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We discuss quantum information processing machines. We start with single purpose machines that either
redistribute quantum information or identify quantum states. We then move on to machines that can perform a
number of functions, with the function they perform being determined by a program, which is itself a quantum state.
Examples of both deterministic and probabilistic programmable machines are given, and we conclude with a
discussion of the utility of quantum programs.
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1. Introduction

Quantum information is information stored in a
quantum mechanical system [1]. The systems them-
selves are either collections of qubits, two-dimen-
sional systems, or qudits, D-dimensional systems. For
example, a qubit exists in a two-dimensional space
spanned by two orthonormal states, which are
denoted by j0i and j1i. While a classical bit can be
either 0 or 1, a qubit can be in any superposition of
j0i and j1i, i.e. jci ¼ aj0i þ b j1i, where a and b are
complex numbers satisfying jaj2 þ jbj2 ¼ 1. This fact
leads to large differences in the properties of classical
and quantum information. Once one has information
in the form of qubits of qudits, one would like to do
something with it. Ultimately, in order to extract the
information stored in the system, it will be necessary
to measure it, but before doing so, it is usually useful
to perform some operations on the system. For
example, one might want to (approximately) copy it,
compare it with known quantum states or with
information stored in other quantum systems, or
perform an operation on it. The devices that
accomplish these tasks are quantum machines. They
can either be single-purpose or programmable and
able to perform many tasks.

In the case of programmable systems, the program
can be either quantum or classical. Examples of
classical programs are a sequence of laser pulses to
put a molecule into a particular quantum state or a
sequence of radio frequency pulses to control the

dynamics of a system of nuclear spins [2]. Here, we
want to consider programs that are themselves states
of quantum systems, i.e. we want to perform
quantum programming. Quantum programs have
some properties that classical ones do not. For
example, they can exist in superposition states, which
means that a quantum processor can perform several
programs simultaneously. In addition, quantum
programs are necessary when the information on
which the program is based is, in fact, quantum
information. We shall provide examples of each of
these situations.

As we shall see, in a number of cases, it is not
possible to perform the desired task perfectly. For
example, the no-cloning theorem prohibits the perfect
copying of quantum information [3]. We are then faced
with deciding how to perform the task as best as we
can. This usually amounts to adopting one of two
possible strategies. The first is to produce an output
state that is as close as possible to the ideal output, that
is we approximately perform the desired task. The
second is to perform the task with some probability in
such a way that we know whether the proper task has
been performed or not. In that case, the task has been
performed probabilistically.

We shall begin by discussing single-purpose
machines, in particular cloners and machines that
perform the discrimination of quantum states. Next,
we shall move on to a general discussion of
programmable machines and outline the deterministic
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and probabilistic approaches to them. We will present
a no-go theorem that shows that a deterministic
programmable machine cannot be universal. We then
consider the problem of implementing a one-para-
meter unitary group on a programmable machine and
discuss the approximate and probabilistic strategies.
We also show how, in the probabilistic case, to
increase the probability of success by increasing the
size of the program space. Finally, we make a case for
why quantum programs are useful.

2. Singe-purpose machines

2.1. Cloners

As mentioned in the Introduction, the no-cloning
theorem prohibits the perfect copying of quantum
information. The theorem states that if we have a
quantum system in the state jci, we cannot build a
machine whose output will be jcijci, for all jci. The
proof relies simply on the linearity of quantum
mechanics [3]. If the machine clones each vector of a
basis for the input space, then its action is completely
determined, and it is incompatible with the transfor-
mation jci! jcijci.

An approximate cloner for qubits can be con-
structed from four Controlled-NOT gates and three
qubits (see Figure 1) [4–6]. A Controlled-NOT gate is a
two-qubit gate. The first qubit is the control qubit, and
the second is the target qubit. If the state of the control
qubit is j0i, then nothing happens to the states of either
the control or the target qubits. However, if the state of
the control qubit is j1i, then the state of the control
qubit is again unchanged, but the state of the target
qubit is flipped, i.e. if it was j0i it becomes j1i, and vice
versa. Returning now to the cloner, we have that the
first qubit, in the state jci ¼ aj0i þ b j1i, where {j0i,
j1i} is the orthonormal qubit basis, is the one to be
copied, and the second qubit will become the copy.

In order to see how this works, define the two two-qubit
states

jX00i ¼
1

21=2
ðj0ij0i þ j1ij1iÞ;

jX0xi ¼
1

21=2
j0iðj0i þ j1iÞ: ð1Þ

We now note that if qubit 1 is in the state jci1 and
qubits 2 and 3 are in one of the two states above, then
the cloning circuit will implement the following
transformations

jci1jX00i23 ! jci1jX00i23;
jci1jX0xi23 ! jci2jX00i13:

ð2Þ

Examining these equations, we see that in the first the
quantum information from the first qubit appears in
output 1, and in the second it appears in output 2. This
suggests that if instead of sending either jX00i or jX0xi
into inputs 2 and 3, we send in a linear combination of
them, some of the quantum information from qubit 1
will appear in output 1 and some of it will appear in
output 2, thereby cloning the state. This is, in fact,
exactly what happens. If we choose

jCi23 ¼ c0jX00i23 þ c1jX0xi23; ð3Þ

as the input state for qubits 2 and 3, with c0 and c1 real
for simplicity, then the reduced density matrices for
outputs 1 and 2 are

rðoutÞ1 ¼ ðc21 þ c0c1Þjcihcj þ
c21
2

1

rðoutÞ2 ¼ ðc20 þ c0c1Þjcihcj þ
c20
2

1:

ð4Þ

Note that by choosing c0 and c1 we can control how
much information about jci goes to which output. In
particular, if we choose c0 ¼ c1 ¼ 1/31/2, then the
information is divided equally, and we find that

rðoutÞ1 ¼ rðoutÞ2 ¼ 5

6
jcihcj þ 1

6
jc?ihc?j ; ð5Þ

where jc?i is the qubit state orthogonal to jci.
Therefore, the fidelity of the cloner output r1

(out) (or
r2
(out), since they are the same in this case) to the ideal
output, jci, which is given by hcjr1(out)jci, is 5/6. A
fidelity of one would imply perfect cloning, so what we
have here is a device that produces two copies of the
input qubit that are pretty good approximations to it.
Note that the fidelity does not depend on the input
state, that is all states are cloned equally well. This
feature of this cloning machine is known as

Figure 1. A circuit for an approximate quantum cloner
with three qubits and four Controlled-NOT gates. The qubit
to be copied goes into input 1, and the copies come out in
outputs 1 and 2. The anti-clone comes out of output 3. In the
symbol for the Controlled-NOT gate, the filled circles
indicate the control qubit, and the open circles indicate the
target qubit.
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universality. Note that the cloner employs three qubits,
and we have only discussed the final state of two of
them. One might wonder if the output state of the third
qubit is of interest. The answer is ‘yes’. Its state is the
best approximation to the state orthogonal to that of
the input qubit that can be realised. A machine that
sends a qubit in an arbitrary input state jci into the
state orthogonal to it, jc?i, is known as a universal-
NOT, or UNOT, gate, and this transformation is also
impossible to perform exactly [7,8]. It can, however, be
performed approximately, and the best fidelity that can
be obtained is 2/3. This can be achieved by measuring
the original qubit along an arbitrary axis and then
producing an output qubit whose state is orthogonal to
the state obtained as the result of the measurement.
For example, if one measured along the z axis and
found the result þz, one would create a qubit in the
7z direction (for a discussion of the optimal estima-
tion of the state of a single qubit see Appendix 1). The
same result can be achieved by taking the third qubit,
the one which is not a clone, from the output of a
quantum cloning machine. This output qubit is some-
times referred to as an anticlone.

There have been a number of realisations of a
quantum cloning machine, most based on a device
known as an optical parametric amplifier [9–11]. This
device takes one photon at frequency 2o and converts
it into two photons at frequency o. A strong beam
at 2o will amplify a weaker beam at frequency o
via stimulated emission. When this device is used as a
cloner, the qubits are the polarisation states of
the photons. A photon in an arbitrary polarisation
state at frequency o will produce three photons, all
at frequency o, at the output. Two of them will
approximate clones, and the third will be an approx-
imate anticlone.

Let us see how this works in more detail [12]. If the
pump beam at 2o is described classically, the Hamilto-
nian for the two modes at frequency o is given by

H ¼ gða†vb
†
h � a†hb

†
vÞ þ h:c: ð6Þ

Here, the creation operators create photons in what are
called the signal (av

{ and ah
{) and idler (bv

{ and bh
{) modes,

where the indices v and h refer to vertical and horizontal
polarisation states, respectively, and g is a constant that
describes the strength of the interaction (it is propor-
tional to the pump field). This Hamiltonian is invariant
under simultaneous rotations of the polarisation of the
signal and idler modes, which makes cloning by this
Hamiltonian universal. Because all input states are
copied equally well, we can see how this cloner works,
by choosing a specific one. Suppose we wish to clone a
signal photon in the vertical polarisation state. To first

order in g we find (after dropping the zeroth order term
and normalising the state)

a†v j0i !
2

3

� �1=2ða†vÞ
2

21=2
b†hj0i �

1

3

� �1=2

a†va
†
hb

†
v j0i ; ð7Þ

where j0i is the vacuum state. We see that with a
probability of 2/3 we obtain two photons in the input
state, and with a probability of 1/3 we obtain one, for
an overall fidelity of 5/6. Both of the experiments cited
in the previous paragraph obtained fidelities of 0.81,
which is very close to the theoretical limit.

A second cloning strategy is a probabilistic one
[13]. In this case, one wants to clone a quantum state
that is selected from a known, finite set of states. For
simplicity, let us assume that this set contains two
elements, jc1i and jc2i. Our machine is then to do the
following. Given an input qubit that is in either the
state jc1i or jc2i, we don’t know which, it is to
produce two copies of the input state. If the two input
states are not orthogonal, this cannot be done
perfectly. It can, however, be done probabilistically.
The machine either produces two perfect copies of the
input, or it fails, and it tells us which of these two
possibilities has occurred. The probability of success-
fully cloning the input is given by

psucc ¼
1

1þ jhc1jc2ij
: ð8Þ

Note that this is one if the states are orthogonal, and
decreases as their overlap increases.

2.2. State discriminators

The problem in quantum state discrimination is, given
a particle in an unknown state selected from a known
set of states, to determine the quantum state of the
particle [14,15]. If the set of possible states contains
states that are not orthogonal to each other, then this
cannot be done perfectly. Again, for simplicity, let us
assume that our set of possible states contains only two
states, jc1i and jc2i.

