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We report experimental implementation of various types of qubit channels using an individual
trapped ion. We analyzed experimental data and we performed tomographic reconstruction of
quantum channels based on these data. Specifically, we studied phase damping channels, where the
damping acts either in the xy-plane of the Bloch sphere or in an arbitrary plane that includes the
origin of the Bloch sphere. We also experimentally realized and consequently analyzed quantum
channels that in addition to phase damping affect also a polarization rotation. We used three recon-
struction schemes for estimation of quantum channels from experimental data: i) a linear inverse
method, ii) a maximum likelihood estimation, and iii) a constrained maximum likelihood estima-
tion. We took into account realistic experimental conditions where imperfect test-state preparations
and biased measurements are incorporated into the estimation schemes. As a result we found that
imperfections present in the process of preparation of test states and as well as in measurements of
the considered ion trap system do not limit the control of the implementation of the desired chan-
nel. Even imperfect preparation of test state and subsequent measurements still provide sufficient
resources for the complete quantum-channel tomography.

PACS numbers: 03.65.Wj, 03.67.Lx,

I. INTRODUCTION

Any measurement on a physical system gives a re-
sult with limited accuracy and precision. This property
comes from the fact that the number of data gained by
real physical measurements is finite and, moreover, the
measurements are influenced by errors and imperfections
of the experimental setup. Nevertheless, it is the role of
a physicist to interpret measured data and to conclude
about properties of the system as reliably as possible.

Determining the action of an unknown quantum chan-
nel by quantum process estimation enables us to protect
and optimally exploit quantum systems for communica-
tion purposes and also for quantum computation by de-
signing efficient schemes correcting errors introduced by
the noise (see for instance [1, 2]). Furthermore, for quan-
tum computing it is vital to characterize and improve the
experimental performance of quantum logic gates. Quan-
tum process estimation is needed here to first identify
imperfections and decoherence. The knowledge of such
imperfections then allows us to find remedies for these
usually unwanted effects.

Any reconstruction of a quantum channel channel can
be viewed as a black-box problem. The black box (quan-
tum channel) is probed by test states. At the input these
states are specifically prepared while at the output are
specifically measured. Based on the correlations between
preparations and measurements one can reconstruct the
action of the quantum channel under consideration. In
this article we investigate how to reconstruct the action
of various engineered quantum qubit channels even in

the presence of imperfect initial state preparation and
imperfect detection. We shall employ two reconstruction
schemes which lead to the same result for “good” data.
The first of these reconstruction schemes is the inverse
method. In some cases this approach can result an un-
physical estimation of the channel (e.g., the estimated
channel is not completely positive). Small deviations
from the physically valid region are acceptable, because
they can be understood as an evidence of finite statistics.
In this case the observed frequencies of specific outcomes
of measurements are not perfectly compatible with prob-
abilities as predicted by quantum theory, but we can use
the maximum likelihood method [3–5] in order to per-
form the reconstruction. By construction, the maximum
likelihood method always leads to a physical result. If
the violation of the physical constraints is large, then the
data are apparently biased by some kind of systematic
errors, or imperfections in the experimental setup.

A. Description of qubit channels

Within the framework of the quantum theory quan-
tum channels are described by completely positive trace-
preserving linear maps acting on the system’s state space
S(H). For qubits S(H) consists of operators % = 1

2 (1I+~r ·
~σ) where ~r is a real vector with |~r| < 1, ~σ = (σx, σy, σz) is
a vector of Pauli operators, and 1I represents the identity
operator. Therefore, the qubit states can be illustrated as
points inside the so-called Bloch sphere formed by Bloch
vectors ~r. In this Bloch-sphere representation quantum
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channels E : S(H)→ S(H) are described as affine trans-
formations of Bloch vectors, i.e.

E : ~r →M~r + ~v , (1.1)

where M is a real 3 × 3 matrix and ~v is a translation
[6]. In particular, Mjk = tr[σjE [σk]] and vj = tr[σjE [I]].
Consequently, 12 real parameters need to be determined
in order to completely specify a qubit channel E .

According to [6] each qubit channel is unitarily equiv-
alent to a specific quantum channel with diagonal ma-
trix D = diag{λ1, λ2, λ3}. In particular, M = R1DR2,
where R1, R2 are suitable orthogonal rotations associated
with unitary channels U1, U2, i.e. Uj%U

†
j gives Bloch

vector transformation ~r → Rj~r. The diagonal values
{λ1, λ2, λ3} are the so-called singular values of M . If
~v = ~0, then the channel is called unital. In our analy-
sis we shall be interested in a special subclass of unital
channels - phase damping channels characterized by the
relation D = diag{λ, λ, 1}.

The affine form guarantees that for all matrices M
and vectors ~v the resulting affine map is trace-preserving.
Unfortunately, the analytic conditions of complete pos-
itivity are not simple and illustrative [6]. The com-
plete positivity is equivalent to positivity of the state
ωE = (E ⊗ I)[Ψ+], where I stands for the identity
channel and Ψ+ is a projection onto a vector |ψ+〉 =
1√
2
(|00〉 + |11〉) describing two-qubit maximally entan-

gled state. If a qubit channel is completely positive, then
|λx ± λy| ≤ |1 ± λz| for all combinations of pluses and
minuses. Hence, for phase damping channels |λ| ≤ 1.

There are many different experimental procedures how
to determine all channel parameters [2, 7–11]. In general,
such an experiment consists of three steps:

i) preparation of a test state;

ii) application of an unknown channel;

iii) measurement of the transformed system.

In principle, the preparation stage can result in a cor-
related state of a composite system of the system and
some ancilla. In this case the experimental arrangement
is such that the ancilla is not directly affected by the
quantum channel, but the measurement is performed on
the whole system. However, this procedure is itself an
experimental challenge, and from the experimental point
of view, ancilla-free preparations are preferable.

In what follows we shall consider only ancilla-free ex-
periments. By measuring the correlations between the
channel inputs and outputs we can determine the chan-
nel action and identify the corresponding affine mapping
~r → M~r + ~v. The linearity of E implies that for the
purposes of the complete-channel tomography it is nec-
essary to use a collection of linearly independent test
states spanning the whole state space. In particular,
since for a qubit the linear span of the state space is
four-dimensional it follows that at least four test states
are necessary.

An important assumption of the above model of the
experiment is that the test states are perfectly known,
i.e., their preparation is under complete control. That is
experimental imperfections (arbitrarily small) in prepa-
ration of the desired test states must be included into the
description of the test states. If this is the case, then the
channel tomography reduces to state tomography of the
output states.

