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goal is to give a mathematically clear and self-containing explanation of the main concepts of
the modern language of quantum theory.
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1 Preface

Dear reader, we are happy that you decided to use this Guide to discover the hidden world of
quantum theory. Before you start, let us warn you. For many people the quantum world is
strange and puzzling, full of paradoxes and giving only a little sense. Still more than 70 years
after its birth, quantum mechanics gives raise to vigorous debates.

Our senses, trained in classical world, are insensitive to beauty of quantum. Due to this
incapability, the quantum world was hidden for ages to human minds. Nowadays we use artificial
devices to reveal the hidden quantum nature. And one of the main goal of this Guide is to describe
ways how we understand and model the quantum observations.

Even if our intuition is very limited, we are able to create an abstract picture of what is
going on. This is the power of mathematics - we have access to the details of quantum theory
although we cannot see or touch quantum objects. The knowledge of quantum theory also gives
us possibility to train our physical intuition and hence get acquainted with quantum phenomena.

We mostly avoid discussion of philosophical consequences and reasons of quantum theory.
Not because those issues would not be interesting, but because we think that proper understand-
ing can be achieved only by knowing the mathematical structure first. Instead, we shall spend
more spacetime on mathematical proofs. The abstract mathematical and physical concepts are
illustrated in numerous examples. The examples are essential part of this Guide and it is not
recommendable to skip them.

This Guide is based on the lectures that the authors gave in 2007/08 in Research Center for
Quantum Information, Bratislava (http://www.quniverse.sk). The audience consisted
mostly of PhD students studying various subfields of quantum theory. The aim of the lectures
was to introduce a common language for the core part of quantum theory.

Based on this history, this Guide is not meant to be the first textbook in quantum theory. We
expect that the reader has already some training in quantum mechanics, such as one or two uni-
versity courses. Perhaps she now wants to get more systematic picture of different components
occurring in quantum mechanics, such as states, observables and channels. And these are exactly
the targets aimed in this Guide.

http://www.quniverse.sk
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2 Hilbert space refresher

Quantum theory, in it is conventional formulation, builds on the theory of Hilbert spaces and
operators. In this chapter we go through the basic material which is central for the rest of the
chapters. Our treatment is intended as a refresher and reminder - it is assumed that the reader is
already familiar with some of the concepts and elementary results, at least in the case of finite
dimensional inner product spaces. Proofs are given if they are seen instructive or illustrative.
Good references for this chapter are, for instance, [27], [69], [73]. They also contain those
proofs that we skip here.

2.1 Hilbert spaces

2.1.1 Definition and examples

Let H be a complex vector space. We recall that a complex valued function 〈 · | · 〉 on H ×H is
an inner product if it satisfies the following three conditions for all ϕ,ψ, φ ∈ H and c ∈ C:

• 〈ϕ | cψ + φ 〉 = c 〈ϕ |ψ 〉+ 〈ϕ |φ 〉 (linear in the second argument),

• 〈ϕ |ψ 〉 = 〈ψ |ϕ 〉 (conjugate symmetric),

• 〈ψ |ψ 〉 > 0 if ψ 6= 0 (positive definite).

Notice that the linearity and conjugate symmetry imply that 〈 0 |ψ 〉 = 〈ψ | 0 〉 = 0.
A complex vector space with an inner product defined on it is an inner product space. An

alternative name for an inner product is a scalar product, and then one naturally speaks about
scalar product spaces. A word of warning: unlike in all quantum mechanics textbooks, in most
functional analysis textbooks inner products are linear in the first argument.

Example 1. Let Cd denote the set of all d-tuples of complex numbers. For two vectors ψ =
(ψ1, . . . , ψn) and ϕ = (ϕ1, . . . , ϕn), the inner product 〈ψ |ϕ 〉 is defined to be

〈ψ |ϕ 〉 =
d∑
j=1

ψ̄jϕj . (2.1)

Here ψ̄j denotes the complex conjugate of ψj . There are also other inner products on Cd, but
when referring to Cd we always assume that the inner product is the one defined in (2.1).

An isomorphism is, generally speaking, a structure preserving bijection. Hence, in the con-
text of inner product spaces we have the following definition.

Definition 1. Two inner product spaces H1 and H2 are isomorphic if there is a bijective linear
mapping U : H1 → H2 such that

〈Uψ |Uϕ 〉 = 〈ψ |ϕ 〉 (2.2)

for all ψ,ϕ ∈ H. The mapping U is an isomorphism.
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Notice that a linear mapping U satisfying (2.2) is automatically injective: if Uψ = 0, then
〈ψ |ψ 〉 = 〈Uψ |Uψ 〉 = 0 and hence ψ = 0. Therefore, to check whether a given linear
mapping U is an isomorphism it is enough to verify that U is surjective and satisfies the condition
(2.2).

Two vectors ψ,ϕ ∈ H are called orthogonal if 〈ψ |ϕ 〉 = 0. In this case we denote ψ⊥ϕ. A
set X ⊂ H is called an orthogonal set of vectors if any two distinct vectors belonging to X are
orthogonal.

Definition 2. Let H be an inner product space. If for any positive integer d there exists an
orthogonal set of d vectors, then H is infinite dimensional. Otherwise H is finite dimensional.

We recall the following characterization of finite dimensional inner product spaces.

Proposition 1. If H is a finite dimensional inner product space, then there is a positive integer d
such that:

• there are d nonzero orthogonal vectors;

• for d′ > d, any set of d′ nonzero vectors contains non-orthogonal vectors.

The number d is called the dimension of H. A finite dimensional inner product space of dimen-
sion d is isomorphic to Cd.

Not all inner product spaces are finite dimensional. The following example, which is also
used later, illustrates this fact.

Example 2. We denote by N the set of natural numbers, including 0. Let `2(N) be the set of
functions f : N → C such that the sum

∑∞
j=0 |f(j)|2 is finite. The formula

〈 f | g 〉 =
∞∑
j=0

f(j)g(j)

defines an inner product on `2(N). For k ∈ N, let δk be the Kronecker function defined by

δk(j) =
{

1 if j = k ,
0 if j 6= k .

The inner product space `2(N) is infinite dimensional since the Kronecker functions δ0, δ1, . . .
are orthogonal.

Every inner product space H is a normed space with the norm defined as

‖ψ‖ ≡ 〈ψ |ψ 〉
1
2 . (2.3)

Thus, it makes sense to speak about topological properties of H. We recall that a normed space
is

• complete if every Cauchy sequence is convergent;
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• separable if it has a countable dense subset.

Every finite dimensional inner product space is complete and separable. For infinite dimensional
inner product spaces this is not true, and we have the following definition.

Definition 3. An inner product space which is complete with respect to the norm (2.3) is a
Hilbert space.

An orthogonal set X ⊂ H is an orthonormal set if each vector ψ ∈ X has unit norm. An
orthonormal basis for a Hilbert space H is a maximal orthonormal set; this means that there is
no other orthonormal set containing it as a proper subset. A useful criterion for the maximality
of an orthonormal setX ⊂ H is the following: if ψ is orthogonal to all vectors inX , then ψ = 0.

It can be proved using Zorn’s lemma that every Hilbert space has an orthonormal basis and,
moreover, that all orthonormal bases of a given Hilbert space have the same cardinality.

Example 3. It can be shown that the inner product space `2(N) is complete and separable. The
set {δ0, δ1, . . .} is an orthonormal basis for `2(N).

The following proposition should be compared to Proposition 1.

Proposition 2. A Hilbert spaceH is separable if and only if it has a countable orthonormal basis.
A separable infinite dimensional Hilbert space is isomorphic to `2(N).

Example 4. Let L2(R) be the set of complex valued measurable functions on R which sat-
isfy

∫
R |f(x)|2 dx < ∞. This is a separable infinite dimensional Hilbert space under the inner

product

〈 f | g 〉 =
∫

R
f(x)g(x) dx .

A unit vector ψ in L2(R) is thus a function ψ : R → C satisfying
∫

R |ψ(x)|2 dx = 1.

From now on, all Hilbert spaces that we deal with are assumed to be separable (hence, either
finite dimensional or countably infinite dimensional).

2.1.2 Basic properties

An elementary but extremely important result for inner product spaces is Cauchy-Schwarz in-
equality: if ϕ,ψ ∈ H, then

|〈ϕ |ψ 〉|2 ≤ 〈ϕ |ϕ 〉 〈ψ |ψ 〉 . (2.4)

Moreover, equality in (2.4) occurs if and only if ϕ and ψ are linearly dependent. Cauchy-Schwarz
inequality will be constantly used in our calculations. Two other useful formulas are stated in the
following exercises.

Exercise 1. (Parallelogram law) Let ψ and ϕ be vectors in an inner product space H. Prove that
the following equality, known as the parallelogram law, holds:

‖ψ + ϕ‖2 + ‖ψ − ϕ‖2 = 2 ‖ψ‖2 + 2 ‖ϕ‖2 .
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It is interesting to note that the converse is also true: a normed linear space is an inner product
space if the norm satisfies the parallelogram law. (For a proof of this latter fact, see e.g. Theorem
6.1.5. in [36].)

Exercise 2. (Pythagorean formula) Let ψ and ϕ be orthogonal vectors in an inner product space
H. Prove that the following equality, known as the Pythagorean formula, holds:

‖ψ + ϕ‖2 = ‖ψ‖2 + ‖ϕ‖2 .

In the case of a finite dimensional Hilbert space, it is often useful to understand an orthonor-
mal basis as a list of vectors rather than just a set, i.e., we have ordered the elements of the
orthonormal basis. There is then a unique correspondence with the vectors and the d-tuples of
complex numbers. Similarly, in the case of a separable infinite dimensional Hilbert space we take
an orthonormal basis to mean a sequence of orthogonal vectors (rather than just a set) whenever
this is convenient.

Let H be either finite or separable infinite dimensional Hilbert space and let {ϕk}dk=0 be an
orthonormal basis for H. The basis expansion of a vector ψ is

ψ =
d∑
k=0

〈ϕk |ψ 〉ϕk . (2.5)

If d < ∞, then the basis expansion is just of finite sum. In the case of an infinite dimensional
Hilbert space, the basis expansion is a convergent infinite series.

The coefficients 〈ϕk |ψ 〉 in (2.5) are called the Fourier coefficients of ψ with respect to the
orthonormal basis {ϕk}dk=0. The norm of ψ is given by the Parseval’s formula:

‖ψ‖2 =
d∑
k=0

| 〈ϕk |ψ 〉 |2 . (2.6)

2.2 Operators on Hilbert spaces

2.2.1 C∗-algebra of bounded operators

Definition 4. We call a linear mapping T : H → H an operator. An operator T is bounded if
there exists a number t ≥ 0 such that

‖Tψ‖ ≤ t ‖ψ‖ for all ψ ∈ H .

We denote by L(H) the set of bounded operators on H.

It is a basic result in functional analysis that an operator is bounded if and only if it is contin-
uous. For a bounded operator T , we use the following notations:

kerT = {ψ ∈ H : Tψ = 0} (kernel) ;
ranT = {ψ ∈ H : ψ = Tϕ for some ϕ ∈ H} (range) ;
supp T = {ψ ∈ H : ψ ⊥ kerT} ≡ (kerT )⊥ (support) .

(2.7)
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Note that in a finite dimensional Hilbert space H every operator is bounded. Even more,
every linear mapping T : X → H defined on a linear subspace X ⊂ H has an extension to a
bounded operator T̃ : H → H. In an infinite dimensional Hilbert space this is no longer true. In
Example 5 we demonstrate the concept of an unbounded operator.

Example 5. (Unbounded operator) For each f ∈ `2(N), define a function Nf : N → C by
formula

(Nf)(n) = nf(n) .

It may happen that Nf is not a vector in `2(N). For instance, let

f(n) =
{

0 if n = 0,
1
n if n > 0.

Then f ∈ `2(N) but Nf /∈ `2(N). The set

D(N) = {f ∈ `2(N) : Nf ∈ `2(N)}

is a linear subspace of `2(N) and N is a linear mapping from D(N) into `2(N). For each k ∈ N,
we have Nδk = kδk and hence ‖Nδk‖ = k ‖δk‖. This shows that there is no bounded operator
Ñ on `2(N) which would be an extension of N .

The set L(H) is a vector space. Namely, two operators can be added in the usual way and
the scalar multiplication with a complex number c is also defined in a natural way,

(S + T )ψ = Sψ + Tψ ,

(cT )ψ = c(Tψ) .

The vector space L(H) is a normed space when we define a norm by formula

‖T‖ := sup
‖ψ‖=1

‖Tψ‖ . (2.8)

This norm on L(H) is called the operator norm. One can show that L(H) is complete in the
operator norm topology. Let us note that complete normed vector spaces are called Banach
spaces, hence, L(H) is a Banach space.

It follows directly from the definition of the operator norm, Eq. (2.8), that if T ∈ L(H), then
for every ψ ∈ H we have

‖Tψ‖ ≤ ‖T‖ ‖ψ‖ . (2.9)

Together with Cauchy-Schwarz inequality this implies that for every ϕ,ψ ∈ H,

|〈ϕ |Tψ 〉| ≤ ‖ϕ‖ ‖ψ‖ ‖T‖ . (2.10)

Both (2.9) and (2.10) are very useful inequalities.
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We can multiply two operators by forming their composition. If S, T ∈ L(H), then by using
inequality (2.9) twice we get

sup
‖ψ‖=1

‖STψ‖ ≤ ‖S‖ sup
‖ψ‖=1

‖Tψ‖ = ‖S‖ ‖T‖ sup
‖ψ‖=1

‖ψ‖ = ‖S‖ ‖T‖ .

Thus, we have

‖ST‖ ≤ ‖S‖ ‖T‖ . (2.11)

This shows, in particular, that the product operator ST is bounded and hence ST ∈ L(H). In
other words, L(H) is an algebra. Moreover, inequality (2.11) implies that multiplication in L(H)
is separately continuous in each variable.

For each bounded operator T , we can define the adjoint operator T ∗ by the formula

〈ϕ |T ∗ψ 〉 = 〈Tϕ |ψ 〉 , (2.12)

required to hold for all ϕ,ψ ∈ H. The mapping T 7→ T ∗ is conjugate linear, i.e.,

(cT + S)∗ = c∗T ∗ + S∗ .

Moreover, if S, T ∈ L(H), then

(ST )∗ = T ∗S∗ , (2.13)
(T ∗)∗ = T . (2.14)

Exercise 3. Prove the properties (2.13) and (2.14) directly from the defining condition (2.12).

Proposition 3. A bounded operator T and its adjoint T ∗ satisfy

‖T‖ = ‖T ∗‖ = ‖T ∗T‖
1
2 . (2.15)

Proof. For ψ ∈ H, ‖ψ‖ = 1, we get

‖Tψ‖2 =
∣∣∣‖Tψ‖2∣∣∣ = |〈Tψ |Tψ 〉| = |〈ψ |T ∗Tψ 〉|

(2.10)
≤ ‖ψ‖2 ‖T ∗T‖ =

= ‖T ∗T‖
(2.11)
≤ ‖T ∗‖ ‖T‖ ,

which implies that

‖T‖2 ≤ ‖T ∗T‖ ≤ ‖T ∗‖ ‖T‖ . (2.16)

This shows, first of all, that ‖T‖ ≤ ‖T ∗‖. Substituting T ∗ instead of T into this inequality and
using the identity (T ∗)∗ = T we also get ‖T ∗‖ ≤ ‖T‖. Therefore, ‖T‖ = ‖T ∗‖. Using this fact
in (2.16) proves the claim.

We can summarize the previous discussion by saying that L(H) is a C∗-algebra. This means
that

• L(H) is an algebra;
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• L(H) is a complete normed space (i.e. Banach space);

• the adjoint mapping T 7→ T ∗ on L(H) is conjugate linear and satisfies (2.13) and (2.14);

• the operator norm on L(H) satisfies (2.11) and (2.15).

These are the basic properties of L(H) and also the most often used facts for proving other
relevant things.

Example 6. (Shift operators) Let us again continue the discussion on the Hilbert space `2(N). It
is often convenient to write an element ζ ∈ `2(N) as

ζ = (ζ0, ζ1, ζ2, . . .) ,

where ζi ≡ ζ(i). Let A : `2(N) → `2(N) be the shift operator defined by

A(ζ0, ζ1, . . .) = (0, ζ0, ζ1, . . .) .

We have

‖Aζ‖ =
∞∑
j=0

|ζj |2 = ‖ζ‖ ,

and therefore A is bounded and ‖A‖ = 1. To calculate the adjoint operator A∗, let ζ =
(ζ0, ζ1, . . .), η = (η0, η1, . . .) ∈ `2(N). The defining condition (2.12) for A∗ gives

〈 η |A∗ζ 〉 = 〈Aη | ζ 〉 =
∞∑
j=0

η̄jζj+1 .

As the vector η is arbitrary, we conclude that

A∗(ζ0, ζ1, ζ2, . . .) = (ζ1, ζ2, . . .) .

The operator A∗ is called the backward shift operator.

We will later need the following simple facts.

Exercise 4. Let T ∈ L(H) and φ, ψ ∈ H. Verify the following identity, know as Polarization
Identity:

〈φ |Tψ 〉 =
1
4

3∑
k=0

ik
〈
ψ + ikφ |T (ψ + ikφ)

〉
. (2.17)

(Hint: expand the right hand side of (2.17).)

Proposition 4. Let S, T ∈ L(H). If 〈ψ |Sψ 〉 = 〈ψ |Tψ 〉 for every ψ ∈ H, then S = T .
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Proof. Assume that 〈ψ |Sψ 〉 = 〈ψ |Tψ 〉 for every ψ ∈ H. By Polarization Identity (2.17), we
have 〈φ |Sψ 〉 = 〈φ |Tψ 〉 for every ψ, φ ∈ H. Fix a vector ψ ∈ H and choose an orthonormal
basis {φk} forH. We then have 〈φk |Sψ 〉 = 〈φk |Tψ 〉 for every k = 0, 1, . . .. This means that
the basis expansions of the vectors Sψ and Tψ are the same, hence Sψ = Tψ. As this is true for
every ψ ∈ H, we conclude that S = T .

Definition 5. Let T be a bounded operator.

• A number λ ∈ C is an eigenvalue of T if there exists a vector ψ ∈ H \ {0} such that
Tψ = λψ. The vector ψ is eigenvector of T associated with the eigenvalue λ.

• A number λ ∈ C is in the spectrum of T if the inverse mapping of the operator λI − T
does not exist.

It is clear that all of the eigenvalues of T are in the spectrum. However, spectrum may
also contain other numbers than just the eigenvalues. In a finite dimensional Hilbert space the
eigenvalues of T are solutions of the equation det(T − λI) = 0. In particular, every operator
has eigenvalues. This is no longer true in infinite dimensional Hilbert space, as we demonstrate
in the following example.

Example 7. The shift operator A defined in Example 6 does not have any eigenvalues. Indeed,
assume that ψ =

∑
k ckδk would be an eigenvector of A with an eigenvalue λ. Since Aδk =

δk+1, we get the following set of equations:

λc0 = 0,
λc1 = c0,

λc2 = c1,

...

This can happen only if c0 = c1 = . . . = 0, hence ψ = 0.

The eigenvalues and the spectrum play an important role in the analysis of operators. How-
ever, we are avoiding the machinery of spectral analysis, and for our purposes and the knowledge
of elementary properties of eigenvalues and eigenvectors is sufficient.

Exercise 5. Prove the following: if ψ1 and ψ2 are eigenvectors of a bounded operator T and
they correspond to the same eigenvalue λ, then also every linear combination of ψ1 and ψ2 is an
eigenvector associated with the same eigenvalue λ.

2.2.2 Partially ordered vector space of selfadjoint operators

Definition 6. An operator T ∈ L(H) is selfadjoint if T = T ∗. We denote by Ls(H) the set of
selfadjoint operators on H.

Since the adjoint mapping T 7→ T ∗ is linear with respect to real linear combinations, it
follows that the set Ls(H) is a real vector space. We denote by O and I the null operator and the
identity operator, respectively; they are defined as Oψ = 0 and Iψ = ψ for every ψ ∈ H. Both
O and I are clearly selfadjoint operators.
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Proposition 5. An operator T ∈ L(H) is selfadjoint if and only if 〈ψ |Tψ 〉 is a real number for
every ψ ∈ H.

Proof. By Proposition 4, an operator T is selfadjoint iff 〈ψ |Tψ 〉 = 〈ψ |T ∗ψ 〉 for everyψ ∈ H.
But 〈ψ |T ∗ψ 〉 = 〈Tψ |ψ 〉, so the previous condition is the same as to require that 〈ψ |Tψ 〉 =
〈ψ |Tψ 〉 for every ψ ∈ H.

It is not immediate from the definition that selfadjoint operators (except real multiples of the
identity operator) exist. A moments reflection shows, however, that there are plenty of them.
Linear (complex) combinations of selfadjoint operators actually span L(H), as illustrated in the
following example.

Example 8. (Real and imaginary parts of an operator) Any operator T ∈ L(H) can be written
as a sum of two selfadjoint operators. Indeed, denote TR = 1

2 (T + T ∗) and TI = 1
2i (T − T ∗).

These operators are called the real and the imaginary parts of T , respectively. It is easy to verify
that TR and TI are selfadjoint and T = TR + iTI .

Definition 7. An operator T ∈ L(H) is positive if 〈ψ |Tψ 〉 ≥ 0 for every ψ ∈ H.

A comparison of Definition 7 to Proposition 5 shows that positive operators are selfadjoint.

Exercise 6. Prove the following: if a selfadjoint operator T has an eigenvalue λ, then λ is a real
number. Moreover, if T is positive, then λ is a positive number.

The concept of positivity defines a partial ordering in Ls(H) in a natural way - this is spelled
out in the following definition.

Definition 8. Let S, T ∈ Ls(H). We denote S ≥ T if the operator S − T is positive.

Notice that an operator T is positive exactly when T ≥ O. It is straightforward to verify
that the relation ≥ in Definition 8 is a partial ordering. This relation has also some further
properties, which connect the order structure and the vector space structure of Ls(H). Namely,
let T1, T2, T3 ∈ Ls(H) and α ∈ R, α ≥ 0. It follows directly from the definition of positivity
that

• if T1 ≥ T2, then T1 + T3 ≥ T2 + T3 .

• if T1 ≥ T2, then αT1 ≥ αT2 .

These properties mean that the relation ≥ makes Ls(H) a partially ordered vector space.
The following two results illustrate the partial ordering relation of selfadjoint operators. They

are also useful later.

Exercise 7. Let T ∈ Ls(H) and T 6= O. Show that −I ≤ ‖T‖−1
T ≤ I .

Proposition 6. Let T ∈ Ls(H). If O ≤ T ≤ I , then O ≤ T 2 ≤ T .

Proof. Let ψ ∈ H. Then〈
ψ |T 2ψ

〉
=
〈
T

1
2ψ |TT 1

2ψ
〉
≤
〈
T

1
2ψ |T 1

2ψ
〉

= 〈ψ |Tψ 〉 .
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Hence, T 2 ≤ T . On the other hand,〈
ψ |T 2ψ

〉
= 〈Tψ |Tψ 〉 = ‖Tψ‖2 ≥ 0 ,

and thus T ≥ O.

We need later the following fact, also known as the square root lemma. It is a standard result
and can be found in any functional analysis book.

Theorem 1. (Square root lemma) Let T ∈ L(H) be a positive operator. There is a unique
positive operator, denoted by T

1
2 , satisfying (T

1
2 )2 = T . The operator T

1
2 (also denoted by

√
T )

is called the square root of T . It has the following properties:

(a) If S ∈ L(H) and ST = TS, then ST
1
2 = T

1
2S.

(b) If T is invertible, then also T
1
2 is invertible and (T

1
2 )−1 = (T−1)

1
2 .

The square root lemma is important in many situations. In the following we derive some
useful consequences.

Proposition 7. Let T ∈ L(H) be a positive operator and ψ ∈ H. If 〈ψ |Tψ 〉 = 0, then Tψ = 0.

Proof. Suppose that 〈ψ |Tψ 〉 = 0. Then

0 = 〈ψ |Tψ 〉 =
〈
T

1
2ψ |T 1

2ψ
〉

=
∥∥∥T 1

2ψ
∥∥∥ .

Hence, T
1
2ψ = 0. Applying the operator T

1
2 on both sides of this equality gives Tψ = 0.

For each T ∈ L(H), the operator T ∗T is positive. Indeed, we have

〈ψ |T ∗Tψ 〉 = 〈Tψ |Tψ 〉 = ‖Tψ‖2 ≥ 0 .

With this observation we ready for the following definition.

Definition 9. Let T ∈ L(H). We denote |T | := (T ∗T )
1
2 .

Theorem 2. (Polar decomposition) Let T ∈ L(H). There exists an operator V ∈ L(H) such
that

• T = V |T | ;

• ‖V ψ‖ = ‖ψ‖ for every ψ ∈ (ker V )⊥ = {φ ∈ H : 〈φ |ϕ 〉 = 0 ∀ϕ ∈ ker V }.

The second condition in Theorem 2 means that V is a partial isometry.
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2.2.3 Group of unitary operators

In Section 2.1.1 we defined the concepts of isomorphic inner product spaces and isomorphism.
Any Hilbert spaceH is, trivially, isomorphic with itself; one isomorphism is the identity mapping
I : ψ 7→ ψ. There are also other isomorphisms on a given Hilbert spaces and they play an
important role in various different situations.

Proposition 8. A linear mapping U : H → H is an isomorphism if and only if U is bounded
and

UU∗ = U∗U = I . (2.18)

Proof. Assume that U is an isomorphism, hence satisfying Eq. (2.2). It follows that ‖Uψ‖ =
‖ψ‖, and thus, U is a bounded operator with ‖U‖ = 1. Comparing (2.2) with the defining
condition (2.12) for U∗, we see that

〈Uϕ |Uψ 〉 = 〈ϕ |U∗Uψ 〉 = 〈ϕ |ψ 〉 (2.19)

for every ϕ,ψ ∈ H. Therefore, U∗U = I . The inverse mapping U−1 is also an isomorphism
and a similar reasoning as before leads to UU∗ = I . Hence, U satisfies (2.18).

On the other hand, a bounded operator U satisfying (2.18) is an isomorphism, as is seen from
(2.19).

It is common to rename the isomorphisms on H in the following way.

Definition 10. An operator U ∈ L(H) is unitary if it satisfies (2.18). We denote by U(H) the
set of unitary operators on H.

Example 9. (Eigenvalues of a unitary operator) In the proof of Proposition 8 we have already
seen that ‖U‖ = 1 for a unitary operator U . Hence, an eigenvalue λ of U satisfies |λ| ≤ 1. It is
actually easy to see that all eigenvalues of U must satisfy |λ| = 1. Namely, suppose that ψ is an
eigenvector of U , i.e., Uψ = λψ for some λ ∈ C. Since |λ|2 〈ψ |ψ 〉 = 〈Uψ |Uψ 〉 = 〈ψ |ψ 〉,
we conclude that |λ| = 1. Thus, all the eigenvalues of U are of the form λ = eia, a ∈ R.
Note, however, that a unitary operator in an infinite dimensional Hilbert space need not have
eigenvalues at all.

In linear algebra unitary operators are usually introduced as mappings which transform an
orthonormal basis to another orthonormal basis. This property is valid also in the infinite dimen-
sional case and we have the following useful result.

Proposition 9. Let H be a Hilbert space and {ϕj} an orthonormal basis for H. If U is a unitary
operator on H, then also {Uϕj} is an orthonormal basis for H.

Proof. It is clear that {Uϕj} is an orthonormal set. To prove that it is maximal orthonormal set,
suppose that ψ ∈ H is such that 〈ψ |Uϕj 〉 = 0 for every j. This implies that 〈U∗ψ |ϕj 〉 = 0
for every j, which means that U∗ψ = 0 as {ϕj} is an orthonormal basis. Since U∗ is bijective,
we conclude that ψ = 0. This shows that {Uϕj} is maximal.
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The unitary operators form a group with respect to the operator multiplication. The identity
operator I is the unit element in the group U(H). To verify the other group axioms, let U and V
be two unitary operators. We get

(UV )(UV )∗ = UV V ∗U∗ = I ,

and

(UV )∗(UV ) = V ∗U∗UV = I ,

where we have used Eq. (2.13). Hence, the product UV is unitary. Since U−1 = U∗ by Eq.
(2.18), an application of Eq. (2.14) shows that U−1 is unitary also.

Example 10. (Exponential of a selfadjoint operator) Let T be a bounded operator. For each
k = 0, 1, 2, . . ., we denote

Fk(T ) :=
k∑

n=0

Tn

n!
, fk(T ) :=

k∑
n=0

‖Tn‖
n!

.

We have

fk(T ) ≤
k∑

n=0

‖T‖n

n!
≤

∞∑
n=0

‖T‖n

n!
= e‖T‖ ,

which shows that the increasing sequence f0(T ), f1(T ), . . . of real numbers has an upper bound.
Therefore, it converges. This means that the series

∑∞
n=0

Tn

n! is absolutely convergent. Since
L(H) is a Banach space, every absolutely convergent series converges. We denote by eT the
limit, that is,

eT :=
∞∑
n=0

Tn

n!
= lim
k→∞

Fk(T ) . (2.20)

The product and adjoint are continuous mappings on L(H). Hence, it is straightforward to
verify the following formulas for a, b ∈ C and T ∈ L(H),

eaT ebT = e(a+b)T ,

(eaT )∗ = eāT
∗
.

Assume then that T is selfadjoint. We have (eiT )∗ = e−iT , and

eiT e−iT = e−iT eiT = eO = I .

This shows that eiT is a unitary operator.

As we will see later, unitary operators have an important role in quantum formalism. Also a
related concept of an antiunitary operator is sometimes needed.

Definition 11. A mapping A : H → H is antiunitary operator if A(ψ+ λϕ) = Aψ+ λ̄Aϕ and
〈Aψ |Aϕ 〉 = 〈ϕ |ψ 〉 for all ψ,ϕ ∈ H and λ ∈ C.
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Exercise 8. Show that a product of two antiunitary operators is a unitary operator. Show also
that a product of a unitary operator and an antiunitary operator is an antiunitary operator.

There is a prototypical class of antiunitary operators. Fix an orthonormal basis {ϕj} for H.
Every vector ψ ∈ H has a unique representation

ψ =
∑
j

cjϕj .

We define

Jψ =
∑
j

c̄jϕj .

It is straightforward to verify that J is an antiunitary operator and it clearly satisfies J2 = I . We
call it the complex conjugate operator related to the orthonormal basis {ϕj}.

Proposition 10. Let J be the complex conjugate operator related to same orthonormal basis
{ϕj}. Every antiunitary operator A can be written in the form A = UJ , where U is a unitary
operator.

Proof. LetA be an antiunitary operator. Denote U = AJ . By Exercise 8, U is a unitary operator.
Moreover, we have UJ = AJ2 = A.

2.2.4 Orthocomplemented poset of projections

Definition 12. A selfadjoint operator P ∈ Ls(H) is a projection if P = P 2. We denote by
P(H) the set of projections.

Projections are positive operators. Namely, if P is a projection and ψ ∈ H, we have

〈ψ |Pψ 〉 =
〈
ψ |P 2ψ

〉
= 〈Pψ |Pψ 〉 = ‖Pψ‖2 ≥ 0 .

We discuss some other elementary properties of projections below. Let us first, however,
consider a prototypical example of a projection.

Example 11. (One-dimensional projection) Let η ∈ H be a unit vector. We define an operator
Pη on H as

Pηψ = 〈 η |ψ 〉 η . (2.21)

It is straightforward to check that P ∗η = Pη and P 2
η = Pη. Therefore, Pη is a projection. It is

clear that the range of P is the one-dimensional subspace Cη = {cη | c ∈ C}. For this reason
Pη is called one-dimensional projection.

Proposition 11. Let P be a projection and O 6= P 6= I . Then

(a) ‖P‖ = 1.

(b) The eigenvalues of P are 0 and 1.
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(c) For every ψ ∈ H, there are vectors ψ0, ψ1 ∈ H such that

Pψ0 = 0 , Pψ1 = ψ1 , and ψ = ψ0 + ψ1 .

Proof. (a) An application of Eq. (2.15) gives

‖P‖ =
∥∥P 2

∥∥ = ‖P ∗P‖ = ‖P‖2 .

Since ‖P‖ 6= 0 by the assumption, we conclude that ‖P‖ = 1.

(b) First of all, suppose that ψ ∈ H is an eigenvector of P with eigenvalue λ. Then Pψ = λψ
and

Pψ = P 2ψ = λPψ = λ2ψ .

Hence, λ2 = λ, which means that either λ = 0 or λ = 1. To prove that P has both of
these eigenvalues, choose vectors ψ, φ ∈ H such that Pψ 6= 0 and Pφ 6= φ (this can be
done since O 6= P 6= I). Then Pψ is an eigenvector of P with eigenvalue 1 and (I −P )φ
is an eigenvector of P with eigenvalue 0.

(c) Denote ψ0 = (I − P )ψ and ψ1 = Pψ. These vectors have the required properties.

Proposition 12. Let P be a projection and ψ ∈ H. The following conditions are equivalent:

(i) ψ ∈ ranP ;

(ii) Pψ = ψ ;

(iii) ‖Pψ‖ = ‖ψ‖ .