We shall again explore two strategies for accom-
plishing this task. The first is the minimum-error
strategy, which is a strategy that approximately
discriminates the two states [16]. It can make mistakes,
but the probability of making a mistake is minimised.
A machine that implements this strategy is given an
input, which is equally likely to be jc1i or jc2i, and it
then tells us which of the two states it was given. The
probability of the output being incorrect is

perr ¼
1

2
1� ð1� jhc1jc2ij

2Þ1=2
� �

: ð9Þ
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Note that when the states are orthogonal, this is zero,
but that it increases as the overlap between the states
increases. The second strategy is known as unambig-
uous state discrimination [17–19]. In this case our
machine has three outputs, one corresponding to state
1, one corresponding to state 2, and a third corre-
sponding to failure. This machine will never incorrectly
identify a state, but it may fail. For example, if the
input is in jc1i, the machine will either tell us the input
was in state jc1i, or fail, but it will never tell us the
input was in state jc2i. Assuming that each input state
is equally likely, the probability of successfully
identifying the state is

psucc ¼ 1� jhc1jc2ij : ð10Þ

As has been the case before, the probability of
successfully identifying the input state is one if the
states are orthogonal, and decreases as the overlap of
the states increases.

3. Programmable machines

We now want to consider programmable quantum
machines, which we shall often refer to as quantum
processors [20]. These have two inputs, one for the
data, which is to be acted upon, and one for the
program, which will specify the operation to be
performed on the data. Both the data and the
program are quantum states. In particular, the
processor is a unitary operator acting on the Hilbert
space Hd �Hp, where Hd is the data Hilbert space
and Hp is the program Hilbert space. The machine
can act in either a deterministic or probabilistic
fashion. In the case of a deterministic machine (see
Figure 2), we always accept the output, and the
action of the machine on the data state is described
by a trace-preserving completely positive map, which
is a result of tracing out the program state output. In
the case of a probabilistic machine (see Figure 3), we
measure the program state output, and only accept
the data state output if a particular result is obtained.
We shall examine both scenarios. It is, perhaps, best
to begin with an example [21]. Let us go back and
consider the three-qubit circuit for the approximate
cloner. Qubit 1 will now be our data state, and qubits
2 and 3 will be our program. We will denote the data
state by jci1 and the program state by jXi23. Define
the two-qubit Bell states to be

jC�i ¼
1

21=2
ðj00i � j11iÞ;

jF�i ¼
1

21=2
ðj01i � j10iÞ: ð11Þ

If these states are used as programs in our processor,
we find that

jci1jCþi23 ! jci1jCþi23 ;

jci1jC�i23 ! szjci1jC�i23 ;

jci1jFþi23 ! sxjci1jFþi23 ;

jci1jC�i23 ! ð�isyÞjci1jC�i23; ð12Þ

where sx, sy, and sz are the Pauli matrices. If we
choose the program

jXi23 ¼ c0jCþi23 þ c1jFþi23 þ c2jF�i23 þ c3jC�i23;
ð13Þ

then operating our machine in the deterministic mode,
by tracing out the program state output, we obtain for
the data state output

rðoutÞ1 ¼ jc0j2rðinÞ1 þ jc1j2sxrðinÞ1 sx

þ jc2j2syrðinÞ1 sy þ jc3j2szrðinÞ1 sz: ð14Þ

In the above equation, we have set r1
(in) ¼ jci1hcj.

Examining the output state, we see that this circuit can
implement a number of quantum channels: the bit-flip
channel (c2 ¼ c3 ¼ 0), which flips a bit, with a certain
probability, the phase-flip channel (c1 ¼ c2 ¼ 0), which
sends j0i ! j0i and j1i ! 7j1i, with a certain prob-
ability, and the depolarising channel (c1 ¼ c2 ¼ c3), in
which the input state is replaced by the completely

Figure 2. A model of a deterministic quantum processor G
that implements a unitary operation U on the data register.

Figure 3. A model of a probabilistic general quantum
processor. On the output of the program register a
measurement is performed.
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mixed state, with a certain probability [1]. The same
processor can be used in the probabilisticmode. Suppose
we want to implement the operator A ¼ I72jfihfj on
the data state, where jfi is a specified one-qubit state.
The operatorA is similar to sz, but instead of flipping the
phase of the state j1i, it flips the phase of the state jfi.
Defining the two-qubit operator, U0,

U0j00i ¼ �j10iU0j10i ¼ �j11i;
U0j01i ¼ j00iU0j11i ¼ j01i; ð15Þ

we choose for our program state

jXi23 ¼
1

21=2
U0ðjfi2jf

?i3 þ jf
?i2jfi3Þ; ð16Þ

where jf?i is the qubit state orthogonal to jfi. At the
program state output, we project onto the state
(jFþi23 þ jF7i23 þ jC7i23)/31/2, and if we get one,
we keep the data state output. This will happen with a
probability of 1/3, independent of the state jfi. If we
do get one, then the data state output will be in the
state Ajci.

Now, let us return to deterministic processors and
examine the resources that are necessary in order to
implement a given set of operations on the data.
Suppose that our data state is a qubit, and we want to
implement a one-parameter unitary group U(a) ¼ exp
(iasz), where 0 � a 5 2p, on it. We want to encode the
angle a in the program state. It turns out that this cannot
be done with a finite-dimensional program space, due to
a no-go theorem due to Nielsen and Chuang [22]. It
states that if the program jX1i implements the unitary
operator U1 on the data state, and jX2i implements the
unitary operatorU2, then hX1jX2i ¼ 0. This implies that
for every unitary operator that the processor can
implement on the data state, we need an extra dimension
in the program space. The proof of this theorem is given
in Appendix 2. In the case of our one-paramenter group,
there are an infinite number of operators, so it clearly
cannot be implemented on a processor with a finite-
dimensional program space.