This paper is organized as follows: in Section II we
shall describe the experimental implementation of the
single-qubit channels and describe the measured exper-
imental data. In Section III we shall discuss different
strategies for complete channel reconstruction. In Sec-
tions IV, V, and VI the tomography of channels using
different reconstruction schemes is presented. Results
and observations are summarized in Section VII.

II. DESCRIPTION OF THE EXPERIMENT

In this section the physical realization of various types
of quantum channels is described. These include phase-
damping channels acting in the x-y-plane of the Bloch
sphere where the amount of damping is varied by chang-
ing the amplitude of added noise. In addition, phase
damping in an arbitrary basis is exemplified by a quan-
tum channel where the damping acts in a plane cut-
ting through the Bloch sphere spanned by the vectors
(0, sinπ/4, cosπ/4)T and (1, 0, 0)T . Furthermore, combi-
nations of phase damping and polarization rotating chan-
nels are implemented with varying rotation angles. A
representative subset of these channels have been chosen
for detailed reconstruction that is presented in Section
III.

The above mentioned quantum channels have been re-
alized experimentally using two hyperfine states of the
electronic ground state of an individual electrodynami-
cally trapped 171Yb+ ion as a qubit (|0〉 ≡ |S1/2F = 0〉,
|1〉 ≡ |S1/2F = 1,mF = 0〉) [12–15] and exposing this
qubit to unitary operations as well as engineered irre-
versible dynamics.

In order to take an individual data point that con-
tributes to the characterization of a quantum channel we
proceed as follows:

i) The ion is laser cooled.

ii) The qubit is initialized in the state |0〉.

iii) The desired input state for testing the quantum
channel is prepared. This is either one of the eigen-
states of σk (σk are the Pauli matrices, k = x, y, z)
with positive eigenvalue (“spin up”), or the eigen-
state of σz with negative eigenvalue (“spin down”).

iv) The qubit is subjected to the action of the quantum
channel.

v) The qubit is measured in a predetermined basis
(±σj). Below, in Section II A 2, it is shown how the
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effect of a difference in the detection efficiencies for
states |0〉 and |1〉, respectively can be canceled by
measuring σj , but also −σj .

For a given set of parameters characterizing the quan-
tum channel the sequence i)-v) is then repeated for all
combinations of test states [prepared in the step iii)] and
measurements [chosen in the step v)]. Then one parame-
ter of the quantum channel is changed and all preparation
and measurement steps described so far are repeated for
this changed set of parameters. Finally, the complete
sequence is repeated between 100 and 500 times that
allows us to extract from these measurements relative
frequencies c±±j,±k. Here the index j ∈ {x, y, z} indi-
cates that a measurement in σj direction has taken place
when the initially prepared state was %±k = 1

2 (I ± σk),
k ∈ {x, y, z}. The superscript ± indicates the outcome
of a measurement σj . The notation introduced here for
the frequencies c±±j,±k allows for a compact description.
Note that not all possible combinations of test states and
measurement directions are realized experimentally. It is
sufficient to prepare four different test states as described
in the step iii) above.

In the remainder of this section the initial preparation
of the qubit before exposing it to the action of the quan-
tum channel, the measurement in an arbitrary basis, the
final read-out, coherent operations and controlled addi-
tion of noise are briefly reviewed.

A. Physical realization of quantum channels

1. The qubit and its initialization

The experimental setup used here for a quantum-
process estimation has been described elsewhere [13, 14]
and a brief summary should suffice: The quantum
mechanical two-state system used as a qubit is the
S1/2 ground-state hyperfine doublet with total an an-
gular momentum F = 0, 1 of a single 171Yb+ ion
confined in a miniature Paul trap (the diameter of 2
mm). The |0〉 ≡ |F = 0〉 ↔ |F = 1,mF = 0〉 ≡ |1〉 tran-
sition with Bohr frequency ω0 is driven by a quasi-
resonant microwave (mw) field with an angular frequency
near ω = 2π × 12.6 GHz. A static magnetic field is ap-
plied to the ion such that the three Zeeman states of
the S1/2, F=1 manifold are split by about 6 Mhz. The
unitary dynamics of the qubit driven by microwave ra-
diation is virtually free of decoherence, i.e. transversal
and longitudinal relaxation rates are negligible [12–14].

Illuminating the ion with laser light near 369,5 nm,
generated by a frequency-doubled Ti:sapphire laser, ex-
citing the S1/2(F=1) ↔ P1/2(F=0) resonance serves
for initial state preparation in state |0〉 while photon-
counting resonance fluorescence on the S1/2(F=1) ↔
P1/2(F=0) transition driven by light near 369 nm al-
lows for a state-selective detection of the qubit. Opti-
cally pumping the ion into the metastable 2D3/2 level

via the P1/2 state is prevented by illumination with light
near 935 nm of a diode laser that retrieves the ion to the
ground state via the |D3/2, F=1〉 → |[3/2]1/2, F = 0〉
excitation [16]. Laser cooling of the ion is achieved by
simultaneously irradiating the ion for 20 ms with laser
light near 369 nm and 935 nm and mw radiation where
the latter is resonant with the |0〉 ↔ |1〉 transition. This
is done before initializing the ion into state |0〉: upon
turning the microwave radiation off the ion is then opti-
cally pumped into state |0〉 with probability p0 = 0.92 in
the experiments reported here [15].

2. Measurement of the qubit state

To detect the state of the ion it is irradiated with laser
light near 369 nm for a duration of 2 ms. If the ion is in
the S1/2(F=1) state, on average 6.25 photons are regis-
tered during that time interval. Due to stray light and
dark counts on average 0.16 photons are registered, if the
ion is in the S1/2(F=0) state. In both cases the numbers
of registered photons follow a Poissonian distribution. If
more than one photon is registered during the counting
interval the ion is assumed to be in the S1/2(F=1) state,
and if one photon or less is registered the state is assumed
to be S1/2(F=0). The probability to detect the S1/2(F
= 1) state correctly is η1 = 0.986 and the probability to
detect the S1/2(F=0) state correctly is η0 = 0.989 [13].
This implies that the two outcomes are associated with
positive operators

E+
0 = η0|0〉〈0|+ (1− η1)|1〉〈1| , (2.1)

E+
1 = (1− η0)|0〉〈0|+ η1|1〉〈1| . (2.2)

The detection efficiencies for both states are not equal,
which if not taken into account adds a slight systematic
bias to the measurement results. This bias is avoided, if
for each measurement in one direction also the measure-
ment in the opposite direction is taken. This means that
when, for example, the z−direction is to be measured,
also the direction −z is measured. Such an “inverted”
measurement is described by positive operators