Proof. It is trivial that (ii)⇒(iii). In the following we prove that (i)⇒(ii) and (iii)⇒(i).
Assume that (i) holds. This means that there is a vector ϕ ∈ H such that Pϕ = ψ. But then

Pψ = PPϕ = Pϕ = ψ ,

and hence, (ii) holds. We conclude that (i)⇒(ii).
Finally, assume that (iii) holds. We show that (i) follows. Let us first notice that ψ can written

as a sum

ψ = Pψ + (I − P )ψ . (2.22)

The vectors Pψ and (I − P )ψ are orthogonal since

〈Pψ | (I − P )ψ 〉 = 〈ψ |P (I − P )ψ 〉 = 0 .

Therefore, we can apply Pythagoras theorem to (2.22), and we get

‖ψ‖2 = ‖Pψ‖2 + ‖(I − P )ψ‖2 .

Our assumption (iii) now implies that ‖(I − P )ψ‖ = 0, where it follows that (I − P )ψ = 0.
Thus, Pψ = ψ.
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Proposition 13. Let P and Q be projections. The following conditions are equivalent:

(i) P ≥ Q ;

(ii) PQ = Q ;

(iii) QP = Q ;

(iv) QP = PQ = Q ;

(v) P −Q is a projection.

Proof. We prove this proposition by showing that (i)⇒(ii)⇒(iii)⇒(iv)⇒(v)⇒(i).
Suppose that (i) holds and fix ψ ∈ H. Let us first assume that P 6= O. Then by Prop. 11 we

have ‖P‖ = 1, and an application of (2.9) gives

‖PQψ‖ ≤ ‖P‖ ‖Qψ‖ = ‖Qψ‖ .

On the other hand, using (i) we get

‖PQψ‖2 = 〈PQψ |PQψ 〉 = 〈Qψ |PQψ 〉
(i)

≥ 〈Qψ |QQψ 〉 = 〈Qψ |Qψ 〉 = ‖Qψ‖2 ,

and hence, ‖PQψ‖ ≥ ‖Qψ‖. Therefore, ‖PQψ‖ = ‖Qψ‖. This together with Prop. 12 implies
that PQψ = Qψ. As this is true for any ψ ∈ H, we conclude that PQ = Q and (ii) holds. If
P = O, then (i) implies that O ≤ Q ≤ O, which means that Q = O. Hence, also in this case (i)
implies (ii).

Suppose that (ii) holds. We get

Q = Q∗ = (PQ)∗ = Q∗P ∗ = QP ,

and therefore, (iii) holds. In the same way (iii) implies (ii) and they are thus equivalent. This
means that (iii) implies (iv).

Assume that (iv) holds. The operator P − Q is selfadjoint as both P and Q are. Using (iv)
we get

(P −Q)2 = P − PQ−QP +Q = P −Q .

Hence, P −Q is a projection, and we conclude that (iv) implies (v).
Finally, assume that (v) holds. As a projection is a positive operator, we have 〈ψ | (P −Q)ψ 〉

≥ 0 for every ψ ∈ H. This means that 〈ψ |Pψ 〉 ≥ 〈ψ |Qψ 〉 for every ψ ∈ H, and hence, (i)
holds. Thus. (v) implies (i).

If P is a projection, we denote P⊥ := I − P and we call this operator the complement of P .
The operator P⊥ is clearly selfadjoint and it is a projection since

P⊥P⊥ = (I − P )(I − P ) = I − P − P + P 2 = I − P = P⊥ .

Exercise 9. Verify the following properties of P⊥:
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• (P⊥)⊥ = P .

• If Q ≤ P , then P⊥ ≤ Q⊥.

Proposition 14. Let P and Q be projections. If Q ≤ P and Q ≤ P⊥, then Q = O.

Proof. If Q ≤ P and Q ≤ P⊥, then by Prop. 13 we have PQ = Q and P⊥Q = Q. Adding
these two equations together gives Q = O.

The properties described in Exercise 9 and Proposition 14 mean that the mapping P 7→ P⊥

on P(H) is an orthocomplementation.

Proposition 15. Let P and Q be projections. Then the following conditions are equivalent:

(i) P⊥ ≥ Q ;

(ii) Q⊥ ≥ P ;

(iii) PQ = O ;

(iv) QP = O ;

(v) PQ = QP = O ;

(vi) P +Q is a projection.

Proof. We prove the proposition by showing that (i)⇒(ii)⇒(iii)⇒(iv)⇒(v)⇒(vi)⇒(i). The fact
that (i) implies (ii) is a direct consequence of Exercise 9.

Assume then that (ii) holds and fix ψ ∈ H. Denote ψ1 = Qψ. We then have

‖Pψ1‖2 = 〈Pψ1 |Pψ1 〉 = 〈ψ1 |Pψ1 〉 ≤
〈
ψ1 |Q⊥ψ1

〉
=
〈
ψ1 |Q⊥Qψ

〉
= 0 .

This implies that Pψ1 = 0, and hence, PQψ = 0. As ψ was arbitrary vector, we conclude that
PQ = O. Therefore, (ii) implies (iii).

Suppose that (iii) holds. We get

O = O∗ = (PQ)∗ = Q∗P ∗ = QP ,

and therefore, (iv) holds. In the same way (iv) implies (iii) and they are thus equivalent. This
means that (iv) implies (v).

Assume that (v) holds. Then

(P +Q)2 = P 2 + PQ+QP +Q2 = P +Q .

Thus, P +Q is a projection. Therefore, (v) implies (vi).
Finally, assume that (vi) holds. This implies that P +Q ≤ I . Hence, (i) holds.

Two projections P and Q satisfying one (and hence all) of the conditions in Proposition 15
are called orthogonal.
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Example 12. (Orthogonal one-dimensional projections) Let us continue from Example 11. Let
η, φ ∈ H be two unit vectors and Pη, Pφ the corresponding one-dimensional projections. For a
vector ψ ∈ H, we get

PφPηψ = 〈 η |ψ 〉 〈φ | η 〉φ . (2.23)

This shows that PφPη = O if 〈φ | η 〉 = 0. On the other hand, choosing ψ = η in (2.23) we
see that PφPη = O only if 〈φ | η 〉 = 0. We conclude that two one-dimensional projections are
orthogonal if and only if the unit vectors defining them are orthogonal.

As seen from Proposition 15, we can sum two orthogonal projections to get a third projection.
In this way, one dimensional projections can be used as building blocks to get other projections.
Actually, every projection is either a finite or countably infinite sum of one-dimensional projec-
tions. We explain this construction but do not prove the details.

Let P be a projection. As shown in Proposition 12, the range of P consists of its eigenvectors
with eigenvalue 1. Hence, ranP is a linear subspace of H. Let us first assume that ranP is finite
dimensional with dimension r. We choose an orthonormal basis {ηk}rk=1 for ranP . For every
k = 1, . . . , r, we then have a one-dimensional projection Pk ≡ Pηk . For k 6= l, the projections
Pk and Pl are orthogonal as explained in Example 12. By Proposition 15, the sum

∑r
k=1 Pk is a

projection, and it can be shown that
∑r
k=1 Pk = P .

If ranP is infinite dimensional, the same procedure still works. In this case, we first note
that the set ranP is closed. Indeed, it follows from Proposition 12 that ψ ∈ ranP exactly when
P⊥ψ = 0. Hence, ranP is the preimage of the closed set {0} in the continuous mapping P⊥,
which implies that ranP is closed. We conclude that ranP is a closed linear subspace of H, and
therefore it has an orthonormal basis {ηk}∞k=1. The infinite sum

∑∞
k=1 Pk converges in the weak

operator topology (see Sec. 2.3.1) and we have again
∑∞
k=1 Pk = P .

2.2.5 Ideal of trace class operators

In the finite dimensional Hilbert space Cd, the trace of an operator T can be calculated by writing
T as a matrix in some orthonormal basis and then summing the diagonal entries of the matrix.
This number, denoted by tr [T ], does not depend on the chosen orthonormal basis and we thus
have

tr [T ] =
d∑
j=1

〈ϕj |Tϕj 〉 (2.24)

for any orthonormal basis {ϕj}dj=1 of Cd. As one knows from linear algebra, tr [T ] equals the
sum of the eigenvalues of T , counting multiplicity.

In an infinite dimensional Hilbert space the trace is still a useful concept but things are not so
straightforward as in Cd. Let H be a separable infinite dimensional Hilbert space and {ϕj}∞j=1

an orthonormal basis for H. For any positive operator T ∈ L(H), we denote

tr [T ] =
∞∑
j=1

〈ϕj |Tϕj 〉 . (2.25)
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It may happen that the sum in the right hand side does not converge, in which case we denote
tr [T ] = ∞. The number tr [T ] does not depend on the chosen orthonormal basis {ϕj}∞j=1.
Indeed, let {ψj}∞j=1 another orthonormal basis for H. Then

∞∑
j=1

〈ψj |Tψj 〉 =
∞∑
j=1

∥∥∥T 1
2ψj

∥∥∥2

=
∞∑
j=1

( ∞∑
k=1

∣∣∣〈ϕk |T 1
2ψj

〉∣∣∣2)

=
∞∑
k=1

 ∞∑
j=0

∣∣∣〈ψj |T 1
2ϕk

〉∣∣∣2
 =

∞∑
k=1

∥∥∥T 1
2ϕk

∥∥∥2

=
∞∑
k=1

〈ϕk |Tϕk 〉 .

Here we have used Parseval’s formula (2.6) twice. Interchanging the order of the sums is allowed
since all the terms are non-negative.

Example 13. (Trace of a one-dimensional projection) Let η ∈ H be a unit vector and Pη the cor-
responding one-dimensional projection as defined in Example 11. Let us choose an orthonormal
basis {ϕj}∞j=1 for H such that ϕ1 = η. Then

tr [Pη] =
∞∑
j=1

〈ϕj |Pηϕj 〉 = 〈ϕ1 |Pηϕ1 〉 = 〈ϕ1 |ϕ1 〉 = 1 .

Hence, we conclude that tr [Pη] = 1.

Exercise 10. Let S, T ∈ L(H) be positive operators. Prove the following properties of the trace:

(a) tr [S + T ] = tr [S] + tr [T ] .

(b) tr [αT ] = α tr [T ] for all α ≥ 0 .

(c) tr [UTU∗] = tr [T ] for all unitary operators U .

(Hint: For (a) and (b), use directly the definition (2.25). In the case of (c), Prop. 9 in Section
2.2.3 is useful.)

Our discussion so far concerns only positive operators. To proceed to other kind of operators,
we need the following definition.

Definition 13. A bounded operator T is a trace class operator if tr [|T |] < ∞. We denote by
T (H) the set of trace class operators.

If H is infinite dimensional, the set T (H) is a proper subset of L(H). For instance, the
identity operator I is positive and thus tr [|I|] = tr [I] = ∞. Therefore, I /∈ T (H).

Proposition 16. If T ∈ T (H) and {ϕj}∞j=1 is an orthonormal basis forH, then
∞∑
j=1

|〈ϕj |Tϕj 〉|

<∞. The number

tr [T ] :=
∞∑
j=1

〈ϕj |Tϕj 〉 (2.26)
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is called the trace of T and it is independent of the chosen orthonormal basis.

All the effort we have done may seem superfluous since, in the end, we define the trace of any
trace class operator with the same formula as we used earlier for positive trace class operators.
The point is that if an operator T is not a trace class operator, then the trace can be finite in some
orthonormal basis but infinite in another one. Hence, we need to check that an operator belongs
to the trace class before applying the formula (2.26).

In the following proposition we list some basic properties of trace class operators.

Proposition 17. (a) The set of trace class operators T (H) is a vector space and the mapping

T 7→ tr [|T |] =: ‖T‖tr

is a norm on T (H).

(b) Let T ∈ T (H) and S ∈ L(H). Then TS, ST ∈ T (H) and

tr [TS] = tr [ST ] .

(c) Let T ∈ T (H) and S ∈ L(H). Then

‖T‖ ≤ ‖T‖tr

and

|tr [TS]| ≤ ‖T‖tr ‖S‖ .

(d) The mapping

(T, S) 7→ tr [T ∗S] =: 〈T |S 〉H-S

is an inner product on T (H).

Item (a) in Proposition 17 says that T (H) is a normed space. In particular, the triangle
inequality

‖S + T‖tr ≤ ‖S‖tr + ‖T‖tr (2.27)

holds for all S, T ∈ T (H). The norm ‖·‖tr is called the trace norm.
The important point in item (b) is that S is just a bounded operator and need not be a trace

class operator. Hence, even though tr [S] is not defined for all bounded operators S, it is defined
for a product ST whenever T is a trace class operator. This property means that T (H) is an ideal
in L(H).

A useful special case of (c) is obtained when we choose S = I . Hence, we get inequality

|tr [T ]| ≤ tr [|T |] ,

true for all T ∈ T (H).
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The inner product defined in item (d) is called Hilbert-Schmidt inner product. Cauchy-
Schwarz inequality can be written in the form

|tr [ST ]|2 ≤ tr [S∗S] tr [T ∗T ] . (2.28)

Hilbert-Schmidt inner product makes sense also for a larger class of operators than trace class
operators, and these operators are called Hilbert-Schmidt operators. The inner product space
consisting of Hilbert-Schmidt operators is a Hilbert space, and actually Proposition 17 is usually
proved by first discovering the basic properties of Hilbert-Schimdt operators. However, for our
purposes it is enough to use trace class operators.

Example 14. (Operator norms in a finite dimensional Hilbert space) SupposeH is finite dimen-
sional. In this case, each operator T on H is bounded and trace class. In particular,

‖T‖ = sup
‖ψ‖=1

‖Tψ‖ = max
j
|λj | , (2.29)

‖T‖tr = tr [|T |] =
∑
j

|λj | , (2.30)

where λj are the eigenvalues of T . It is also useful to define one more norm, related to the
Hilbert-Schmidt inner product. Hence, we define Hilbert-Schmidt norm by formula

‖T‖H-S := 〈T |T 〉
1
2
H-S =

√∑
j

|λj |2 . (2.31)

2.3 Also these are needed

2.3.1 Weak operator topology

A separable infinite dimensional Hilbert space is, in some sense, the closest infinite dimensional
analog of Cd. However, the infinite dimension makes some things bit more delicate. The discus-
sion of this section is redundant in a finite dimensional Hilbert space. Hence, we assume here
that H is a separable infinite dimensional Hilbert space.

The topology in L(H) determined by the operator norm is too strong for many purposes.
Several different topologies appear naturally for the set L(H). In the perspective of quantum
mechanics, the weak operator topology is usually the most relevant. The weak operator topology
does not come from a norm and the open sets in this topology are a bit lengthy to define. However,
we do not need here an explicit description of the topology but it is enough for our purposes to
specify when a sequence converges in the weak operator topology.

Definition 14. A sequence {Ti} ⊂ L(H) converges to a bounded operator T in the weak oper-
ator topology, or weakly, if

lim
i
| 〈ϕ |Tψ 〉 − 〈ϕ |Tiψ 〉 | = 0 for every ϕ,ψ ∈ H . (2.32)

One should compare this definition with the fact that a sequence {Ti} ⊂ L(H) converges to
a bounded operator T in the operator norm topology if

lim
i
‖T − Ti‖ = lim

i
sup
‖ψ‖=1

‖(T − Ti)ψ‖ = 0 . (2.33)
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Proposition 18. If a sequence {Ti} ⊂ L(H) converges to a bounded operator T in the operator
norm topology, then it also converges to T in the weak operator topology.

Proof. For every ϕ,ψ ∈ H, we get

|〈ϕ |Tψ 〉 − 〈ϕ |Tiψ 〉| = |〈ϕ | (T − Ti)ψ 〉| ≤ ‖ϕ‖ ‖ψ‖ ‖T − Ti‖ .

Here we have applied Ineq. (2.10). This proves the claim.

The converse implication in Proposition 18 is not generally valid. This is demonstrated in the
following example.

Example 15. For each i = 1, 2, . . ., we denote Ti = Ai, where A is the shift operator defined in
Example 6. Hence, Ti acts in the following way:

Ti(ζ0, ζ1, . . .) = (0, . . . , 0, ζ0, ζ1, . . .) .

Then limi Ti = O in the weak operator topology. Indeed, if η ∈ `2(N), then

lim
i→∞

|〈 η |Tiζ 〉| = lim
i→∞

∣∣∣∣∣∣
∞∑
j=0

η̄j+iζj

∣∣∣∣∣∣ ≤ ‖ζ‖2 lim
i→∞

∞∑
j=i

|ηj |2 = 0 .

On the other hand, we have ‖Tiζ‖ = ‖ζ‖, and this implies that the sequence {Ti} cannot con-
verge to O in the operator norm topology. It follows from Prop. 18 that {Ti} does not converge
in the operator norm topology as the only option would be that {Ti} converges to O.

We conclude from Example 15 that the operator norm topology and the weak operator topol-
ogy are different. For this reason, one has to specify the topology when convergence of operators
is discussed. If not otherwise explicitly stated, we will understand all the formulas in the weak
sense, i.e., if a sequence or a sum is said to converge, it is meant to converge with respect to the
weak operator topology.

2.3.2 Dirac notation

In Section 2.2.4 we defined the one-dimensional projection Pη for each unit vector η ∈ H. In
the so-called Dirac notation this projection is written as

Pη ≡ |η 〉〈 η| .

Generally, if η, φ ∈ H, we define the operator |η 〉〈φ| as

|η 〉〈φ| ψ = 〈φ |ψ 〉 η . (2.34)

A moment’s thought shows that |η 〉〈φ| behaves as a ”rearranged” inner product. For instance,
the following rules apply for every c ∈ C and η, φ ∈ H:

|cη 〉〈φ| = c |η 〉〈φ| , |η 〉〈 cφ| = c̄ |η 〉〈φ| .
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Sometimes even a single vector η is written in the form |η〉. With this convention, the defini-
tion (2.34) becomes simply a reordering rule of the terms. Moreover, 〈φ| is taken to denote the
linear functional

ψ 7→ 〈φ |ψ 〉 .

Again, this is consistent with the other Dirac notations.
In his famous textbook [32], Dirac gave nice and intuitive names for his notations. First of

all, an inner product 〈 η |φ 〉 is a bracket. Since we can decompose it as a ”product” of 〈η| and
|φ〉, Dirac called 〈η| a bra vector and |φ〉 a ket vector.

Exercise 11. Let Pη and Pφ be two one-dimensional projections. Show that

PηPφPη = tr [PηPφ]Pη .

(Hint: write everything in Dirac notation.)

Example 16. (Resolution of the identity operator) It is sometimes convenient to write the identity
mapping I on H as a sum

I =
d∑
k=0

|ϕk 〉〈ϕk| , (2.35)

where {ϕk}dk=0 is an orthonormal basis for H. If H is infinite dimensional, then this way of
writing should be understood in the weak sense. Hence, it is just a shorthand notation for the
following formula, true for all ψ, ξ ∈ H,

〈ψ | ξ 〉 =
d∑
k=0

〈ψ |ϕk 〉 〈ϕk | ξ 〉 . (2.36)

2.3.3 Linear functionals and dual spaces

In Section 2.2 we introduced five classes of operators. They have the obvious inclusions:

P(H) ⊂ Ls(H) ⊂ L(H) , T (H) ⊂ L(H) , U(H) ⊂ L(H) .

There are also more subtle connections and in this subsection we describe an important relation-
ship between T (H) and L(H).

A linear mapping f from a complex vector space V into complex numbers is called a linear
functional. If the vector space V is normed space, then we denote by V ∗ the set of all continuous
linear functionals. It is called the dual space of V . The dual space V ∗ is a vector space itself
when the linear structure is defined pointwise, i.e., (f + cg)(v) = f(v) + cg(v) for all v ∈ V
and c ∈ C. We can also define a norm on V ∗ by setting

‖f‖ = sup
‖v‖=1

|f(v)| .

In this way, V ∗ becomes a normed space.
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As we have seen in Section 2.2.5, the set T (H) of trace class operators is a vector space and
the trace norm makes it a normed space. For each S ∈ L(H), we define a linear functional fS
on T (H) by formula

fS(T ) = tr [ST ] . (2.37)

It follows from Proposition 17 that fS is continuous, and thus, fS ∈ T (H)∗. Notice also that

fS1 + fS2 = fS1+S2 .

Each bounded operator S determines a vector fS in the dual space T (H)∗ of T (H). Also the
converse is true, namely, each continuous linear functional on T (H) is of the form fS for some
S ∈ L(H). For a proof of the following result, see e.g. [28].

Theorem 3. The mapping S 7→ fS is a linear isometric bijection from L(H) to T (H)∗.

In other words, Theorem 3 states that the dual space T (H)∗ of T (H) can be identified with
L(H), and the identification is given by formula (2.37).

A linear functional f : T (H) → C is called positive if f(T ) ≥ 0 whenever T ≥ O.

Proposition 19. Let S ∈ L(H) and fS as in (2.37). Then S is positive if and only if fS is
positive.

Exercise 12. Prove half of Proposition 19: if fS is positive, then S in positive. (Hint: calculate
fS(Pψ) for a one-dimensional projection Pψ and recall that projections are positive.)

2.3.4 Tensor product

Tensor product is a way to create a new Hilbert space out of two (or more). There are several
different constructions leading to the same thing, and in everyday calculations it is not necessary
to remember all the details but mainly some simple computational rules. We therefore first
describe tensor product spaces in an informal way without going yet to a precise construction.

Let H and K be two finite dimensional inner product spaces. We can form a new inner
product space H ⊗ K, called the tensor product of H and K in the following way. Elements of
H⊗K are expressions of the form

n∑
i=1

ψi ⊗ ζi , (2.38)

where ψi ∈ H, ζi ∈ K, and n ∈ N. Symbols ψ ⊗ ζ are assumed to be linear with respect to both
arguments, so that

c(ψ ⊗ ζ) = (cψ)⊗ ζ = ψ ⊗ (cζ) ,
(ψ1 + ψ2)⊗ ζ = ψ1 ⊗ ζ + ψ2 ⊗ ζ ,

ψ ⊗ (ζ1 + ζ2) = ψ ⊗ ζ1 + ψ ⊗ ζ2 ,
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for every ψ1, ψ2, ψ ∈ H, ζ1, ζ2, ζ ∈ K, and c ∈ C. Addition of two elements is defined in a
natural way:

n∑
i=1

ψi ⊗ ζi +
m∑

i=n+1

ψi ⊗ ζi =
m∑
i=1

ψi ⊗ ζi .

Finally, an inner product on H⊗K is defined by setting

〈ψ1 ⊗ ζ1 |ψ2 ⊗ ζ2 〉 = 〈ψ1 |ψ2 〉 〈 ζ1 | ζ2 〉 , (2.39)

and then extending by linearity to all elements. In this way, H ⊗ K becomes an inner product
space. If {ϕi} is an orthonormal basis for H and {φj} for K, then {ϕi ⊗ φj} is an orthonormal
basis for H ⊗ K. In particular, the dimension of H ⊗ K is the product of the dimensions of H
and K.

Similarly as for vectors, two operators S ∈ L(H) and T ∈ L(K) determine an operator
S ⊗ T acting in the tensor product space H⊗K. If ψ ∈ H and ζ ∈ K, then

S ⊗ T ψ ⊗ ζ = Sψ ⊗ Tζ .

This action is then extended to all vectors in H⊗K by linearity.

Exercise 13. Let H be a finite dimensional Hilbert space with an orthonormal basis {ϕj}dj=1.
Let us fix the orthonormal basis {ϕj⊗ϕk}dj,k=1 for the tensor product spaceH⊗H. The ordering
of the basis vectors is taken to be ϕ1 ⊗ ϕ1, ϕ1 ⊗ ϕ2, . . ., ϕ2 ⊗ ϕ1, . . .. Prove the following: if S
and T are two operators inH and their matrices in the basis {ϕj}dj=1 are [s] and [t], respectively,
then the d2 × d2-matrix corresponding to S ⊗ T is

s11[t] s12[t] . . . s1d[t]
s21[t] s22[t] . . . s2d[t]

...
...

. . .
...

sd1[t] sd2[t] . . . sdd[t]

 .
If H and K are two Hilbert spaces (not necessarily finite dimensional), then the above con-

struction still leads to an inner product space. However, if H and K are not both finite dimen-
sional, we need to take the completion of this inner product space to get a Hilbert space. This
Hilbert space is then the tensor product space and denoted by H ⊗ K. In this case not all vec-
tors in H ⊗ K are of finite sums of the form (2.38). However, every vector in H ⊗ K can be
approximated arbitrarily well with vectors of form (2.38).

Let us then take a brief look to an explicit construction of a tensor product space. This is
needed when one needs to prove something concerning the structure of the tensor product space.
Let H and K be two Hilbert spaces. For each ψ ∈ H and ζ ∈ K, we define a mapping ψ ⊗ ζ
from H×K to C by formula

ψ ⊗ ζ(ϕ, ξ) = 〈ϕ |ψ 〉 〈 ξ | ζ 〉 .

The set V of all finite linear combinations of such mappings is a linear space, and it becomes an
inner product space when we define

〈ψ1 ⊗ ζ1 |ψ2 ⊗ ζ2 〉 = 〈ψ1 |ψ2 〉 〈 ζ1 | ζ2 〉 (2.40)
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and extending this by linearity to all elements in V . The tensor product ofH⊗K is the completion
of V under the inner product (2.40). For more details, see e.g. [73]. There are also other ways to
construct H⊗K. One possibility is to use bounded antilinear mappings; see e.g. [35].

Example 17. In many cases tensor product spaces can be given a concrete equivalent form. We
have earlier in Section 2.1.1 encountered two Hilbert spaces, Cd and `2(N). Their tensor product
space `2(N) ⊗ Cd is isomorphic with Hilbert space `2(N; Cd). This latter space is quite like
`2(N) but its elements are functions f : N → Cd satisfying

∑
i ‖f(i)‖2 <∞.
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3 States and effects

One of the main purpose of a physical theory is to describe events that are observed in experi-
ments. In this chapter we introduce the key physical concepts used in a description of physical
experiments and present their mathematical formalization within quantum theory.

3.1 Duality of states and effects

As a general reference for this section, we recommend the book of Kraus [55].

3.1.1 Basic framework

The most basic situation in physics is the following: we have an object system under investiga-
tion, and we try to obtain information about it by making an experiment. As a result, measure-
ment outcomes are registered. Statistical theory, such as quantum mechanics, does not predict
the individual measurement outcomes but merely the probabilities of the measurement outcomes.
Hence, we take the output of an experiment to be a probability distribution on a set Ω of the mea-
surement outcomes.

It is practical to divide an experiment into a preparation procedure and a measurement. In a
given experiment this division may be quite arbitrary, but this is not a problem. We simply as-
sume that there is a collection of possible preparations and a collection of possible measurements,
and any pair of a preparation and a measurement can be combined to an experiment. Hence, a
preparation specifies a probability distribution for every possible measurement of the system.
Two preparation procedures can be superficially quite different and yet lead to the same proba-
bility distribution in any chosen measurement. From this point of view, a state of the system is
an equivalence class of preparation procedures which give the same probability distributions in
all measurements. Similarly, an observable is an equivalence class of measurements which give
the same probability distributions in all preparations. For a pair of a state % and an observable A,
we denote by pA

% the corresponding probability distribution of measurement outcomes.

Figure 3.1. Preparation and measurement.
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Example 18. (Mixing of the preparation procedures.) Suppose that we are performing an exper-
iment in which the measurement is fixed, but we are randomly alternating between two prepa-
ration procedures with probabilities λ and 1 − λ. What is then the predicted probability for the
mixture of the preparation procedures? If the two preparation procedures correspond to states %1

and %2, we denote by % = λ%1 + (1− λ)%2 the state corresponding to this mixture.
For example, we can imagine an experiment measuring a circular polarization of the light

coming out of a laser source randomly either passing an optically active media, or not. What is the
probability that a photon will pass the circular polarization filter? We know the answer for both
preparation procedures. Without any doubts the statistics of subensembles of outcomes splitted
according to the particular preparation procedures must be in accordance with probabilities pA

%1

and pA
%2 , respectively. In particular, let us consider an experimental data of the following form

2+, 1+, 2−, 1+, 2−, 1+, 1+, 2+, 2−, 2+, 2+, 1+, 1+, 2−, 1+, 1+, . . . , (3.1)

where the number denotes the choice of the preparation procedure and ± the outcomes of the
measurement. Collecting all the outcomes associated with the first preparation procedure we find
pA
%1(+) = 1 and similarly, for the second preparation procedure we have pA

%2(+) = 1/2. For the
whole sequence we get pA

% (+) = 3/4. Since both preparation procedures were chosen with equal
probabilities (i.e. λ = 1/2), we see that the identity pA

% (+) = λpA
%1(+) + (1− λ)pA

%2(+) holds.
We expect such identity to be valid for a general probabilistic mixture of preparation procedures,
thus we require that

pA
% = λpA

%1 + (1− λ)pA
%2 (3.2)

holds for all observables A.

As illustrated in the previous example, the possibility of randomly mixing two preparation
procedures embeds the set of states with a convex structure. For states %1, %2 and a number
λ ∈ [0, 1], there exists a unique state %, denoted by λ%1 + (1 − λ)%2, which is the mixture of
%1 and %2 with parts λ and 1− λ. We come to a basic assumption demanding that the statistical
correspondence between the states and the observables is consistent with the convex structure of
the states, that is, if %1 and %2 are states and 0 ≤ λ ≤ 1, then

pA
λ%1+(1−λ)%2

= λpA
%1 + (1− λ)pA

%2 (3.3)

for any observable A.
Let A be an observable and X a subset of possible measurement outcomes of A. We then

have a mapping

% 7→ pA
% (X) (3.4)

from the set of states to the interval [0, 1]. By the basic assumption, this mapping is affine. It
describes the statistics of particular measurement outcome, and one can associate these mappings
with statistical events, also called effects.

Definition 15. An effect is an affine mapping from the set of states to the interval [0, 1] which
has the form (3.4) for some observable A and subset X of possible measurement outcomes of A.
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Alternatively, an effect can be thought as an equivalence class of pairs (A, X), where A is an
observable and X is a subset of possible measurement outcomes of A. Two such pairs (A, X)
and (B, Y ) are equivalent if pA

% (X) = pB
% (Y ) for all states %.

Example 19. (Identity and zero effects) The identity effect I is defined as a mapping assigning
probability 1 for every state %, i.e., I(%) = 1. Physically, it corresponds to a measurement with
an outcome that will always click. In a similar way, the zero effect O is defined as a mapping
assigning probability 0 for every state %.

3.1.2 Quantum state space

There are several equivalent ways how to mathematically represent the state space of a quantum
system. In the most common Hilbert space formulation the states are described by positive trace
class operators of trace one, also called density matrices. We denote

S(H) := {% ∈ T (H) | % ≥ O, tr [%] = 1} ,

and from now on we identify the set of states with S(H). The set S(H) is a convex subset of the
real vector space Ts(H) and this gives S(H) the convex structure described in Section 3.1.1.

An example of a state is a one-dimensional projection. Indeed, we have seen in Section 2.2
that one-dimensional projections are positive and have trace 1. Also recall from Section 2.2.4
that any one-dimensional projection is of the form |ϕ 〉〈ϕ| for some unit vector ϕ ∈ H.

By forming convex combinations of one-dimensional projections we get other states. Actu-
ally, the basic fact in S(H) is that all states are (either finite or infinite) convex combinations of
one-dimensional projections. The following theorem is a consequence of the spectral theorem
for compact operators; see e.g. [73] for a proof.

Theorem 4. A state % ∈ S(H) has a canonical convex decomposition of the form

% =
∑
j

λjPj , (3.5)

where {λj} is a sequence of non-negative numbers summing to one and {Pj} is an orthonormal
sequence of one-dimensional projections. If there are infinitely many nonzero terms, then the
sum converges with respect to the trace norm.

The set S(H) is convex and this corresponds to the possibility of making mixtures as dis-
cussed in Subsection 3.1.1. The set S(H) is actually σ-convex, which means that if {%j} is a
sequence in S(H) and {λj} is a sequence of positive numbers summing to one, then the se-
quence

∑
j λj%j converges in T (H) with respect to the trace norm and the limit belongs to

S(H).

Definition 16. An extreme element of the convex set S(H) is called a pure state. Any other
element of S(H) is called a mixed state.

As a preparation for the following characterization of pure states, we make a short observa-
tion. If % is a state, then the operator %2 is a positive trace class operator. By definition, states
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satisfy the normalization tr [%] = 1. This leads to a bound for the trace of %2. Namely, using the
inequalities presented in Proposition 17 in Section 2.2.5 we get

tr
[
%2
]
≤ ‖%‖ tr [%] = ‖%‖ ≤ tr [%] = 1 .

Hence, for each state % we can calculate a number 0 < tr
[
%2
]
≤ 1.

Proposition 20. Let % ∈ S(H). The following conditions are equivalent:

(i) % is a pure state;

(ii) % is a one-dimensional projection;

(iii) tr
[
%2
]

= 1.

Proof. We prove the proposition by showing that (i)⇒(ii)⇒(iii)⇒(i),
Suppose that % is a pure state. Then in the canonical decomposition (3.5) there can be only

one nonzero number λj , i.e. % = λP , where P is a one-dimensional projector. The normalization
tr [%] = λtr [P ] = 1 implies that λ = 1 and % = |ϕ 〉〈ϕ|. Thus, (i) implies (ii).

Let us then assume that (ii) holds. By definition, a projection satisfies %2 = %. Therefore,
tr
[
%2
]

= tr [%] = 1. Thus, (iii) follows.
Finally, assume that (iii) holds. Let us write % in the form % = λ%1 + (1 − λ)%2 for some

0 < λ < 1. We need to prove that this is necessarily a trivial convex decomposition, i.e., %1 = %2.
By the assumption we get

1 = tr
[
%2
]

= λ2 tr
[
%2
1

]
+ (1− λ)2 tr

[
%2
2

]
+ 2λ(1− λ) tr [%1%2]

≤ λ2 + (1− λ)2 + 2λ(1− λ) |tr [%1%2]| ≤ 1 .