Given this result, we can adopt the same strategies
we did in the case of single-purpose machines that were
prohibited by a no-go theorem. We have already seen
in our example, that a probabilistic machine has no
problem implementing an infinite number of opera-
tions. The only remaining issue in that case is figuring
out how to make the success probability as large as
possible. This we shall address shortly. The other
strategy is to construct a machine that carries out a set
of operations approximately. It is this type of machine
we shall discuss now [23].

We have seen that deterministic processors imple-
ment trace-preserving, completely positive maps.

Therefore, when considering an approximate determi-
nistic processor, we need to have some kind of a
measure of how close two such maps are. We shall use
the process fidelity [24], which has a number of useful
properties [25]. Let T1 and T2 be two trace-preserving,
completely positive maps, mapping the space, BðHÞ, of
linear operators on a D-dimensional Hilbert space, H,
into itself. The Jamiolkowski isomorphism associates a
density matrix on H�H to each trace-preserving,
completely positive map on BðHÞ. Letting {jjijj ¼ 1,
2, . . . ,D} be an orthonormal basis for H, define the
maximally entangled state, jFi in H�H

jFi ¼ 1

D1=2

XD
j¼1
jjijji: ð17Þ

The density matrix associated with the trace-
preserving, completely positive map, T, is

r ¼ ðI � TÞðjFihFjÞ ; ð18Þ

where I is the identity map. If r1 is the density matrix
associated with T1 and r2 is the density matrix
associated with T2, the process fidelity between T1

and T2 is

FprocðT1;T2Þ ¼ Tr r1=21 r2r
1=2
1

� �1=2� �2
; ð19Þ

that is, just the standard fidelity between the density
matrices r1 and r2. The process fidelity is related to the
average fidelity of the outputs of the two maps for
identical inputs [25,26]. If we define

FaveðT1;T2Þ ¼
Z

dcFðT1ðjcihcjÞ;T2ðjcihcjÞÞ; ð20Þ

where dc denotes the Haar measure on a d-
dimensional state space, and F is the standard fidelity
for two density matrices, then

FaveðT1;T2Þ ¼
1

dþ 1
FprocðT1 ;T2Þdþ 1
� 	

: ð21Þ

We will not discuss the case of a general approx-
imate processor, but will look at a specific type.
Suppose we have a processor that is a controlled-U
gate. That means that if our program space, Hp, has
dimension N, there is an orthonormal basis of Hp, {jji
jj ¼ 1, 2, . . . ,N} such that the processor acts as follows

jcijji ! Ujjcijji ; ð22Þ

where Uj is a unitary operator on the data space.
Therefore, this processor implements the set of unitary
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operators Su ¼ {Ujjj ¼ 1,2, . . . ,N} perfectly. Now
suppose we want to use this processor to approximate
another unitary operator U, which is not in Su. We
want to choose a program state that maximises the
process fidelity between the map it generates and U.
What one finds is that the best program is one of the
basis states jji, and it is the one for which jTr(U{Uj)j is
a maximum. In this case, one simply chooses the
unitary operator in Su that is closest to U and
implements that operator. Using a program state that
is a superposition of different basis vectors does not
help.

Let us look at an example of this situation. We wish
to implement the operator, for 0 � y 5 2p,

UðyÞ ¼ exp
ip
2

exp ð�iyÞsþ þ exp ðiyÞs�ð Þ
� �

; ð23Þ

on our data state, which is a qubit. Here 0 � y 5 2p,
and s+ ¼ (sx + isy)/2. Our program state has dimen-
sion N, and an orthonormal basis {jjijj ¼ 1, 2, . . . ,N}.
Define the operators E+ on the program space by
E+ jji ¼ jj + 1i, where the addition and subtraction
are modulo N. Now let the overall processor unitary
operator, which acts on the tensor product of the data
and program spaces, be

G ¼ exp
ip
2
ðsþE� þ s�EþÞ

� �
; ð24Þ

and consider the program states

jyi ¼ 1

N1=2

XN�1
j¼0

exp ð�ijyÞjji : ð25Þ

When y ¼ ym ¼ 2pm/N, for m an integer between 0
and N71, we find that

GðjcijymiÞ ¼ UðymÞjcijymi ; ð26Þ

where jci is a general qubit state. Therefore, this
processor implements the operations U(ym) perfectly.
Now suppose we want to implement U(y) for a value of
y that is not one of the ym. The optimal strategy is to
find the ym closest to y and to send in the program state
jymi corresponding to that value. If we do so we find
that

FprocðUðyÞ;UðymÞÞ > cos 2
p
N

� �
� 1� p

N

� �2
: ð27Þ

Rather than determining which ym is the best one to
use, a simpler procedure is just to use the program
state jyi. There should be some cost to doing this, and,

indeed, we find that the process fidelity in this case is
approximately 1–(2/N). The optimal program has an
error that goes like 1/N2 while the simpler procedure
gives an error of 1/N. Determining whether the extra
accuracy is worth the extra work in determining the
best program would depend on the application.