E−0 = η0|1〉〈1|+ (1− η1)|0〉〈0| , (2.3)
E−1 = (1− η0)|1〉〈1|+ η1|0〉〈0| . (2.4)

Therefore, combining both measurements into a single
one (with equal probability) and identifying the pairs of
outcomes E+

0 , E
−
1 and E+

1 , E
−
0 will form a new measure-

ment of the z−direction Σz associated with positive op-
erators

F+ =
1
2

(E+
0 + E−1 )

=
1
2

[(η0 + η1)|0〉〈0|+ (2− η1 − η0)|1〉〈1|]

= η|0〉〈0|+ (1− η)|1〉〈1| , (2.5)

and

F− = η|1〉〈1|+ (1− η)|0〉〈0| , (2.6)
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where η = (η0 + η1)/2.
As already defined above, we denote by c±±j,±k =

tr[E±±j%±k] the frequencies of outcomes ± for measure-
ments in the direction ±j provided that the test state
%±k was used. Then, for the frequencies of measurements
Σx,Σy,Σz we obtain

f±j,±k = [c+±j,±k + (1− c−∓j,±k)]/2 (2.7)

with j, k ∈ {x, y, z}.
A measurement in a given direction is performed in

two steps: First, a unitary transformation of the qubit
is performed (Sec. II A 3) effecting a rotation of the
desired measurement axis onto the z-axis. Second, the
qubit is irradiated for 2 ms with laser light resonant with
the S1/2(F=1) ↔ P1/2 transition and scattered photons
are detected, if the state |1〉 is occupied.

In summary, collecting data in the described way
results in the implementation of the measurements
Σx,Σy,Σz described by POVM elements

F±j = ηP±j + (1− η)P∓j =
1
2

[I ± (2η − 1)σj ] , (2.8)

where we used the fact that P±j = 1
2 (I ± σj) are the

projectors onto the eigenvectors of σj associated with
eigenvalues ±1.

3. Coherent operations

Coherent operations on the qubit are achieved by ap-
plying near-resonant microwave radiation with the an-
gular frequency ω driving the magnetic dipole transition
between the states |0〉 and |1〉. In the reference frame
rotating with ω, after applying the rotating wave ap-
proximation, the time evolution operator determining the
evolution of the qubit exposed to linearly polarized mw
radiation reads U(t) = exp

[
− i

2 t (δσz + Ωσx)
]
. Here, the

Rabi frequency is denoted by Ω and δ ≡ ω0 − ω is the
detuning between the qubit and the applied radiation.
A desired state characterized by a nutation angle θ and
an azimuthal angle φ on the Bloch sphere is prepared
by driving the qubit initially prepared in the state |0〉
with mw pulses with appropriately chosen detuning δ,
the Rabi frequency Ω, and the duration tmw = θ/Ω, and
by allowing for a free precession for a prescribed time
tp = φ/δ: Since the applied mw radiation is slightly de-
tuned from the qubit resonance near 12.6 Ghz, the qubit
acquires a phase φ relative to the driving field. Note
that φ = 0 when waiting integer multiples of the time
TP = 2π/δ needed for a full precession of the Bloch vec-
tor in the x− y-plane.

Typical values in these experiments were Ω = 3.25 ×
2π kHz and δ = 104.5 × 2πHz. These parameters were
determined by recording Rabi oscillations over 2–4 peri-
ods and by performing a Ramsey-type experiment with
mw pulses separated in time. Also, a Ramsey experi-
ment served to establish the coherence time of the qubit

(i.e., the lifetime of the off-diagonal elements of the den-
sity matrix ρ describing the qubit, often termed T2 time)
that was found to be well over one second [14].

4. Phase damping

Magnetic field noise may be applied during a pre-
scribed time to the qubit in order to induce phase damp-
ing, that is, decay of the off-diagonal elements ρ01 = ρ∗10.
After preparation of the input state, a small noisy mag-
netic field ∆B(t) is superimposed onto to the static field
B0 that defines the quantization axis. For this purpose an
additional magnetic field coil is placed near the trapped
ion and is fed by a signal generator producing (nearly)
white noise with a Gaussian amplitude distribution. The
bandwidth of this additional noise field is limited by a
first-order filter with cut-off frequency ωc = 750 Hz. Its
amplitude is experimentally controlled using a variable
attenuator.

The resonance frequency of the qubit when exposed to
a magnetic field is derived using the Breit-Rabi formula
[17, 18] as

ω0(χ) =
1
~
Ehfs

√
1 + χ2

≈ 1
~
Ehfs

(
1 +

χ2

2

)
(2.9)

where the hyperfine splitting in zero magnetic field is
denoted by Ehfs, the scaled magnetic field is given by

χ ≡

(
gJ + gI

me

mp

)
µBB

Ehfs
, (2.10)

the total applied magnetic field is denoted by B, me and
mp indicate the electron and proton masses, respectively,
gJ and gI are the electronic and nuclear g-factor, and µB
is the Bohr magneton.

The scaled magnetic field consists of two parts, χ0 ∝
B0 and ∆χ ∝ ∆B such that to the lowest order in ∆χ

ω0(χ) ≈ ω0 +
ω0

2
+ ω0χ0∆χ

≡ ω(χ0) + ∆ω (2.11)

and ∆ω(t) ∝ ∆χ(t). During the free precession of the
qubit its dynamics is governed by the Hamiltonian

H =
~
2

(ω(χ0) + ∆ω(t))σz (2.12)

and after transforming into a rotating frame using U =
exp(− i

2ω(χ0)tσz) the qubit’s state evolves according to

|ψ(t)〉 = exp
(
− i

2
ϕ(t)σz

)
|ψ(t = 0)〉 (2.13)

with [19]

ϕ(t) =
∫ t

0

∆ω(t′)dt′ . (2.14)
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The magnetic field fluctuations ∆B(t) obey a Gaussian
distribution. Thus, ∆ω(t), dϕ = ∆ω(t)dt, and also ϕ(t)
are distributed according to a Gaussian function. When
measuring a single instance realization of the qubit af-
ter time t, the off-diagonal element reads ρ01e

−iϕ(t) and
repeating such a measurement many times amounts to
averaging over many realizations of ϕ(t).