In the last line we have used Cauchy-Schwarz inequality. Since there must be equality in the last
inequality, we conclude that %1 = c%2 for some complex number c. As tr [%1] = tr [%2] = 1, we
have c = 1 and therefore %1 = %2. In conclusion, % admits only trivial convex decompositions,
which means that it is pure.

A mixed state % has a canonical decomposition (3.5) as a mixture of pure states. Generally,
however, % can be written as a mixture of pure states in many other ways. One can therefore
ask for a classification of all decompositions of a given mixed state % to pure states. In the case
of finite convex mixtures, this question was answered in [51]. A complete solution, also taking
into account σ-convex mixtures, was then given in [23]. We briefly describe a method presented
in [23] to generate convex decompositions. As we describe it here, this procedure does not
give all possible convex decompositions but it is sufficient to demonstrate the non-uniqueness of
convex decompositions.

Let ρ ∈ S(H) be a mixed state. Choose an orthonormal basis {ϕj}dj=1 for H (here either

d <∞ or d = ∞). For each j, define λj :=
∥∥∥% 1

2ϕj

∥∥∥2

. These numbers then satisfy the identity

d∑
j=1

λj =
d∑
j=1

∥∥∥% 1
2ϕj

∥∥∥2

=
d∑
j=1

〈ϕj | %ϕj 〉 = tr [%] = 1 .
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For each j such that λj 6= 0, we denote

φj := λ
− 1

2
j %

1
2ϕj . (3.6)

The vectors φj are unit vectors and

% =
∑
j

λj |φj 〉〈φj | , (3.7)

where the sum contains those terms with λj 6= 0. Indeed, for any ψ ∈ H, we get〈
ψ |

∑
j

λj |φj 〉〈φj |

ψ

〉
=

d∑
j=1

∣∣∣〈ψ | % 1
2ϕj

〉∣∣∣2 =
d∑
j=1

∣∣∣〈 % 1
2ψ |ϕj

〉∣∣∣2
=

∥∥∥% 1
2ψ
∥∥∥2

= 〈ψ | %ψ 〉 ,

which shows that (3.7) holds. The decomposition (3.7) is not yet exactly what we want as it may
happen that |φi 〉〈φi| = |φj 〉〈φj | for two different indices i and j. However, we can simply sum
up these kind of terms and as a result we get a mixture consisting of different pure states.

The decomposition defined in (3.7) shows, in particular, that a pure state |φ 〉〈φ| can be in
some decomposition of a state % if φ is in the range of the operator %

1
2 . It can be shown that these

two conditions are actually equivalent [41].

Exercise 14. Conclude from the previous discussion that a mixed state has (uncountably) in-
finitely many different convex decompositions to pure states.

The following proposition gives a characterization of the ambiguity of finite pure state de-
compositions of a mixed state [53].

Proposition 21. If a mixed state % has a convex decomposition % =
∑n
j=1 pj |φj〉〈φj |, then all its

finite convex decompositions have the form % =
∑m
k=1 qk|ϕk〉〈ϕk|, where vectors ϕ1, . . . , ϕm ∈

H and probabilities q1, . . . , qm satisfy the system of equations

√
pjφj =

∑
k

ujk
√
qkϕk (3.8)

with complex numbers ujk defining an n×m matrix of partial isometry.

Proof. Using the identity in Eq.(3.8) the direct calculations gives∑
j

pj |φj〉〈φj | =
∑
jk

√
qkqk′ujku

∗
jk′ |ϕk〉〈ϕk′ | =

∑
k

qk|ϕk〉〈ϕk| , (3.9)

because for the partial isometry
∑
j ujku

∗
jk′ = δkk′ .

Conversely, suppose % =
∑
j λj |ψj〉〈ψj | is the canonical decomposition, i.e. λj are the

eigenvalues of % and ψj are the corresponding eigenvectors forming an orthonormal basis of the
Hilbert space H of dimension d, thus √pjφj =

∑
l cjl

√
λlψl and

√
qkϕk =

∑
l dkl

√
λlψl,
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where cjl, djl are suitable complex numbers forming n × d, m × d matrices, respectively. The
identity

% =
∑
l

λl|ψl〉〈ψl| =
∑
j

pj |φj〉〈φj | =
∑
ll′

∑
j

√
λlλl′cjlc

∗
jl′ |ψl〉〈ψl′ | (3.10)

requires that
∑
j cjlc

∗
jl′ = δll′ , i.e. the entries cjl defines the matrix C being a partial isometry.

Similarly, the numbers dkl defines a partial isometry D relating vectors ψl with vectors ϕk.
Partial isometries being the rectangular matrices can be extended to square unitary matrices,
thus they are invertible and C∗, D∗ describes the inverse transformations from vectors φj , ϕk,
respectively, to vectors ψl. Consequently, the n × m matrix U = CD∗ with entries ujk =∑
l cjld

∗
lk gives

∑
k ujk

√
qkϕk = √

pjφj as it is stated in the theorem.

The set S(H) is a convex subset of the real normed space Ls(H). It is instructive to under-
stand the geometry of S(H) from this topological point of view. We say that a state % belongs
to the boundary of S(H) if for each ε > 0, there exists an operator ξε ∈ Ls(H) such that
‖%− ξε‖ < ε but ξε 6∈ S(H).

Proposition 22. If a state % has eigenvalue 0, then it belongs to the boundary of S(H) .

Proof. Assume that % has eigenvalue 0 and let ϕ ∈ H be a corresponding eigenvector. Fix
ε > 0. The selfadjoint operator ξε := %− 1

2ε|ϕ 〉〈ϕ| is not positive as 〈ϕ | ξεϕ 〉 = − 1
2ε < 0. In

particular, ξε /∈ S(H). On the other hand,

‖%ε − %‖ =
1
2
ε ‖|ϕ 〉〈ϕ|‖ =

1
2
ε < ε .

Consequently, % belongs to the boundary of S(H).

Proposition 22 shows, in particular, that all pure states are boundary points of S(H). How-
ever, if dimH ≥ 3, then we can easily define also mixed states which are in the boundary of
S(H). For instance, let ϕ1, ϕ2, ϕ3 be three orthogonal unit vectors. Fix a number 0 < λ < 1
and define

% = λPϕ1 + (1− λ)Pϕ2 .

It is then clear that % is a mixed state. On the other hand,

%ϕ3 = λ 〈ϕ1 |ϕ3 〉ϕ1 + (1− λ) 〈ϕ2 |ϕ3 〉ϕ2 = 0 ,

and hence % has eigenvalue 0. Proposition 22 then implies that % is in the boundary of S(H).
The case dimH = 2 is an exception and then the boundary points of S(H) are exactly the

pure states; this will become clear in Subsection 3.1.3.
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3.1.3 Quantum state space for a finite dimensional system

In this subsection we illustrate the concepts of Subsection 3.1.2 in the case of finite dimensional
system and we also discuss some further topics which are specific for a finite dimensional situa-
tion.

A convenient way to illustrate the state space for a finite dimensional Hilbert space is to adopt
the so-called Bloch representation. The vector space L(H) is a Hilbert space endowed with the
Hilbert-Schmidt scalar product 〈A |B 〉H-S = tr [A∗B]. For a d dimensional Hilbert space H the
associated complex Hilbert space L(H) is d2 dimensional. The subspace of selfadjoint operators
Ls(H) is a d2 dimensional real subspace ofL(H). It is convenient to choose the identity operator
to be one of the element of an orthogonal basis of selfadjoint operators, E0 = I . In such case
the orthogonality implies that the remaining basis operators E1, . . . , Ed2−1 have trace equal to
0. Moreover, we choose the normalization to be 〈Ej |Ek 〉H-S = dδjk. Consequently, a general
quantum state can be expressed as

% =
1
d
(I + ~r · ~E) , (3.11)

where ~r is a d2 − 1 dimensional real vector called Bloch (state) vector. Hence, quantum states
can be viewed as real vectors and the convex body of the state space is embedded into Rd2−1.

Let us note that general linear combinations of states are not reflected by linear combinations
in the Bloch state vectors. Only affine linear combinations of Bloch vectors can be properly
interpreted as affine linear combinations of corresponding quantum states. The reason for this
fact is that affine linear combinations preserve the trace and Bloch vectors are in one-to-one
correspondence with selfadjoint operators of a fixed trace. Consequently, although Bloch vectors
are elements of d2 − 1-dimensional real vector space, there are d2 linearly independent states
associated with d2 affinely independent Bloch vectors in Rd2−1.

Example 20. (Bloch sphere) Consider a two-dimensional Hilbert space H with an orthonormal
basis {ϕ,ϕ⊥}. The standard operator basis consists of the identity operator I and the Pauli
operators

σx = |ϕ〉〈ϕ⊥|+ |ϕ⊥〉〈ϕ| ,
σy = −i|ϕ〉〈ϕ⊥|+ i|ϕ⊥〉〈ϕ| ,
σz = |ϕ〉〈ϕ| − |ϕ⊥〉〈ϕ⊥| .

They satisfy the orthogonality relations tr [σjσk] = 2δjk. In this basis a general state can be
written as

% =
1
2
(I + ~r · ~σ) , (3.12)

where ~r ∈ R2. The eigenvalues of the operator % in (3.12) are λ± = 1
2 (1 ± ‖~r‖). It fol-

lows that the positivity of % is equivalent to the condition ‖~r‖ ≤ 1. Hence, the states of the
two-dimensional Hilbert space form a unit sphere in the three-dimensional real vector space of
Bloch vectors, the so-called Bloch sphere. The pure states correspond to the vectors ~r of unit
length. Clearly, the vectors of unit length form the boundary of the unit sphere, hence for two-
dimensional Hilbert space the boundary of state space consists of pure states only.
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Exercise 15. This exercise is related to Example 20. Define pure states %x = 1
2 (I + σx),

%y = 1
2 (I + σy), %z = 1

2 (I + σz). Show that they do not form an operator basis. Specify which
states can be used to complete the basis. [Hint: Try to express the identity operator I as a linear
(not necessarily convex) combinations of %x, %y, %z .]

The item (iii) in Proposition 20 motivates the quantification of so-called mixedness of quan-
tum states. The starting point is that we have a numerical function on the set of states that
takes certain value if and only if the state is pure. In what follows we introduce two functions
commonly used to quantify the mixedness of quantum states.

Definition 17. The purity P(%) of a state % is defined as

P(%) := tr
[
%2
]

=
∑
j

λ2
j ,

where λj are the eigenvalues of %.

Definition 18. The von Neumann entropy S(%) of a state % is defined as

S(%) := −tr [% log %] = −
∑
j

λj log λj ,

where λj are the nonzero eigenvalues of %.

Proposition 23. Purity has the following properties:

1. P is convex, i.e., P(p%1 + (1− p)%2) ≤ pP(%1) + (1− p)P(%2).

2. P is invariant under unitary conjugation, i.e., P(U%U∗) = P(%).

3. P(%) = 1 if and only if % is a pure state.

Proof. 1. We prove the claim by showing that the difference ∆ ≡ pP(%1) + (1− p)P(%2)−
P(p%1 + (1− p)%2) is positive. A direct calculation gives

∆ = ptr
[
%2
1

]
+ (1− p)tr

[
%2
2

]
− p2tr

[
%2
1

]
− (1− p)2tr

[
%2
2

]
− 2p(1− p)tr [%1%2]

= p(1− p)tr
[
%2
1 + %2

2 − %1%2 − %2%1

]
= p(1− p)tr

[
(%1 − %2)2

]
. (3.13)

Since 0 ≤ p ≤ 1 and (%1 − %2)2 ≥ O it follows that ∆ is positive, thus the purity is
convex.

2. If % is a state and U is a unitary operator, we get

P(U%U∗) = tr [U%U∗U%U∗] = tr
[
%2
]

= P(%) .

3. This is proved in Prop. 20.

In the following we list some properties of von Neumann entropy that are needed for our
purposes. We omit the proofs which can be found in [57], [70], [65]. See also Exercise 16 below.
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Proposition 24. von Neumann entropy has the following properties:

1. S is concave, i.e., S(p%1 + (1− p)%2) ≥ pS(%1) + (1− p)S(%2).

2. S is invariant under unitary conjugation, i.e., S(U%U∗) = S(%).

3. S(%) = 0 if and only if % is a pure state.

Exercise 16. Prove the third property in Prop. 24.

Both purity and von Neumann entropy induce partial orders in the set of states. As shown
in [82], these partial orders are different. Namely, there are states %1 and %2 such that P(%1) >
P(%2), but not S(%1) < S(%2). However, the following example shows that the maximal element
is the same for both of them.

Example 21. (Maximally mixed state.) According to previous discussion the pure states are the
only least mixed states with respect to both purity and von Neumann entropy. We can also ask
which states are maximally mixed. It turns out that there exists a unique quantum state called
complete, or total mixture which is the unique maximally mixed state with respect to the both
quantities.

States % and %U = U%U∗ have the same value of purity and von Neumann entropy for all
unitary operators U . Making a convex combination of states %k = Uk%U

∗
k we obtain a state

%′ =
∑
k pk%k with purity P(%′) ≤

∑
k pkP(%k) = P(%) and entropy S(%′) ≥

∑
k pkS(%k) =

S(%). It follows that with respect to both measures the state %′ is more (or equally) mixed as %.
The maximally mixed state cannot be affected by such mixing procedure, i.e., if % is maximally
mixed, then also %′ is a maximally mixed state.

Let ϕ1, . . . , ϕd be the (mutually orthogonal) eigenvectors of the state %, so that
% =

∑
j λj |ϕj〉〈ϕj |. Define a shift operator

Ushift =
d∑
j=1

|ϕj〉〈ϕj⊕1| (3.14)

with modulo d summation, i.e., d ⊕ 1 = 1. Applying the shift operator to % we get a state %1 =
Ushift%U

∗
shift =

∑
j λj⊕1|ϕj〉〈ϕj |. Recursively, %r = Ushift%r−1U

∗
shift =

∑
j λj⊕r|ϕj〉〈ϕj |.

Equal probabilistic mixture of states %1, . . . , %d results in the state

%′ =
1
d

∑
r

pr%r =
1
d

d∑
j=1

(
d∑
r=1

λj⊕r

)
|ϕj〉〈ϕj | =

1
d
I , (3.15)

because
∑d
r=1 λj⊕r = λ1 + · · · + λd = tr [%] = 1. Moreover, the state 1

dI is not affected by
unitary transformations, i.e. U 1

dIU
∗ = 1

dI . As a result we get that the mixedness of 1
dI is larger

than the mixedness of arbitrarily state and stability of 1
dI under unitary transformations implies

that it is indeed the unique maximum of mixedness with respect to both measures.
The maximally mixed state 1

dI can be also obtained as the average state over all states.
Namely, the group of unitary operators posses an invariant integration, called Haar integral (see
e.g. [35] for explanation). Fix a state % and define % =

∫
U%U∗dU . It follows from the invariance

of Haar integration that the operator % commutes with all unitary operators,[%, U ] = 0 for all U .
By Schur lemma % = cI . The trace condition fixes the constant c = 1/d, where d = dimH.
Thus, % = 1

dI .
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We have seen that each quantum state can be represented as a Bloch vector, however, not
every Bloch vector is associated with some density operator. The shape of the convex body of
the state space in this representation determined by the positivity constraint is not known for
general dimension. The picture of Bloch sphere for two-dimensional case is in many respects
exceptional and its properties are not valid for larger dimensions. For example, although the pure
states are belonging to boundary for any dimension, unless d = 2 the boundary always contains
mixed states. In fact, each density operator of rank smaller than the dimension of the Hilbert
space belongs to the boundary of the state space. By Proposition 20 a state % is pure if

1 = tr
[
%2
]

=
1
d2

tr
[
(I + ~r · ~E)(I + ~r · ~E)

]
=

1
d
(1 + ‖~r‖2) , (3.16)

hence ‖~r‖ =
√
d− 1. This means that the state space is embedded in a sphere of d2 − 1

dimensional real vector space. However, not every operator with ‖~r‖ ≤
√
d− 1 is positive and

the particular form of the state space is more complicated.
Let ψ,ϕ be two unit vectors, %ψ, %ϕ the corresponding states and ~rψ, ~rϕ the associated Bloch

vectors. Then

| 〈ψ |ϕ 〉 |2 = tr [%ψ%ϕ] =
1
d
(1 + ~rψ · ~rϕ) . (3.17)

Consequently, the orthogonality of vectors ψ,ϕ is reflected by the scalar product ~rψ ·~rϕ = −1 of
the associated Bloch vectors. It follows that the angle between the Bloch vectors corresponding
to orthogonal pure states is

θ = arccos
(

1
1− d

)
. (3.18)

Interestingly, if ~rψ (with ‖~rψ‖ =
√
d− 1) defines a pure quantum state, then its antipodal vector

~t = −~rψ does not correspond to any quantum states. In fact, since
∥∥~t∥∥ =

√
d− 1 the candidate

state should be pure. However,

1
d
(1 + ~rψ · ~t) =

1
d
(1− d+ 1) =

2− d

d
< 0

for d > 2, which is in contradiction with the fact that |〈ψ |ϕ 〉|2 ≥ 0 for all vectors ϕ ∈ H.
Therefore, the antipodal vector ~t does not correspond to any physical state.

Example 22. Fix a unit vector ϕ. Consider a traceless selfadjoint operator

E =
1√
d− 1

(d |ϕ〉〈ϕ| − I) , (3.19)

which is an element of some orthogonal operator basis consisting of traceless selfadjoint opera-
tors E1, . . . , Ed2−1 such that tr

[
E2
j

]
= d. Then the operator

% =
1
d
(I +

√
d− 1E) = |ϕ〉〈ϕ| (3.20)

describes a pure state with the Bloch vector ~r = (
√
d− 1, 0, . . . , 0). According to previous

paragraph an operator

A =
1
d
(I −

√
d− 1 E) =

2
d
I − |ϕ〉〈ϕ| (3.21)
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associated with the antipodal Bloch vector ~t = −~r is not positive. In fact, it is diagonal and the
eigenvalue (2− d)/d is clearly negative for d > 2.

3.1.4 From states to effects

In Subsection 3.1.2 we have identified the states of a quantum system with the positive trace
class operators of trace one on a Hilbert space H, and this set is denoted by S(H). An effect, as
defined in Subsection 3.1.1, is therefore an affine mapping from S(H) to [0, 1]. However, also
effects can be identified with certain specific operators on H.

First of all, an effect E has a unique extension to a positive linear functional Ẽ from T (H)
to C. Indeed, we set Ẽ(O) := 0 and for each positive trace class operator T 6= O we define

Ẽ(T ) := tr [T ]E(tr [T ]−1
T ) .

In this way, Ẽ is defined for all positive trace class operators. Then, for every selfadjoint operator
T ∈ Ts(H) we define

Ẽ(T ) := Ẽ(T+)− Ẽ(T−) ,

where T+, T− are the positive and negative parts of T , respectively. Finally, an operator T ∈
T (H) can be written as a sum of two selfadjoint trace class operators TR and TI (recall Example
8 in Section 2.2.2). Hence, we can further extend Ẽ to all trace class operators.

Since Ẽ is a positive linear functional on the Banach space T (H), it is bounded. From the
duality relation between the trace class operators and bounded operators (see Section 2.3.3) it
follows that there exists a unique operator Ê ∈ L(H) such that

Ẽ(T ) = tr
[
ÊT
]

∀T ∈ T (H) . (3.22)

The effect E takes values between 0 and 1. Hence, for a pure state Pψ we get

0 ≤ tr
[
ÊPψ

]
=
〈
ψ | Êψ

〉
≤ 1 .

Equivalently, we can write this condition as

0 ≤
〈
ψ | Êψ

〉
≤ 1 ,

required to hold for all unit vectors ψ ∈ H. Hence, we can identify the effects as selfadjoint
operators satisfying

O ≤ Ê ≤ I . (3.23)

Here these inequalities are operator inequalities in the sense explained in Section 2.2.2. We
conclude that effects can be (and will be) identified with the bounded operators satisfying the
operator inequalities (3.23). We denote by E(H) the set of all effects.

Exercise 17. Show that every projection is an effect. (Hint: One way is to use Proposition 11
and apply that to the inequality in Exercise 7).
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3.1.5 From effects to states

In Section 3.1.4 we have seen that if the set of states is chosen to be S(H), then the mathematical
form of effects follows from the basic framework. It is also possible to fix the mathematical form
for effects first and take this as a starting point. Here we briefly explain this line of thought.

Let us forget Subsection 3.1.2 for a moment and start again from the general framework of
Subsection 3.1.1. In particular, suppose we have not fixed the specific mathematical form of
states and effects. Starting from the definition of an effect as an affine mapping on the set of
states, we can define a partial binary operation � on the set of effects. Namely, if E1, E2, E3 are
effects and for all states % we have

E1(%) + E2(%) = E3(%) ,

then we denote E1 �E2 = E3. The operation E1 �E2 is not defined for all pairs of effects and
for this reason � is called partial operation. (For instance, I � I is not defined.)

The partial binary operation � defines also a partial ordering. Namely, for two effects E1

and E3, we denote E1 ≤ E3 if there exists an effect E2 such that E1 � E2 = E3.
Since effects are affine mappings from the set of states to the interval [0, 1], each state %

defines a mapping f% from the set of effects to the interval [0, 1] by formula

f%(E) := E(%) .

It is clear from this definition that f% satisfies the normalization

f%(I) = I(%) = 1 , (3.24)

where I is the identity effect introduced in Example 19. Moreover, assume thatE1, E2 are effects
and E1 � E2 exists. Then we get

f%(E1 � E2) = (E1 � E2)(%) = E1(%) + E2(%) = f%(E1) + f%(E2) . (3.25)

In conclusion, each state determined mapping f% is a normalized and additive (with respect to
�) mapping from the set of effects to the interval [0, 1].

The properties (3.24) and (3.25) are immediate consequences of our definitions. To proceed,
we also need to require something more. Namely, let E1, E2, . . . be a sequence of effects such
that the sum E1 � · · ·�En exists for each n. By E1 �E2 � · · · we denote the least upper bound
of the increasing sequence E1, E1 � E2, E1 � E2 � E3, . . ., if it exists.

Definition 19. A mapping f from the set of effects to the interval [0, 1] is a generalized proba-
bility measure if it satisfies the normalization condition f(I) = 1 and

f(E1 � E2 � · · · ) = f(E1) + f(E2) + · · · (3.26)

whenever E1 � E2 � · · · exists.

We now require that the states correspond to the generalized probability measures on ef-
fects. This can be seen as an additional assumption in the basic framework. Note, however, that
properties (3.24) and (3.25) already follow from the basic framework, and (3.26) is just a slight
generalization of (3.25).
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Let us then see the consequences if the set E(H) = {E ∈ L(H) | O ≤ E ≤ I} is taken
to represent the set of effects. The binary operation � is identified with the usual addition of
operators. For the proof of the following result, we refer to [12].

Proposition 25. Let f be a generalized probability measure on E(H). There exists a unique
operator %f ∈ S(H) such that

f(E) = tr [%fE] ∀E ∈ E(H) . (3.27)

We conclude that the choices S(H) and E(H) for the mathematical description of states and
effects, respectively, are compatible in the sense that already fixing one implies the other. We
emphasize that the discussion here and earlier subsections is not in any way a derivation of the
Hilbert space structure of quantum mechanics. We have simply shown how the Hilbert space
structure fits to the basic framework.

3.1.6 Gleason’s Theorem

Let us continue the discussion of Subsection 3.1.5 from a slightly different point of view. Recall
that effects themselves correspond to measurements with two outcomes. This raises the following
question: can we prepare a system in such a way that the measurement outcomes in all two
outcome measurements are predictable with probability one? This would mean that we have
a generalized probability measure which takes only values 0 and 1. A generalized probability
measure satisfying this feature is called dispersion-free.

Exercise 18. Let % ∈ S(H). Show that the related generalized probability measure f% on E(H)
is not dispersion-free.

Since by Proposition 25 all generalized probability measures on E(H) are of the form f%
for some state % ∈ S(H) we can conclude from Exercise 18 that there are no dispersion-free
generalized probability measures on E(H).

This fact is not unexpected and we can also understand it without Proposition 25. Namely,
for each E ∈ E(H), also 1

2E ∈ E(H). If f is a generalized probability measure on E(H) and
f(E) = 1, then it follows from (3.26) that f( 1

2E) = 1
2 . This argument relates to the fact that

E(H) is a convex set. Hence, perhaps there is some rule of calculating predictions with the
probabilities 1 and 0 for those effects which are free from classical randomness, i.e., which are
not convex mixtures of other effects.

Example 23. (States and effects in classical mechanics) This is a good place to think about the
mathematical representation of states and effects of classical systems. Briefly, we can say that
classical states are probability distributions on a suitable phase space Ω and classical effects are
associated with fuzzy subsets of Ω. In the usual physical situations the phase space Ω is infinite.
For example, the phase space for a moving particle is the six dimensional manifold R3 × R3

consisting of position and momentum vectors, i.e. ~x = (~q, ~p) ∈ Ω.
To keep things simple, we focus only on finite phase spaces which are sufficient for our

purposes. In the case of a finite phase space Ω (say containing d elements), the states can be
represented as probability vectors ~p = (p1, . . . , pd) with 0 ≤ pj ≤ 1 and

∑
j pj = 1. The

classical effects can be represented by vectors ~e = (e1, . . . , ed) satisfying 0 ≤ ej ≤ 1. The
probability of measuring an effect ~e if the system is in the state ~p is ~p · ~e =

∑
j pjej .
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The extremal elements of the classical state space are the probability vectors ~δj with all
entries vanishing except jth one. Clearly, each state ~p is a convex combination of some ~δj’s.
On the other hand, a state ~δj does not have non-trivial convex decomposition to other states.
Similarly, the extremal effects are vectors ~e such that each entry ej is either 0 or 1.

It is now easy to see the that there are no dispersion-free states. However, there are states
which are dispersion-free when restricted to extremal effects. Namely, if we have an extremal
state ~δj and an extremal effect ~e, then the probability ~δj · ~e is either 0 or 1.

To deal with the above queries, we recall the following result of Davies [29].

Proposition 26. The extremal elements of the convex set E(H) are the projections.

Proof. Let P be a projection and assume that there are effects E1, E2 such that

P = λE1 + (1− λ)E2 (3.28)

for some 0 < λ < 1. Suppose ψ ∈ H satisfies Pψ = 0. Since E1 and E2 are positive operators,
we get

0 = 〈ψ |Pψ 〉 = λ 〈ψ |E1ψ 〉+ (1− λ) 〈ψ |E2ψ 〉 ≥ λ 〈ψ |E1ψ 〉 ≥ 0 .

Hence, 〈ψ |E1ψ 〉 = 0. By Prop. 7 in Section 2.2.2 this implies that E1ψ = 0. On the other
hand, equation (3.28) gives

I − P = λ(I − E1) + (1− λ)(I − E2) , (3.29)

and a similar reasoning now shows that Pψ = ψ implies that E1ψ = ψ. By Prop. 11 in Section
2.2.4 every vector in H can be written as a sum of eigenvectors of P . Hence, E1 and P acts
identically on all vectors ψ ∈ H and we conclude that E1 = P . Thus, P does not have a
nontrivial convex decomposition and it is extremal.

Suppose that A ∈ E(H) is not a projection, so that A 6= A2. We define E1 = A2 6= A and
E2 = 2A − A2 6= A. The operator E1 is an effect by Prop. 6 in Section 2.2.2. Similarly, since
I −E2 = (I −A)2, also I −E2 is an effect. This implies that E2 is an effect as well. The equal
convex combination of these effects gives

1
2
(E1 + E2) = A . (3.30)

Thus, A is not an extreme element of E(H).

Motivated by Proposition 26, it seems interesting to study the properties of generalized prob-
ability measures on the set of all projections P(H). In this case the celebrated result of Gleason
tells us the following.

Theorem 5. (Gleason’s Theorem) Suppose that dimH ≥ 3. Let f be a generalized probability
measure on P(H). There exists a unique operator %f ∈ S(H) such that

f(P ) = tr [%fP ] ∀P ∈ P(H) . (3.31)
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The proof of Gleason’s Theorem, first given in [39], is long and non-trivial. We refer to []
for a detailed proof. From Gleason’s Theorem we conclude that when dimH ≥ 3, there seems
to be no way to escape the probabilistic nature of quantum mechanics. Generalized probabil-
ity measures on P(H) are obtained from states with the usual trace formula and they are never
dispersion-free. For dimH = 2 Gleason’s Theorem is not valid and the situation is therefore
different. This opens up the possibility of constructing generalized probability measures which
are dispersion-free, and one example is given below. However, so far these dispersion-free gen-
eralized probability measures do not seem to found any physical interpretation.

Example 24. (Dispersion-free generalized probability measures in two-dimensional case.) The
set of projectors on a two-dimensional system consists of O, I , and operators P~n ≡ 1

2 (I + ~n · ~σ)
with ‖~n‖ = 1. A generalized probability measure can be understand as a function on vectors
~n taking values f(O) = 0 and f(I) = 1. Let us note that P~n + P~m is an effect if and only if
~m = −~n. Therefore, the additivity constraint gives only a single nontrivial relation

f(P~n) + f(P−~n) = f(I) = 1

that should hold for all ~n.
Fix a unit vector ~z. Define f(P~n) = 0 if ~n · ~z < 0 and f(P~n) = 1 otherwise. The property

f(P~n) + f(P−~n) = 1 obviously holds and, therefore, this function is a generalized probability
measure. Let us assume that f comes from a state %f by formula (3.31). As explained in Section
3.1.3, the state %f has the form 1

2 (I + ~r · ~σ) for some vector ~r with ‖~r‖ ≤ 1. By a direct
calculation we get

f(P~n) =
1
4

tr [(I + ~r · ~σ)(I + ~n · ~σ)] =
1
2
(1 + ~r · ~n) .

It is now clear that it is not possible to produce the correct values for f . Thus, there is no state
%f which would correspond to f . In conclusion, f is an example of dispersion-free generalized
measure that cannot be represented by a state %f .

Exercise 19. Show that the generalized probability measure f in Example 24 cannot be extend
to all effects.

3.2 Superposition structure of pure states

3.2.1 Superposition of two pure states

Pure states is an exceptional subset of states not only because they are extremal points of the
state space. They have their own special structure called superposition, which has no analog in
classical mechanics. Superposition is often marked as the very quantum feature. To explain the
mathematical formalism of superposition, it is easier first to adopt another description for pure
states.

We saw in Subsection 3.1.2 that pure states are described by one-dimensional projections.
As noted in Subsection 2.2.4, each unit vector η defines a one-dimensional Pη. However, this
correspondence is not injective. Namely, two unit vectors η and η′ define the same projection if
there is a complex number z of unit length such that η′ = zη. Also the converse holds: if two
unit vectors η and η′ differ in some other way than a scalar multiple, then they define different
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projections. We conclude that pure states can be alternatively described as equivalence classes
[η] of unit vectors η ∈ H, where the equivalence relation is defined in the following way:

η ∼ η′ ⇔ η′ = zη for some z ∈ C, |z| = 1 . (3.32)

Forming a superposition of two pure states is, essentially, the same thing as forming a linear
combination of two vectors. We only need to take into account the equivalence relation defined
above. Hence, let ψ,ϕ ∈ H be two linearly independent unit vectors. Choose two non-zero
complex numbers a, b, and denote

ω =
aψ + bϕ

‖aψ + bϕ‖
. (3.33)

The pure state [ω] is called a superposition of pure states [ψ] and [ϕ]. In terms of the correspond-
ing one-dimensional projections Pψ, Pϕ and Pω the superposition condition (3.33) reads

Pω =
1

‖aψ + bϕ‖2
(
|a|2Pψ + |b|2Pϕ + a∗b|ϕ〉〈ψ|+ ab∗|ψ〉〈ϕ|

)
. (3.34)

Here we have used the Dirac notation, explained in Section 2.3.2.

Proposition 27. A pure state P1 (described as a one-dimensional projection) can be written as
superposition of a pure state P2 and some other pure state (say P3) if and only if

tr [P1P2] 6= 0 . (3.35)

Moreover, if (3.35) holds, then P3 can be chosen such that tr [P2P3] = 0.

Proof. The fact that (3.35) is a necessary condition for P1 being a superposition of P2 and some
other pure state P3 is evident from (3.34). Indeed, take P1 = Pω and P2 = Pϕ and multiply
the both sides of (3.34) by Pω. Taking trace gives tr [PωPϕ] = |b|2 / ‖aψ + bϕ‖2. Hence,
tr [PωPϕ] = 0 implies that b = 0.

Let us then assume that (3.35) holds. Choose unit vectors ω and ϕ such that P1 = Pω and
P2 = Pϕ. If |〈ϕ |ω 〉| = 1, then P1 = P2 and the statement becomes trivial. Hence, we assume
that |〈ϕ |ω 〉| < 1. Denote η = (1− |〈ϕ |ω 〉|)−1(ψ − 〈ϕ |ω 〉ϕ), so that η is a unit vector and
〈 η |ϕ 〉 = 0. Now

ψ = (1− |〈ϕ |ω 〉|)η + 〈ϕ |ω 〉ϕ ,

showing that P1 is a superposition of P2 and P3 = Pη. Moreover, 〈 η |ϕ 〉 = 0 means that
tr [P2P3] = 0.