Now let us return to probabilistic programmable
devices. Suppose our data system is a qubit, and we
want to implement the one parameter group
we mentioned earlier, U(a) ¼ exp(iasz), where 0 �
a 5 2p. This can be accomplished with a success
probability of 1/2 by using a qubit program and a
controlled-NOT gate. As was noted before, the
controlled-NOT gate has two inputs, a control input
and a target input. The state of the control qubit is not
changed, and if the state of the control qubit is j0i,
neither is the state of the target qubit. However, if the
control qubit is in the state j1i, then the operator sx is
applied to the target qubit. It is, in fact, a controlled-U
gate with the two unitary operators being the identity
and sx. In our case, the target qubit is the program and
the control qubit is the data. The program states are

jXðaÞi ¼ 1

21=2
½exp ðiaÞj0i þ exp ð�iaÞj1i� : ð28Þ

If the data state input is jci, the output of this
processor is then

jCouti ¼
1

21=2
ðUðaÞjcij0i þU�1ðaÞjcij1iÞ : ð29Þ

By measuring the program state output in the basis
{j0i, j1i}, and keeping the result only if we get j0i,
which happens with a probability of 1/2, we obtain the
data state output U(a) jci, which is the desired result.

A closely related programmable device has been
recently realised experimentally [27]. It carries out the
transformation

aj0i þ bj1i ! aj0i þ exp ðifÞbj1i ; ð30Þ

where the angle f is encoded in a second qubit. The
qubits are polarisation states of photons, with jHi
representing a horizontally polarised photon and jVi
representing a vertically polarised one. A polarising
beam splitter, which transmits horizontally polarised
photons and reflects vertically polarised ones is the
main component of the device. The beam splitter has
two input modes, which we shall label 1 and 2, and two
output modes, which we shall also denote as 1 and 2.
For a photon incident in input mode 1 we would have
jHi1 ! jHi1 and jVi1 ! jVi2. Input mode 2 behaves
similarly. If two photons, one in the state ajHi1 þ b
jVi1 (data) and the other in the state (1/21/2)
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(jHi2 þ exp(if)jVi2) (program) are incident on the
polarising beam splitter, then in the cases in which a
single photon emerges from each output, which
happens with a probability of 1/2, the conditional
output state is

jcouti ¼
1

21=2
ðajHi1jHi2 þ bexp ðifÞjVi1jVi2Þ : ð31Þ

If we measure the second photon in the j+i ¼ (1/21/2)
(jHi+jVi) basis, then the remaining photon is in either
the state (1/21/2)(jHi þ exp(if)jVi), if our measurement
result was jþi, and (1/21/2)(jHi7exp(if)jVi), if our
measurement result was j7i. If we obtain the result j7i
we can apply a correcting operation on the remaining
qubit that sends jHi ! jHi and jVi ! 7jVi. The final
result is that this device implements the transformation

ajHi þ bjVi ! ajHi þ exp ðifÞbjVi ; ð32Þ

with a probability of 1/2. It should be noted, however,
that in the experiment the gate is implemented in such a
way that the photons cannot be used once they have
gone through it. The conditionalmeasurement necessary
to make the gate work is performed when both of the
photons are detected at the output of the device, thereby
destroying them.

Suppose that we want to increase the probability of
a successful outcome. One possibility is to try again if
we get the wrong result for our measurement on the
program state [28,29]. If we obtained the result j1i
from our measurement, then the data qubit is in the
state U71(a)jci. We can take this qubit and run it
through the processor again, but this time use the
program jX (2a)i. If we do so, the output state is

jC0outi ¼
1

21=2
ðUðaÞjcij0i þU�1ð3aÞjcij1iÞ : ð33Þ

We again measure the program state and keep the
result if we get j0i. This again happens with a
probability of 1/2. Adding this second step has
increased our overall success probability to 3/4, and
the procedure can be repeated to bring the success
probability as close to one as we wish. What we need to
do this, however, is a collection of qubits in the proper
program states, that is, besides a qubit in the state
jX(a)i, we need an additional one in the state jX(2a)i.

We can also accomplish the same thing by
enlarging our program space [29]. Our data space still
consists of one qubit, but the program space now
contains two qubits. Let us label the three inputs, input
1 being the data input, input 2 the first program
input and input 3 the second program input. The
processor now consists of two gates. The first is a

controlled-NOT gate whose control qubit is qubit 1
and whose target qubit is qubit 2. The second gate is a
Toffoli gate. This gate has two control qubits and one
target qubit. The states of the control qubits are not
changed, and if they are in the states j0ij0i, j0ij1i, or
j1ij0i, neither is the state of the target qubit. However,
if they are in the state j1ij1i, then sx is applied to the
target qubit. In our processor, qubits 1 and 2 are the
control qubits and qubit 3 is the target qubit. The input
state is jci1jX(a)i2jX(2a)i3, and the output state is

jC00outi ¼
1

2
½UðaÞjci1ðj0i2j0i3
þ j0i2j1i3 þ j1i2j0i3Þ þU�1ð3aÞjcij1i2j1i3�

ð34Þ

At the output we measure the program qubits in the
computational basis and keep the data state output if
we get j0ij0i, j0ij1i, or j1ij0i. If we do, the data output
is in the state U(a)jci, and we have achieved our goal.
This happens with a probability of 3/4. By increasing
the dimension of the program space further, we can
increase our probability of success. We have, there-
fore, two strategies for increasing the success prob-
ability for a probabilistic processor (for details see
[30]).