The above considerations are valid as long as the cor-
relation time 1/τ ≈ 750 Hz of the noise field is much
shorter than the time during which the noise field is ap-
plied which is always the case in the experiments pre-
sented here. Analytical and numerical calculations on the
dephasing of a qubit exposed to Gaussian low-frequency
noise are reported by Rabenstein et al. [20]. Their re-
sults are applicable to our experiment when setting their
qubit tunnel amplitude, ∆ to zero (∆ corresponds to the
Rabi frequency Ω in our experiment which is zero while
the noisy magnetic field is applied). Rabenstein et al. ob-
tain in the long-time limit (τ � t) for the damping factor
of the off-diagonal elements exp(−Sv(0)t/2). Here Sv(0)
is the spectral density at zero frequency of the applied
Gaussian noise.

As the bandwidth of the noise magnetic field is much
smaller than the Zeeman splitting of the F = 1 state,
the ionic state follows this additional field adiabatically
and transitions between different Zeeman states are not
induced by this noise field.

5. Data representation

A quantum channel E , i.e. the propagation of a qubit
between the initial preparation and the final measure-
ment, is in general characterized by 12 real parameters
forming a matrix M and vector ~v. In the case of ideal
preparations and measurements, i.e. %±k = | ± k〉〈±k|
and F±j = 1

2 (I ± σj) = | ± j〉〈±j|, the frequencies

f±j,±k = tr[F±jE [%±k]] = 〈±j|E [| ± k〉〈±k|]| ± j〉

=
1
4

(2± tr[σjE [I]]±±tr[σjE [σk]])

=
1
2

[1± vj ±±Mjk] ,

and, therefore

Mjk = 2fj,k − fj,z − fj,−z , (2.15)
vj = fj,z + fj,−z − 1 . (2.16)

Note that inserting “bare” frequencies fj,k directly into
Eq. (2.15) to calculate the matrix elements Mjk and
vector elements vj is not justified when experimental im-
perfections occur.

Nevertheless we shall use the matrix

Djk = 2fj,k − fj,z − fj,−z (2.17)

and the vector

dj = fj,z + fj,−z − 1 (2.18)

to represent the experimental data. Only if the test states
%±k are pure and the measurements Σj are sharp (i.e.,
η = 1), then Mjk = Djk and vj = dj . Otherwise, the
correct interpretation of frequencies f±j,±k lead to differ-
ent values of channel parameters Mjk 6= Djk, vj 6= dj .
The precise and correct reconstruction relations shall be
presented and discussed in Section III B.

In conclusion, for an experimentally realized quantum
channel, the experimental data before applying the ap-
propriate channel reconstruction procedures are repre-
sented in the form of a matrix

D =

 dx Dxx Dxy Dxz

dy Dyx Dyy Dyz

dz Dzx Dzy Dzz

 . (2.19)

III. COMPLETE CHANNEL TOMOGRAPHY

In this section we shall describe several ways how to
process the experimental data. The experimental data
are always presented as frequencies of occurrences of
particular experimental outcomes. Ideally, the frequen-
cies are equal to probabilities predicted by the theory.
Strictly speaking, this is true if the number of runs of
the experiment is infinite. Otherwise, we must deal with
statistical errors that can be eliminated by employing
specific statistical procedures. The goal of any channel-
estimation procedure is to reliably identify (given a spe-
cific figure of merit) the channel that is compatible with
the measured data.

A. Description of methods

1. Inverse linear method.

Let us assume that statistical errors are vanishingly
small, i.e. the frequencies are exactly equal to the proba-
bilities that are going to be compared with predictions of
the quantum theory. In the quantum theory the relation
between the channels and probabilities is linear and in-
vertible. However, the exact form depends on particular
parameters of the experiment, i.e. on a collection of test
states and measurements. We shall discuss the details
later in Section III B.

By definition of the procedure the estimated channel
Eest is a linear map and its Bloch sphere parametrization
guarantees it is also trace-preserving. One may think
that experimental results must always give a mapping
Eest that is completely positive. However, this is not nec-
essarily the case. As we shall see the experimental data
processed in this way can indeed violate the complete
positivity constraint. If the experimental conditions are
not affected by some systematic errors, then this could
happen only if the measured statistics is not sufficiently
large.
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A naive method how to regularize the statistics is to
add white noise into the measured data. Let us denote
by A0 the contracting channel maps of all input states
into the maximally mixed state 1

2I, i.e. ~v0 = ~0 and M0 =
O. Addition of the white noise channel corresponds to
a substitution Eest → Ec = cEest + (1 − c)A0. For many
values of c the mapping Ec is completely positive although
Eest is not. It is natural to fix the largest possible c as
the value of this correction parameter and consider Ec to
be the “regularized” estimation of the map. This type
of regularization catches some important features of the
original map, but, in general, this method is not justified
by any statistical reasoning. It can be used as a fast test
of the quality of the experimental data.

2. Maximum Likelihood method.

In this approach we do not interpret frequencies as
probabilities, but instead we directly process the mea-
sured frequencies to estimate the channel. The maxi-
mum likelihood method is a general estimation scheme
[2, 3] that has already been considered for reconstruction
of quantum channels. It has been studied by Hradil and
Fiurášek [4], and by Sacchi [5].

It is natural to understand an experiment as a collec-
tion of settings (%j , Aj) representing the choice of the
test state %j and of the measurement Aj . Each mea-
surement apparatus is described by a positive operator
valued measure (POVM) determining the positive oper-
ators Fjk such that

∑
k Fjk = I. The index k runs over

all possible outcomes of the measurement Aj . The ob-
served frequencies fjk are calculated as the the fraction
of the number of “clicks” (events) associated with Fjk
and of the number of experiments in which the setting
(%j , Aj) was used. Let us note that

∑
k fjk = 1. For a

given setting (%j , Aj), the quantum theory predicts the
probabilities

pjk = tr[FjkE [%j ]]. (3.1)

The likelihood functional is defined by the formula

L(E) = −
∑
j,k

fjk log pjk . (3.2)

The aim is to identify a physical map Eest that maximizes
this function, i.e.

Eest = arg max
E

L(E) . (3.3)

If the maximum is searched only among the (physically
relevant) quantum channels, then the complete positiv-
ity is guaranteed. In such case, the maximum likelihood
method cannot result in an unphysical mapping Eest.
Since the complete positivity constraints are complicated
even for single-qubit channels the maximum likelihood
optimization problem is, in general, complicated. There-
fore complex numerical methods must be employed.

As this variational task is usually performed numer-
ically, a question may arise, how to decide, if one has
found a global or a local minima. Unfortunately, there is
never a certain answer for this question. For proper data
a good hint is the actual maximal value of L found dur-
ing the optimization. For a given amount of experimental
data a value different in orders of magnitude from other,
similar results is suspicious. Also, from the construction
of the experiment one has an expectation for the actual
result (e.g. phase-damping channel).