As convexity gives a way to form a new state out of two states, superposition is a way to
form a new pure state out of two pure states. However, the superposition structure of pure states
is of different character than the convex structure of states. For instance, it can be seen from
Proposition 27 that any pure state can be written as a superposition of some other two pure
states. Hence, there are no ”extremal” pure states in the sense of superposition.
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3.2.2 Interference

Let ψ,ϕ ∈ H be orthogonal unit vectors and let ω be the superposed vector as in (3.33). The
orthogonality of ψ an ϕ implies that ‖aψ + bϕ‖2 = |a|2 + |b|2. The probability related to a
measurement of an effect E in the pure state Pω is then

tr [EPω] =
1

|a|2 + |b|2
(
|a|2 tr [EPψ] + |b|2 tr [EPϕ] + 2Re{a∗b 〈ψ |Eϕ 〉}

)
. (3.36)

The first two terms in (3.36) look like a convex combination. Indeed, denote λ = |a|2 /(|a|2+
|b|2), in which case 1 − λ = |b|2 /(|a|2 + |b|2). Let us then define a mixture of Pψ and Pϕ as
% = λPψ + (1− λ)Pϕ. The probability of measuring the effect E in % is

tr [E%] =
1

|a|2 + |b|2
(
|a|2 tr [EPψ] + |b|2 tr [EPϕ]

)
. (3.37)

Comparing (3.36) with (3.37) we find that the difference between the superposition Pω and the
mixture % of the orthogonal pure states is given by the interference term

Iω(E) =
2

|a|2 + |b|2
Re{a∗b 〈ψ |Eϕ 〉} . (3.38)

This number is real and −1 ≤ Iω(E) ≤ 1. Loosely speaking we can say that the interference
reflects the difference between the superposition (as a purely quantum structure) and the mixture
(coming from the general statistical structure) of pure states.

The difference can be observed in experiments, but the interference depends on the particular
choice of the effect E. Each pure state is a superposition of some other pure states. It is only a
question of proper choice of the experiment in which the interference can be seen. For example,
if the superposed vectors ψ,ϕ are orthogonal, then Iω(Pψ) = Iω(Pϕ) = 0 and |Iω(Pω)| =
2|ab|2/(|a|2 + |b|2).

Example 25. Double-slit experiment. A double-slit experiment is an elegant and simple demon-
stration of quantum interference and superposition. We assume that reader already met with this
experiment. If not, we refer to usual text books on quantum mechanics. We shall only briefly
describe the experiment, point out main features, but the discussion is not meant to be complete.

The situation is as follows: a source is producing quantum particles impinging perpendiculary
onto a screen with two slits defining the x axis. It is assumed that particles have equal probability
to approach any point in some finite area containing the two slits. Thus, there is a nonzero
probability that from time to time the particle will pass beyond the screen. In a sense, the screen
with slits is filtering the incoming particles. After passing the slits the particles evolve freely and
are registered on the second screen. The first screen with slits followed by the free evolution
between the screens is considered to be the preparation process of some state. The registration
on the second screen is understood as the measurement part of the experiment. For our purposes
it is sufficient to consider the one-dimensional version of the problem, in which a probability
density distribution p(x) is measured. We consider three different experimental settings:

• Both slits are open and the probability q(x) is measured.

• Lower slit is closed and upper one is open. We measure the probability p+(x).
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Figure 3.2. Quantum double slit experiment.

• Upper slit is closed and lower one is open. We measure the probability p−(x).

As it is depicted on Fig.3.2 after the experiments are accomplished we end up with the proba-
bility densities p±(x) and q(x). Performing the same experiment with classical particles one will
find exactly the same probability densities for p±(x), however, the distribution qclass(x) will be
completely different as in quantum case and will satisfy the identity qclass = 1

2 [p+(x) + p−(x)].
The interpretation is that the double-slit experiment can be seen as an equal mixture of single-slit
experiments, in which with equal probabilities one of the slits is closed. This reasoning is based
on the fact that in each run of the double-slit experiment the particle must go through exactly one
of the slits. Thus, we can say that the second slit is closed. However, quantumly such ”mixture”
relation does not hold, q(x) 6= 1

2 [p+(x) + p−(x)], and the “mixture” interpretation fails. In
particular, in the quantum case the following relation holds

q(x) =
1
2
[p+(x) + p−(x)] + I(x) , (3.39)

where I(x) is the so-called interference term.
According to classical probability theory a probability of a joint event a∪ b is given as P (a∪

b) = P (a)+P (b)−P (a∩b), where the last term exhibits the dependencies between the events a
and b. Let us try to employ this formula to interpret the quantum case. The event a is associated
with registration of particle passing the first of the slits in position x. Similarly, the event b is
identified with the registration of particle passing through the second slit in position x. In this
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probability theory picture the existence of the nonvanishing interference term implies that these
two events are independent. That is, the particles although separated in time are not passing the
slits independently. But still their behavior can be understood within the structures of probability
theory. Unfortunately, the situation is even more complicated. Whereas the probability P (a∩ b)
is always positive, the interference term can be both: negative and positive. Thus, the probability
theory fails to explain the interference term and the double-slit experiment cannot be related to
single-slit experiments within the language of usual probability theory. The quantum particles
are passing through pair of slits in a very curious way. The registration of the particles on the
second screen does not tell us anything about the slit the particle was passing through. In fact,
there is no way how to find such information without disturbing the whole experiment.

The quantum situation is properly described within the quantum theory. As we said the
first screen is used to prepare the particular pure state of the particle associated with vectors
φ, ψ+, ψ− ∈ H = L2(R), respectively. The probability densities of the position measurement
are given as p±(x) = |ψ±(x)|2 and q(x) = |φ(x)|2. It follows that the state of the particles
prepared by the double-slit screen in a state φ ∈ L2(R) is a superposition of the states prepared
by single-slit screens, i.e. φ(x) = 1√

2
[ψ−(x) + ψ+(x)]. The calculation

|φ(x)|2 =
1
2
|ψ−(x) +ψ+(x)|2 =

1
2
[p−(x) + p+(x)] +

1
2
[ψ−(x)∗ψ+(x) +ψ+(x)∗ψ−(x)]

gives that I(x) = Re[ψ−(x)∗ψ+(x)].

3.3 Automorphism groups

Quantum systems are described by Hilbert spaces, and unitary operators are automorphisms of a
Hilbert space. Therefore, one could presume that the group of unitary operators (added perhaps
with antiunitary operators) play the role of automorphism group in quantum mechanics. This is
almost but not exactly true, and the delicate difference is crucial, for instance, in the description
of the spin of a particle. It is therefore instructive to take a closer look on this topic.

This section can be also taken as a compatibility check of the different mathematical struc-
tures introduced in the previous sections. Namely, we will see that the basic structures of states,
pure states and effects lead all to the same automorphism group.

The discussion of this section follows Chapter 2 of [22], where also many other automor-
phism groups are treated. We also refer to a series of articles [60], [61], [62] by L. Molnar for a
detailed study on this subject.

3.3.1 State automorphisms

As discussed earlier, the characteristic feature for states is the possibility of forming mixtures.
This is reflected as the convex structure of S(H). The automorphisms of S(H) are therefore
taken to be the convex structure preserving bijections.

Definition 20. A function s : S(H) → S(H) is a state automorphism if

• s is a bijection;

• ∀%1, %2 ∈ S(H), λ ∈ [0, 1] : s(λ%1 + (1− λ)%2) = λs(%1) + (1− λ)s(%2).
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We denote by Aut(S) the set of all state automorphisms.

Proposition 28. Let s be a state automorphism. Then also the inverse mapping s−1 is state
automorphism.

Proof. The state automorphism s is, by definition, a bijection on S(H). Hence, the inverse
mapping s−1 exists and it is a bijection. For all %1, %2 ∈ S(H), λ ∈ [0, 1], we get

s(λs−1(%1) + (1− λ)s−1(%2)) = λ%1 + (1− λ)%2 = s(s−1(λ%1 + (1− λ)%2)) .

Since s is a bijection, it is injective. Therefore,

λs−1(%1) + (1− λ)s−1(%2) = s−1(λ%1 + (1− λ)%2) .

This shows that s−1 is a state automorphism.

As a consequence of Proposition 28, we conclude that Aut(S) is a group.

Proposition 29. Let s be a state automorphism. Then a state % is pure if and only if s(%) is pure.

Proof. We prove the proposition by showing that a state % is mixed if and only if s(%) is mixed.
Let % be a mixed state, so that % = λ%1 + (1 − λ)%2 for some %1 6= %2 and 0 < λ < 1. Then
s(%) = λs(%1) + (1− λ)s(%2) and s(%1) 6= s(%2). Thus, s(%) is mixed. Employing the inverse
authomorphism s−1 we can prove in the same way that if s(%) is mixed the state s−1s(%) = % is
mixed.

We will need the following technical result.

Lemma 1. Let s ∈ Aut(S). There exists a unique linear mapping ŝ : Ts(H) → Ts(H) such that
ŝ(%) = s(%) for every % ∈ S(H). Moreover, ŝ is positive, trace norm preserving and invertible.

Proof. For each nonzero positive operator T ∈ Ts(H), we define

s̃(T ) := tr [T ] s(
T

tr [T ]
) , (3.40)

and we also set s̃(O) = O. For every λ ≥ 0 and T ∈ Ts(H), T ≥ O, we then have

s̃(λT ) = λtr [T ] s(
λT

λtr [T ]
) = λs̃(T ) . (3.41)

Let T1, T2 be nonzero positive operators in Ts(H). Using the formula

T1 + T2 = (tr [T1] + tr [T2])
(

tr [T1]
tr [T1] + tr [T2]

T1

tr [T1]
+

tr [T2]
tr [T1] + tr [T2]

T2

tr [T2]

)
,

Eq. (3.41) and the properties of s we see that s̃(T1 + T2) = s̃(T1) + s̃(T2). The mapping s̃ also
preserves the trace of positive trace class operators since tr [s̃(T )] = tr [T ] tr

[
s( T

tr[T ] )
]

= tr [T ].

For a general T ∈ Ts(H), we write T = T+ − T−, where T± = 1
2 (|T | ± T ) are positive

operators. Define

ŝ(T ) := s̃(T+)− s̃(T−) . (3.42)
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In this way we get a well defined mapping ŝ on Ts(H). Indeed, if T = T1−T2 for some positive
operators T1, T2 ∈ Ts(H), then T+ + T2 = T− + T1 and

s̃(T+) + s̃(T2) = s̃(T−) + s̃(T1)

by the additivity of s̃. But this implies that

s̃(T+)− s̃(T−) = s̃(T1)− s̃(T2),

which means that the definition of ŝ does not depend on a particular decomposition of T .
It follows from the properties of s̃ that ŝ is linear and trace preserving. Moreover, ŝ is a

positive mapping: if T ≥ 0, then T+ = T, T− = 0 and therefore ŝ(T ) = s̃(T ) ≥ O. A short
calculation shows that ŝ−1 = ŝ−1 and hence, ŝ is bijective.

Next we show that ŝ is trace norm preserving. If T ∈ Ts(H), then

‖ŝ(T )‖tr =
∥∥ŝ(T+ − T−)

∥∥
tr =

∥∥ŝ(T+)− ŝ(T−)
∥∥

tr

≤
∥∥ŝ(T+)

∥∥
tr +

∥∥ŝ(T−)
∥∥

tr = tr
[
ŝ(T+)

]
+ tr

[
ŝ(T−)

]
= tr

[
T+
]
+ tr

[
T−
]

= tr
[
T+ + T−

]
= tr [| T |] = ‖T‖tr .

A similar calculation gives
∥∥ŝ−1(T )

∥∥
tr ≤ ‖T‖tr. These inequalities taken together give

‖T‖tr =
∥∥ŝ−1(ŝ(T ))

∥∥
tr ≤ ‖ŝ(T )‖tr ≤ ‖T‖tr , (3.43)

which shows that ŝ is trace norm preserving.
Finally, we prove the uniqueness of the extension of s. Let f : Ts(H) → Ts(H) be a linear

mapping on Ts(H) which is an extension of s, i.e., f(T ) = s(T ) for every T ∈ S(H). For
T ∈ Ts(H), we get

f(T ) = f(T+ − T−) = f(T+)− f(T−) = tr
[
T+
]
f

(
T+

tr [T+]

)
− tr

[
T−
]
f

(
T−

tr [T−]

)
= tr

[
T+
]
s

(
T+

tr [T+]

)
− tr

[
T−
]
s

(
T−

tr [T−]

)
= ŝ(T ) .

Proposition 30. Let s1, s2 ∈ Aut(S) and assume that s1(P ) = s2(P ) for every P ∈ Sext(H).
Then s1 = s2.

Proof. Denote s = s1s
−1
2 . The assumption means that s(P ) = P for every P ∈ Sext(H) and

we have to prove that s is the identity mapping. For each % ∈ S(H), we have a trace norm
convergent convex decomposition % =

∑
i λiPi. Since s is continuous, we get

s(%) = s

(∑
i

λiPi

)
=
∑
i

λis(Pi) =
∑
i

λiPi = % .

This shows that s is the identity mapping.
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3.3.2 Pure state automorphisms

Based on Section 3.2, it seems reasonable to require that automorphisms of pure states preserve
the superposition feature. One possibility is thus to define automorphisms in the following way.

Definition 21. A function p : Sext(H) → Sext(H) is a pure state automorphism if

• p is a bijection;

• tr [p(P1)p(P2)] = tr [P1P2].

We denote by Aut(Sext(H)) the set of all pure state automorphisms.

Lemma 2. Let P1, P2 ∈ Sext(H). Then 0 ≤ tr [P1P2] ≤ 1 and

‖P1 − P2‖tr = 2
√

1− tr [P1P2] . (3.44)

Proof. If P1 = P2, the statement is trivial. Hence, assume that P1 6= P2. Choose unit vectors
ψ,ϕ ∈ H such that P1 = Pψ and P2 = Pϕ. Since tr [P1P2] = |〈ψ |ϕ 〉|2, it follows from
Cauchy-Schwarz inequality that 0 ≤ tr [P1P2] ≤ 1.

Let us then calculate the eigenvalues of the operator P1 − P2. For a vector φ ∈ H, we get

(P1 − P2)φ = 〈ψ |φ 〉ψ − 〈ϕ |φ 〉ϕ .

This shows that if φ is an eigenvector, it must be of the form φ = c1ψ+c2ϕ for some c1, c2 ∈ C.
Inserting this expression to the eigenvalue equation

(P1 − P1)φ = λφ

gives {
λc1 = c1 + c2 〈ψ |ϕ 〉
λc2 = −c1 − c1 〈ϕ |ψ 〉 .

This leads to two solutions

λ± = ±
√

1− | 〈ψ |ϕ 〉 |2 . (3.45)

Therefore,

‖P1 − P2‖tr = tr [|P1 − P2|] = |λ+|+ |λ−|
= 2

√
1− | 〈ψ |ϕ 〉 |2 = 2

√
1− tr [P1P2] .

Proposition 31. Let s be a state automorphism. The restriction of s to Sext(H), denoted by
s |Sext(H), is a pure state automorphism.
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Proof. By Proposition 29, the restriction of s is a mapping from Sext(H) to Sext(H). The same
is true for the inverse mapping s−1, and therefore the restriction of s is a bijection on Sext(H).

Let ŝ be the extension of s to Ts(H) as in Proposition 1, and let P1, P2 ∈ Sext(H). Using
Lemma 2 we get

2
√

1− tr [P1P1] = ‖P1 − P2‖tr = ‖ŝ(P1 − P2)‖tr = ‖ŝ(P1)− ŝ(P2)‖tr

= ‖s(P1)− s(P2)‖tr = 2
√

1− tr [s(P1)s(P1)].

Hence, tr [s(P1)s(P2)] = tr [P1P2].

From Propositions 30 and 31 we conclude that the mapping

s 7→ s |Sext(H) (3.46)

is an injective mapping from Aut(S) to Aut(Sext(H)).

3.3.3 Effect automorphisms

As we have seen in Subsection 3.1.5, the set of effects is endowed with the partial binary opera-
tion �. This is the essential structure of the set of effects. Therefore, the effect automorphisms
are defined in the following way.

Definition 22. A function e : E(H) → E(H) is an effect automorphism if

• e is a bijection;

• for E1, E2 ∈ E(H), E1 � E2 is defined if and only if e(E1) � e(E2) is defined;

• e(E1 � E2) = e(E1) � e(E2).

We denote by Aut(E) the set of all effect automorphisms.

Exercise 20. Let e ∈ Aut(E). Show that

(i) E1 ≤ E2 iff e(E1) ≤ e(E2);

(ii) e(O) = O and e(I) = I;

(iii) e(I − E) = I − e(E).

Proposition 32. Let e ∈ Aut(E). The formula

tr
[
%e−1(E)

]
= tr [se(%)E] % ∈ S(H), E ∈ E(H) , (3.47)

defines a unique state automorphism se and the correspondence e 7→ se is an injective mapping
from Aut(E) to Aut(S).

Proof. Let % ∈ S(H). The mapping E 7→ tr
[
%e−1(E)

]
is a generalized probability measure,

and hence, by Prop. 25 there is a unique state %′ such that tr
[
%e−1(E)

]
= tr [%′E] for all

E ∈ E(H). We define a mapping se as se(%) = %′.
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3.3.4 Wigner’s Theorem

Let U be a unitary operator on H. We define a mapping σU on Ls(H) by

σU (T ) = U∗TU . (3.48)

This mapping preserves the positivity: if T ≥ O, then U∗TU ≥ O.

Exercise 21. Show that a unitary operator U defines through formula (3.48) (when restricted to
proper subsets of Ls(H))

(a) a state automorphism;

(b) a pure state automorphism;

(c) an effect automorphism.

Proposition 33. Let U and V be unitary operators. The following conditions are equivalent:

(i) σU = σV ;

(ii) σU (E) = σV (E) for every E ∈ E(H);

(iii) σU (%) = σV (%) for every % ∈ S(H);

(iv) σU (P ) = σV (P ) for every P ∈ Sext(H);

(v) U = tV for some t ∈ T = {z ∈ C : |z| = 1}.

Proof. Trivially, (i)⇒(ii). Moreover, S(H) is a subset of E(H) and Sext(H) is a subset of S(H),
hence (ii)⇒(iii)⇒(iv). It is easy to see that (v)⇒(i). Therefore, to complete the proof we need
to show that (iv)⇒(v).

Let us first note that for a one-dimensional projection Pψ , we get σU (Pψ) = PUψ . On the
other hand, two projections Pψ and Pϕ are the same if and only if there is a complex number
z ∈ T such that ψ = zϕ. Therefore, (iv) implies that there exists a mapping c from the unit
vectors of H to T such that Uψ = c(ψ)V ψ for all unit vectors ψ ∈ H. To prove (v), it is enough
to show that c is a constant function.

Let ψ,ϕ ∈ H and ψ 6= ϕ. We then have

〈ψ |ϕ 〉 = 〈Uψ |Uϕ 〉 = c(ψ)c(ϕ) 〈V ψ |V ϕ 〉 = c(ψ)c(ϕ) 〈ψ |ϕ 〉 .

Therefore, in the case 〈ψ |ϕ 〉 6= 0 we get c(ψ) = c(ϕ).
Suppose then that 〈ψ |ϕ 〉 = 0. Now 〈ψ |φ 〉 6= 0, where φ = ‖ψ + ϕ‖−1 (ψ + ϕ). By our

earlier observation we conclude that c(φ) = c(ψ). Thus,

Uψ + Uϕ = U(ψ + ϕ) = ‖ψ + ϕ‖Uφ = ‖ψ + ϕ‖ c(ψ)V φ = c(ψ)V (ψ + ϕ)
= c(ψ)V ψ + c(ψ)V ϕ = Uψ + c(ψ)V ϕ .

Comparing the first and the last expressions we conclude that Uϕ = c(ψ)V ϕ, implying that
c(ψ) = c(ϕ). This shows that c is a constant function.
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In the following we are going to need the antiunitary operators introduced in the end of
Subsection 2.2.3. An antiunitary operator A defines a mapping σA on Ls(H) with the same
formula (3.48) as a unitary operator.

Proposition 34. Let A be an antiunitary operator. The corresponding mapping σA on Ls(H) is
linear.

Proof. Let T1, T2 ∈ Ls(H) and α ∈ R. For all ϕ,ψ ∈ H, we get

〈ϕ |σA(T1 + αT2)ψ 〉 = 〈ϕ |A∗(T1 + αT2)Aψ 〉 = 〈Aϕ | (T1 + αT2)Aψ 〉
= 〈Aϕ |T1Aψ 〉+ α 〈Aϕ |T2Aψ 〉
= 〈ϕ |σA(T1)ψ 〉+ α 〈ϕ |σA(T2)ψ 〉

It follows that σA(T1 + αT2) = σA(T1) + ασA(T2), hence σA is linear.

Exercise 22. Verify that the results of Exercise 21 and Proposition 33 are true when unitary
operators are replaced by antiunitary operators.

Proposition 35. Let U be a unitary operator and A an antiunitary operator. Then σU 6= σA.

Proof. We make a counter assumption that σU = σA. As noted in the proof of Prop. 33,
this can be true only if for every unit vector ψ ∈ H, there is a complex number c(ψ) such
that Uψ = c(ψ)Aψ. Let ψ,ϕ ∈ H be linearly independent unit vectors, and denote φ =
‖ψ + iϕ‖−1 (ψ + iϕ). Then

U(ψ + iϕ) = Uψ + iUϕ = c(ψ)Aψ + ic(ϕ)Aϕ , (3.49)

and, on the other hand,

U(ψ + iϕ) = ‖ψ + iϕ‖Uφ = ‖ψ + iϕ‖ c(φ)Aψ − i ‖ψ + iϕ‖ c(φ)Aϕ . (3.50)

Since A is an antiunitary operator, the vectors Aψ and Aϕ are linearly independent. Comparison
of (3.49) and (3.50) therefore gives c(ψ) = ‖ψ + iϕ‖ c(φ) and c(ϕ) = −‖ψ + iϕ‖ c(φ). Thus,
c(ψ) = −c(ϕ). Repeating the same calculation with the vector φ = ‖ψ + ϕ‖−1 (ψ + ϕ) leads
to c(ψ) = c(ϕ). This means that c(ψ) = 0, which cannot be true as c(ψ) ∈ T. We conclude that
counter assumption is false and σU 6= σA.

For each unitary or antiunitary operator U , we denote by [U ] the equivalence class consisting
of all operators of the form zU, z ∈ C \ {0}. As a conclusion from Propositions 33 and 35 the
equivalence class [U ] consists of those operators defining the same mapping σU . We denote by
Σ the set of all equivalence classes [U ]. It is a group when the multiplication is defined in the
following way:

[U ] · [V ] = [UV ] .

The fundamental result in the theory of automorphism groups is the following statement,
known as Wigner’s Theorem.
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Theorem 6 (Wigner’s Theorem). Let p ∈ Aut(Sext(H)). There is a unitary or antiunitary
operator U such that

p(P ) = σU (P ) ∀P ∈ Sext(H) . (3.51)

The operator U is unique up to the equivalence class [U ].

The proof of this theorem is long and non-trivial; see, for instance, [22]. As a consequence
of Wigner’s Theorem we conclude that there is an injective mapping from Aut(Sext(H)) to Σ.
We thus have the following chain of injective mappings:

Σ → Aut(E) → Aut(S) → Aut(Sext(H)) → Σ . (3.52)

The first arrow is easy and it was stated in Exercise 21. The second arrow follows from Propo-
sition 32, while the third arrow follows from Proposition 31. The last arrow is the content of
Wigner’s Theorem. Let σ ∈ Σ and denote by σ′ ∈ Σ the image of σ in the chain of map-
pings in (3.52). Using formulas (3.46) and (3.47) it is straightforward to verify that σ′ = σ.
Hence, there is a bijective correspondence between all these sets. Even more, a short inspec-
tion shows that all the mappings in (3.52) are group homomorphisms. Therefore, the groups
Aut(E),Aut(S),Aut(Sext(H)) and Σ are isomorphic.

3.4 Composite systems

3.4.1 System vs. subsystems

Suppose that we have two systems A and B and let HA and HB be the Hilbert spaces used in
the description of these systems. To make things simpler, we assume that the systems A and B
are of different kind and distinguishable. They could be, for instance, two different modes of
an electromagnetic radiation, or electron-proton system. How should we describe the compound
system A+B?

We assume that A and B are identifiable parts of the compound system A + B, and we
call them subsystems of A + B. This assumption means, in particular, that we can separately
manipulate the systems A and B, i.e., we are able to perform experiments addressing properties
of A and B individually. Suppose that we have an effect EA on HA and an effect EB on
HB . These effects correspond to simple measurements on the systems A and B, respectively.
Hence, by the assumption we should have an effect γ(EA, EB) on H which describes these
separate measurements on A and B. In other words, we require that there is a mapping γ from
E(HA)× E(HB) to E(H).

In a similar way, we have a mapping γ̄ from S(HA)×S(HB) to S(H). If the measurements
and preparations are made separately, the systems are statistically independent and we should
have

tr [γ̄(%A, %B)γ(EA, EB)] = tr [%AEA] · tr [%BEB ] . (3.53)

The question of the description of the compound system can thus be approached by searching
for a suitable Hilbert space H and mappings γ and γ̄.

Let us make a trial by choosing H = HA ⊗ HB and setting γ(EA, EB) = EA ⊗ EB
and γ̄(%A, %B) = %A ⊗ %B . The properties of the tensor product guarantee that the condition



544 Guide to mathematical concepts of quantum theory

(3.53) is satisfied. This motivates the choice of the tensor product Hilbert space as a description
of the compound system. Adding some other natural requirements as (3.53), one can achieve
the conclusion that the tensor product structure is actually a unique way to describe compound
systems. Here we take this fact as granted and refer to [3] for more details.

A curious thing arises from the above discussion. Namely, an operator T on H need not
be of the tensor product form T = TA ⊗ TB . How should we understand those states and ef-
fects of the compound system which are not of the product form? The answer lies on the fact
that instead of manipulating subsystems separately, we can make collective measurements and
preparations. It may happen that this kind of process cannot be described by separate measure-
ments and preparations. Especially, the states of the subsystems do not, in general, specify the
state of the compound system. The states of the two subsystems can be intertwined in a strange
way, in which case the compound state is called entangled. Entanglement will be our topic in
Chapter 7. In this section discuss some basic properties of the tensor product as a description of
compound systems.

Definition 23. The partial trace over the system A is the linear mapping

trA : T (HA ⊗HB) → T (HB)

satisfying

tr [trA[T ]E] = tr [T (I ⊗ E)] (3.54)

for all T ∈ T (HA⊗HB) and E ∈ L(HB). In a similar way we define the partial trace trB over
the subsystem B.

Example 26. Suppose T ∈ T (HA ⊗ HB) is of the product form T = TA ⊗ TB . Then the
defining condition (3.54) gives

tr [trA[TA ⊗ TB ]E] = tr [TA] tr [TBE] .

Since this holds for every E ∈ L(HB), we conclude that

trA[TA ⊗ TB ] = tr [TA]TB .

Actually, we have not yet shown that the partial trace mapping even exists. To do this, we
give a formula to calculate the partial trace. Fix orthonormal bases {ψi} and {ϕk} for HA and
HB , respectively. If T ∈ T (HA ⊗HB), then

trA[T ] =
∑
i,k,l

〈ψi ⊗ ϕk |Tψi ⊗ ϕl 〉 |ϕk 〉〈ϕl| (3.55)

and

trB [T ] =
∑
i,j,k

〈ψi ⊗ ϕk |Tψj ⊗ ϕk 〉 |ψi 〉〈ψj | . (3.56)

In some cases one can use directly the defining condition (3.54) to calculate the partial trace,
whereas sometimes it is easier to apply formulas (3.55) and (3.56).
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Exercise 23. Confirm that the operator trA[T ] as written in (3.55) satisfies the defining condition
(3.54) for every E ∈ L(HB). (Hint: recall that a possible orthonormal basis for HA ⊗ HB is
{ψi ⊗ ϕk}.)

Proposition 36. Let T ∈ T (HA ⊗HB). Then

(a) tr [T ] = tr [trA[T ]] = tr [trB [T ]].

(b) T ≥ O implies trA[T ] ≥ O and trB [T ] ≥ O.

(c) T ∈ S(HA ⊗HB) implies trA[T ] ∈ S(HA) and trB [T ] ∈ S(HB).

Proof. (a) Choose E = I in (3.54).

(b) Assume that T ≥ O. Fix a unit vector η ∈ HB and choose E = Pη in (3.54). We then get

〈 η | trA[T ]η 〉 = tr [trA[T ]Pη] = tr [T (I ⊗ Pη)] = tr [(I ⊗ Pη)T (I ⊗ Pη)]

= tr
[
(T

1
2 (I ⊗ Pη))∗(T

1
2 (I ⊗ Pη))

]
≥ 0 .

This shows that trA[T ] ≥ O.

(c) This follows from (a) and (b).

The effects of the form E ⊗ I are interpreted as experiments measuring the properties of
the subsystem A only. Since the identity tr [(E ⊗ I)%] = tr [trB [%]E] holds for a given state of
the composite system % and all effects E ∈ E(HA) defined on the subsystem A, it is natural to
identify the state %A ≡ trB [%] with the state of the subsystem A. That is, for arbitrary state % of
the composite system, its subsystems are described by well defined states %A and %B allowing to
predict the probabilities for each possible effect of the subsystems.

Definition 24. Let % ∈ S(HA⊗HB) be a state of the composite bipartite systemA+B. Then the
states %A ≡ trB [%] and %B ≡ trA[%] describe the individual subsystems A and B, respectively.
The states %A and %B are called reduced states, and %AB ≡ % is a joint state.

Assuming that subsystems A and B are described by the states %A and %B , respectively, we
can ask the following question: what are the possible joint states %AB of the composite system?
Clearly, one possibility is to have %AB = %A ⊗ %B . Generally, however, there are also other
possible choices. This means that the knowledge of the states of the subsystems A and B does
not specify the state of the composite sysytem.

Let us denote Γ = %AB − %A ⊗ %B . First of all, Γ is selfadjoint trace class operator and
tr [Γ] = 0. Moreover, applying the result of Example 26 we see that trA[Γ] = OB and trB [Γ] =
OA.

Proposition 37. If either %A or %B is pure, then the joint state %AB is necessarily of the product
form %AB = %A ⊗ %B .
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Proof. Suppose that %A = |ϕ〉〈ϕ|. The positivity of %AB = |ϕ〉〈ϕ| ⊗ %B + Γ requires that
〈ϕ⊥ ⊗ φ |Γ(ϕ⊥ ⊗ φ) 〉 ≥ 0 for all φ ∈ HB and ϕ⊥ ∈ HA such that 〈ϕ |ϕ⊥ 〉 = 0. Con-
sider orthonormal bases ϕ1 ≡ ϕ,ϕ2, ϕ3, · · · ∈ HA, and φ1, φ2, · · · ∈ HB . Using the iden-
tity 0 = 〈ϕ⊥ |Oϕ⊥ 〉 = 〈ϕ⊥ | trB [Γ]ϕ⊥ 〉 =

∑
k 〈ϕ⊥ ⊗ φk |Γ(ϕ⊥ ⊗ φk) 〉 and positivity

〈ϕ⊥ ⊗ φ |Γ(ϕ⊥ ⊗ φ) 〉 ≥ 0 we can conclude that 〈ϕ⊥ ⊗ φ |Γ(ϕ⊥ ⊗ φ) 〉 = 0 for all ϕ⊥ ⊗ φ ∈
HA ⊗ HB . In order to show that 〈ϕ⊗ φ |Γ(ϕ⊗ φ) 〉 = 0 for all φ ∈ HB we use the identity
0 = 〈φ | trAΓφ 〉 =

∑
j 〈ϕj ⊗ φ |Γ(ϕj ⊗ φ) 〉 = 〈ϕ⊗ φ |Γ(ϕ⊗ φ) 〉. In summary, we found

that Γ vanishes on all product vectors and therefore it is identically zero, i.e. Γ = O. This proves
the proposition.

Proposition 38. Suppose that dimHA = dimHB <∞. If for all unitary operators U : HA →
HB the relation %A 6= U%BU

∗ holds, then the joint state % ∈ S(HA ⊗HB) is not pure.

This proposition is a direct consequence of the Schmidt decomposition theorem (see Theorem
14) that will be formulated and proved in Chapter 7. It is essentially saying that if the joint system
is in a pure state, then the reduced states %A and %B must have identical the nonvanishing part of
spectra, hence they are related by a unitary channel, or partial isometry if HA 6= HB .

3.4.2 State purification

Mixed states are convex mixtures of pure states. There is also another way how mixed states can
be seen as arising from pure states. As we have seen the reduced states of composite systems
give different physical interpretation to the nature of mixed states. The reduced states are defined
via the partial trace mapping. An inverse procedure to reduction of one of the subsystem is an
addition of an extra system, at least into our description. For this purpose we introduce the so
called ancillary system represented by some additional Hilbert space Hanc. In the following
definition we define the inverse mapping to partial trace.

Definition 25. Let %A be a state of a system A. A pure state Pψ = |ψ〉〈ψ| associated with some
unit vector ψ ∈ H ⊗Hanc is a purification of %A if

trancPψ = %A . (3.57)

Let us note that the size of the ancillary system is not limited. In a sense, the purification is
an inverse mapping to partial trace, however, it is highly nonunique.

In the following result we describe a method to construct a purification of a given mixed state.
This shows, in particular, that every mixed state has purifications.