4. Why quantum programs?

The programs in the quantum processors we have
been discussing have been quantum states. One might
wonder whether this is necessary and whether classical
programs would suffice. That is, one could have gates
that can perform a number of operations, but the
selection of which operation they do perform is
governed by a classical input. Do quantum programs
provide an advantage? There are several scenarios that
suggest themselves for which quantum programs
would be useful. One is that the information on which
the program is based is intrinsically quantum. We
shall explore an example of this situation when we
discuss programmable state discriminators. This could
also occur if the program is the result of an earlier
quantum computation. A second situation is one in
which we would like to apply quantum information
processing techniques, such as a Grover search, to
programs. In that case, the programs must be
quantum.

Let us first consider programmable state discrimi-
nators. The first such device was proposed by Bužek
and Dušek [31]. Here we will discuss a different
version, which is a type of universal state discrimi-
nator [32]. So far, when discussing state discrimina-
tors, we have assumed we knew the set of states we
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were trying to discriminate among. This knowledge
was built into the discriminator. The resulting
discriminator is useful for discriminating states from
that particular set, but it is not useful for discriminat-
ing among members of other sets of states. Suppose,
however, that we would like a discriminator that
would work for any set of states, i.e. a universal
discriminator. In that case, we have to provide
information about the set of possible states as well
as the quantum system whose state we want to
determine with the machine. The information about
the set of possible states will be the program.

Let us consider the simplest version of such a
device. It will unambiguously discriminate between
two different qubit states. The program consists of two
states, one in each of the states we want to discriminate
between, which we shall call jc1i and jc2i. The data
qubit is in either jc1i or jc2i, and we would like to
know which. What the machine does is implement a
POVM, which takes advantage of the symmetry of the
three-qubit input state. Let us call the program inputs
a and b, and the data input c. Our task is to
discriminate between the states

jC1i ¼ jc1iajc2ibjc1ic;
jC2i ¼ jc1iajc2ibjc2ic: ð35Þ

Note that in jC1i the first and third qubits are in the
same state, while in jC2i the second and third qubits
are in the same state. Therefore, if we project the
three-qubit input state onto the antisymmetric sub-
space of qubits a and c, and we get a non-zero result,
then we know that qubit c was in the state jc2i.
Similarly, if we project qubits b and c onto the
antisymmetric subspace of two qubits, and we get a
non-zero result, then we know that qubit c was in the
state jc1i. There will also be a ‘don’t know’ result in
which the measurement fails, and we want to minimise
the probability of obtaining this result. If the two
states are equally likely, and averaging over jc1i and
jc2i, since we do not know what they are, we find that
the optimal probability of identifying the input data
state is 1/6. Note that in this case, the information
contained in the program was quantum information,
in particular, it consisted of examples of quantum
states, and this necessitated the program itself being
quantum.

Now let us look at an example in which it is useful
to apply quantum information processing techniques
to quantum programs. In order to do so, we first
need to explain the quantum search algorithm due to
Grover [33]. We have a black box that evaluates a
Boolean function. A Boolean function is one whose
value is either zero or one. We send in an input, which

is an n-digit binary number, x, and the output of the
box is f(x). This particular function is zero on all inputs
except one, which we shall call x0, and f(x0) ¼ 1. Our
object is to find x0 with a minimum number of uses of
the black box.

Classically, we simply send in different inputs to the
black box until we find one that gives one as an output.
On average we will have to make 2(n71) tries. The
Grover algorithm works in a completely different way,
and its result is a considerable improvement over the
classical one. It starts with an input state that is an
equal superposition of all possible input values. By
successively applying the black box followed by an
operator Grover called ‘inversion about the mean’
approximately 2n/2 times, the initial state is rotated into
the state jx0i, and then one simply measures this state
in the computational basis to find out what x0 is. Note
that the black box was only used 2n/2 times in this case,
which means that the number of evaluations in the
Grover algorithm is approximately the square root of
the number of evaluations that are necessary in the
classical case.

Now consider the following problem [34]. We have
a set of M permutations on N objects. In particular let
X ¼ {kjk ¼ 0,1, . . . ,N71} be the set of objects being
permuted, and let S ¼ {sj jj ¼ 1,2, . . . ,M} be the set
of permutations. For some specified k0, k12X, we are
promised that there is one sj2S such that s(k0) ¼ k1,
and we want to find which permutation satisfies this
property. A variant of this problem, determining
whether there is a sj 2 S such that s(k0) ¼ k1, can be
used to attack the conjugacy problem in group theory.
If G is a group, and g1, g22G, we would like to know
whether g1 and g2 are conjugate to each other, that is,
whether there is an h2G, such that g2 ¼ hg1h

71. The
connection between this problem and the one involving
the permutations is provided by realising that the
automorphism ah :G ! G given by ah(g) ¼ hgh71 is
just a permutation on G. Thus, the conjugacy problem
is reduced to determining whether there is an ah such
that ah(g1) ¼ g2.