For data, which (by the standard reconstruction
method described in the previous Section) lead to a
proper physical reconstruction, the maximum likelihood
gives identical results. Also, as the resulting operation in
general is not on the border of the set of the CP channels,
the CP condition can be obeyed during the maximization
procedure, which speeds up the algorithm dramatically.

For data leading to unphysical results (using the in-
verse method) the situation is more complicated. The
best physical result is normally on the border of the set
of CP channels, so one has to take the CP condition into
account during the whole procedure. Moreover, the re-
sulting value of L might vary significantly depending on
how much would the complete operation be non-CP. So
the only way for checking the result is the comparison
with the expected type of a quantum channel.

B. Data processing and interpretation of results

In order to properly interpret the measured experimen-
tal data we need to take into account the experimental
imprecisions leading to imperfection of the preparation
process and also the imperfections in the implementa-
tion of sharp measurements σx, σy, σz. In fact, the lat-
ter imperfections must be taken into account also in the
specification of the preparation process.

Let us express the states

%±k =
1
2

(1I + ~r±k · ~σ) , (3.4)

corresponding to an imperfect preparation of eigenstates
of operators σx, σy, σz. In our particular experiment we
use only four of these states %x, %y, %±z. As it was de-
scribed in Section II A 2 the systems are measured by
one of three observables Σx,Σy,Σz described by positive
operators

F±j = ηP±j + (1− η)P∓j =
1
2

[1I± (2η − 1)σj ] , (3.5)

where P±j = 1
2 (1I± σj) are eigenstates of σj correspond-

ing to eigenvalues ±1.
The experiment consists of different settings (%±k,Mj)

leading to frequencies f±j,±k that are compared with the-
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oretical probabilities

p±j,±k = tr[F±jE [%±k]]

=
1
4

tr[(1I± (2η − 1)σj)E [1I + ~r±k · ~σ]]

=
1
2
± 2η − 1

4

(
tr[σjE [1I]] +

∑
l

Rl,±ktr[σjE [σl]]

)

=
1
2

[1± (2η − 1)(vj +
∑
l

Rl,±kMjl)] ,

where we used the definitions Rl,±k = tr[σl%±k], vj =
1
2 tr[σjE [1I]] and Mjl = 1

2 tr[σjE [σl]]. The goal of the pro-
cess reconstruction is to determine 12 parameters vj and
Mjk describing the quantum channel in the Bloch repre-
sentation.

As we already mentioned in the experiment we use only
four test states %x, %y, %±z. In such case

2f+j,+k − f+j,+z − f+j,−z = (2η − 1)
∑
l

MjlQlk ,(3.6)

where Qlk = Rl,+k − 1
2 (Rl,+z +Rl,−z). Similarly,

f+j,+z + f+j,−z − 1 = (2η − 1)[vj +
∑
l

Mjlql] , (3.7)

where ql = 1
2 (Rl,+z + Rl,−z). The matrix Q and vec-

tor ~q are fixed by performing the state reconstruction
experiments of the input test states %±k. Since the ex-
perimental data are presented in the form of the ma-
trix Djk = 2f+j,+k − f+j,+z − f+j,−z and the vector
dj = f+j,+z + f+j,−z − 1 it follows that

Mjl =
1

2η − 1

∑
k

DjkQ
−1
kl ; (3.8)

vj =
1

2η − 1
dj −

∑
l

Mjlql . (3.9)

Let remind us that this choice of the data representation
is motivated by the property that if the test states are
pure [i.e., %±k = 1

2 (1I ± σk)] and the measurements are
sharp (η = 1), then vj = dj and Mjl = Djl.

The preparation of the input test states is described
by the parameters

Rj,±k = tr[σj%±k] =
1

2η − 1
(f0

+j,±k − f0
−j,±k) , (3.10)

where f0
±j,±k are the observed frequencies for the exper-

iment estimating the test states %±k. Inserting this for-
mula into the expressions for Q and ~q we find

Qjk =
1

2η − 1
(2f0

j,+k − f0
j,+z − f0

j,−z) =
1

2η − 1
D0,jk ,

qj =
1

2η − 1
(f0
j,+z + f0

j,−z − 1) =
1

2η − 1
d0,j .

That is, Q and ~q are proportional to data matrices deter-
mined by the preparation procedures of the test states.

Hence the data collected in the estimation of the test
states can be conveniently expressed in the same form
as the data collected in the case of channel estimation
procedure. However, the data set matrix D0 = (~d0, D0)
does not have to possess the channel requirements on D,
i.e. it does not have to be completely positive.

In the considered experiment

D0 =

 0.031 0.805 0.004 0.016
0.011 −0.016 0.784 −0.055
−0.004 −0.015 0.018 0.803

 ,

and the Bloch vectors of actual test states read

~r+x =
1

2η − 1
(0.836,−0.005,−0.019) ,

~r+y =
1

2η − 1
(0.035, 0.795, 0.014) ,

~r+z =
1

2η − 1
(0.047,−0.044, 0.799) ,

~r−z =
1

2η − 1
(0.015, 0.066,−0.807) .

The above vectors are the columns of the matrix Rl,±k.
The parameter η is determined experimentally and reads
η = 0.988. The fidelities 〈±k|%±k| ± k〉 of preparation of
pure input test states |x〉〈x|, |y〉〈y|, |z〉〈z|, | − z〉〈−z| are
0.928, 0.907, 0.909, 0.913, respectively. These particular
values shall be used in the process tomography procedure
using the formulas given by Eqs.(3.8) and (3.9).

In summary, given a data set D = (~d,D), the channel
E can be very conveniently determined by using the fol-
lowing matrix relations replacing the formulas (3.8) and
(3.9)

E = ΦηDD−1
0 Φ−1

η =
(

1 ~0
~v M

)
, (3.11)

where

Φη =
(

2η − 1 ~0
~0 I

)
, D−1

0 =
(

1 ~0
−D−1

0
~d0 D−1

0

)
.

IV. PHASE DAMPING QUANTUM CHANNELS

The action of the phase damping quantum channel on
the Bloch vector is described by the matrix

Eλ : ~r → ~r′ =

 λ 0 0
0 λ 0
0 0 1

~r (4.1)

with the damping parameter |λ| ≤ 1. It reduces the xth
and yth components of the Bloch vector while the zth
component remains unaffected.

