/3, hence, implements a Bloch ball (shrinking)
inversion. In this case the map F induces the Bloch vector
transformation �r → �u × �r with �u = (1/3, 1/3, 1/3). Let us
stress that F (I) = O; hence, the map is not trace preserving
and maps any operator into a traceless one.

In the Bloch sphere parametrization, the channels take the
form of an affine 4 × 4 matrix. Define 3 × 3 matrices

I =
⎛
⎝1 0 0

0 1 0

0 0 1

⎞
⎠ , A =

⎛
⎝ 0 −1 1

1 0 −1

−1 1 0

⎞
⎠ ,

S =

⎛
⎜⎝

0 1 1

1 0 1

1 1 0

⎞
⎟⎠ . (14)

Then the one-parametric dynamics is given by the following
4 × 4 matrix:

Et =
(

1 0 0 0
�0 x(t)I + a(t)A

)
,

where x(t) = 1
3 (4 cos2 αt −1) and a(t) = 1

6 sin(2αt). A direct
calculation gives

dEt

dt
= 1

3
α

(
0 0 0 0
�0 4 sin(2αt)I + cos(2αt)A

)
, (15)

and

E−1
t =

(
1 0 0 0
�0 1

3x(t) I − a(t)
detEt

[x(t)A − a(t)S]

)
, (16)

where det Et = 3x(t)[a(t)2 + x(t)2]. Thus, for the generator
we obtain

Lt = dEt

dt
E−1

t =
(

0 0 0 0
�0 b(t)I + c(t)A + d(t)S

)
, (17)

with

b(t) = 2

9
a(t)

[
12α + 1

a(t)2 + x(t)2

]
, (18)

c(t) = 1

9x(t)

[
α(3x(t) − 1)

2
− a(t)[3x(t) + a(t)]

x(t)[a(t)2 + x(t)2]

]
,

(19)

d(t) = a(t)[3a(t) − x(t)]

9x(t)[a(t)2 + x(t)2]
. (20)

Using the methods and formulae described in [11], we obtain
the non-Markovian master equation in the operator form

d�t

dt
= − ic(t)

2�
[�t, H] − b(t)

2

(∑
j

σ j�tσ j − 3�t

)

+ d(t)
∑
j 	=k

σ j�tσk, (21)

where H = σx + σy + σz. The time dynamics induced by the
collision model is illustrated in figure 2.
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Figure 2. The collision model simulating the continuous time
evolution towards the universal NOT gate (shrinked Bloch sphere
inversion). In particular, the transformation of the Bloch sphere (red
and blue lines capture the time evolution of the eigenstates of σz

operator, |0〉 and |1〉, respectively) is depicted for the time interval
t ∈ [0, n]. For t = 2

3 n the channel Et is not invertible
(det Et=2n/3 = 0) and at this time the Bloch sphere is mapped onto a
two-dimensional disk. Let us note that images of eigenstates of σz

operator are internal points of the disk. In fact, the whole disk is the
image of pure states only4.

4. Conclusions

In this paper we opened the question of whether a continuous
time (stroboscopic) simulation of quantum channels within
simple collision models, i.e. via a sequence of interactions
of the system with particles forming the environment,
is possible. Using the environment composed of three-
dimensional quantum particles, we design a collision model
simulating arbitrary indivisible qubit channel. Indivisible
channels could be coined as the most non-Markovian ones
if one quantifies the Markovianity of a channel E as the
maximal number (n) of non-unitary channels E1, . . . , En such
that E = E1 . . . En. The smaller the number, the more non-
Markovian the channel. Let us stress that there are several
recent proposals for measures of Markovianity of continuous
time evolutions [21–23]. These measures can be applied not
only to the derived master equation for implementation of the
ENOT, but can also be modified to the settings of discrete time
evolutions, which are naturally generated by simple collision
models. However, a more detailed analysis along these lines
goes beyond the scope of this paper.

Another important point we want to stress is the necessity
of initial correlations between the particles of the reservoir,
which are introducing the memory mechanism present in
any non-Markovian evolution. It is of interest to understand
whether there is some deeper relation between the correlation
structure of ωn and memory features of the system’s dynamics

4 An animation of this evolution can be found at http://youtu.be/
C55F4FKysh0.

(Markovianity). In order to answer this question, one needs to
understand the ambiguity of the stroboscopic simulation. For
example, each convex decomposition into unitary channels
induces a different collision model (as described in the
previous section) for the same channel E . However, for this
class of collision models, there is no qualitative difference
neither in the initial states nor in the derived evolutions. In
the considered collision model, the correlations are relatively
strong and all particles involved in the dynamics are mutually
pairwise correlated, but it could happen that there are
qualitatively different collision models for which the structure
of correlations is completely different, especially, it could be
that particles entering the jth and the kth collisions are initially
uncorrelated if | j − k| is sufficiently large.

In summary, we introduced the problem of stroboscopic
simulations of general quantum channels. In this paper we
reported the case study of qubit indivisible channels. In fact, we
designed a collision model for stroboscopic implementation
of any channel (of d-dimensional quantum system) from the
family of random unitary channels (see the appendix). Since
indivisible channels are the most non-Markovian, it is natural
to conjecture that any (qubit) channel can be simulated in the
stroboscopic manner. In fact, it was shown in [2] that non-
unital qubit channels are infinitesimally divisible and can be
approximated by a concatenation of Markovian channels that
can be stroboscopically simulated by factorized initial states
of the environment. Moreover, since unital qubit channels
are necessarily random unitary and for them we have an
explicit collision model (irrelevant of their Markovianity),
we may conclude that collision models can stroboscopically
approximate any qubit channel. We believe that the considered
collision model deserves further investigation that would
finally result in a better understanding of non-Markovian
features of general continuous time quantum evolutions and
implementations of non-Markovian quantum channels.

Acknowledgments

We acknowledge financial support of the European Union
project 2010-248095 (Q-ESSENCE), COST action MP1006
and CE SAS QUTE. TR acknowledges the support of APVV
LPP-0264-07 (QWOSSI). SNF thanks the Russian Foundation
for Basic Research (projects 10-02-00312 and 11-02-00456),
the Dynasty Foundation and the Ministry of Education and
Science of the Russian Federation (projects 2.1.1/5909, �558,
2.1759.2011 and 14.740.11.1257). MZ acknowledges the
support of SCIEX Fellowship 10.271.

Appendix. Simulation of all random unitary
channels

In this appendix we will extend the presented stroboscopic
simulation of qubit indivisible channels to any random unitary
channel acting on the system of arbitrary dimension. A channel
is called random unitary if E = ∑

j q jVj�V †
j , q j � 0,
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j q j = 1 and Vj are unitary operators. Suppose 1 � j � d

and define a collision model generated by the interaction

U =
d∑

j=1

| j〉〈 j| ⊗ Vj
1/n,

where V 1/n
j are unitary operators such that

(
V 1/n

j

)n = Vj.
Assuming that initially ω j = ∑

j q j| j⊗n〉〈 j⊗n|, we find
(analogously as for the qubit case) that after the kth collision

Ek(�) =
d∑

j=1

q j
(
V k/n

j

)
�
(
V k/n

j

)†; (A.1)

thus, En = E . Such construction works for any value of
n and therefore we can conclude that an arbitrary random
unitary channel can be stroboscopically simulated. Let us note
that this collision model defines a non-Markovian evolution
also for Markovian channels. The results of section 3 can be
easily generalized for any random unitary channel in finite-
dimensional Hilbert space. It is sufficient to change σk → Hk,
where Hk is a Hamiltonian generating the unitary Vk such that
exp

[
iπ

2 Hk
] = Vk.
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