Proposition 39. Consider a convex decomposition of a mixed state % ∈ S(H) into pure states
η1, . . . , ηn ∈ H

% =
∑
j

pj |ηj〉〈ηj | . (3.58)

Define a vector

ψ =
∑
j

√
pjηj ⊗ φj , (3.59)

where the vectors φ1, . . . , φn form some orthonormal basis of Hanc of dimension n. A state
Pψ = |ψ〉〈ψ| is a purification of %.
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Proof. By direct calculation we get

trancPψ =
∑
j,j′

√
pjpj′

∑
k

〈φk |φj 〉 〈φj′ |φk 〉 |ηj〉〈ηj′ |

=
∑
j

pj |ηj〉〈ηj | = % .

A purification associated with the canonical convex decomposition of % is called canonical
purification. In particular, % =

∑
j λj |ϕj〉〈ϕj |, where λj are eigenvalues and ϕj are eigenvec-

tors. Then

ψcan =
∑
j

√
λjϕj ⊗ φj (3.60)

is the canonical purification.

Proposition 40. If a vector ψ ∈ H⊗Hanc defines a purification of % ∈ S(H), then dimHanc ≥
dim supp(%).

Proof. Consider a purification ψ ∈ H ⊗ Hanc such that dimHanc < dim supp(%). Accord-
ing to Proposition 38 the supports supp(%) and supp(%anc) have the same dimension. Conse-
quently, since dim supp(%anc) ≤ dimHanc it follows that also dim supp(%anc) ≤ dimHanc <
dim supp(%) which is in contradiction with Proposition 38. Therefore, the dimension of the
ancillary system is at least the dimension of the support of the state %.

Example 27. (Purifications of total mixture.) Consider a finite d-dimensional Hilbert space
H and let % = 1

dI be the total mixture. Suppose ψ ∈ H ⊗ Hanc is a purification of %, i.e.
tranc|ψ〉〈ψ| = 1

dI . Then also a state ψ′ = (U ⊗ Vanc)ψ defines a purification of the total
mixture for all unitary operators U , Vanc acting on H,Hanc, respectively. In order to see this, it
is sufficient to verify that the following identity

tranc(U ⊗ Vanc)Ω(U∗ ⊗ V ∗anc) = U(trancΩ)U∗ (3.61)

holds for all states Ω. Since in our case tranc|ψ〉〈ψ| = 1
dI , it follows that

U(tranc|ψ〉〈ψ|)U∗ =
1
d
I ,

which proves that ψ′ are purifications of the total mixture.

Exercise 24. Prove the identity (3.61). (Hint: Ω = ωA ⊗ ωB + Γ.)
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4 Observables

4.1 Observables as positive operator valued measures

Standard references for the topics of this section are [45] and [15].

4.1.1 Definition and basic properties

Intrinsic randomness of quantum measurements is one of the key features of quantum theory. An
experiment produces a sequence of outcomes, each occurring with a certain probability depend-
ing on the particular setting of the measuring device and preparation of the measured system.
Quantum theory predicts only the probabilities of measurement outcomes.

According to Chapter 3 each observed outcome in quantum theory is associated with a par-
ticular effect that determines its probability of occurrence via the trace formula. Therefore, an
observable describing an experiment with some number of outcomes is represented by a col-
lection of effects. Moreover, since in each run of the experiment some outcome is recorded, it
follows that the sum of probabilities for different outcomes equals to one.

Let us first recall some definitions from probability theory. Let Ω be a set. A σ-algebra on
Ω is a nonempty collection F of subsets of Ω that is closed under complements and countable
unions. A set X ∈ F is called an event. A probability measure is a mapping p : F → [0, 1] that
satisfies the following conditions:

(i) p(∅) = 0 ;

(ii) p(Ω) = 1 ;

(iii) p(∪iXi) =
∑
i p(Xi) for any sequence {Xi} of disjoint sets in F .

Consequently, the mathematical description of observables is based on the following gener-
alization of probability measures.

Definition 26. A normalized positive operator valued measure (POVM) on a measurable space
(Ω,F) is a mapping A : F → E(H) such that

(i) A(∅) = O ;

(ii) A(Ω) = I ;

(iii) A(∪iXi) =
∑
i A(Xi) (in the weak sense) for any sequence {Xi} of disjoint sets in F .

There is an alternative way to look at POVMs which makes the physical interpretation trans-
parent. Let Prob(Ω,F) be the set of all probability measures on a measurable space (Ω,F).
A POVM A, defined on (Ω,F), determines a mapping ΦA from S(H) to Prob(Ω,F) by the
formula

ΦA(%) := tr [%A(·)] . (4.1)

The mapping ΦA is affine: for any %1, %2 ∈ S(H) and 0 ≤ λ ≤ 1, we have

ΦA(λ%1 + (1− λ)%2) = λΦA(%1) + (1− λ)ΦA(%2) . (4.2)
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Conversely, it follows from our earlier discussion on effects in Section 3.1 that a mapping Φ :
S(H) → Prob(Ω,F) satisfying (4.2) comes from a unique POVM A through formula (4.1).

Definition 27. From now on, we will identify observables with POVMs. For an observable A
defined on a measurable space (Ω,F), we say that Ω is the set of (measurement) outcomes, and
(Ω,F) is the outcome space of A.

Example 28. (Ideal Stern-Gerlach apparatus) The Stern-Gerlach apparatus is a device measur-
ing a spin component. In this measurement, a beam of particles passes between the poles of a
magnet. The magnetic force depends upon the spin state, and in an idealized picture the beam is
splitted into well separate parts. Therefore, the value of the spin component can be inferred from
the observed deflection of the beam. In practice this method is useful only for neutral particles
since for charged particles the Lorentz force obscures the deflection.

Sending a spin- 1
2 particle through the Stern-Gerlach apparatus (oriented in the direction ~n),

it is deflected by an angle ±θ with respect to the axis of the apparatus. After that, the particle is
detected in one of two detectors labeled by values ↑ and ↓. The corresponding effects are denoted
by E↑ and E↓. As we assume that each particle in the beam is detected, we have E↑ + E↓ = I .
The set of measurement outcomes is thus Ω = {↑, ↓} and the observable A describing this
measurement is defined as A({↑}) = E↑, A({↓}) = E↓.

In the ideal situation these effects are the projectionsE↑ = 1
2 (I+~n·~σ) andE↓ = 1

2 (I−~n·~σ).
For a general state % = 1

2 (I + ~r · ~σ), the probabilities to detect either ↑ or ↓ are then 1
2 (1 + ~r · ~n)

and 1
2 (1− ~r · ~n), respectively.

In the following proposition we go through some basic mathematical properties of observ-
ables, which are useful later.

Proposition 41. Let A be an observable with an outcome space (Ω,F) and let X,Y ∈ F .

(a) If X ⊆ Y , then A(X) ≤ A(Y ).

(b) If X ⊆ Y and A(Y ) = O, then A(X) = O.

(c) A(X ∪ Y ) + A(X ∩ Y ) = A(X) + A(Y ).

Proof. (a) Since X ⊆ Y , we can write Y as a disjoint union Y = X ∪ (Y rX). We then have
A(Y ) = A(X) + A(Y rX), which implies that A(X) ≤ A(Y ).

(b) This is a direct consequence of (a) since O ≤ A(X) by the definition of an observable.
(c) Since X ⊆ X ∪ Y , we can write X ∪ Y as a disjoint union X ∪ Y = X ∪ Z, where

Z ≡ (X ∪ Y ) rX . This gives A(X ∪ Y ) = A(X) + A(Z). Adding A(X ∩ Y ) to both sides of
this equation and noticing that Y is a disjoint union of X ∩ Y and Z, we get (c).

Let A be an observable with an outcome space (Ω,F). We denote by ran A the range of A,
that is,

ran A := {A(X) | X ∈ F} ⊆ E(H) .

Since observables are specific kind of set functions, we expect that their ranges have also some
specific properties or limitations. A useful concept in studying the structure of observables from
this point of view is coexistence of effects.
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Definition 28. A set of effects C ⊆ E(H) is coexistent if there exists an observable A such that
C ⊆ ran A.

Hence, a measurement of a coexistent set of effects can be realized by measuring a single
observable. It is easy to invent examples of both coexistent and non-coexistent sets of effects.
For instance, a set {A1, A2, . . . , An} satisfying

∑n
i=1Ai ≤ I is coexistent (see Subsection

4.1.2). On the other hand, a set {P,A} of a projection P and an effect A is coexistent only if P
and A commute. Generally, however, a method to check whether a set C ⊆ E(H) is coexistent or
not is not known. Even if C consists of two effects only, a complete characterization of coexistent
sets C is known just in the simplest case of two dimensional Hilbert space [19, 77, 85]. For more
details on coexistence and some related concepts, we refer to survey article [56].

Example 29. (Coexistence of commutative effects) LetA,B ∈ E(H). IfAB = BA, then the set
{A,B} is coexistent. To prove this claim, we need to find an observable A such that {A,B} ⊆
ran A. A possible choice for A is provided by choosing the outcome set to be Ω = {1, 2, 3, 4}
and defining

A({1}) = AB , A({2}) = (I−A)B , A({3}) = A(I−B) , A({4}) = (I−A)(I−B) .

This defines an observable. For instance, the operator AB is an effect since AB = A
1
2BA

1
2 .

Moreover, it is clear that A(Ω) = I . We have A({1, 3}) = A and A({1, 2}) = B. Therefore, the
set {A,B} is coexistent.

4.1.2 Discrete observables

Let Ω = {x1, x2, . . .} be a countable set (i.e. either finite or countably infinite). In this case we
always choose the σ-algebra F to be the collection of all subsets of Ω, i.e., F is the power set
2Ω. An observable A with the outcome space (Ω, 2Ω) is now completely defined by the effects
A(xj) ≡ A({xj}). Notice that formally we have to write {x} for the set consisting of the single
element x, since an observable is defined on events and not on outcomes. However, in the case
of a countable outcome space it this convenient to drop the brackets.

For an arbitrary subset X ⊆ Ω, we have

A(X) =
∑
xj∈X

A(xj) . (4.3)

Especially, the normalization condition A(Ω) = I reads∑
xj∈Ω

A(xj) = I . (4.4)

It follows that for a countable outcome space, we can think observable as a mapping

xj 7→ A(xj) (4.5)

from Ω to the set of effects E(H), satisfying the normalization condition (4.4). The effects A(X)
for other kind of sets X than singleton sets are recovered using (4.3).

We adopt the following definition for a discrete observable.
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Definition 29. An observable A, defined on an outcome space (Ω,F), is called discrete if there
is a countable set Ω0 ∈ F such that A(Ω0) = I .

In particular, all observables with countable outcome space are discrete. On the other hand,
the outcome space of a discrete observable can be uncountable (e.g. the real line R). However,
this is just a trivial difference as the outcome space can be redefined to be the countable set Ω0

without changing the essence of the observable. The terminology in Definition 29 is set in that
way since it is convenient sometimes to have freedom in the choice of the outcome space and we
do not want the property of being discrete to depend on that choice.

Example 30. (Observables with finite outcome set) Sometimes in the literature one meets with
the definition of an observable as a finite collection of effects E1, . . . , En satisfying

∑
j Ej = I .

Naturally, one is then restricted to observables with finite outcome sets. This definition should
be understood in the sense that we first fix an outcome set of n elements (e.g. {1, . . . , n}) and
then adopt the definition related to the formula (4.5).

4.1.3 Real observables

If the outcome set Ω is R, then it is not convenient to choose the σ-algebra F to be the collection
of all subsets of R. Instead, it is common to choose F to be the Borel σ-algebra B(R). This
σ-algebra contains all the sets that are needed in calculations. For instance, all open and closed
intervals, their complements and countable unions, belong to B(R). For our purposes this is just
a technical remark and a reader who is not familiar with B(R) before can simply think it as a
σ-algebra on R that contains all subsets of R that she can imagine.

Definition 30. An observable A is real, or real valued, if the outcome set of A is either R or a
subset of R. In this case the σ-algebra is chosen to be the corresponding Borel σ-algebra.

Let A be an observable with the outcome space (R,B(R)). We can then define the average
value, or mean value, of A in a state % as

〈A〉% :=
∫

R
x tr [%A(dx)] . (4.6)

It may happen that the integral in the right hand side of Eq. (4.6) does not converge, in which
case we denote 〈A〉% = ∞.

The variance ∆%(A) of A in a state % is defined as the average distance of the measured value
from the mean value of A, i.e.,

∆%(A) =

√∫
R
(x− 〈A〉%)2 tr [%A(dx)] . (4.7)

In a similar way the mean value and the variance can be defined also in the cases when Ω is
a subset of R. If, for instance, Ω is a countable set of real numbers x1, x2, . . ., then we have

〈A〉% =
∑
xj∈Ω

xj tr [%A(xj)] , (4.8)

∆%(A) =
√∑

j

(xj − 〈A〉%)2 tr [%A(xj)] . (4.9)
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4.1.4 Mixtures of observables

Similarly like in the case of states, we can perform an experiment which is a statistical mixture
of two experiments using the same states but different measurement apparatuses. Hence, having
two measurement apparatuses we can design a mixture of them. This corresponds to having a
convex combination of observables. For simplicity, we discuss here convex combinations only
in the case of observables with finite outcome spaces.

Consider two observables A and B with finite outcome spaces ΩA = {a1, . . . , an}, ΩB =
{b1, . . . , bm}, respectively. We define ΩC = ΩA ∪ ΩB, and then extend A and B to this new
outcome space by setting

A(X) = A(X ∩ ΩA) , B(X) = B(X ∩ ΩB) (4.10)

for all X ⊆ ΩC. In other words, the extension means that we define A(bj) = O and B(ai) = O.
This extension does not change the probability distributions associated to A and B.

Fix a number 0 < λ < 1. An observable C with the outcome set ΩC is now defined as

C(X) = λA(X) + (1− λ)B(X) (4.11)

for all X ⊆ ΩC. We denote C = λA + (1 − λ)B, and say that the observable C is a convex
combination of observables A and B.

Example 31. Consider an experiment in which we are randomly switching between observables
A,B, both having only two outcomes. If the relative frequency of having A is λ, then the mixture
corresponds to the convex combination C = λA+(1−λ)B, which is given by the following four
outcome POVM

C : a1 7→ λA(a1) , a2 7→ λA(a2) ,
b1 7→ (1− λ)B(b1) , b2 7→ (1− λ)B(b2) .

If the outcome sets ΩA and ΩB are the same, then we can also have a different kind of mixture
than above. Namely, we can have a situation where, after a measurement outcome is registered,
we cannot anymore track it down to either A or B. This leads to a different kind of convex
combination, illustrated in the following example.

Example 32. Let A and B be two observables, both having the outcome space ΩA = ΩB =
{a1, a2}. Consider an experiment in which we try to measure A, but due to some noise or
fluctuation we actually measure B in some cases. Suppose that we manage to measure A in λ-
part of the experimental runs, but we do not know when the noise affects the measurement. In
this case the convex combination C = λA + (1 − λ)B is given by the following two outcome
POVM

C : a1 7→ λA(a1) + (1− λ)B(a1) , a2 7→ λA(a2) + (1− λ)B(a2) .

Depending on the situation, there can also be intermediate cases of the two different convex
combinations described in Examples 31 and 32. This is demonstrated in the following example.
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Example 33. Let A and B be two observables with outcome spaces ΩA = {a1, a2} and ΩB =
{b1, a2}. Suppose that the measurements are mixed and the second outcomes are identified as
one. The convex combination C = λA+(1−λ)B is then the following three outcome observable

C : a1 7→ λA(a1) , b1 7→ (1− λ)B(b1) , a2 7→ λA(a2) + (1− λ)B(a2) .

We use the notation C = λA+(1−λ)B for all these different types of convex combinations.
The explicit form of C is specified when the outcome space ΩC is given.

4.2 Sharp observables

Sharp observables form a specific class of observables which deserves an additional treatment.
One should notice that in some context (especially in older literature) the concept of an observ-
able refers only to what we here call sharp observables.

4.2.1 Definition and basic properties

Definition 31. A POVM A is a normalized projection valued measure (PVM) if A(X) is a
projection for every X ∈ F . The corresponding observable (identified with A) is called sharp
observable.

Example 34. (Sharp observable associated to an orthonormal basis) Let H be a d-dimensional
Hilbert space (either d < ∞ or d = ∞) and {ϕj}dj=1 an orthonormal basis for H. For each
j = 1, . . . , d, we denote A(j) := |ϕj 〉〈ϕj |. Thus, A(j) is a one-dimensional projection. Since
{ϕj}dj=1 is an orthonormal basis, the normalization condition

∑d
j=1 A(j) = I holds (see Ex-

ample 16 in Section 2.3.2). The mapping j 7→ A(j) defines a discrete observable with the
outcome set {1, . . . , d}. We say that A is the sharp observable associated to the orthonormal
basis {ϕj}dj=1. This type of observables are common in applications and we are going to use
them later in various instances.

Proposition 42. Let A be an observable with an outcome space (Ω,F). The following conditions
are equivalent.

(i) A is sharp.

(ii) A(X)A(Y ) = A(X ∩ Y ) for every X,Y ∈ F .

(iii) A(X)A(¬X) = O for every X ∈ F .

Proof. We prove this proposition by showing that (i)⇒(ii)⇒(iii)⇒(i).
Assume that (i) holds and letX,Y ∈ F . By Prop. 41a, we have A(X∩Y ) ≤ A(X) ≤ A(X∪

Y ). As all these operators are projections, Prop. 13 implies that A(X)A(X ∩ Y ) = A(X ∩ Y )
and A(X)A(X ∪ Y ) = A(X). Hence, multiplying the equation in Prop. 41c by A(X) gives
A(X) + A(X ∩ Y ) = A(X) + A(X)A(Y ), where (ii) follows.

Assume then that (ii) holds and let X ∈ F . Choosing Y = ¬X in (ii), we get

A(X ∩ ¬X) = A(∅) = O .
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Finally, assume that (iii) holds and let X ∈ F . We then get

O = A(X)A(¬X) = A(X) (I − A(X)) = A(X)− A(X)2 ,

and hence, A(X) = A(X)2. This means that A is sharp.

Proposition 43. The range of a sharp observable A consists of mutually commuting projections.

Proof. Let A(X) and A(Y ) be projections from the range of A. Condition (ii) in Prop. 42 implies
that

A(X)A(Y ) = A(X ∩ Y ) = A(Y ∩X) = A(Y )A(X) ,

which proves the claim.

Sharp observables form a distinct class among all observables. However, it is not easy to point
out operationally meaningful criterion which is valid only for sharp observables. For instance,
one characteristic property of any sharp observable A is that for every X ∈ F with A(X) 6= O,
there exists a state % such that tr [%A(X)] = 1. However, this condition does not require an
observable to be sharp. Namely, it can happen that an observable B satisfies this criterion without
being sharp. The condition tr [%B(X)] = 1 can be satisfied if the operator B(X) has eigenvalue
1.

Proposition 44. Let E be an effect and % a pure state. The following conditions are equivalent:

(i) tr [%E] = 1 ;

(ii) E% = % ;

(iii) % ≤ E .

Proof. We prove this proposition by showing that (i)⇒(ii)⇒(iii)⇒(i). In the following, we fix a
unit vector ψ ∈ H such that % = |ψ 〉〈ψ|.

Suppose that (i) holds. Then

1 = tr [%E] = 〈ψ |Eψ 〉 = |〈ψ |Eψ 〉| ≤ ‖ψ‖ ‖Eψ‖ ≤ ‖E‖ ≤ 1 ,

where the first inequality follows from the Cauchy-Schwarz inequality and the second from ineq.
(2.9). This shows that there is actually an equality in the first inequality, which can be true only if
the vectorsEψ and ψ are collinear, i.e.,Eψ = cψ for some c ∈ C. Moreover, 1 = 〈ψ |Eψ 〉 = c
and hence, Eψ = ψ. Thus, E% = % and (ii) holds.

Suppose that (ii) holds. Since

%E = %∗E∗ = (E%)∗ = %∗ = % = E% ,

we conclude that the operators E and % commute. By Theorem 1, also the square-root, E
1
2 ,

commutes with %. Hence, (ii) implies that % = E
1
2 %E

1
2 . For every vector φ ∈ H, we then get

〈φ | %φ 〉 =
〈
E

1
2φ | %E 1

2φ
〉
≤
∥∥∥E 1

2φ
∥∥∥∥∥∥%E 1

2φ
∥∥∥ ≤ ‖%‖

∥∥∥E 1
2φ
∥∥∥2

≤ 〈φ |Eφ 〉 .
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The first inequality is an application of the Cauchy-Schwarz inequality, in the second we have
used ineq. (2.9), and the third follows from the fact that ‖%‖ = 1. This shows that % ≤ E.

Finally, suppose that (iii) holds. Then

tr [%E] = 〈ψ |Eψ 〉 ≥ 〈ψ | %ψ 〉 = 1 .

Hence, (i) holds.

Proposition 45. Let H be a finite dimensional Hilbert space of dimension d. If A is a sharp
observable on H, then A is discrete and the outcome set ΩA of A has at most d elements such
that A(j) 6= O.

Proof. By Prop. 42 two projections A(X) and A(Y ) are orthogonal whenever X ∩ Y = ∅.
Hence, to prove the claim it is enough to show that there are at most d pairwisely orthogonal
projections.

Let us make a counter assumption that P1, . . . , Pr are pairwisely orthogonal projections and
r ≥ d+1. Each projection Pj has an eigenvector ϕj with eigenvalue 1. If i 6= j, then the vectors
ϕi and ϕj are orthogonal. Namely,

〈ϕi |ϕj 〉 = 〈Piϕi |Pjϕj 〉 = 〈ϕi |PiPjϕj 〉 = 0 .

This means that there are r orthogonal vectors in H. This cannot be true as the dimension of H
is d and hence, we conclude that the counter assumption is false.

The statement in Proposition 45 is not true if the dimension ofH is infinite. The prototypical
instance of a non-discrete sharp observable is the canonical position observable on R, which we
recall in the following example.

Example 35. (The canonical position observable) Let H = L2(R). The canonical position
observable Q has the outcome space (R,B(R)) and it is defined as

Q(X)ψ(x) = χX(x)ψ(x) ,

where χX is the characteristic function of a set X . For a pure state % = |ψ 〉〈ψ|, we thus have

tr [%Q(X)] = 〈ψ |Q(X)ψ 〉 =
∫
X

|ψ(x)|2 dx .

This is the probability that a particle in the state % is localized within the set X . Notice that for
a one element set X = {x}, this probability is zero for every state %. It follows that Q is not a
discrete observable.

4.2.2 Sharp observables and selfadjoint operators

In elementary courses on quantum mechanics, observables are defined and understood as selfad-
joint operators. Let us briefly clarify the difference between this formalism and Definition 27 in
Section 4.1.
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The spectral theorem for selfadjoint operators says that for each (bounded or unbounded)
selfadjoint operator A, there is a unique normalized projection valued measure A on the Borel
space (R,B(R)) such that

A =
∫

R
x A(dx) . (4.12)

This symbolic expression means that for every vector ψ in the domain of A, we have

〈ψ |Aψ 〉 =
∫

R
x 〈ψ |A(dx)ψ 〉 . (4.13)

In the typical instances of unbounded operators the domain is chosen to be the natural domain
{ψ ∈ H | Aψ ∈ H}.

On the other hand, each normalized projection valued measure A on (R,B(R)) determines a
unique selfadjoint operatorA through formula (4.12). Thus, in the language introduced in earlier
sections, selfadjoint operators give an alternative description for real sharp observables. We refer
to [73] for an explanation of the spectral theorem.

Note that Eq.(4.13) implies that the mean value of A in a state % can be expressed as

〈A〉% = tr [%A] =: 〈A〉% (4.14)

for all states %. Taking into account that〈
ψ |A2ψ

〉
=
∫

R
x2 〈ψ |A(dx)ψ 〉 ,

it follows that the variance of A in % can be written in terms of the operator A in the following
way:

∆%(A) =
√

tr [%A2]− 〈A〉2% =
√
〈A2〉% − 〈A〉2% . (4.15)

We conclude that the selfadjoint operator A gives a convenient way to calculate mean values and
variances. In some cases other statistical information is not even needed.

As we have earlier seen, the probabilistic structure of quantum mechanics leads in a natural
way to POVMs as a correct formalization of observables. PVMs describe just one specific class
of observables, namely sharp observables. It is sometimes simple and convenient to use selfad-
joint operators to describe real sharp observables. However, it is untenably restrictive to use only
selfadjoint operators and neglect other kind of observables.

Example 36. (Sharp qubit observables) Let us consider a qubit system, i.e., a two dimensional
Hilbert space H. Any sharp observable A on H can have only two outcomes (say ±1). The
corresponding operators A(1) and A(−1) are necessarily one dimensional projections.

As explained in Example 20, the states of the qubit system can be described by the Bloch
sphere vectors. In particular, each unit vector~a in the Bloch sphere determines a one dimensional
projection P [~a] := 1

2 (I+~a ·~σ). Thus, the vector ~a defines a sharp two outcome observable A by

A(1) = P [~a] , A(−1) = I − P [~a] = P [−~a] .
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The selfadjoint observable A corresponding to the sharp observable A through the spectral
formula (4.12) is

A =
∑
j=±1

jA(j) = P [~a]− (I − P [~a]) = ~a · ~σ .

Exercise 25. Referring to Example 36, calculate the mean value and the variance of A in a state
% = 1

2 (I + ~r · ~σ).

In the case of a finite dimensional Hilbert space H, the spectral theorem states, essentially,
that every selfadjoint operator is diagonalizable. Let us shortly recall the diagonalization pro-
cedure. First of all, the spectrum of a selfadjoint operator A ∈ Ls(H) consists of eigenvalues
λ satisfying the identity det[A − λI] = 0. The eigenvectors corresponding to an eigenvalue
λ are obtained by solving the equation Aψ = λψ. For a given eigenvalue λ, the associated
eigenvectors form a linear subspace Hλ ⊂ H. For different eigenvalues, the subspaces Hλ are
mutually orthogonal. The dimension dλ of Hλ is called the degeneracy of the eigenvalue λ. Let
Pλ : H → H be the projection mapping H onto Hλ. Then the self-adjoint operator A can be
expressed in the diagonal (spectral) form as A =

∑
j λjPλj . The eigenvalues of A define the

outcome space Ω and the normalized projection valued measure associated with the operator A
is given as A({λj}) = Pλj .

The spectral theorem in an infinite dimensional Hilbert space has two complications. First
of all, eigenvalues are not generally enough to give a spectral representation of a selfadjoint
operator. One needs a more general concept of spectrum, which leads to continuous spectral rep-
resentations. The second point is that not all PVMs correspond to bounded selfadjoint operators
- unbounded operators are unavoidable in this context. We do not go into details of these topic,
but just discuss some common examples.

Example 37. (Position operator) Let us consider again the canonical position observable Q
introduced in Example 35. The position operator Q is formally defined as

Q =
∫

R
xQ(dx) .

However, Q is an unbounded operator. For a vector ψ belonging to the domain of Q, we get

〈ψ |Qψ 〉 =
∫
x 〈ψ |Q(dx)ψ 〉 =

∫
x |ψ(x)|2 dx .

Thus, the action of the position operator Q is given by

Qψ(x) = xψ(x) . (4.16)

Exercise 26. (Momentum operator)The canonical momentum observable P is Fourier connected
to the canonical position observable Q. Hence, for any X ∈ B(R) we have

P(X) = F−1Q(X)F ,

where F is the unitary extension of the Fourier transform to L2(R). In particular, for a pure state
% = |ψ 〉〈ψ| we have

tr [%P(X)] =
∫
X

|(Fψ)(x)|2 dx .
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The corresponding (unbounded) selfadjoint operator P = F−1QF is called the momentum
operator. Show that for a function ψ belonging to the Schwartz space (smooth functions of rapid
decrease), the momentum operator P acts by

Pψ(x) = −i~ ∂

∂x
ψ(x) ,

where ~ is the Planck constant. (Hint: Start from (4.16) and recall how the multiplication behaves
in the Fourier transform).

Example 38. (Energy operator of hydrogen atom.) The analysis of the hydrogen atom was one
of the first successful demonstrations of elementary principles of quantum theory. In particular,
it was suggested by Erwin Schrödinger that the energy is associated with the selfadjoint operator

H = − 1
2m

~P · ~P − e2

4πε0
| ~Q|−1 , (4.17)

where m is the mass of electron, e is the elementary electron charge and ε0 is the electrical
permittivity of space. This operator acts as follows

Hψ(~r) = − ~2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
ψ(~r)− e2

4πε0
1
|~r|
ψ(~r) (4.18)

for all ψ ∈ L2(R3) belonging to domain of H . The eigenvalues of H are degenerated and read

En = − me2

32π2ε20~2

1
n2

= −13.6eV
1
n2

(4.19)

for n = 1, . . . ,∞. Each eigenvalue is associated with eigenvectors ψnlm ∈ L2(R3), where l,m
are integer numbers such that 0 ≤ l < n and −l ≤ m ≤ l. It follows that eigenvalue En is
associated with 2n + 1 dimensional projection Πn =

∑
l,m |ψnlm〉〈ψnlm|. It follows that the

energy operator H defines an energy observable of the hydrogen atom

En 7→ Aenergy(En) = Πn , (4.20)

that is sharp and discrete. Let us note that the energy is usually determined by measuring the
emission spectrum. The corresponding observable is described in Example 39.

Exercise 27. Verify that

ψ(~r) =
1√
πa3

e−|~r|/a (4.21)

is an eigenvector of H for a specific value of parameter a known as Bohr radius.

Example 39. (Spectrum of Hydrogen atom.) Consider a measurement of the emission spectrum
of a hydrogen atom. In an ideal version of such experiment a heated ensemble of hydrogen atoms
starts to emit light of some particular frequencies forming the emission spectrum. According to
the basic theory, the observed frequencies are related to energy eigenstates of the hydrogen atom
via the relation ~ωnm = E1( 1

n2 − 1
m2 ), where n < m and E1 = −13.6eV is the ground state
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energy, i.e. the lowest possible energy of the hydrogen atom. The observable is real and discrete,
i.e. the outcome space Ω consists of a countable number of frequencies ωµ.

Thus, for each observed frequency ωµ there must exist a pair of natural numbers n,m such
that E1(m2−n2)/(m2n2) = ~ωµ. From this point of view, it is an interesting question whether
ωµ is associated with a unique pair n,m. It turns out that the pair n,m is not unique, i.e. there
are pairs (n,m) and (n′,m′) for which (m2 − n2)/(m2n2) = (m′2 − n′2)/(m′2n′2). Let us
denote by Jµ the set of all pairs (n,m) defining the same frequency ωµ. Although the complete
characterization of Jµ is not known to authors of this paper, it is not that essential for the purposes
of the presentation of the spectrum observable.

Observing a frequency ωµ we can conclude that the hydrogen atom is in the state % with
a support containing at least one eigenstate of the energies Em for which there exist n such
that (n,m) ∈ Jµ. Therefore, also the effect Fµ associated with the outcome ωµ is an operator
with the support spanned on these eigenstates which guarantees that the outcome ωµ can be
observed, i.e. tr [%Fµ] 6= 0. It follows that the emission spectrum observable is described by
effects Fµ =

∑
m∈Jµ qnmΠm, where Πm = A({Em}) are projectors onto subspaces spanned by

eigenvectors associated with energiesEm and qnm are the probabilities with which an atom being
in the eigenstates associated with Em is emitting the light quantum of the frequency ωµ = ωnm,
i.e.

∑
n qnm = 1. It is easy to verify that

∑
µ Fµ =

∑
nm qnmΠm =

∑
m Πm = I . The

probabilities qnm depends on particular experimental setup (temperature, photon detectors). Let
us note that some of the couples are forbidden due to conservation laws, i.e. some of qnm = 0
although the algebraic relation n < m holds.

Let us now give an explicit example that Jµ can contain more than one element. Consider
n = 5,m = 7 and n′ = 7,m′ = 35. A direct calculation gives that (m2 − n2)/(m2n2) = 49−
25/(49.25) = 24/352 and (m′−n′)/(m′n′) = (352− 49)/(352.49) = 49(25− 1)/(49.352) =
24/352, which proves that these numbers belong to the same set Jµ associated with ωµ = E1

~
24
352 .

The main aim of this example is to show that even the simplest experiments constitute quite
difficult observables. Let us note that the main purpose of this type of spectrum identification
experiments is not to analyze the statistics of the sampled atoms, but rather to identify all possible
frequencies. This was also the main goal of the Schrodinger solution of the hydrogen atom who
showed that the observed frequencies in emission (or absorption) spectrum are in accordance
with the eigenvalues of the energy operator.

4.3 Informationally complete observables

One of the most essential purposes of measurements is to gain knowledge about a system. Typ-
ically, the system is in an unknown state and one tries to find out what the state is. In the best
case one can determine the state completely - this leads to the concept of informational com-
pleteness [16], [72].

Definition 32. A collection {A,B, . . .} of observables is informationally complete if for every
%1, %2 ∈ S(H),

ΦA(%1) = ΦA(%2)
ΦB(%1) = ΦB(%2)

...

⇒ %1 = %2 .
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In particular, a single observable A is informationally complete if for every %1, %2 ∈ S(H),

ΦA(%1) = ΦA(%2) ⇒ %1 = %2 . (4.22)

In other words, informational completeness of a collection {A,B, . . .} means that for two
different states %1 6= %2, at least one of the observables gives different probability distributions
for them. Therefore, every state can be uniquely determined from the measurement data.