As described in Section II A 4 a phase damping quan-
tum channel is realized by applying a normally dis-
tributed noise magnetic field between the preparation
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and the measurement stages. This noise field is applied
for a duration that equals a multiple of the precession
time TP with an amplitude determined by a variable at-
tenuator. The noise magnetic field changes the preces-
sion frequency of the ion by a small random amount and
therefore adds noise to the phase of the qubit. Upon av-
eraging over many realizations this reduces the x- and
y-components of the Bloch vector.

The damping parameter λ describes the amount of
phase damping that occurs:

λ = exp
[
−Sv(0)

t

2

]
(4.2)

with t being the duration for which the noise magnetic
field is applied and Sv(0) is the spectral density of the
applied Gaussian noise at zero frequency.

In order to vary the damping parameter λ experimen-
tally, the amplitude of the noise magnetic field is changed
while the duration is fixed at 2TP = 4π/δ = 21.6 ms
for the data shown in Fig. 1. The relative noise am-
plitude is indicated on the x-axis for each matrix and
vector element displayed in Fig. 1. Already in this fig-
ure we can see the expected pattern of a phase damp-
ing channel. That is, the off-diagonal elements Djk and
values of dj almost vanish, while the element Dzz re-
mains almost constant and the values of Dxx, Dyy are
exponentially decreasing to zero as the amplitude of the
noise magnetic field is increasing: The solid (red) line in
Fig. 1 indicates a fit with an exponential decay using
Eq. (4.2) where S0

v(0) at a relative amplitude of 0 dB is
used as a free parameter and Sv(0) varies according to
Sv(0) = S0

v(0)·10s/10. Here, s indicates the relative noise
amplitude indicated in dB in Fig. 1 and the time is fixed
at t = 2Tp.

The fact that Dzz < 1 is consistent with the effective
initial preparation of the qubit in a mixed state and its
imperfect detection. This matrix element is expected to
remain unaffected by the applied noise, since the noise
doesn’t induce transitions between the qubit states. This
indeed is found to be the case.

The error bars shown in Fig. 1 indicate a statistical
error originating from a finite number of measurements
that go into the determination of the relative frequencies
and consequently into the matrix elements calculated ac-
cording to Eq.(2.17).

A. Estimation without prior knowledge

For example, for the data set corresponding to s =
−10 dB represented by the fourth bar in each individual
graph of Fig. 1,

D4 =

 1 0 0 0
−0.09 0.56 −0.03 0.05
0.07 −0.10 0.49 0.00
−0.01 −0.05 −0.01 0.84

 ,
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FIG. 1: (color online). Phase-damping quantum channels.
Shown are the experimentally determined values of the matrix

M = D and the vector ~v = ~d as a bar plot. The amount of
phase damping is varied by changing the amplitude (indicated
on the x-axes) of the noise magnetic field that is applied for a
fixed time of 2TP = 4π/δ = 21.6 ms. The diagonal elements
Mxx and Myy are fitted as a function of the noise amplitude
employing Eq. (4.2) (solid lines). The error bar in the lower
right corner of the diagram shows the averaged error of the
experimental values in this plot.

and the linear inverse reconstruction method using
Eq. (3.11) results in the mapping

E4 =

 1 0 0 0
−0.12 0.69 −0.04 0.05
0.06 0.13 0.62 0.04
0.00 −0.05 −0.04 1.04

 .

Since Mzz > 1 it follows that the whole mapping is not
positive, hence the reconstruction gives an unphysical
result. We find that this feature of “unphysicality” is
typical for all values of s. However, this is not entirely
unexpected, because phase damping channels are on the
boundary between positive and non-positive maps. That
is, for each phase damping channel Eλ there exists a non-
positive linear map which is arbitrarily close to Eλ. In
fact, in our case the violation of the complete positivity
is within the statistical errors. The used statistics is rel-
atively small. Each experiment was repeated 100 times.

Employing the maximum likelihood principle for the
data taken at s = −10 dB that was considered already
above we now get

Eest
4 =

 1 0 0 0
−0.17 0.60 −0.13 0.16
0.04 0.15 0.60 0.00
0.00 −0.15 0.03 0.91

 .

We see that this (estimated physical) mapping is not ex-
actly the phase damping channel (see Fig.2), but the ob-
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FIG. 2: (color online). The visualization of the action of
the estimated channel Eest

4 on the Bloch sphere. The original
Bloch sphere corresponding to input states is transformed by
channel Eest

4 into the “ellipsoid” corresponding to the state
space of output states. We also present projections of both
the original Bloch sphere and the output ellipsoid onto the
planes xy, xz, yz.

tained precision is in accordance with the size of the sta-
tistical sample.

B. Estimation of the phase damping parameter

So far we reconstructed the quantum channel without
using any information on the particular physical model
of the the experiment. In this part we shall assume that
nontrivial a priori information on the estimated channel
is available. In particular, we shall consider the chan-
nel described and reconstructed above and assume prior
knowledge that the channel describes a pure phase damp-
ing channel Eλ. Let us note, that the results of Section
IV do no entirely justify such an assumption, because the
implemented channels are not precisely the phase damp-
ing channels. Nevertheless, our goal is to present different
methods how to determine the phase damping parame-
ter λ, which is probably the most interesting parameter
of any decoherence evolution, because it illustrates how
fast the “quantumness” of a given quantum system is
deteriorated.

Firstly, we shall employ the maximum likelihood
method constrained to phase damping channels only. In
this case the optimization of the likelihood is constrained

FIG. 3: (color online). Dependence of the decoherence rate
λ for values presented in Tab. I. The interpolation gives us
the values of S0

v(0) = 0.41ms−1, S0
v(0) = 0.38ms−1, S0

v(0) =
0.37ms−1 for λ, λML, λest, respectively.

only to channels Eλ, that is,

λest = arg max
λ

∑
jk

f±j,±k log p±j,±k(λ) , (4.3)

where pjk(λ) = tr[F±jEλ[%±k]].
In the second approach we shall also assume the same

form of the channel. Now the parameter λ reads

λ = Mxx = tr[σxEλ[σx]] =
tr[σxEλ[%]]

tr[σx%]
(4.4)

for an arbitrary test state %. Alternatively, one can re-
place σx by any other operator ~t · ~σ with a vanishing
z-component of ~t, i.e. orthogonal to σz determining the
decoherence basis. Since the relative statistical error is
largest for off-diagonal elements, in order to fix some
value of λ we shall use the average value of Mxx and
Myy, i.e. λ = (Mxx +Myy)/2.