We suppose we have a quantum processor, which
acts on the Hilbert space HX �HS, where HX is
spanned by the orthonormal basis {jkiX jk ¼ 0,1, . . .
N71} and HS is spanned by the orthornormal basis
{jjiS jj ¼ 1,2, . . . M}. We regard HS as the program
space, and HX as the data space. The processor acts as
follows

jjiSjkiX ! jjiSUjjkiX; ð36Þ

where UjjkiX ¼ jsj (k)iX. Once we have this processor,
we can do a Grover search on the programs in order to
find the permutation that satisfies s(k0) ¼ k1. This will
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require approximately M1/2 uses of the processor,
whereas classically M uses would be required. It is the
fact that the programs are quantum states that allows us
to search among them by using a quantum search
procedure.

5. Conclusion

As we have seen, quantum machines have been devel-
oped for a number of information processing tasks.
Cloners move quantum information around and dis-
criminators allow one to distinguish among nonortho-
gonal quantum states. Discriminators can be generalised
to distinguish between nonorthogonal subspaces as well
[35]. In addition, we have seen that it is possible to
construct programmable quantum machines, which are
capable of performing a number of different tasks.

The capabilities of programmable machines are still
not well understood. We concentrated mainly on
processors that implement unitary operators, but, as
we saw processors can also implement more general
maps. Some families of maps, for example, those in
Equation (14), can be implemented with a finite-
dimensional program space, while others, such as a
one-parameter unitary group, cannot. What deter-
mines whether a set of maps can be programmed with
a finite-dimensional program? Another issue is the
equivalence of programmable processors. Suppose we
have two processors, both of which can perform the
same set of operations but they do so with different
programs. This could happen, for example, if the one
of the processors differed from the other simply by
having a fixed unitary gate at the input to its program
register. Given two processors, is there a simple way of
telling whether or not the set of operations they can
implement is the same? These are only two questions
about the properties of quantum processors, and we
suspect there are many more.
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Figure 4. The state space of a qubit is a Bloch sphere. Pure
states jci are represented by points on the sphere, while
statistical mixtures are points inside the sphere. The
state jc?i that is orthogonal to ci, i.e. hcjc?i ¼ 0, is its
antipode.

Appendix 1. Basics of Bayesian inference

To understand the bounds on the optimal manipulation of
quantum information let us turn our attention to the
problem of the optimal estimation of states of quantum
systems. Let us consider a finite ensemble of N qubits all
prepared in the same pure state jci. If the state is totally
unknown, i.e. we have no a priori information about its
preparation, then we have to assume that all pure states
are equally probable. This corresponds to a uniform
probability distribution on the state space of a given
system, i.e. in the case of qubits – the Bloch sphere (see
Figure 4). It is well known [16,36–40] (for a review
see [41]) that there exists an optimal measurement of a
finite set of N qubits by means of which the best possible
estimation of the state jci can be performed. Holevo [36]
has shown that it is possible to realise the best estimation
via a so-called covariant measurement, which is a
continuous POVM measurement performed on the whole
finite ensemble. Obviously, in this case the problem is, that
physically it is difficult to perform experimentally a
measurement with a continuous number of observables.
Later it has been shown by Massar and Popescu [37] and
Derka et al. [38], that the optimal measurement on a finite
ensemble of qubits can be realised via a finite-dimensional
POVM. Such POVM can be realised when we imagine
projective measurements performed on the whole set of N
qubits (that is the qubits are not measured sequentially,
but simultaneously, in one ‘shot’). Once this optimal
measurement is performed then the best possible estimate
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of the measured state can be expressed in the form of the
density operator

rðestÞ ¼ sNrþ
1� sN

2
1 ; ð37Þ

where the ‘scaling’ factor sN is given by the expression

sN ¼
N

Nþ 2
; ð38Þ

and is directly related to the mean fidelity

F ¼
Z

dOrhcjrðestÞjci ; ð39Þ

where the integration is performed over all input states r and
d Or ¼ sin# d# dj/4p is the integration measure associated
with the state space, i.e. the Bloch sphere. When we insert
r(est) given by Equation (37) into Equation (39) we find

F ¼ sN þ
1� sN

2
¼ Nþ 1

Nþ 2
: ð40Þ

There does not exist a measurement that would give us more
information than is given by this POVM (for more details see
the review article [41]).

A1.1. Single qubit case

In the case of a single qubit, a simple projective measurement
optimal. Specifically, the optimalway to estimate the state, is to
measure it alonga randomly (wehavenopriorknowledgeabout
the state) chosendirection in the two-dimensionalHilbert space
[36–38]. So let us choose a random vector jZi, where

jZi ¼ cos ð#0=2Þj0i þ exp ðij0Þsin ð#0=2Þj1i ; ð41Þ

and measure jci along it. If the result is positive, then the
output is taken to be jZi, and if negative, the output is jZ?i.
This gives us the best estimate of the input state given the
result of the measurement.

To evaluate the fidelity of the estimation we present a
statistical picture of the measurement. Firstly, let us average
over all possible orientations of themeasurement apparatus. In
order to do so let us write down a single-qubit density operator

rðmeasÞðZÞ ¼ jhcjZij2 jZihZj þ jhcjZ?ij2 jZ?ihZ?j : ð42Þ

which describes statistics of the measurements for a given
orientation of the measurement apparatus. To get the final
output density matrix we average (42) over all possible
choices of the measurement (i.e. over all vectors jZi)

rðestÞ ¼
Z

dOZrðmeasÞðZÞ ; ð43Þ

where dOZ ¼ (1/4p) sin#0 d#0 dj0 is the integration measure
on the state space of the ‘measurement’ apparatus. After the
integration is performed we find

rðestÞ ¼ srþ 1� s

2
1 ; ð44Þ

where for a single input qubit we have s ¼ 1/3 and
r ¼ jcihcj.