It is not surprising that we can form informationally complete collections of observables.
For instance, it follows from Proposition 4 that the set of all two outcome sharp observables is
informationally complete. In applications the problem is usually to find a physically realizable
collection of observables, to minimize the number of observables, or to optimize the collection
with respect to some other criteria.

Example 40. (Informationally complete collection of qubit observables) Let us consider a qubit
system, i.e., a system described by a two dimensional Hilbert space H (isomorphic to C2). As
we have seen in Example 20, the states of the qubit system can be described by the Bloch sphere
vectors. Every unit vector ~a in the Bloch sphere determines a one dimensional projection, and
hence a two outcome sharp observable A as explained in Example 36. For a state % corresponding
to a Bloch vector ~r, we get

tr [%A(1)] =
1
2
(1 + ~r · ~a) . (4.23)

Let A,B,C be three two outcome sharp observables, determined by the unit vectors ~a,~b,~c. If
the vectors ~a,~b,~c ∈ R3 are linearly independent, then the collection {A,B,C} is informationally
complete. Namely, in this case a Bloch vector ~r is uniquely determined from the inner products
~r ·~a, ~r ·~b, ~r ·~c. As we see from (4.23), these are obtained from the measurement statistics of A,B
and C.

Exercise 28. Following Example 40, show that the set {A,B,C} is not informationally complete
if the vectors ~a,~b,~c are linearly dependent.

Example 41. (Pauli problem) Let H = L2(R) and Q and P the canonical position and momen-
tum observables of a spin-0 particle moving on the real line R (see Example 35 and Exercise 26),
i.e.,

〈ψ |Q(X)ψ 〉 =
∫
X

|ψ(x)|2 dx , 〈ψ |P(Y )ψ 〉 =
∫
Y

∣∣∣ψ̂(y)
∣∣∣2 dy .

Here ψ̂ = Fψ is the Fourier transform of ψ. The set {Q,P} is not informationally complete.
Indeed, the functions |ψ(·)| and

∣∣∣ψ̂(·)
∣∣∣ do not determine the vector ψ uniquely up to a phase

factor. This can be seen, for instance, by choosing a, b > 0 and setting

ψ±(x) = e−(a±ib)x2
.

The question of the informational completeness of the set {Q,P} was first posed by Wolfgang
Pauli and it is therefore called the Pauli problem. Nowadays the Pauli problem is also used to
refer to several variants of the original problem, and some of these variants are still open. For
instance, there seems not to be an exhaustive characterization of observables A such that the
collection {Q,P,A} is informationally complete; see [16] for further discussion.



Observables 561

Proposition 46. Consider a Hilbert space H of dimension d < ∞. If an observable A is infor-
mationaly complete, then its outcome space Ω contains at least d2 points.

Proof. Let A be an observable with an outcome space Ω = {x1, . . . , xn}, where n < d2.
Since the real inner product space Ls(H) of selfadjoint operators is d2-dimensional, there ex-
ists a selfadjoint operator T 6= O such that tr [TA(xj)] = 0 for all xj ∈ Ω. Moreover, since∑
j A(xj) = I , we have tr [T ] = 0. Define an operator %0 = d−1(I+‖T‖−1

T ). As %0 is positive
(recall Exercise 7 in Section 2.2.2) and tr [%0] = 1, it is a state. Now tr [%0A(xj)] = tr

[
1
dIA(xj)

]
for all xj ∈ Ω, meaning that A cannot distinguish between the total mixture 1

dI and the state %0.
This shows that A cannot be informationally complete.

The existence of a single informationally complete observable is not evident from its def-
inition. In the following example we demonstrate that informationally complete observables
exist. An informationally complete observable A is called a minimal informationally complete
observable if the outcome space Ω has the smallest possible number of elements, |Ω| = d2.

Example 42. (Minimal informationally complete observable) Let H be a finite dimensional
Hilbert space with dimension d and denote Ω = {1, . . . , d}. We follow [24] in their construction
of an informationally complete observable A. First of all, we fix an orthonormal basis {ϕj}dj=1

for H. For every j, k ∈ Ω, we denote by Pjk the following one-dimensional projections

Pjj = |ϕj 〉〈ϕj | ;

Pjk = | 1√
2
(ϕj + ϕk) 〉〈 1√

2
(ϕj + ϕk)| if j > k ;

Pjk = | 1√
2
(ϕj + iϕk) 〉〈 1√

2
(ϕj + iϕk)| if j < k .

We denote

T =
d∑

j,k=1

Pjk . (4.24)

Since T ≥
∑d
j=1 Pjj = I , the operator T is positive and it has square root T

1
2 . Moreover, it

follows from T ≥ I that detT ≥ detI , hence T is invertible. By Prop. ?? this implies that the
operator T

1
2 is invertible also. For every j, k ∈ Ω, we then define

A(j, k) := T−
1
2PjkT

− 1
2 . (4.25)

Each operator A(j, k) is positive and the normalization condition
∑
j,k A(j, k) = I is satisfied.

Hence, A is an observable with the outcome set Ω× Ω.
Suppose that %1 and %2 are two states such that the numbers tr [%1Pjk] and tr [%2Pjk] are the

same for all indices j, k ∈ Ω. This implies that 〈ϕj | %1ϕk 〉 = 〈ϕj | %2ϕk 〉 for all j, k ∈ Ω, and
thus, %1 = %2. This reasoning holds true also if Pjk’s are replaced with A(j, k)’s. Therefore, the
observable A is informationally complete and since |Ω× Ω| = d2, it is minimal informationally
complete observable. Let us note that the above way of constructing an informationally complete
observable works also when the Hilbert space H is infinite dimensional.
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While it may be hard to check if a given observable is informationally complete, there are
some simple necessary conditions which an observable has to satisfy in order to be information-
ally complete. Two such criteria are given in the next proposition.

Proposition 47. Let A be an informationally complete observable with an outcome space (Ω,F),
and let X ∈ F .

(a) A(X) does not have both eigenvalues 0 and 1.

(b) If A(X) is a non-trivial effect (i.e. not a scalar multiple of the identity operator I), then it
does not commute with all the other effects in the range of A.

Proof. (a) Assume that A(X) has eigenvalues 0 and 1. Let ψ1, ψ0 ∈ H be unit vectors such that
A(X)ψ1 = ψ1 and A(X)ψ0 = 0. The vectors ψ1 and ψ0 are orthogonal, as

〈ψ1 |ψ0 〉 = 〈A(X)ψ1 |ψ0 〉 = 〈ψ1 |A(X)ψ0 〉 = 0 .

Moreover, we have A(¬X)ψ1 = (I − A(X))ψ1 = 0 and A(¬X)ψ0 = (I − A(X))ψ0 = ψ0.
Denote ψ = 1√

2
(ψ1 + ψ0). For any Y ∈ F , we then have

A(X ∩ Y )ψ =
1√
2
A(X ∩ Y )ψ1 , A(¬X ∩ Y )ψ =

1√
2
A(X ∩ Y )ψ0 ,

and therefore

〈ψ |A(Y )ψ 〉 =
1
2
〈ψ1 |A(X ∩ Y )ψ1 〉+

1
2
〈ψ0 |A(¬X ∩ Y )ψ0 〉 .

On the other hand, denote % = 1
2 |ψ1 〉〈ψ1|+ 1

2 |ψ0 〉〈ψ0|. Then

tr [%A(Y )] = tr [%A(X ∩ Y )] + tr [%A(¬X ∩ Y )]

=
1
2
〈ψ1 |A(X ∩ Y )ψ1 〉+

1
2
〈ψ0 |A(¬X ∩ Y )ψ0 〉 .

This shows that ΦA(|ψ 〉〈ψ|) = ΦA(%), which contradicts the fact that A is informationally
complete.

(b) Assume that A(X)A(Y ) = A(Y )A(X) for every Y ∈ F . Let U ≡ eiA(X) be the unitary
operator defined by A(X) (see Example 10 in Section 2.2.3). Since A(X) is not a multiple of
the identity operator I , there is a unit vector ψ ∈ H which is not an eigenvector of A(X). Thus,
ψ is not an eigenvector of U either and hence, the vectors ψ and Uψ are not parallel. Choose
%1 = |ψ 〉〈ψ| and %2 = |Uψ 〉〈Uψ|, in which case %1 6= %2.

Let Y ∈ F . As A(X) commutes with A(Y ), also U commutes with A(Y ). We then get

tr [%2A(Y )] = tr [|ψ 〉〈ψ|U∗A(Y )U ] = tr [|ψ 〉〈ψ|A(Y )] = tr [%1A(Y )] ,

and therefore ΦA(%1) = ΦA(%2). This is in contradiction with the fact that A is informationally
complete.

Proposition 47a implies, especially, that an informationally complete observable does not
have any non-trivial projection in its range. Therefore, sharp observables are not information-
ally complete. Proposition 47b is about the non-commutativity of an informationally complete
observable. There are also other kind of results related to the non-commutative nature of an
informationally complete observable; we refer to [13] for further discussion.
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4.4 Identification of quantum states

It is the primary role of observables to statistically identify states, or some of their properties.
A typical goal of an experiment can be, for instance, to decide among different alternatives
or hypotheses about the states. The difficulties and details of a particular identification prob-
lem depends on our apriori knowledge and properties we are interested in. The combination of
apriori knowledge and available resources defines the alternatives we can experimentally verify.
Depending whether the set of alternatives is finite or infinite, we make a distinction between
discrimination and estimation problems. For a general reference on these type of problems, we
refer to the classic [43] by Helstrom and to more recent review book [68].

Let us start by briefly mentioning some simple examples.

• State estimation problem. In its most difficult version the goal is to answer the question
what is the state?, provided that no additional information is available. In this case, the
whole state space S(H) forms the set of possible hypotheses. Experiments providing the
answer to this problem correspond to informationally complete observables. As explained
in Section 4.3, these are observables A for which the mapping ΦA is injective.

• State discrimination problem. On the other hand, perhaps the simplest version of the
quantum identification problem is to identify a state which is known to be either %1 or %2,
so that our aim is to distinguish between two alternatives only. If we can obtain the hole
measurement data, it is sufficient to design an observable A for which ΦA(%1) 6= ΦA(%2).

These two types of identification problem (as defined above) are based on measurement
statistics and we shall refer to them as to statistical identification problems. Perhaps surprisingly,
non-trivial and meaningful identification schemes exits even if we assume that the resources are
only finite in the sense that the unknown preparators are used in the experiment only a finite
number of times.

Example 43. Imagine that we toss a coin only once and observe the outcome head. What can we
say about the coin? Without any additional assumption we can only conclude that the probability
of getting head is nonzero. However, if we are promised that the coin is either a fair one, or an
unfair one having on both sides the same value tail, then our conclusion can be much stronger.
In fact, we may with certainty confirm that the coin is fair.

This example illustrates that even in probabilistic theories there are situations in which con-
clusions can be made from a small number of experimental runs. And quantum theory is not
an exception. Under certain circumstances and with suitable apriori knowledge, the quantum
states may be uniquely identified even from individual measurement outcomes. These kind of
tasks which are not based on measurement statistics but only some finite number of measurement
outcomes are called non-statistical identification problems.

4.4.1 Unambiguous discrimination of pure states

The goal of unambiguous state discrimination (or error-free state discrimination) is to identify
an unknown state % out of some set of possible states {%1, . . . , %n} without an error. We assume
that only a single copy of a system is available and ηj is the apriori probability that the unknown
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state % is %j . The main question is which sets of states can be discriminated in an unambiguous
way. This problem was originally introduced by Ivanovic in [52].

In the general scheme of unambiguous state discrimination, we accept the possibility of get-
ting no conclusion. However, when a conclusion is made, it is required to be correct. Opposed
to unambiguous state discrimination, there are also probabilistic state discrimination schemes
which are shortly discussed in Subsection 4.4.3 . In this subsection we focus on unambigu-
ous discrimination of two pure states. We refer to [25] and [10] for reviews of different state
discrimination strategies.

As a special type of unambiguous discrimination, we say that a set of states can be perfectly
discriminated if the probability of getting a conclusive outcome is 1. Hence, a set of states
{%1, . . . , %n} can be perfectly discriminated if and only if there exists an observable A with the
outcome space Ω = {1, 2, . . . , n} such that

tr [%1A(1)] = tr [%2A(2)] = · · · = tr [%nA(n)] = 1 . (4.26)

Indeed, in the perfect discrimination one must be able to draw the correct conclusion in every
possible measurement outcome. This is exactly the condition (4.26).

Exercise 29. Let ψ1, . . . , ψn be orthogonal unit vectors and %1, . . . , %n the corresponding pure
states. Show that the set {%1, . . . , %n} can be perfectly discriminated. (Hint: recall Example 34
in Section 4.2.)

Proposition 48. Let %1 an %2 be two pure states corresponding to unit vectors ψ1 and ψ2. These
states can be perfectly discriminated if and only if they are orthogonal, that is, 〈ψ1 |ψ2 〉 = 0.

Proof. We have already seen in Exercise 29 that two orthogonal pure states can be perfectly
discriminated. Let us then show that orthogonality is also a necessary condition.

If %1 and %2 can be perfectly discriminated, then there exists an observable A with the out-
come space Ω = {1, 2} such that

tr [%1A(1)] = tr [%2A(2)] = 1 .

By Prop. 44 in Sec. 4.2, this implies that

A(1)%1 = %1 , A(2)%2 = %2 .

Since A(2) = I − A(1), these conditions can be written in the form

A(1)%1 = %1 , A(1)%2 = 0 .

Therefore, we get

tr [%1%2] = tr [A(1)%1%2] = tr [%1%2A(1)] = tr [%1(A(1)%2)∗] = 0 .

Since tr [%1%2] = |〈ψ1 |ψ2 〉|2, the claim follows.
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Suppose that two pure states %1, %2 are given and that these states are not orthogonal. As
the perfect discrimination is not possible, we turn into a more modest question - is it possible to
identify the state %1 unambiguously? In comparison with the previous discussion, we are now not
interested whether the unknown state is %2 but only the conclusion % = %1 matters. Therefore,
the state %1 can be identified within the set {%1, %2} if and only if there exists an observable A
with two outcomes 1 and ? such that

tr [%1A(1)] > 0 , tr [%2A(1)] = 0 . (4.27)

The effect A(?) = I − A(1) corresponds to an inconclusive outcome since no unambiguous
conclusion is assigned to it.

The success of the state identification is quantified by means of the probability to observe the
conclusive outcome 1, i.e.,

psuccess = η tr [%1A(1)] , (4.28)

where η is the apriori probability that the unknown state % is %1. The second condition tr [%2A(1)]
= 0 in (4.27) is equivalent to tr [%2A(?)] = 1. By Proposition 44, this implies that %2 ≤ A(?) or,
in other words, A(1) ≤ I − %2. Consequently, the probability tr [%1A(1)] is maximal if we set
A(1) = I − %2. Hence, the best achievable success probability is

psuccess = η(1− tr [%1%2]) . (4.29)

Notice that tr [%1%2] = 1 only when %1 = %2. Therefore, psuccess > 0 whenever %1 6= %2. We
conclude that for any pair of two different pure states, the identification task is possible to carry
out with non-zero success probability even with a single copy of the system available.

Example 44. (Unambiguous identification of a mixed state.) Let %1, %2 be two states, not nec-
essarily pure. The condition for identification of %1 out of the set {%1, %2} is still the set of
constrains written in (4.27). However, the identification task cannot be performed for all pairs of
states. Consider an effect E such that tr [%1E] > 0 and denote S⊥E = {% ∈ S(H) : tr [%E] = 0}.
It follows that the two outcome observable A, defined as A(1) = E, A(?) = I − E, can be
employed to identify the state %1 out of the set {%1, %2}, provided that %2 ∈ S⊥E . On the other
hand, if for all effectsE the inequality tr [%1E] > 0 implies tr [%2E] > 0, then the state %1 cannot
be identified from the set {%1, %2}. In other words, the unambiguous identification of %1 requires
that its support is not smaller than the support of %2. It follows that while for pure states the
success probability, given in (4.29), is symmetric with respect to change of %1 and %2, it is not
necessarily symmetric for mixed states. For example, ifH is finite dimensional and %2 is the total
mixture 1

dI , then the identification is impossible for all states %1. Thus, no state can be identified
from the total mixture. However, if we choose %1 = 1

dI , then we see that the total mixture can
be identified with non-zero success probability, provided that the support of %2 is not the whole
Hilbert space H.

Let us turn back to unambiguous discrimination of two pure states %1 = |ψ1〉〈ψ1| and %2 =
|ψ2〉〈ψ2| (assuming that %1 6= %2). If the states are not orthogonal, then according to Proposition
48 they cannot be perfectly discriminated. However, as we have seen previously, each pure state
can be unambiguously identified from any other pure state. We denote by A and B the observables
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identifying the states %1 and %2 in the optimal way, respectively. Hence, A(1) = I − %2 and
B(1) = I−%1. Let us then fix a number 0 < q < 1 and define an observable C with the outcome
space {1, 2, ?} in the following way:

C(1) = q(I − %2) , C(2) = (1− q)(I − %1) , C(?) = q%2 + (1− q)%1 . (4.30)

The observable C is a convex combination of A and B in the sense explained in Example 33 in
Subsection 4.1.4. The inconclusive outcomes of A and B are identified as a single inconclusive
outcome ?. As C is a mixture of A and B and these are the optimal observables for identifying
the states %1 and %2, we expect that C is able to discriminate these states.

The observable C leads to the following list of probabilities:

pC
%1(1) = q(1− tr [%1%2]) 6= 0 , pC

%2(1) = 0 ,

pC
%1(2) = 0 , pC

%2(2) = (1− q)(1− tr [%1%2]) 6= 0 ,

pC
%1(?) = 1− q + qtr [%1%2] 6= 0 , pC

%2(?) = q + (1− q)tr [%1%2] 6= 0 .

Therefore, if we get the outcome 1, we make the conclusion that % = %1. In a similar way, the
outcome 2 leads to the conclusion that % = %2. If the outcome ? is obtained, then no conclusion
can be made.

We conclude that although the perfect discrimination is not possible, there exists an observ-
able discriminating between the non-orthogonal pure states %1 and %2 provided that an inconclu-
sive result is allowed. As before, the success probability psuccess is quantified as the probability
of getting a conclusive result. In the above scheme we get

psuccess = η tr [C(1)%1] + (1− η) tr [C(2)%2]
= qη tr [%2(I − %1)] + (1− q)(1− η) tr [%1(I − %2)]
= [qη + (1− q)(1− η)](1− tr [%1%2]) .

For equal apriori distribution of the states %1 and %2 (i.e. η = 1/2), the unambiguous discrimi-
nation by C is successful with the probability

psuccess =
1
2
(1− tr [%1%2]) =

1
2
(1− |〈ψ1 |ψ2 〉|2) . (4.31)

Does the above procedure give the best achievable success probability? To find the optimal
solution, we are looking for an observable D with three outcomes 1, 2, ? such that

tr [%1D(2)] = 0 , tr [%2D(1)] = 0 , D(?) = I − D(1)− D(2) ≥ O , (4.32)

and the success probability

psuccess = η tr [%1D(1)] + (1− η) tr [%2D(2)]

is required to be as large as possible.
Before we come to the the optimal value of psuccess, we derive an upper bound on success

probability.
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Lemma 3. Let T be a trace class operator T ∈ T (H). Then

sup
U∈U(H)

|tr [TU ]| = tr [|T |] . (4.33)

Proof. We give a proof only in the case dimH <∞. Let U ∈ U(H). According to Proposition
17 it follows that

|tr [TU ]| ≤ ‖T‖tr ‖U‖ = ‖T‖tr = tr [|T |] .

Hence, |tr [TU ]| ≤ tr [|T |] for all unitary operators U .
Let us express the operator T in its polar decomposition as T = W |T |, where W is unitary.

We then get

|tr [W ∗T ]| = |tr [W ∗W |T |]| = |tr [|T |]| = tr [|T |] .

This proves the lemma.

Proposition 49. ( [34]) Let %1 and %2 be two states, occurring with apriori probabilities η and
1− η. The probability of success has the following upper bound:

psuccess ≤ 1− 2
√
η(1− η) tr [|√%1

√
%2|] . (4.34)

Proof. The probability of success can be written in the form psuccess = 1−perror, where perror =
tr [D(?)(η%1 + (1− η)%2)] is the error probability. for which

p2
error = η2(tr [D(?)%1])2 + (1− η)2(tr [D(?)%2])2 + 2η(1− η)tr [D(?)%1] tr [D(?)%2]

≥ 4η(1− η)tr [D(?)%1] tr [D(?)%2] ,

where we used the inequality a2 + b2 ≥ 2ab for a = ηtr [D(?)%1] and b = (1 − η)tr [D(?)%2].
Using the Cauchy-Schwartz inequality we obtain

tr [D(?)%1] tr [D(?)%2] = tr
[
U
√
%1

√
D(?)

√
D(?)

√
%1U

†
]

tr
[√

%2

√
D(?)

√
D(?)

√
%2

]
≥ (tr [U

√
%1D(?)

√
%2])2

Since D(?) = I − D(1)− D(2) and by definition of the unambiguous discrimination D(1)%2 =
%1D(2) = O, it follows that

√
%1D(?)

√
%2 =

√
%1
√
%2. Thus,

perror ≥ 2
√
η(1− η)tr [U

√
%1
√
%2] (4.35)

for all unitary operators U . According the Lemma 3 the maximum of the right-hand side of this
equation gives the formula

perror ≥ 2
√
η(1− η)tr [|√%1

√
%2|] . (4.36)
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For two pure states distributed with equal apriori probabilities Proposition 49 gives

psuccess ≤ 1− |〈ψ1 |ψ2 〉| .

Then from Eq.(4.31) it is straightforward to see that observable C does not saturate this upper
bound. Namely, the equation

1
2

(
1− |〈ψ1 |ψ2 〉|2

)
= 1− |〈ψ1 |ψ2 〉|

holds only if |〈ψ1 |ψ2 〉| = 1, but this would mean that %1 = %2.
In what follows we shall define a family of observables and show that for particular choice

of parameters there is an observable saturating the bound (4.34).
The conditions in Eq.(4.32) implies that D(2) ≤ I−%1 and D(1) ≤ I−%2. Let us denote by

Q a projection onto the support of an operator (I − %1)(I − %2). Since tr [Q%1] = tr [Q%2] = 0
it follows that the support of Q is irrelevant for discrimination, because no effect F ≤ Q can be
observed. It is straightforward to see that Q has rank d− 2 and therefore only a two-dimensional
subspace spanned on vectors ψ1, ψ2 is of interest for us. Let us denote by Q⊥ = I − Q the
projector onto this two-dimensional subspace. That is, we can assume D(1) ≤ I − Q and
D(2) ≤ I −Q = Q⊥. Consider the following ansatz

D(1) = c(Q⊥ − %2) , D(2) = c(Q⊥ − %1) , D(?) = I − D(1)− D(2) . (4.37)

Using this type of observable for η = 1/2 the success probability reads

psuccess =
1
2

(tr [%1D(1)] + tr [%2D(2)]) =
c

2
(
tr
[
Q⊥(%1 + %2)

]
+ 2tr [%1%2]

)
= c(1− tr [%1%2]) ,

where the factor c takes the largest possible value for which the operator D(?) = I−D(1)−D(2)
is still an effect, i.e., D(?) ≥ O.

From the definition of D(?) = Q+Q⊥(1−2c)+c(%1 +%2) it follows that interesting part of
D(?) is effectively two-dimensional. In particular, D(?) coincides with the identity operator on
theQ subspace and the positivity constraints can be violated only by operatorQ⊥(1−2c)+c(%1+
%2), whereQ⊥ acts as the identity on the relevant two-dimensional subspace, i.e. Q⊥ = %1+%⊥1 .
Here %⊥1 is a one-dimensional projection onto a state ψ⊥1 orthogonal to ψ1, but belonging to linear
span of vectors ψ1, ψ2, thus

〈
ψ⊥1 |ψ2

〉
6= 0. projection %2 can be expressed as a superposition

of pure states %1, %
⊥
1

%2 = |α|2%1 + |β|2%⊥1 + αβ∗|ψ1〉〈ψ⊥1 |+ α∗β|ψ⊥1 〉〈ψ1| , (4.38)

where |α|2 + |β|2 = 1 Inserting this into the formula for relevant part of D(?) we obtain the
operator

D(?)rel=(1− c|β|2)%1 + (1− c(1 + |α|2))%⊥1 + cαβ∗|ψ1〉〈ψ⊥1 |+ cα∗β|ψ⊥1 〉〈ψ1| .(4.39)

It has positive eigenvalues if and only if its determinant is positive, i.e.

0 ≤ 1 + c2|β|2(1 + |α|2)− c(1 + |α|2 + |β|2)− c2|α|2|β|2

≤ 1 + c2|β|2 − 2c =
(
c− 1− |α|

|β|2

)(
c− 1 + |α|

|β|2

)
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Since 0 ≤ c ≤ 1 it follows that the optimal choice is c = (1 − |α|)/|β|2 = (1 + |α|)−1. Since
|α|2 = | 〈ψ1 |ψ2 〉 |2 = tr [%1%2] we obtain the following formula for success probability

psuccess = c(1− tr [%1%2]) =
1−

√
tr [%1%2]

1− tr [%1%2]
(1− tr [%1%2])

= 1−
√

tr [%1%2] = 1− | 〈ψ1 |ψ2 〉 | . (4.40)

Comparing with Proposition 49 we see that the bound is saturated and the optimal observable D
depends on the scalar product of pure states ψ1, ψ2. In particular

Dopt(1) =
1

1 + | 〈ψ1 |ψ2 〉 |
(Q⊥ − |ψ2〉〈ψ2|) , (4.41)

Dopt(2) =
1

1 + | 〈ψ1 |ψ2 〉 |
(Q⊥ − |ψ1〉〈ψ1|) , (4.42)

Dopt(?) = I − Dopt(1)− Dopt(2) , (4.43)

where Q⊥ is a projector onto the linear subspace spanned by vectors ψ1, ψ2.
For a comparison, let us briefly take a look at the unambiguous discrimination of mixed

states.

Proposition 50. Let %1 and %2 be two states which can be unambiguously discriminated. Then
neither supp%1 * supp%2 nor supp%2 * supp%1.

Proof. Suppose that supp%1 ⊆ supp%2. Then for any effect E, the condition tr [%1E] 6= 0
implies that tr [%2E] 6= 0. Thus, we can never unambiguously conclude that the unknown state
is %1. Similarly, in the case supp%2 ⊆ supp%1 we can never conclude that the unknown state
is %2. Therefore, the condition on the supports is a necessary condition that %1 and %2 can be
unambiguously discriminated.

The following result is a simple consequence of Proposition 50.

Proposition 51. Let H be a two dimensional Hilbert space. Two different states %1, %2 ∈ S(H)
can be unambiguously discriminated if and only if they are both pure.

Proof. We have already seen earlier that two different pure states can be unambiguously discrim-
inated. To prove the other implication, let us assume that one of the states, say %1, is mixed. As
we have seen in Subsection 3.1.3, the state %1 can be written in the form % = 1

2 (I +~r ·~σ), where
‖~r‖ < 1. Let us define a pure state ω = 1

2 (I + ~n · ~σ) with ~n = ~r
‖~r‖ . Then

%1 = (1− ‖~r‖)1
2
I + ‖~r‖ω ,

which shows that %1 can be written as a convex combination of the total mixture and the pure
state ω. Since supp1

2I = H, it follows that supp%1 = H. Therefore, according to Prop. 50 it is
not possible to unambiguously discriminate %1 and %2.
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Example 45. (Key distribution protocol B92) A nice application of the unambiguous state dis-
crimination scheme was presented by Ch. Bennett in [4]. The key distribution protocol known
as B92 works in the following way. Alice randomly prepares a system in one of two pure states
%0, %1 and sends the system to Bob. Bob then performs a measurement of observable D, hence un-
ambiguously discriminating between the given pair of states. Repeating the experiment n times
Alice preparations defines a string of n random bits ~x = (x1, . . . , xn) such that xj ∈ {0, 1}.
Bob’s measurements defines a string ~y = (y1, . . . , yn) with yj ∈ {0, 1, ?}, where ? is associated
with the inconclusive outcome ?. Due to the unambiguity of the conclusive results, the strings
are perfectly correlated whenever yj 6= ?. Therefore, Bob announces the positions in which
he found inconclusive outcomes and both of them simply erase these entries from their strings.
After that Alice’s and Bob’s reduced strings match perfectly and represent a secret key shared
between Alice and Bob.

The security of B92 protocol is based on the nonorthogonality of states. For orthogonal states
the correlations between the strings are perfect without any public communication, however, in
this case the whole communication can be observed by a third party without being detected.
Orthogonal pure states can be discriminated perfectly. Reducing the orthogonality we also reduce
the abilities to eavesdrop and the anonymity of the eavesdropper. The presence of an adversary
and security of the key is verified if part of the shared key is released and compared. This
verification stage of the protocol is based on the same principles as the one that will be discussed
in Section 6.3.2, where we discussed the more practical key distribution protocol called BB84.

Let us note that this scheme, although very elegant, is not very practical due to its fragility
with respect to noise. In fact, for arbitrarily small noise the unambiguity of conclusion is lost
since the no-error conditions tr [%2D(1)] = tr [%1D(2)] = 0 no longer hold. The noise transform-
ers the pure states %1, %2 into mixed states %′1, %

′
2. For a two-dimensional system, Proposition 51

implies that %′1, %
′
2 cannot be unambiguously discriminated.

4.4.2 How close are two states?

There are several approaches how to introduce the concept of distance between quantum states.
One possibility is to adopt some operational definition based on statistical distinguishability of
states. The information acquired in measurements comes from observed probabilities. Therefore,
it is natural to use these probabilities to introduce the notion of distance between two states.
Loosely speaking, the idea is that two states are considered to be close to each other if for all
observables it is very difficult to distinguish the associated probabilities.

A probability distribution defined on some finite sample space Ω can be understood as a real
vector ~p with positive entries summing up to one. Given two such probability vectors ~p and ~q,
their difference is commonly evaluated by means of the following functions

A(~p, ~q) := max
j∈Ω

|pj − qj | , (4.44)

D(~p, ~q) :=
1
2

∑
j∈Ω

|pj − qj | (Kolmogorov distance), (4.45)

F (~p, ~q) :=
∑
j∈Ω

√
pjqj (Bhattacharyya coefficient). (4.46)
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In the quantum case states are associated with generalized probability measures defined on
the effect algebra E(H), i.e., assigning a probability p(E) for every effect E and probability
distribution ~pA for every observable A. We can use both, individual effects and observables, to
define statistical distances between a pair of quantum states. In what follows we shall exploit the
success probability of state discrimination to quantify the distance between quantum states.

4.4.3 Minimum-error state discrimination and the trace distance

Consider an experiment where an observable A is measured only once leading to an outcome xj .
Our goal is to assign a state (either %1 or %2) to each measured outcome xj . Let us denote by
pj = tr [%1A(xj)] and qj = tr [%2A(xj)] the probabilities of outcomes xj for the states %1 and %2

.
The effects A(xj) forming the observable A can be sorted according to related conclusions

into two subsets. Identifying the individual outcomes with the same conclusion we end up with
a two outcome observable described by effects C1, C2 = I − C1. These effects are associated
with the conclusions %? = %1, %? = %2. Usually, if pj > qj then the result xj is associated with
the conclusion %? = %1. Similarly, if pj < qj , the conclusion is %? = %2. If for an outcome
xj the predicted probabilities coincide (i.e. pj = qj), then each time we observe this outcome
we randomly choose one of the conclusions. For simplicity, we assume that that both states are
equally probable. In such case the effect A(xj) is splitted into two parts 1

2A(xj) + 1
2A(xj) =

A(xj), and the parts are associated with the conclusions %? = %1, %? = %2, respectively.
The conclusions are not always correct in a sense that we can conclude that the state to be

identified is %1 even if it is %2. The error probability is given by the formula

perror =
1
2

tr [C1%2 + C2%1] =
1
2

(1 + tr [C1(%2 − %1)]) . (4.47)

Naturally, we are then interested to find out the optimal observable which minimizes the error
probability. We call this task the minimum-error state discrimination.

In order to minimize the error we must choose the effect C1 to be a projection onto the
eigenvectors of the operator %2−%1 associated with negative eigenvalues. Since tr [%2 − %1] = 0
it follows that for the selfadjoint operator %2 − %1 its positive eigenvalues gives the same sum as
its negative eigenvalues. This implies that the optimal error probability is symmetric with respect
to exchange of %1, %2 and we can write

sup
C1

tr [C1(%2 − %1)] =
∑
j:λj<0

λj = −1
2
(
∑
j

|λj |) = −1
2

tr [|%2 − %1|] , (4.48)

where λj are eigenvalues of %2 − %1. In summary, for the optimal error probability of discrimi-
nation of states %1, %2 we get

perror =
1
2
(1− 1

2
tr [|%1 − %2|]) . (4.49)

The error probability is associated to the distance in the following sense. The smaller the error
probability, the larger is the distance between the states. If perror = 1/2, then the states are
necessarily the same. It turns out that the function

D(%1, %2) =
1
2

tr [|%1 − %2|] (4.50)
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can be used to measure the distance between the states %1 and %2. In fact, (up to a factor) it is
induced by the operator’s trace-norm. The above formula gives a clear operational meaning for
the trace norm evaluating the minimum-error state discrimination. We refer to this distance as to
trace distance.