In Tab. I and Fig. 3 we present the estimates of the
value of λ using three methods: i) the average λ =
(Mxx+Myy)/2 for Ej using the linear inverse reconstruc-
tion (compare Section IV A), ii) the average λML for Eestj

obtained from maximum likelihood, and iii) λest obtained
from the constrained maximum likelihood [see Eq.(4.3)].

setting -19dB -16dB -13dB -10dB -7dB -4dB -1dB

λ 0.94 0.88 0.85 0.66 0.42 0.23 0.00

λML 0.88 0.91 0.87 0.60 0.35 0.31 0.13

λest 0.97 0.90 0.85 0.63 0.40 0.25 -0.01

TABLE I: Estimation of phase damping rate λ obtained
with the three different methods: i) λ = (tr[σxE4[σx]] +
tr[σyE4[σy]])/2, ii) λML = (tr[σxEest

4 [σx]] + tr[σyEest
4 [σy]])/2,

and iii) λest is defined by Eq.(4.3).

All three methods for evaluation of λ must give the
same value in the limit of infinite statistics (providing
that the implemented channels are precisely the phase
damping channels). For small statistical samples the first
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method is, in general, very inappropriate, because it can
give even unphysical values. On the other hand the val-
ues λML and λest can give different values even for infi-
nite statistics. If this is the case, then we must conclude
that the phase damping channels are not implemented
and the value λ does not have exactly the desired mean-
ing. In our case the statistical errors in specification of
λ are ±0.1. Therefore, we can conclude that all three
values are approximately the same. Since the differences
between λest and λML are relatively small (in the context
of statistical errors) we can conclude that phase damping
channels are realized with quite good accuracy although
a precise quantitative specification would require more
experimental runs.

V. PHASE DAMPING QUANTUM CHANNELS
WITH CHANGE OF BASIS

The phase damping quantum channel shown in the
previous paragraph acts in the (x, y) plane of the Bloch
sphere. The phase damping can be applied in a different
plane, if the qubit state is rotated prior to application
of the noise magnetic field and rotated back afterwards.
Here, phase damping in a plane rotated around the x-
axis spanned by the Bloch vectors (0, sin θ, cos θ) with
θ = π/4 and (1, 0, 0) is examined. For arbitrary θ, such
rotated phase damping is described by the Bloch vector
transformation

~r′ =

 λ 0 0
0 λ cos2 θ + sin2 θ (λ− 1) cos θ sin θ
0 (λ− 1) cos θ sin θ λ sin2 θ + cos2 θ

~r(5.1)

with 0 ≤ λ ≤ 1 the damping parameter as in Eq. (4.1).
Fig. 4 shows the experimental results for a phase damp-

ing channel with varying amplitude of the noise field and
fixed θ = π/4. The solid lines indicate a fit of the data
using Eqs. (5.1) and (4.4) as described above.

As in the previous case, also for this type of channels
the basic features are already seen from the data presen-
tation in Fig.4. In contrast to the “pure” phase damping
channels shown in Fig. 1, for this channel the off-diagonal
elements do not vanish. Furthermore, the z-component
is damped. In this set of data the values for Myy and
Mzz are almost equal because of the particular choice of
the rotated basis.

The channel was analyzed in a similar way as the
phase damping channel in the previous section. Let us
present in detail the reconstruction based on an exper-
iment where the same amount of phase damping was
present as in the case of phase damping in the xy−plane,
i.e. s =-10 dB. For the experimental setting -10 dB the
data matrix reads

D4 =


1 0 0 0

−0.04 0.47 −0.08 −0.09
0.02 0.05 0.62 −0.20
0.00 0.02 −0.19 0.62

 .
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FIG. 4: (color online). Quantum channels where phase
damping acts in the plane spanned by the Bloch vectors
(0, sinπ/4, cosπ/4) and (1, 0, 0). Shown are the experimen-
tally determined values of the matrix M = D0 and the vector

~v = ~d0 in a form of a bar plot as a function of the relative
amplitude of the applied noise field. The solid lines are the
result of a fit using Eqs. (5.1) and (4.2). The noise magnetic
field is applied for a fixed time of 2TP = 4π/δ = 21.6 ms. The
error bar in the lower right corner of the diagram shows the
averaged error of the experimental values in this plot.

The inverse reconstruction method gives

E4 =


1 0 0 0

0.02 0.58 −0.10 −0.14
0.00 0.07 0.79 −0.21
0.00 0.03 −0.26 0.76

 ,

and the maximum likelihood estimation results in chan-
nel

Eest
4 =


1 0 0 0

0.01 0.44 −0.00 −0.14
0.04 0.12 0.69 −0.31
0.04 0.02 −0.24 0.72

 .

The constrained maximum likelihood method applied
to channels of the form (5.1) results in the estimates on
the phase damping rate and the rotation axis angle pre-
sented in Tab. II.

In order to fix the parameters λ, θ experimentally it is
sufficient to specify any pair of nonzero elements of the
matrix in Eq.(5.1). For example, we can use | + z〉〈+z|
as the test state and measure σy, σz. From the estimated
matrix elements the values can be easily calculated. How-
ever, in our case we used all the observed values as an in-
put into the constrained maximum likelihood estimation
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setting -19dB -16dB -13dB -10dB -7dB -4dB -1dB

θest 32◦ 32◦ 24◦ 42◦ 41◦ 43◦ 44◦

λest 0.88 0.90 0.74 0.50 0.38 0.18 -0.04

TABLE II: Estimation of the phase damping rate λest and the
rotation axis angle θest based on the constrained maximum-
likelihood method.

that determines the values of λest and θest. As expected,
the value of the phase damping rate for s = −10dB is in
accordance with the corresponding values of λ in Tab. I
within the statistical uncertainty.

The correct value (specified by the experimental setup)
of the angle θ is 45◦. For weak damping (i.e., small val-
ues of added noise and consequently large values of λ)
the estimated angle deviates from the angle used in the
experiment more than for a large damping. However,
this deviation is still within the errors of the maximum
likelihood estimates that are ±10◦. The larger deviation
when low damping is applied can be rationalized as fol-
lows: The fact that the phase damping does not act in
the xy-plane becomes apparent in the increase of the off-
diagonal elements Dyz and Dzy of the matrix D0 only
for relatively large damping (compare Fig. 4). For small
damping these off-diagonal elements are small with a rel-
atively large statistical error bar, which makes it difficult
to accurately estimate for each individual channel the an-
gle θ by which the plane of phase damping is rotated.