In order to find the mean fidelity of the estimation itself
we have to average the fidelity, i.e. hcjr(est)jci over all
possible preparations, i.e.

F ¼
Z

dOrhcjrðoutÞjci ¼
2

3
: ð45Þ

Obviously, instead of projective measurements one can
consider some other optimal generalised measurement to be
performed on the input qubit. We can even consider a
continuous POVM. Nevertheless, since in the given case the
projective measurement, described above, is the optimal one,
no other measurement can give us more information about
the input state jci.

Now it is clear that the quantum cloning can be
represented as a specific generalised POVM measurement.
It is a particular physical realisation of the Naimark theorem
[36] – the information contained in the original qubit (i.e.
the state jci) is spread among many clones. But when the
optimal measurement on these clones is performed [42] the
mean fidelity of the estimation is again equal to 2/3. In other
words we cannot generate information via cloning. The
argument can be generalised when the optimal N ! N þ M
cloning is considered [43,44]. Information about the input
qubit(s) cannot be ‘generated’. It only can be redistributed
[5].

Appendix 2. Proof of the Nielsen–Chuang no-go theorem

We want to prove the no-go theorem for deterministic
programmable quantum processors [22]. We assume the
processor is represented by a unitary operator, G, acting
Hd �Hp, where Hd is the data space and Hp is the
program space. We suppose that we have a program
jX1ip 2 Hp that implements the unitary operator U1 on Hd,
in particular

Gðjcid � jX1ipÞ ¼ U1jcid � jX01ip: ð46Þ

Now it could be the case that the output in the program
space depends on the state jcid that is sent into the data
input. In order to show that this is not the case, assume that

Gðjc1id � jX1ipÞ ¼ U1jcid � jX01ip;

Gðjc2id � jX1ipÞ ¼ U1jcid � jX001ip: ð47Þ

Taking the inner products of the left-hand sides of the above
equations and equating that to the inner product of the right-
hand sides, and assuming that hc1jc2i 6¼ 0, gives us hX1

0 j
X1
00i ¼ 1, thereby implying that the program state outputs are

identical.
Now suppose that the program state jX1i implements the

operator U1 and the program state jX2i implements U2. We
then have that

Gðjcid � jX1ipÞ ¼ U1jcid � jX01ip;

Gðjcid � jX2ipÞ ¼ U2jcid � jX02ip: ð48Þ
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Taking inner products we find

hX2jX1i ¼ hcjU�12 U1jcihX02jX
0
1i: ð49Þ

We will examine both the case hX2
0jX1
0i 6¼ 0 and the case hX2

0 j
X1
0i ¼ 0. If hX2

0 jX1
0i 6¼ 0, we have

hX2jX1i
hX02jX01i

¼ hcjU�12 U1jci; ð50Þ

and we note that the left-hand side does not depend on jci,
so the right-hand side cannot either. That implies that U2

71

U1 is a multiple of the identity, and since both of the
operators are unitary, we must have U2 ¼ exp(iy)U1 for some
y between 0 and 2p. Now if, on the other hand, hX2

0 j
X1
0i ¼ 0, then we see that we must also have that hX2 j

X1i ¼ 0. Summarising, what we have found is that if U1 and
U2 are different, that is, they are not multiples of each other,
then they must correspond to orthogonal program states.
Therefore, the dimension of the program space must be at
least as great as the number of unitary operators that the
processor can perform.

Similar reasoning can be employed to show that a
deterministic scheme employing measurement is also
impossible. We can call this a measure-and-correct scheme.
Suppose that we send a program and data into our processor,
and at the output measure the program state in a fixed basis.
Each measurement outcome corresponds to a different
unitary operator being applied to the data state, but for
each program state the resulting operators are related to each
other in the same way. That means that for any program
state, if we do not obtain the desired measurement result, we
can correct the resulting output state by applying an operator
that does not depend on the program state.

Let us look at a simple example. Suppose that both the
data and program spaces are two-dimensional, and that our
processor acts as follows:

Gðjcid � jX1ipÞ ¼
1

21=2
ðU1jcid � j0ip þ VU1jcid � j1ipÞ ;

Gðjcid � jX2ipÞ ¼
1

21=2
ðU2jcid � j0ip þ VU2jcid � j1ipÞ :

ð51Þ

Here, V is a fixed unitary operator. Such a processor is
capable of deterministically applying four different unitary
operators to the data state, U1, VU1, U2 and VU2. For
example, suppose we want to apply U1. We use the program
jX1i, and then measure the program state in the basis {j0i,
j1i}. If we obtain j0i we are done, and if we obtain j1i, then
we can apply V 71 to the data state. In either case, we obtain
the output state U1jcid. We will also be able to
deterministically obtain the superpositions c1U1 þ c2U2 and
c1VU1 þ c2VU2, where c1 and c2 are complex numbers. It
appears that we have beaten the no-go theorem, because we
are able to deterministically realise four unitary operators
with a two-dimensional program space. Unfortunately, it will
not work. If we take the inner products of the two equations
above, we find that

hX1jX2i ¼ hcjU�1U2jci : ð52Þ

The left-hand side does not depend on jci, which, as before,
implies that U1 and U2 are related by a phase factor, and that
the program states are multiples of each other. Therefore, we
can only realise two operators in this way, U1 and V U1, and
we have not gained anything.
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