4.4.4 Fidelity

An alternative state discrimination task is the one in which the conclusions are either error-free,
or no conclusion is made. This is known as the unambiguous discrimination problem and it
was discussed in Subsection 4.4.1. In this case the success is quantified by a probability of
inconclusive result (associated with the effect E?) and reads

perror =
1
2

tr [E?(%1 + %2)] , (4.51)

where %1, %2 are known states andE? = I−E1−E2 such that tr [E1%2] = tr [E2%1] = 0. Again,
we assume that states are apriori distributed with the same probability. A general solution is not
known, but for pure states %1, %2 we found in Subsection 4.4.1 that the optimal value is

perror = | 〈ψ1 |ψ2 〉 | , (4.52)

where ψ1, ψ2 ∈ H are the vectors corresponding to states %1, %2, respectively.
According to Proposition 49 the quantity tr

[
|√%1

√
%2|
]

= tr
[√√

%1%2
√
%1

]
provides an

upper bound on optimal success probability for unambiguous discrimination of a pair of states
%1, %2. This gives an operational meaning to another common way how to measure the distance
between quantum states.

Definition 33. A fidelity of quantum states %1 and %2 is defined as

F (%1, %2) = tr
[√√

%1%2
√
%1

]
. (4.53)

Proposition 52. (Basic properties of fidelity.) For all states %1, %2 the following statements holds:

1. F (%1, %2) = 1 if and only if %1 = %2.

2. 0 ≤ F (%1, %2) ≤ 1

3. Fidelity is invariant under unitary conjugation, i.e. F (U%1U
∗, U%2U

∗) = F (%1, %2) for
all unitary operators U .

Exercise 30. Prove the properties of the fidelity listed in Proposition 52.

4.5 Relations between observables

In previous sections we have discussed some properties and qualities of observables. A supple-
mentary point of view is obtained when we compare observables together. This means that we
study relative properties of observables. In this section we concentrate on three preorderings in
the set of all observables. There are also several other, related but different, preorderings. Other
preorderings are investigated, for instance, in [11] and [42].
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4.5.1 State distinction and determination

Let A be an observable and %1 and %2 two different states. If

ΦA(%1) 6= ΦA(%2) ,

then a measurement of A makes a distinction between the states %1 and %2. Namely, as the prob-
ability distributions are different, we see a difference in the measurement statistics correspond to
%1 and %2. On the other hand, if

ΦA(%1) = ΦA(%2) ,

then A cannot make any distinction between %1 and %2. This motivates the following definition.

Definition 34. Let A and B be observables. If for all states %1, %2 ∈ S(H),

ΦA(%1) = ΦA(%2) ⇒ ΦB(%1) = ΦB(%2) , (4.54)

then we denote B 4i A, and say that the state distinction power of A is greater than or equal to
B. If B 4i A 4i B, we say that A and B are informationally equivalent, and denote A

i∼ B.

Comparing the above definition with the definition of an informationally complete observable
(Subsection 4.3), one immediately notice that if A is informationally complete, then B 4i A

for any observable B. Moreover, if A is informationally complete and A
i∼ B, then also B is

informationally complete.

Exercise 31. Confirm that 4i is a preorder and i∼ is an equivalence relation.

It can also happen that A gives a unique probability distribution for some state %1. This means
that for all % ∈ S(H), we have

ΦA(%1) = ΦA(%) ⇒ %1 = % .

In this case, we say that the state %1 is determined by A. We denote by DA the set of states
determined by A. This leads to another way how to compare observables.

Definition 35. Let A and B be observables. If DB ⊆ DA, then we denote B 4d A, and say that
the state determination power of A is greater than or equal to B. If B 4d A 4d B, we denote
A

d∼ B.

With these concepts, we can rephrase the defining condition for an informationally complete
observable A as DA = S(H). Similarly as in the case of state distinction power, we see that
if A is informationally complete, then B 4d A for any observable B and A

d∼ B only if B is
informationally complete.

Exercise 32. Confirm that 4d is a preorder and d∼ is an equivalence relation.

Proposition 53. For two observables A and B, the condition B 4i A implies that B 4d A.
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Proof. Assume that B 4i A and %1 ∈ DB. For every % ∈ S(H), we then have

ΦA(%1) = ΦA(%) ⇒ ΦB(%1) = ΦB(%) ⇒ %1 = % .

This shows that %1 ∈ DA, and therefore DB ⊆ DA.

In general, B 4d A does not imply that B 4i A. This becomes clear in the following
discussion.

Example 46. An observable A is trivial if it does not distinguish any pair of states, i.e.,

ΦA(%1) = ΦA(%2) ∀%1, %2 ∈ S(H) . (4.55)

Condition (4.55) is equivalent with the fact that each effect A(X) is a multiple of the identity
operator I . If A is a trivial observable, then clearly A 4i B for any other observable B. Moreover,
if B 4i A, then also B is a trivial observable.

Proposition 54. Let A be a sharp observable with the outcome set Ω = {x1, x2}. If neither
A(x1) nor A(x2) is a one-dimensional projection, then DA = ∅.

Proof. First of all, if A(x1) = O or A(x1) = I , then it is clear that DA = ∅. Hence, we assume
that O 6= A(x1) 6= I .

For a state %, the probability distribution ΦA(%) is uniquely characterized by the number
tr [%A(x1)], since tr [%A(x2)] = 1 − tr [%A(x1)]. Hence, to prove the statement, it is enough
to show that for each number 0 ≤ p ≤ 1 there are (at least) two states % and %′ such that
p = tr [%A(x1)] = tr [%′A(x1)].

Suppose that A(x1) and A(x2) are not one-dimensional projections. We then can write A(x1)
as a sum A(x1) =

∑r
k=1 Pk of r ≥ 2 orthogonal one-dimensional projections (see Subsection

2.2.4). Similarly, we write A(x2) =
∑s
k=1Qk. For any number 0 ≤ p ≤ 1, we denote % =

pP1 + (1− p)Q1 and %′ = pP2 + (1− p)Q2. Then tr [%A(x1)] = tr [%′A(x1)] = p.

Proposition 54 shows, in particular, that if A is a two-outcome sharp observable and neither
A(1) nor A(2) is a one-dimensional projection, then A

d∼ B with any trivial observable B. How-
ever, we do not have A

i∼ B since A is not trivial. This demonstrates that the preorderings 4i

and 4d are different.

Exercise 33. Let A be a sharp observable with the outcome set Ω = {x1, x2} and assume that
A(x1) is a one-dimensional projection. Show that the pure state % = A(x1) is determined by A.

4.5.2 Coarse-graining

Coarse-graining means, generally speaking, a reduction in the statistical description of a system.
The statistical information related to an observable A is most directly encoded in the mapping
ΦA. Hence, the coarse-graining relation for observables can be formulated in the following way.

Definition 36. Let A and B be observables. We say that B is a coarse-graining of A, and denote
B 4c A, if there exists an affine mapping V : Prob(ΩA) → Prob(ΩB) such that

ΦB = V ◦ ΦA . (4.56)

If B 4c A 4c B, we denote A
c∼ B.
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Exercise 34. Show that 4c is a preorder and c∼ is an equivalence relation.

The idea of the coarse-graining relation is that the additional mapping V reduces the details
of the statistical description. Typically, V induces some loss of information, which can be due,
for instance, to the non-injectivity of V . This reduction in the statistical description is also
manifested in the following simple result.

Proposition 55. If B 4c A, then B 4i A.

Proof. Assume that B 4c A and %1, %2 are states such that ΦA(%1) = ΦA(%2). Then

ΦB(%1) = V ◦ ΦA(%1) = V ◦ ΦA(%2) = ΦB(%2) .

This shows B 4i A.

In general, B 4i A does not imply that B 4c A. This comes clear in Subsection 4.6.2.

Example 47. Let A be a trivial observable defined by a probability measure p, i.e., A(X) =
p(X)I (see Example 46). For any observable B, we then have A 4c B. Indeed, let V be a
mapping V (m) = p for every probability measurem. Then ΦA = V ◦ΦB. Moreover, if B 4c A,
then also B is a trivial observable.

Let ΩA = {a1, . . . , ak} and ΩB = {b1, . . . , bl} be finite sets, and let V be an affine mapping
from Prob(ΩA) to Prob(ΩB). A probability measure on ΩA is a convex combination of the point
measures δa1 , . . . , δak , and similarly for ΩB. Thus, we can write

V (δa1) = ν11δb1 + . . .+ ν1lδbl
...

V (δak) = νk1δb1 + . . .+ νklδbl

The properties of V imply that 0 ≤ νij ≤ 1 and
∑
j νij = 1. In other words, (νij) is a stochastic

matrix. Condition (4.56) can now be written in the form

B(bj) =
k∑
i=1

νijA(ai) . (4.57)

Note that this kind of construction can be written also if ΩA and ΩB are countable (but not
necessarily finite) sets.

Example 48. (Simple qubit observables) In Example 36 in Section 4.2 we discussed sharp qubit
observable A defined by a unit vector ~a ∈ R3. The projections related to this observable are
given by A(±1) = 1

2 (I ± ~a · ~σ). A stochastic 2 × 2 -matrix (νij) is completely determined by
its two entries ν11 and ν21 as the normalization requirement fixes the other entries. We conclude
that the most general two outcome observable (also called simple) B which is a coarse-graining
of A is given by

B(1) = ν11A(1) + ν21A(−1) =
1
2

((ν11 + ν21)I + (ν11 − ν21)~a · ~σ) .
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We can write B(1) in the form

B(1) =
1
2

(
βI +~b · ~σ

)
, (4.58)

where β = ν11 + ν21 and~b = (ν11− ν21)~a. From the fact that 0 ≤ νij ≤ 1 it follows that in this
new parametrization∥∥∥~b∥∥∥ ≤ β ≤ 2−

∥∥∥~b∥∥∥ . (4.59)

On the other hand, every effect in C2 has the form (4.58) for some parameters β and ~b
satisfying (4.59). Indeed, the inequalities in (4.59) are equivalent to O ≤ B(1) ≤ I . This leads
to the conclusion that every simple qubit observable is a coarse-graining of some sharp qubit
observable.

4.6 Example: photon counting observables

In this section we demonstrate some of the concepts studied earlier in a quantum optical context.
We give only a very brief explanation of the quantum optical description of a single mode elec-
tromagnetic field. Not more than the basic concepts are needed, but a reader who is not familiar
with this field before may wish to consult e.g. [37] or [81].

4.6.1 Single mode electromagnetic field and number observable

In the usual quantum optical description, photon is a single excitation of a single mode of the
electromagnetic field. Let H be an infinite dimensional Hilbert space. We fix an orthonormal
basis {|0〉, |1〉, . . .} for H, and we denote ζk = |k 〉〈 k|. The state ζ0 represents the vacuum state
of the electromagnetic field, while the state ζk is taken to represent the excited state of the field
containing k photons. The states ζ0, ζ1, . . . are called the number states.

The number observable N is the sharp observable associated to the orthonormal basis {|0〉,
|1〉, . . .} and it has N = {0, 1, . . .} as its outcome space (recall Example 34 in Section 4.2).
Hence, the effects of N are defined as N(n) = |n 〉〈n|. In the above quantum optical setting
N describes the ideal photon counting observable. Namely, for a number state ζk, the related
probability distribution in a N-measurement is

pN
ζk

(n) = tr [ζkN(n)] = tr [|k 〉〈 k||n 〉〈n|] = δk,n .

The number operator N is the (unbounded) selfadjoint operator corresponding to N, that is,

N =
∞∑
n=0

nN(n) .

Thus, tr [ρN ] gives the expectation value 〈N〉% of N in a state ρ.
To illustrate this framework further, we recall that for every z ∈ C, a coherent state |z〉 is

defined as

|z〉 = e−|z|
2/2

∞∑
n=0

zn√
n!
|n〉 .
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Coherent states describe electromagnetic field which is generated by a laser. The number |z| is
proportional to the energy of the field. Hence, we expect that larger |z| implies more photons.
Indeed, the expectation value of N in the state |z〉 is

〈N〉|z〉 = 〈 z |N | z〉 = |z|2 .

Exercise 35. Calculate the probability distribution of N in a coherent state |z〉. Confirm that it is
a Poisson distribution.

4.6.2 Non-ideal photon counting observables

A non-ideal photodetector does not detect all the photons hitting the detector. Let us assume
that a photon hitting the detector is detected with probability ε, 0 ≤ ε ≤ 1. Therefore, if the
electromagnetic field is in the number state ζk, we expect that the probability p(n|k) that the
detector clicks n times is

p(n|k) =
(
k
n

)
εn(1− ε)k−n if n ≤ k ,

p(n|k) = 0 if n > k .
(4.60)

With the usual convention that 00 = 1 and 0n = 0 for n ≥ 1 these probabilities makes sense also
in the extreme cases ε = 0 and ε = 1.

We want to describe this kind of non-ideal photodetector as a coarse-graining of the number
observable. For the number state ζk, the number observable N gives the point probability measure
δk. Hence, a coarse-graining mapping V maps δk to the probability distribution p(·|k). As
explained in the end of Subsection 4.5.2, V can be written as a matrix (νkn) with respect to the
point measures. A comparison to (4.60) shows that we need to set

νkn =
{

0 if k < n,(
k
n

)
εn(1− ε)k−n if k ≥ n.

Exercise 36. Show that (νkn) is a stochastic N× N -matrix.

We conclude that a photodetector with efficiency εmay be described by a discrete observable
Nε defined by

Nε(n) =
∞∑
k=0

νknN(k) =
∞∑
k=n

(
k

n

)
εn(1− ε)k−n|k 〉〈 k|, n ∈ N . (4.61)

We call Nε a photon counting observable. The number observable N is thus the photon counting
observable N1 with the ideal efficiency ε = 1. On the other hand, the photon counting observable
N0 with the worst efficiency ε = 0 is a trivial observable.

The photon counting observable Nε should be seen as an unsharp or imprecise version of N.
Its form does not say anything about the mechanism or source of the imprecision, and Nε can
arise in different ways. One possible setting which produces this kind of observable is an ideal
photodetector which has a beam splitter in front of it. If the transparency of the beam splitter is
ε, then the observable representing the hole setup is exactly Nε. We refer to Chapter VII.3 in [15]
for a derivation of this result.
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By our construction, Nε is a coarse-graining of N. As one could expect, the converse is not
true. Actually, the set of photon counting observables is totally ordered by the coarse-graining
relation and the ordering corresponds to the ordering of the efficiencies. The following two
results have been proved in [42].

Proposition 56. Let ε1, ε2 ∈ [0, 1] and let Nε1 and Nε2 be the corresponding photon counting
observables. The relation Nε1 4c Nε2 holds if and only if ε1 ≤ ε2.

Proof. Let us first assume that Nε1 4c Nε2 . This means that there exists a stochastic matrix µ
such that

Nε1(n) =
∞∑
k=0

µknN
ε2(k), n ∈ N.

For every m,n ∈ N, we get

〈m|Nε1(n)|m〉 =
∞∑
k=0

µkn〈m|Nε2(k)|m〉. (4.62)

Substituting (4.61) into both sides of (4.62) we obtain the identity(
m

n

)
εn1 (1− ε1)m−n =

m∑
k=0

µkn

(
m

k

)
εk2(1− ε2)m−k . (4.63)

Setting m = n = 0 we get 1 = µ00. Since
∑
n µkn = 1 and µkn ≥ 0 it follows that µ0n = 0

for all n ≥ 1. Let us further set m = n = 1. We obtain ε1 = µ01(1 − ε2) + µ11ε2. Since the
previous setting implies µ01 = 0 we get that µ11 = ε1ε

−1
2 . Since µ is a stochastic matrix, we

have µ11 ≤ 1. This can hold only if ε1 ≤ ε2.
Let us then assume that ε1 ≤ ε2. Define

µkn =
{

0 if k < n,(
k
n

)
εn1 ε

−k
2 (ε2 − ε1)k−n if k ≥ n.

Then µ is a stochastic matrix, and for each n we have
∞∑
k=0

µknN
ε2(k) =

∞∑
k=n

∞∑
m=k

(
k

n

)(
m

k

)
εn1 (ε2 − ε1)k−n(1− ε2)m−k|m 〉〈m|

=
∞∑
m=n

εn1

(
m∑
k=n

(
k

n

)(
m

k

)
(ε2 − ε1)k−n(1− ε2)m−k

)
|m 〉〈m|

=
∞∑
m=n

(
m

n

)
εn1 (1− ε1)m−n|m 〉〈m| = Nε1(n).

Thus, Nε1 4c Nε2 .

Proposition 57. Let ε 6= 0. Then Nε
i∼ N.
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Proof. As the claim is trivial in the case ε = 1, we assume that 0 < ε < 1. Moreover, since
Nε 4c N, we have Nε 4i N by Proposition 55 in Subsec. 4.5.2. To prove that N 4i Nε, let
%1, %2 ∈ S(H) and assume that ΦNε(%1) = ΦNε(%2). By (4.61) this means that for every n ∈ N,

∞∑
k=n

(
k

n

)
εn(1− ε)k 〈 k | %1 | k〉 =

∞∑
k=n

(
k

n

)
εn(1− ε)k 〈 k | %2 | k〉 . (4.64)

We can erase εn from both sides and move terms to one side. Hence, (4.64) is equivalent to the
condition

∞∑
k=n

(
k

n

)
(1− ε)k 〈 k | %1 − %2 | k〉 = 0 . (4.65)

Denote ak = (1− ε)k 〈 k | %1 − %2 | k〉 for every k ∈ N. Since |ak| ≤ (1− ε)k, the formula

f(z) :=
∞∑
k=0

akz
k

defines an analytic function in the region |z| < (1− ε)−1. The nth derivative of f is

f (n)(z) =
∞∑
k=n

k(k − 1) · · · (k − n+ 1)akzk−n =
1
n!

∞∑
k=n

(
k

n

)
akz

k−n ,

and thus, (4.65) implies that f (n)(1) = 0 for every n ∈ N. Therefore, f ≡ 0, and hence ak = 0
for every k ∈ N. This means that 〈 k | %1 | k〉 = 〈 k | %2 | k〉 for every k ∈ N. We conclude that
ΦN(%1) = ΦN(%2), and therefore, N 4i Nε.

It is perhaps surprising that ideal and non-ideal photon counting observables are informa-
tionally equivalent. Notice that this also implies that they have the same state determination
power. However, an important difference between these observables is that the induced proba-
bility distributions possess different statistical properties. Roughly speaking the difference is in
the statistical distance between the induced probabilities. In a sense, the probabilities induced by
the sharp photon counting observable are better distinguishable than the probabilities induced by
the non-ideal observables. This is exactly what the procedure of the coarse-graining is doing - a
coarse-grained probability distribution is fuzzier and statistically noisier than the original.

Exercise 37. Calculate the probability distributions of N and Nε (0 < ε < 1) in the number
states ζ1 and ζ2. In Section 4.4.2 we introduced functions A and D to quantify the distance
between probability distributions. Calculate the distances between the above probability distri-
butions related to the states ζ1 and ζ2, and conclude that N leads to better separated probability
distributions than Nε.
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5 Operations and channels

In Chapters 3 and 4 we assumed a model according to which an experiment is splitted into
two parts - preparation and measurement. This led us to the associated concepts of states and
observables, respectively. Based on this picture we can think about two types of apparatuses that
can be abstractly characterized as follows:

• preparators are devices producing states, i.e. no quantum input required, but a quantum
output is produced.

• measurements are input-output devices that are accepting quantum systems in their input
and produce classical output in the form of recorded outcomes described by probability
distributions, i.e. measurements do require some quantum input, but no quantum output is
expected.

This picture indicates that one type of apparatuses is missing - devices taking quantum input and
producing quantum output. Hence,

• channels are input-output devices transforming the quantum input into a quantum output.

Such device can be placed in between arbitrary preparation and measurement apparatuses. Chan-
nels and another slightly more general concept of operations are the topic of this chapter.

5.1 Operations and complete positivity

5.1.1 Definition and basic properties

By a physical operation N we understand the most general action that can be performed on a
considered physical system. Let us note that by definition the operations describe processes that
are happening between preparation and measurement procedure of the experiment. Therefore,
from the point of view of observed probabilities (being defined for a given state and observable),

Figure 5.1. A basic framework of experiment including a channel device.
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they can be understood either as parts of preparations (inputs and outputs are states), or as parts
of measurements (inputs and outputs are effects). Depending on our preferences operations can
be formulated either as mappings on states (Schrodinger picture), or as mappings on effects
(Heisenberg picture). In what follows we mostly use the Schrodinger picture.

In order to formulate the most general quantum operation it is convenient to introduce a
set of unnormalized states. The central notion of quantum theory is the probability rule, i.e., a
prescription determining the probability for each pair of a state and an observable. The meaning
of unnormalized states is that the predicted probabilities for all (normalized) observables are not
necessarily normalized. We require, however, that the probabilities sum up to a number smaller
than one, because in this case we can add an empty outcome to achieve the proper normalization
formally corresponding to losses of systems in the experiment. Hence, the set of unnormalized
states consists of positive trace class operators % with tr [%] ≤ 1. We denote by Sus the set of
unnormalized states, Sus = {% ∈ T (H) : % ≥ O, 0 ≤ tr [%] ≤ 1}.

In the Schrodinger picture a quantum operation N is defined as a mapping transforming
the set of states S = S(H) into the set of unnormalized states Sus. The statistical indistin-
guishability of different convex decompositions of the same state % cannot be affected by any
operation as otherwise the state space must be redefined. Hence, operations must be affine, i.e.
N (
∑
j λj%j) =

∑
j λjN (%j) for all %j ∈ S. This affinity extends by linearity on the linear

space of trace class operators T (H), thus we will think operations as linear maps on T (H).

Example 49. (No-cloning theorem - weak version.) A cloning device is machine that produces
a clone (a duplicate) of any unknown state. It takes one system as input and give back two of the
same type. The other one is a duplicate of the first one in the sense that no experiment would
see a difference between them. Hence, a cloning device acts as % 7→ % ⊗ % for all states %.
However, this kind of operation is not allowed in quantum mechanics, and this fact is known as
the no-cloning theorem. The no-cloning theorem is a simple consequence of the requirement that
operations are linear. Namely, we find the following inconsistency with linearity:

ω =
∑
j

λj%j 7→ ω ⊗ ω =
∑
i,j

λiλj%i ⊗ %j 6=
∑
j

λj%j ⊗ %j .

Later in Example 54 we discuss more sensitive formulation of the no-cloning theorem.

Definition 37. A linear mapping N : T (H) → T (H) is

- positive if N (T ) ≥ 0 for all for all T ≥ O.

- trace-preserving if tr [N (T )] = tr [T ] for all T ∈ T (H).

- trace-decreasing if tr [N (T )] ≤ tr [T ] for all T ∈ T (H).

If an operation N is understood as a linear mapping on T (H), then the states are mapped
into unnormalized states only if the mapping N is trace-decreasing and positive. In particular,
the requirement tr [N (%)] ≤ 1 for all % ∈ S implies tr [N (T )] ≤ tr [T ] for all T ∈ T (H).
Similarly N (%) ≥ O for all states implies that N (T ) ≥ O for all positive operators T ≥ O. We
thus make the conclusion that:

• Quantum operation is a trace-decreasing and positive linear mapping on T (H).
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Consider a state of a composite system A + B consisting of two subsystems A and B. We
can extend the operation NA acting only on the subsystem A to a mapping NA ⊗ IB acting on
a composite system, where IB is the identity mapping defined on subsystem B. This should not
make any difference as IB does nothing.

However, it is a nontrivial assumption that for all possible extensions the transformation
NA ⊗ IB transforms states of SAB ≡ S(HA ⊗ HB) to unnormalized states on the composite
system A+B. For a positive trace-decreasing linear mapping N the joint mapping NA ⊗ IB is
trace-decreasing, but its positivity is not guaranteed. If it is positive for all %AB ∈ SAB and all
extensions B, then we say that the map NA is completely positive. Otherwise the map NA is not
a physical operation, because the probability interpretation of such mappings leads to negative
probabilities.

Definition 38. A linear mapping NA : T (HA) → T (HA) is completely positive if the mapping
NA ⊗ IB is positive on T (HA ⊗HB) for all extensions HB .

As a conclusion, we need to redefine quantum operations in the following way:

• Quantum operation is a completely positive trace-decreasing linear mapping on T (H).

In the following example we demonstrate that there are positive mappings which are not
completely positive.

Example 50. (Partial transposition.) Let {ϕi} be an orthonormal basis for a Hilbert space H.
Define operators eij = |ϕi〉〈ϕj | in T (H). Transposition is a linear mapping τ : T (H) → T (H),
which acts on the operators eij as

eij 7→ τ(eij) = eji . (5.1)

Hence, it is a specific permutation of the elements of the operator basis {eij}. In matrix repre-
sentation of operators it is represented by a matrix transposition in the basis {ϕi}.

Let us assume that d = dimH < ∞. Consider a vector ψ+ = 1√
d

∑
j ϕj ⊗ ϕj ∈ H ⊗ H.

Applying the mapping (partial transposition) τA ⊗ IB onto the state |ψ+〉〈ψ+| we obtain an
operator ω′ that is not positive. For instance, if d = 2, then

ω′ =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , (5.2)

with eigenvalues ±1. As a result we see that transposition τ is an example of positive, but not
completely positive map. A practical implication is that such operation is not experimentally
implementable.

Example 51. (Quantum NOT gate.) In classical information theory the NOT operation is one
of the elementary single-bit gates changing the original bit value, i.e., 0 7→ 1 7→ 0. Two-
dimensional quantum systems (known as quantum bits, or qubits) can be used to encode two
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logical values, hence qubit can store one bit of information. In the quantum language the or-
thogonality of pure states is replacing the concept of opposite bit values. Quantum NOT gate is
defined as machine implementing the transformation

ENOT : Pψ 7−→ Pψ⊥ , (5.3)

where 〈ψ⊥ |ψ 〉 = 0. Let us note that such definition makes sense only in a two-dimensional
Hilbert space, because otherwise the orthogonal vector ψ⊥ is not unique up to complex factor.
In particular, if ψ = aϕ0 + bϕ1, then (up to global phase) ψ⊥ = b∗ϕ0 − a∗ϕ1. It follows that
Pψ⊥ = σyτ(Pψ)σy , where τ is the transposition defined in Example 50. Therefore, ENOT is a
positive, but not completely positive linear mapping, hence no physical device can implement
the quantum NOT gate.

Exercise 38. Prove that to verify the positivity, complete positivity, trace-preservity and trace-
decreasity it is sufficient to consider the validity only for states. In particular, show that ifN (%) ≥
O for all states, then N (T ) ≥ O for all positive operators T , and if tr [N (%)] = 1 is valid for all
states it follows that tr [N (T )] = tr [T ] for all trace class operators T .

Quantum operations are interpreted as the most general actions on quantum systems that
can be realized experimentally. The usage of unnormalized states in their definition reflects the
probabilistic nature of quantum measurements. For some measurements the measured object is
available also after the measurement is accomplished and outcome is registered. This kind of
scenario will be discussed in the next chapter. In this chapter we pay attention to quantum chan-
nels describing quantum processes that are placed between preparations and measurements. Let
us note that in contrast with state automorphisms (unitary transformations) discussed in Chapter
3 we do not require that quantum channels E are bijective.

Definition 39. A mapping N : T (H) → T (H) is an operation / channel if it is

1. linear,

2. completely positive,

3. trace-decreasing / trace-preserving.

We denote by O the set of quantum operations. It is a subset of all completely positive map-
pings denoted by Mcp. A subset Oc ⊂ O containing all trace-preserving quantum operations is
the set of all quantum channels.

5.1.2 Schrodinger vs. Heisenberg picture

States and effects are dual objects as explained in Chapter 3. Consequently, each quantum oper-
ation understood in the Schrodinger picture as a linear mapping N : T (H) → T (H) induces a
linear transformation N∗ : L(H) → L(H) defined by the formula

tr [N (T )E] = tr [TN∗(E)] , (5.4)

holding for all trace class operators T ∈ T (H) and bounded operators E ∈ L(H). The mapping
N∗ describes the same quantum operation asN but in the Heisenberg picture, i.e., as an operation
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acting on effects. In this picture the states are not affected, but the effects are. Since (N ⊗I)∗ =
N∗ ⊗I the complete positivity of N is equivalent to the complete positivity of N∗. The identity

tr [N (T )] = tr [N (T )I] = tr [TN∗(I)]

implies that an operation N is trace-decreasing if and only if the dual operation N∗ decreases
the identity operator in the sense of partial ordering of positive operators, i.e., N∗(I) ≤ I . For
channels the trace-preservity of N is replaced by unitality of N∗, namely, N∗(I) = I .

Definition 40. A linear mapping N∗ : L(H) → L(H) is unital if N∗(I) = I .

In conclusion, we have seen that a channel N : T (H) → T (H) defines a linear mapping
N∗ : L(H) → L(H) which is completely positive and unital.

There is one technical remark that has to be mentioned in the case of infinite dimensional
Hilbert spaces. Alternatively, channels can be defined directly in terms of linear mappings on
L(H). In this case, in addition to complete positivity and unitality, one has to add one more
requirement, namely, normality. We are not going to need this concept, so we refer to [29] for
details. Actually, one can usually circumvent this discussion by using operator sum decomposi-
tions, which are introduced in Section 5.2.3.

Example 52. (Complete contraction) Fix a positive trace class operator F 6= O. Consider a
channel EF defined by

EF (T ) =
tr [T ]
tr [F ]

F

for all T ∈ T (H). Let us specify its action in the Heisenberg picture, i.e., the mapping EF∗ :
L(H) → L(H). By definition

tr [TEF∗(A)] = tr [EF (T )A] =
tr [T ]
tr [F ]

tr [FA] (5.5)

holds for all T ∈ T (H) and all A ∈ L(H). It follows that

EF∗(A) =
tr [FA]
tr [F ]

I . (5.6)

In summary, the channel EF maps in the Schrodinger picture all trace class operators into a
one-dimensional linear subspace spanned by the positive trace class operator F , whereas in the
Heisenberg picture all operators are mapped into one-dimensional subspace spanned on the iden-
tity operator I . If E is restricted to states, then EF (%) = 1

tr[F ]F , i.e., the whole state space is
contracted into a single point represented by the state F/tr [F ].

Exercise 39. Show that I∗ = I.

5.2 Physical model of quantum channels

Quantum channels were introduced as transformations of quantum states (or effects) satisfying
certain mathematical requirements in order to preserve the basic framework of quantum statistics
introduced in Chapter 3. No additional assumption (except the mutual compatibility of channels,
states and effects) was made. In this section we introduce quantum channels starting from a
slightly different point of view.



Operations and channels 585

5.2.1 Isolated vs. open systems

For the purposes of system’s dynamics physicists are distinguishing among two different types
of systems: isolated and open. We say that a system is isolated if its changes are reversible.
Otherwise the system is called open. As it was argued in Chapter 3, the reversibility condition
requires that the transformations of the system are either unitary or antiunitary. Although the
isolated systems are only mathematical idealizations of the reality, it is a common paradigm in
physics that every open system is embedded in a larger isolated system, conventionally called the
environment. This implies that in principal an evolution can always be reversed, but sufficiently
large environment must be taken into account.

Let us denote by HS and HE the Hilbert spaces of the system and the environment, re-
spectively. Consider a general input state ω ∈ S(HS ⊗ HE) and some unitary, or antiunitary
transformation U : HS ⊗ HE → HS ⊗ HE acting on the total (isolated) system and mapping
the state ω into a state ω′ = UωU∗. An observer having access to the system S only finds out
the evolution

trE [ω] ≡ % 7→ %′ ≡ trE [UωU∗] . (5.7)

We can also think this picture from the other side. Namely, suppose that the system is in a
state %. We assume that there is a state ξ of the environment such that we can form the compound
state %⊗ ξ. It is assumed that the state and environment are independent in the sense that we can
always prepare the environment into the state ξ, independently of %. In other words, we assume
that the mapping

Pξ : S(HS) → S(HS ⊗HE) , Pξ(%) = %⊗ ξ (5.8)

can be realized.

Proposition 58. Let HE be the Hilbert space describing the environment, U unitary operator on
H⊗HE and ξ a fixed state of the environment. Then the induced mapping

E : S(HS) → S(HS) , E(%) = trE [U%⊗ ξU∗] (5.9)

is a channel.

Proof. Formula (5.9) can be written as E = trE ◦ σU ◦ Pξ. The linearity, complete positivity
and trace-preservation follows from the properties of mappings Pξ, U and trE . Each of them is
linear, completely positive and trace-preserving.

In Proposition 58 we assumed that U is a unitary operator. Since antiunitary operators are
also state isomorphisms, could we prove a similar result using antiunitary operators instead of
unitary operators? The answer to this question is negative, as shown in the following result.

Proposition 59. Let A be an antiunitary operator acting on H. The mapping σA is positive, but
not completely positive.

Proof. As shown in Proposition 10 in Section 2.2.3, the antiunitary operator A can be written as
a composition of a unitary operator U and complex conjugate operator J with respect to some
basis {ϕj} of the Hilbert space H. For every unit vector ψ ∈ H, we get

PJψ = τ(Pψ) ,
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where τ is the transposition with respect to the orthonormal basis {ϕj}, as defined in Example
50. Consequently, the complex conjugation of vectors is associated with the transposition of pure
states. Since the transposition is positive but not completely positive, it follows that also σA is
positive but not completely positive.

Our conclusion from Proposition 59 is that if σA is applied on a subsystem the total system
can become unphysical, i.e described by a nonpositive operator. Therefore, we can restrict to
unitary mappings when describing the evolution of the closed system H⊗HE .