The solid line in Fig. 4 indicates a fit (as opposed to a
channel reconstruction) of a given matrix element Dij us-
ing Eqs. (5.1) and (4.4). Here, the fit includes θ as a free
parameter and takes into account all available results for
Dij (i.e., for different strengths of damping) thereby pre-
suming that the channels are characterized by the same
angle θ irrespective of the strength of damping (which
indeed was experimentally realized).

VI. POLARIZATION ROTATING AND PHASE
DAMPING QUANTUM CHANNELS

In a further experiment we combined the phase damp-
ing channel with a unitary channel rotating the state
space around the z axis by an angle α. Such polarization
rotating channel is realized in our experiment by insert-
ing a pause between the preparation of the qubit and its
measurement whose length is a fraction of the preces-
sion time TP . The combined quantum channel realized
here propagates the qubit first through a phase damping
quantum channel according to Eq. (4.1) with a relative
amplitude of the noise field of -10 dB and then through
a phase rotating quantum channel whose rotation angle
α is varied. The combined action on the Bloch vector is
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FIG. 5: (color online). Quantum channels corresponding to
combined phase damping and polarization rotation. Shown
are experimentally determined values of the matrix M and
the vector ~v as a bar plot and the values according to the
Eqs. (6.1) and (4.4) are represented as a solid (red) line. The
relative amplitude of the noise magnetic field is -10 dB. The
error bar in the lower right corner of the diagram shows the
averaged error of the experimental values in this plot.

given by the transformation

~r′ =

 λ cosα λ sinα 0
−λ sinα λ cosα 0

0 0 1

~r . (6.1)

In Fig. 5 the experimental results for that quantum chan-
nel are shown.

One would expect that the zero pause should corre-
spond to the rotation angle α = 0 for which the diagonal
matrix elements are all at their maximum. This is not
the case for the data displayed in Fig. 5 where the offset
of the phase rotation angle α is due to an additional dc
magnetic field that was applied simultaneously with the
ac noise field.

Tab. III contains the results of the constrained maxi-
mum likelihood estimation of the relevant parameters.

αest 255◦ 271◦ 325◦ 22◦ 69◦ 90◦ 147◦ 171◦ 217◦

λest 0.56 0.58 0.58 0.66 0.55 0.58 0.41 0.53 0.45

TABLE III: Estimation of the phase damping rate λest and
the rotation angle αest based on the constrained maximum-
likelihood method.

Let us note that the values of the damping parameter
are in an approximate accordance with the results ob-
tained in the estimations of the previous channels, for
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which we have seen that the damping parameter for -
10 dB is around λ = 0.6. In particular, the average gives
λ = 0.54. Moreover, the rotation angles in the experi-
ment are chosen such that the differences of subsequent
angles should be 45◦. According to above estimations the
average difference is 40◦.

VII. CONCLUSION

Quantum process estimation is a necessary tool for
characterization of dynamics of physical systems. It
can also be used for improvement of efficiency of quan-
tum information processing. We have exposed individ-
ual trapped ions to engineered quantum channels and
explored various methods for a reconstruction of the ac-
tion of these channels. This reconstruction takes into
account imperfect experimental conditions, namely the
imperfect preparation of the test states (that results in
a mixed state), a finite detection efficiency and a bias in
the detection efficiency for different states.

We have created qubit quantum channels with vari-
able phase damping and fully reconstructed them using
the linear inverse method and the maximum likelihood
estimate. Alternatively, if it is a priori known that the
quantum channel only leads to phase damping, then the
estimation of a single parameter is sufficient. In the lat-
ter case a constrained maximum likelihood method leads
to good results with a minimal number of measurements.

A quantum channel with damping in an arbitrary plane
through the Bloch sphere that contains the origin may
also be realized and is exemplified here for a particular
rotation angle that determines this plane. The full re-
construction of this channel is performed without prior
knowledge using the linear inverse and the maximum
likelihood methods. Here, too, the maximum likelihood
method under constraints gives good results with a sig-
nificantly reduced number of measurements when prior
knowledge about the channel’s action is assumed and
used. Furthermore, using the same methods the phase
damping accompanied by a polarization rotation is esti-
mated.

The finiteness of experimental statistics affects the pre-
cision of our estimates. On average the precision of ma-
trix elements is ±0.1. From the observed dependence of
the phase-damping rate λ on parameter s (see Fig.3) we
can determine the constant S0

v(0). In particular, fitting
the estimated values of λ we get S0

v(0) = 0.38ms−1.
The implementation of the phase damping channel is

based on a clear physical picture based on our knowledge
from atomic physics. However, such knowledge is not re-
ally used in the complete tomography methods used in
this paper. The adopted approach is to consider the ex-
periment as an unknown black box transforming states.
Therefore, comparing the estimation with the theoret-

ical expectations gives us nontrivial information about
the validity of our assumptions and understanding of the
physical situation.

For the constrained maximum likelihood estimation
we assume that the channel belongs to a family of
phase damping channels characterized by a single pa-
rameter. For infinite statistics any difference between
unconstrained and constrained maximum likelihood esti-
mations would imply that the model and the experiment
do not fit perfectly. Therefore, the distance d(Eest, Eλest)
can provide the quantification of the agreement of the
model and the experiment. Let us use as a figure of
merit the process fidelity [1]

F (E1, E2) = tr[
√√

ω1ω2
√
ω1] , (7.1)

where ωj = Ej ⊗ I[Ψ+] and Ψ+ is a projection onto
the maximally entangled state. This positive functional
equals to unity if and only if the two processes under con-
sideration are the same and it is less than unity (though
non-negative) otherwise. For phase damping channels we
find that

F (Eest, Eλest) ≈ 0.97 . (7.2)

The value of this fidelity of the channel estimation is very
high in spite of imperfect preparations of test states. To
be specific, the test states that are not (“ideal”) pure
states but rather statistical mixtures that are prepared
with the fidelity approximately 0.91 compared to the
ideal test states. Simultaneously, we stress that this im-
perfect test states are completely known which is a neces-
sary condition for reliable reconstruction of the channel.

The engineered phase damping quantum channels are
of particular relevance for quantum information process-
ing. They represent the most destructive type of deco-
herence, because they are destroying superpositions of
logical qubit states that are necessary for the success of
quantum computing. Therefore, the controlled imple-
mentation of phase damping channels is of use for test-
ing of robustness of quantum computation schemes and
error-correction codes.
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[2] M.G.A. Paris and J. Řeháček, Quantum State Estima-
tion, Springer Series on Lecture Notes in Physics vol.
649, (Springer-Verlag, Berlin, 2004).

[3] R.A. Fisher, Proc. Cambridge Phil. Soc. 22, 700 (1925).
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