It may not be so surprising that a combination of the mappings Pξ, σU and trE gives a
channel. All these three mappings are something that we assume to be physically realizable.
However, could there be something more general? Perhaps our construction gives only some
special channels and to get other channels we need a more general construction. The final an-
swer to this question in given in Subsection 5.2.2. However, to increase our understanding it is
instructive to take a look on these possible generalized constructions.

Definition 41. A mapping P : S(HS) → S(HS ⊗ HE) is called a preparation mapping if
trE [P(%)] = % for all % ∈ HS .

Having the preparation mapping defined, we can express the evolution E of the system S as a
composition of three mappings: preparation P , unitary transformation σU and partial trace over
the environment trE ,

E = trE ◦ σU ◦ P . (5.10)

Notice that Pξ defined in (5.8) is a preparation mapping with a very special form. With the
general concept of preparation mapping, do we get more general class of evolutions than that
defined by channels?

Example 53. (Implementation of arbitrary transformation of the state space.) Suppose the sys-
tem and the environment are described by the same Hilbert space, i.e., HE = HS . Define a
preparation mapping

Pf : %S 7→ %S ⊗ f(%S) ,

where f : S(HS) → S(HS) is an arbitrary function. Choose U = VSWAP to be the SWAP
transformation defined by the formula

VSWAP(%⊗ σ)V ∗SWAP = σ ⊗ % .

Applying sequentially all three operations according to Eq.(5.10) we obtain the transformation
% 7→ f(%). In particular,

%
P7−→ %⊗ f(%)

σVSWAP7−→ f(%)⊗ %
trE7−→ f(%) . (5.11)

Let us note that no restrictions are applied to function f and in this picture each transformation
is possible.
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As shown in Example 53, the model under consideration is capable to describe arbitrary state
transformation f : S(H) → S(H). So what goes wrong (if anything)?

The explanation of this conundrum is, once again, that we need to require mappings to be
affine. Especially, we require that the preparation mapping P is affine, i.e., P(

∑
j pj%j) =∑

j pjP(%j) for all affine combinations of states. Otherwise we shall be able to distinguish
different convex decompositions. From the other side a very important assumption allowing us
to split experiment into several parts is the statistical independence of individual apparatuses in
the following sense: an observable describing the measurement apparatus does not depend on the
preparation and vice versa. In the same way also the description of channels is independent of
particular preparations and observables. This assumption requires that the environments affecting
the preparations and channels are independent, hence the joint state is uncorrelated, i.e., P(%) =
% ⊗ f(%). Applying the affinity constraint it follows that f is necessarily constant, so that there
is a fixed state ξ such that f(%) = ξ for all % and P(%) = % ⊗ ξ. Hence, with these necessary
constrains we are back in preparation mappings of the form (5.8).

5.2.2 Stinespring’s dilation theorem

It is one of the fundamental facts in the theory of open systems that Proposition 58 has a coun-
terpart. Namely, each channel can be understood as a unitary evolution of an extended system.
This result was originally proved in by W.F. Stinespring in [78]. A proof can be also found, for
instance, in [28].

Theorem 7. (Stinespring’s Theorem.) Let E : T (H) → T (H) be a quantum channel. There
exists an environment Hilbert spaceHE , unitary operator U : H⊗HE → H⊗HE and an initial
state of the environment ξ ∈ S(HE) such that

E(%) = trE [U(%⊗ ξ)U∗] (5.12)

for all % ∈ S(H). The triple 〈HE , U, ξ〉 is called a Stinespring dilation of the channel E .

Stinespring dilation of a channel E is not unique. Roughly speaking, this is due to the fact that
starting from one Stinespring dilation, we can always choose a bigger environment and in this
way produce a new Stinespring dilation. However, Stinespring dilation is unique if an additional
requirement of minimality is added.

Definition 42. A Stinespring dilation 〈HE , V, ξ〉 is minimal if the closure of linear span of the
set {ψ ∈ H ⊗HE : ψ = (T ⊗ I)V ∗(ϕ⊗ ξ) for some ϕ ∈ H, T ∈ L(H)} equals H⊗HE .

In other words, the dilation is minimal if the environmentHE is smallest possible. In general,
for the minimal dilation dimHE ≤ dimH.

Proposition 60. Two minimal dilations V1, V2 of the same quantum channel are related by a
unitary transformation W : HE2 → HE1 , i.e. HE2 = HE1 and V1 = (I ⊗W )V2.

Example 54. (No cloning theorem for pure states - strong version.) In Example 49 we pointed
out that the cloning transformation % 7→ % ⊗ % is not linear, hence, it cannot be realized ex-
perimentally. In this example we show that even stronger statement holds. In particular, a pair
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of nonorthogonal pure states cannot be cloned. This theorem is of use in many applications in
quantum cryptography, because cloning would be an ideal strategy of an adversary.

Consider a pair of pure states Pψ = |ψ〉〈ψ| and Pφ = |φ〉〈φ|. According to quantum model
the cloning machine is acting as a unitary channel σU on a composite system consisting of the
system itself (associated with Hd) and some ancilla system described by Hilbert space Hanc =
Hd ⊗H′. Without loss of generality we may assume that the initial state of the ancillary system
is pure, ξanc = |ϕ〉〈ϕ|. This fact follows from the purification procedures as described in Section
3.4.2. Consequently, the cloning transformation requires

Pψ ⊗ |ϕ〉〈ϕ| 7→ Pψ ⊗ Pψ ⊗ |ψ′〉〈ψ′| ,
Pφ ⊗ |ϕ〉〈ϕ| 7→ Pφ ⊗ Pφ ⊗ |φ′〉〈φ′| ,

where the purity of states |ψ′〉〈ψ′| and |φ′〉〈φ′| is guaranteed by the unitarity of the channel σU .
As unitary channels satisfy tr [σU [%1]σU [%2]] = tr [%1%2] for all states %1, %2, it follows that the
identity

tr [PψPφ] = (tr [PψPφ])2| 〈φ′ |ψ′ 〉 |2 , (5.13)

must hold for some φ′, ψ′ ∈ H′.
Suppose then that the states Pψ and Pφ are different but not orthogonal, so that 0 < tr [PψPφ]

< 1. Equation (5.13) now gives

1 = tr [PψPφ] | 〈φ′ |ψ′ 〉 |2 . (5.14)

However, since tr [PψPφ] < 1 and | 〈φ′ |ψ′ 〉 |2 ≤ 1, the above condition cannot be satisfied. In
summary, we have proved that the cloning of nonorthogonal states cannot be described by means
of quantum channels. Hence, the cloning of nonorthogonal states is not a physical transforma-
tion.

5.2.3 Operator sum decomposition of quantum channels

In this subsection we derive a very convenient alternative form for channels. It is usually helpful
especially in checking the complete positivity of a given mapping.

Proposition 61. A linear mapping E : T (H) → T (H) is an operation if and only if there exists a
sequence of bounded operators A1, A2, . . . such that E(T ) =

∑
k AkTA

∗
k for every T ∈ T (H).

In this case, E is a channel if and only if also the condition
∑
k A

∗
kAk = I holds.

Proof. Suppose that E(·) =
∑
k Ak · A∗k for some sequence of bounded operators A1, A2, . . . .

LetHanc be an ancillary Hilbert space, T ∈ T (H⊗Hanc) a positive operator, and ψ ∈ H⊗Hanc.
Then

〈ψ | (E ⊗ I)(T )ψ 〉 =
∑
k

〈 (A∗k ⊗ I)ψ | (T )(A∗k ⊗ I)ψ 〉 =
∑
k

〈ψk |Tψk 〉 ≥ 0 ,

showing that (E ⊗I)(T ) ≥ O, and hence leading to the conclusion that E is completely positive.
In the above calculation we used the positivity of T and we denoted ψk = (A∗k ⊗ I)ψ. For the
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trace of E(T ) we get

tr [E(T )] =
∑
k

tr [AkTA∗k] = tr

[
T (
∑
k

A∗kAk)

]
.

This proves the second claim.
Next, let us suppose that E is a channel and 〈ξ,H⊗HE , U〉 is its dilation in accordance with

the Stinespring theorem. Without loss of generality we can assume ξ = |ϕ1〉〈ϕ1|, because each
mixed state can be purified by adding some ancillary degrees of freedom (see Section 3.4.2).
Choose an orthonormal basis {ϕk} for HE , and for each k define operator Ak via the identity

〈ψ |Akφ 〉 = 〈ψ ⊗ ϕk |Uφ⊗ ϕ1 〉 ,

holding for all ψ, φ ∈ H. It follows that for all ψ,ϕ ∈ H and for all % ∈ S(H), we have

〈ψ | E(%)ϕ 〉 = 〈ψ | trE [U(%⊗ |ϕ1〉〈ϕ1|)U∗]φ 〉
=

∑
k

〈ψ ⊗ ϕk |U(%⊗ |ϕ1〉〈ϕ1|)U∗(φ⊗ ϕk) 〉

=
∑
k

∑
ab

%ab 〈U∗(ψ ⊗ ϕk) |ψa ⊗ ϕ1 〉 〈ψb ⊗ ϕ1 |U∗(φ⊗ ϕk) 〉

=
∑
k

∑
ab

%ab 〈ψ |Akψa 〉 〈Akψb |φ 〉

=
∑
k

〈ψ |Ak%A∗kφ 〉 , (5.15)

thus E(%) =
∑
k Ak%A

∗
k.

Exercise 40. Prove the following: a mapping E∗ : L(H) → L(H) describes channel in the
Heisenberg picture if and only if there exists a sequence of bounded operators A1, A2, . . . such
that E∗(T ) =

∑
k A

∗
kTAk for every T ∈ L(H) and

∑
k A

∗
kAk = I .

In summary, the expression of quantum channel E via operators A1, . . . , An satisfying the
normalization

∑
k A

∗
kAk = I is called operator sum form (sometimes also Kraus form and the

operators are called Kraus operators). In the Schrodinger picture the channel reads E(%) =∑
k Ak%A

∗
k. In the Heisenberg picture it takes the form E∗(T ) =

∑
k A

∗
kTAk. The normaliza-

tion
∑
k A

∗
kAk = I is picture independent.

Example 55. (Contraction into the total mixture.) Suppose that d = dimH < ∞. The con-
traction into the total mixture is a quantum channel A0 mapping the whole state space into a
single point represented by the total mixture, i.e., A0(%) = 1

dI for all % ∈ S(H). Consider an
orthonormal basis {ϕj} of H and define operators Ejk = |ϕj〉〈ϕk|. Since

∑
j,k E

∗
jkEjk = dI it

follows that T 7→ 1
dEjkTE

∗
jk is a channel. In fact,

A0(T ) =
1
d

∑
jk

EjkTE
∗
jk = tr [T ]

1
d
I . (5.16)
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Let us note that choosing a different basis of the Hilbert spaceHE , or different dilation space
〈ξ′E ,HE′ , U

′〉 associated with E we obtain different operator sum representation of the quantum
channel E . The ambiguity in this type of representation is specified in details in the following
proposition.

Proposition 62. Two sets of bounded operators {A1, . . . , An} and {B1, . . . , Bm} define the
same completely positive map if and only if

Aj =
∑
k

ujkBk , (5.17)

where coefficients ujk form a partial isometry matrix, i.e.
∑
k u

∗
jkujl = δkl.

Proof. The sufficiency can be proved by directly. The identities∑
j

AjTA
∗
j =

∑
j

ujku
∗
jlBkTB

∗
l =

∑
k

BkTB
∗
k (5.18)

holds for all T ∈ T (H). Next let us consider that
∑
j AjTA

∗
j =

∑
k BkTB

∗
k for all T ∈

T (H). If we set T = |ϕ〉〈ϕ|, then
∑
j Aj |ϕ〉〈ϕ|A∗j =

∑
j |φj〉〈φj | =

∑
k |ψk〉〈ψk| =∑

k Bk|ϕ〉〈ϕ|B∗k , where {φj}, {ψk} are collections of unnormalized vectors. The Proposition
21 implies that φj =

∑
k ujkψk, where ujk form a matrix of partial isometry. Consequently,

Ajϕ =
∑
k ujkBkϕ for all ϕ ∈ H implies that Aj =

∑
k ujkBk.

5.3 Elementary properties of quantum channels

In this section we introduce some basic properties and concepts used for the characterization
of quantum channels. Let us recall the notation: Mcp is the set of completely positive linear
mappings, O is the set of quantum operations, and Oc stands for the set of quantum channels.

5.3.1 Convexity

The setsOc ⊂ O ⊂Mcp are convex, i.e. λE1 +(1−λ)E2 is (trace-decreasing/trace-preserving)
completely positive map if 0 ≤ λ ≤ 1 and E1, E2 are (trace-decreasing/trace-preserving) com-
pletely positive maps. As in the case of states we can speak about extremal channels and about a
completely mixed channel. We shall not give a complete characterization of extremal channels,
but rather give some examples. In particular, there are two elementary examples of extremal
elements of Oc:

• Unitary channels σU (·) = U ·U∗. The extremality comes from the uniqueness of operator-
sum representation of unitary channels. In fact, a nontrivial convex combination of two
channels necessary results in the operator-sum representation with more than one Kraus
operator.

• Contractions to pure states mapping the whole state space into a single pure state |ψ〉〈ψ|,
i.e. Aψ : S(H) → |ψ〉〈ψ|. In this case the extremality follows from the extremality of
the pure states. In particular, let us assume that Aψ = λE1 + (1− λ)E2. Then necessarily
|ψ〉〈ψ| = λE1(%) + (1− λ)E2(%) for all states %. However, due to extremality of |ψ〉〈ψ| it
follows that E1(%) = E2(%) = |ψ〉〈ψ| for all %, i.e. E1 = E2 = Aψ .
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In the rest of this subsection we assume that dimH < ∞. In the search of completely
mixed channel we are motivated by some specific properties of the completely mixed state. In
particular, we know that the completely mixed state is the unique state commuting with all the
unitary operators and it is also the mixture of all states, i.e., it is the average state. Moreover, let
us notice that the total mixture is the only state commuting with all operators. In accordance,
we shall pay attention to channels commuting with all unitary channels, i.e. [E , σU ] = 0, or
equivalently, E(UTU∗) = UE(T )U∗ for all U .

Example 56. (Average unitary channel.) Consider a channel

A(T ) =
∫
U(d)

UTU∗ dU ,

where dU is the invariant Haar measure. We then have [A(T ), U ] = 0 for all unitary operators
U . Hence, by Schur lemma we can conclude that A(T ) is proportional to identity operator, i.e.
A(T ) = c(T )I , where c(T ) is some linear functional. Since A is trace-preserving it follows that

tr [T ] = tr [A(T )] = c(T )tr [I] = c(T )d ,

thus c(T ) = tr [T ] /d. In summary, we showed that

A(T ) =
tr [T ]
d

I ≡ A0(T ) , (5.19)

which is obviously a channel commuting with all unitary channels.

Further, let us fix a channel E and define its unitary orbit OE as a set of all channels EU =
σU ◦ E . Using the result of Example 56 we find out that starting from any channel E , the average
over all channels EU ∈ OE gives∫

U(d)

UE(T )U∗ dU =
tr [E(T )]

d
I =

tr [T ]
d

I = A0(T ) .

Moreover, if σU ◦ E = σV ◦F for some channels E ,F , then OE = OF , because σU = σV ◦ σW
for some unitary channel σW . In fact, σU ◦ E = σV ◦ σW ◦ E = σV ◦ F implies F = σW ◦ E .
We can use these observations to argue that A0 is the average channel and therefore it can be
identified as the completely mixed channel. Notice that A0 ◦ E = A0 for all channels E . Let us
remind that A0 maps any state into the completely mixed state.

5.3.2 Distances and channels

The channels are by their action changing the distances between the initial and the final states.
In Sections 4.4.3 and 4.4.4 we introduced distance measures quantifying how close are quantum
states (trace distance and fidelity). These measures for states can be used to quantify the degree
of disturbance caused by the action of quantum channel, but also to introduce distance between
the channels themselves.



592 Guide to mathematical concepts of quantum theory

Proposition 63. Quantum channels are contractive, i.e., they do not increase the distance be-
tween two quantum states. In particular, for the trace distance and the fidelity the following
inequalities hold:

D(E(%1), E(%2)) ≤ D(%1, %2) , (5.20)
F (E(%1), E(%2)) ≥ F (%1, %2) . (5.21)

Proof. We prove only the inequality for the trace distance. It is sufficient to use only the
fact that channels are trace-preserving, i.e. we show that trace-preseving positive linear maps
are contractive. A difference of positive operators is a selfadjoint operator. Consequently,
from spectral decomposition it follows that %1 − %2 = P − Q, where P,Q are positive op-
erators with mutually orthogonal supports, i.e. tr [|P −Q|] = tr [P ] + tr [Q]. The opera-
tor %1 − %2 is traceless, hence tr [P ] = tr [Q] = tr [E(P )] = tr [E(Q)]. According to Eq.
(4.48) tr [C(%1 − %2)] ≤ 1

2 tr [|%1 − %2|] and let us assume that C is the projector for which
1
2 tr [|E(%1 − %2)|] = tr [CE(%1 − %2)]. Using all these facts we find that

D(%1, %2) =
1
2

tr [|%1 − %2|] =
1
2

tr [|P −Q|] = tr [P ] = tr [E [P ]]

≥ tr [CE [P ]] ≥ tr [C(E [P ]− E [Q])] =
1
2

tr [E(%1 − %2)]

≥ D(E [%1], E [%2]) , (5.22)

what proves the inequality for the trace distance.

Depending on our preferences there are several options how to understand the concept of dis-
tance between quantum channels. Proposition 63 suggests to quantify the difference of quantum
channels by means of their action on state space. For instance, the following functions are quan-
tifying the “distance” of channels from slightly different perspectives catching different features
of channel’s actions.

1. Minimal distance: Dinf(E1, E2) = inf% ‖(E1 − E2)(%)‖tr

2. Maximal distance: Dsup(E1, E2) = sup% ‖(E1 − E2)(%)‖tr

3. Average distance: Dave(E1, E2) =
∫
S(H)

‖(E1 − E2)(%)‖tr d%

Example 57. Suppose that d = dimH < ∞. Let us calculate the distances between a unitary
channel σU and the contraction channel A0 to the total mixture. We get

Dinf(σU ,A0) =
1
2

inf
%

∥∥∥∥σU (%)− 1
d
I

∥∥∥∥
tr

= 0 , (5.23)

Dsup(σU ,A0) =
1
2

sup
%

∥∥∥∥σU (%)− 1
d
I

∥∥∥∥
tr

=
1
2

∥∥∥∥|ψ〉〈ψ| − 1
d
I

∥∥∥∥
tr

= (d− 1)/d . (5.24)

We used the facts that unitary channels preserve total mixture and have some pure state as the
fixed point, i.e., σU (|ψ〉〈ψ|) = |ψ〉〈ψ|. Therefore, the infimum is achieved for the total mixture.
On the other hand, the pure states maximize the distance from the total mixture and for all pure
states this distance equals (d− 1)/d.
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Example 58. (Quantification of noise.) For the purposes of quantum state transmission a relevant
quantity is the degree of noise introduced by the application of the channel describing the transfer.
For these purposes one can adopt any measure used to quantify the difference of two quantum
channels by setting one of the channels to be the noiseless channel identified with the identity
channel. In particular, how noisy the channel is can be quantified by the formula

∆sup(E) = Dsup(E , I) = sup
%∈S(H)

1
2

tr [|E(%)− %|] . (5.25)

This formula gives ∆sup(E) = 0 if and only if E = I. In fact, for arbitrary other channel there
is a state % such that E(%) 6= % which guarantees that ∆sup(E) > 0 for E 6= I. The maximal
value of trace distance is 1. This is achieved if a difference of mutually orthogonal pure states
are evaluated. That is, if a channel E maps a pure state |ψ〉〈ψ| into an orthogonal state |ψ⊥〉〈ψ⊥|,
then this channel introduces the maximal possible noise with respect to the considered measure.
For example, for the pure state contractions

∆sup(Aψ) = sup
%

1
2

tr [||ψ〉〈ψ| − %|] = tr [||ψ〉〈ψ| − |ψ⊥〉〈ψ⊥||] = 1 . (5.26)

Similarly, if 〈ψ |Uψ 〉 = 0 for some vector ψ, then for these unitary channels ∆sup(σU ) = 1, i.e.
unitary channels can be as noisy as possible. Surprisingly, the contraction into the total mixture
A0 : S(H) 7→ 1

dI does not introduce the maximal possible noise, because

∆sup(A0) = sup
%

1
2

tr
[
|1
d
I − %|

]
= (d− 1)/d . (5.27)

For the calculation, see Example 57.

5.3.3 Conjugate channels

The Stinespring theorem provides a physical model of a quantum channel E via its Stinespring
dilation 〈HE , U, ξE〉. Let us observe that each dilation defines also a mapping from T (H) to
T (HE). Namely, we take the partial trace over the system instead of the environment. This
leads to the following definition.

Definition 43. A channel E ′ : T (H) → T (HE) is called conjugated (or complementary) to a
channel E : T (H) → T (H) if there exist a dilation 〈HE , U, ξ〉 of E such that

E ′ = trS ◦ σU ◦ Pξ . (5.28)

Here trS stands for the partial trace of the system and Pξ denotes the addition of a factorized
ancilla.

The fact that E ′ is a channel follows directly from the definition, because the mappings
trS , σU ,Pξ are channels. Since Stinespring dilation is not unique it follows that a channel E
can have many conjugated channels.

Consider an operator form of the channel E , E(%) =
∑
j Rj%R

∗
j and dilation 〈HE , U, ξj〉

with U =
∑
jk Ajk ⊗ |ϕk〉〈ϕj | such that Aj1 = Rj . The unitarity of U is guaranteed if
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∑
j A

∗
jkAjk′ = δkk′I and

∑
k A

∗
jkAj′k = δjj′I . Setting ξE = |ϕ1〉〈ϕ1| we obtain for the

channel and the conjugate channel the following expressions

E(T ) =
∑
j

RjTR
∗
j ; (5.29)

E ′(T ) =
∑
jk

tr [RjTR∗k] |ϕj〉〈ϕk|. (5.30)

Therefore, the ambiguity of E ′ is in some sense equivalent to ambiguity in operator sum form.

Example 59. (Conjugate channels to a unitary channel.) Let σU be a unitary channel. The
operator sum form of σU is unique. By Eq. (5.30) for the conjugate channel we get

σ′U (T ) = tr [T ] |ϕ〉〈ϕ| ,

where the unit vector ϕ can be chosen arbitrarily. Thus, the contraction Aϕ into a pure state
|ϕ〉〈ϕ| is a conjugate channel for σU . In order to derive Eq.(5.30) it was assumed that the initial
state of the environment is pure. Consider ξE is a mixed state with a decomposition ξE =∑
j λj |ϕj〉〈ϕj |. Due to linearity the associated conjugate channel E ′ =

∑
j λkE ′j , where E ′j are

the conjugated channels corresponding to pure states. Let us note that E ′j and E ′ are, in general,
conjugated channels to channels Ej and E , respectively, but these channels are usually different.
However, if Ej = Ek for all j, k, then E ′ is also a conjugated channel to E ≡ Ej . Since in the
considered case for all ϕ ∈ HE the channels Aϕ are conjugated to σU , it follows that also the
convex combinations of Aj are conjugated to σU . That is, a complete contraction into arbitrary
mixed state ξ represents the conjugated channel Aξ to each unitary channel σU . Moreover, since
unitary channels have the unique operator sum decomposition, there are no others conjugated
channels. As a result we get that channels

σ′U [T ] = Aξ[T ] = tr [T ] ξ (5.31)

form the set of conjugate channels to arbitrary unitary channel σU .

An interesting and important consequence of this example is that if the system evolves in
a unitary way, no trace of the initial state % is left in the final state of the environment. For
unitary channels the environment is completely independent of the system and therefore unitarily
evolving systems can be considered to be closed.

5.4 Parametrizations of quantum channels

In this subsection all Hilbert spaces are assumed to be finite dimensional and we shall discuss
several different representations of quantum channels acting on such finite systems.

5.4.1 Matrix representation

Quantum channels are linear mappings on the vector space of operators L(H) and therefore they
can be represented as matrices if operators are understand as vectors (see Section 3.1.3). Con-
sider an orthogonal operator basis E0, . . . , Ed2−1 of d-dimensional quantum system. A general
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operator T =
∑
j tjEj can be expressed as a vector ~t with coefficients tj = 1

tr[E∗jEj]
tr
[
E∗j T

]
.

Similarly, a linear mapping E on L(H) form a matrix with elements

Ejk =
1

tr
[
E∗jEj

]
tr [E∗kEk]

tr
[
E∗j E [Ek]

]
(5.32)

and the action of the quantum channel can be expressed as the standard matrix multiplication of
matrix E and vector ~t

E : ~t 7→ ~t′ = E~t . (5.33)

In this type of parametrization the composition of two channels corresponds to the usual matrix
multiplication. A disadvantage of this representation is that the constraint of complete positivity
is very difficult to verify and other equivalent forms must be exploited.

Example 60. (Matrix operator basis.) Let {ϕj} be an orthonormal basis of the Hilbert spaceH.
The operators ejk = |ϕj〉〈ϕk| expressed as matrices in the basis {ϕj} contain only one nonzero
entry placed at jth row and kth column. They are linearly independent and form the operator
basis of L(H). Moreover, tr [ejkeab] = δjaδkb, i.e., this matrix operator basis is orthonormal.

Example 61. (Traceless selfadjoint operator basis.) It is convenient to choose a basis containing
the identity operator (up to a factor), i.e., Ẽ0 = cI , and for other elements use the notation
Ẽj = cEj . The orthogonality condition fixes all other elements of the basis to be traceless,
tr [Ej ] = 0 for j 6= 0. Since the interesting operators are selfadjoint, it is natural to choose
operators that are selfadjoint. Moreover, we assume that tr

[
E2
j

]
= tr [I] = d, where d is the

dimension of the Hilbert space H, so that tr
[
ẼjẼk

]
= c2dδjk and tr [EjEk] = dδjk. Let

us note that selfadjoint trace class operators Ts(H) form a real vector space. In such case the
vectors representing states and matrices corresponding to channels are real. We get the so-called
Bloch vector representation of states and channels that was already introduced in Chapter 3. The
so-called Bloch vector ~r associated with a state % is defined via identity

~r = tr
[
% ~E
]

=
1
c

tr
[
c% ~E

]
=
d

c
~x , (5.34)

hence,

% =
∑
j

tr
[
Ẽj%

]
tr
[
Ẽj

2
] Ẽj =

c2

c2d

∑
j

tr [Ej%]Ej =
1
d
(I + ~r · ~E) , (5.35)

where ~E is a vector of d2 − 1 operators E1, . . . , Ed2−1. Similarly, a matrix of a channel E is
described by elements

Ejk =
tr
[
ẼjE [Ẽk]

]
tr
[
Ẽj

2
]

tr
[
Ẽk

2
] =

c2

c4d2
tr [EjE [Ek]] =

1
c2d2

tr [EjE [Ek]] . (5.36)
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This matrix is acting on vectors ~x as follows xj 7→ x′j =
∑
k Ejkxk. Since E is tracepreserving

it follows that tr [IE [Ek]] = δ0k, hence x′0 = x0. That is, for j 6= 0

r′j = Ej0 +
d2−1∑
k=1

Ejkrk =
1

c2d2

tr [EjE [I]] +
d2−1∑
k=1

tr [EjE [Ek]] rk

 . (5.37)

As a result we get the Bloch vector representation of quantum channels. Defining a vector ~τ with
entries τj = Ej0 and a (d2−1)×(d2−1) matrix with entries Tjk = Ejk for j, k 6= 0 the channels
take the affine form

~r 7→ ~τ + T~r . (5.38)

Setting c = 1/
√
d the operators Ẽj = 1√

d
Ej form an orthonormal operator basis and ~τ =

1
d tr
[
~EE [I]

]
, Tjk = 1

d tr [EjE [Ek]].

Example 62. (Unitary channels.) Consider an orthonormal traceless selfadjoint operator basis of
d-dimensional quantum system, 1√

d
I, 1√

d
E1, . . . ,

1√
d
Ed2−1. For unitary channels EU the vector

~τ = 1
d tr
[
~EUIU∗

]
= ~0 vanishes and [TU ]jk = 1

d tr [EjUEkU∗]. Moreover,

∑
k

[TU ]jk[TTU ]kl =
∑
k

[TU ]jk[TU ]lk =
1
d2

∑
k

(U∗EjU |Ek)(Ek|U∗ElU)

=
1
d
(U∗EjU |U∗ElU) =

1
d

tr [U∗EjUU∗ElU ] =
1
d

tr [EjEl] (5.39)

= δjl ,

and similarly also TTU TU = I , hence TU is an orthogonal matrix. In the above definition we used
the notation (A|B) = tr [A∗B] and the fact that 1

d

∑d2−1
j=0 |Ej)(Ej | defines an identity map on

operators providing that {Ej} is an orthonormal operator basis.
By definition detTU is a product of all eigenvalues of TU . Let us denote by eixj the eigen-

values of unitary operator U and Uϕj = eixjϕj determines the eigenvectors ϕj ∈ H. Clearly,
the eigenvalues of TU are µjk = ei(xj−xk) and eigenvectors are the Bloch vectors corresponding
to operators |ϕj〉〈ϕk|. Consequently, detTU =

∏
j,k µjk = 1.

As a result we found that in the Bloch representation the unitary channels correspond to spe-
cial orthogonal rotations TU . However, the inverse is not true except the case d = 2. This fact
can be easily seen if comparing the number of parameters defining a general unitary transforma-
tion on d-dimensional complex vector space and the number of parameters specifying a general
orthogonal rotation on d2 − 1 dimensional real vector space.

5.4.2 χ-matrix representation

On contrary to previous representation, the Kraus operator sum form of quantum channels is ex-
plicitly completely positive, what is a very important advantage of this representation. However,
it is not unique and there is a unitary freedom in particular choice of Kraus operators. As in the
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previous case, let us fix some orthonormal operator basis E0, . . . , Ed2−1 and express each Kraus
operator An in this operator basis, An =

∑
n anjEj . The identity

E(%) =
∑
n

An%A
∗
n =

∑
rs

∑
n

anra
∗
nsEr%E

∗
s =

∑
rs

χrsEr%E
∗
s (5.40)

defines the χ-matrix representation of the quantum channel E . Let us note that composition of
quantum channels does not correspond to multiplication of χ matrices. The χ-matrix represen-
tation reduces the ambiguity of the operator sum representation. Two different Kraus decompo-
sitions of the same channel E lead to the same χ-matrix.

Let us now derive the relation between the two considered representations of quantum chan-
nels. A direct calculation shows that

Ejk = tr
[
E∗j E [Ek]

]
=
∑

χrstr
[
E∗jErEkE

∗
s

]
. (5.41)

Defining an object Mjk,rs = tr
[
E∗jErEkE

∗
s

]
we get the relation between the two representa-

tions

Ejk = Mjk,rsχrs (5.42)

of the same quantum channel E .

Proposition 64. If E is a quantum channel, then the corresponding χ-matrix is positive and
tr [χ] = d.

Proof. For a quantum channel E(%) =
∑
nAn%A

∗
n on a d-dimensional quantum channel the

corresponding χ− matrix is acting on d2-dimensional complex vector space. For all complex
vectors ~x = (x1, . . . , xd2)∑

r,s

x∗rχrsxs =
∑
n

∑
r

(x∗ranr)
∑
s

(a∗nsxs) =
∑
n

yny
∗
n =

∑
n

|yn|2 ≥ 0 , (5.43)

hence, the matrix is positive. A direct calculation gives∑
r

χrr =
∑
r,n

(Er|An)(An|Er) =
∑
n

(An|

(∑
r

|Er)(Er|

)
|An)

=
∑
n

(An|An) =
∑
n

tr [A∗nAn] = tr [I] = d ,

where we used the fact that
∑
r |Er)(Er| defines the identity map on operators and the normal-

ization
∑
nA

∗
nAn = I .

5.4.3 Choi-Jamiolkowski isomorphism

We denote by Mn the matrix algebra of n× n complex matrices.

Theorem 8. (Choi theorem.) Let E : Mn → Mm be a positive linear mapping. Then the
following statements are equivalent:

(i) E is n-positive, i.e., E ⊗ In is a positive map.
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(ii) The operator matrix

ΦE =

 E(|ϕ1〉〈ϕ1|) . . . E(|ϕ1〉〈ϕn|)
...

. . .
...

E(|ϕn〉〈ϕ1|) . . . E(|ϕn〉〈ϕn|)

 (5.44)

is positive, where ϕj is an orthonormal basis of the n-dimensional Hilbert space and where
E(|ϕj〉〈ϕk|) are elements from Mm. The matrix ΦE is called Choi matrix of E .

(iii) E is completely positive.

Proof. The implication (iii) ⇒ (i) follows directly from the definition of the complete positivity
of E . Consider a positive matrix M =

∑
jk |ϕj ⊗ ϕj〉〈ϕk ⊗ ϕk| ∈ Mn ⊗Mn. By positivity of

E ⊗ In also the matrix M ′ = E ⊗ In[M ] is positive. Since M ′ = E [|ϕj〉〈ϕk|]⊗ |ϕj〉〈ϕk| = ΦE
the positivity of ΦE follows, i.e. the implication (i) ⇒ (ii) holds.

It remains to prove (ii) ⇒ (iii). By positivity ΦE =
∑
l |ψl〉〈ψl|, where ψl ∈ Cn ⊗ Cm

are unnormalized eigenvectors. The tensor product can be seen as a tensor sum Cm1 ⊕ · · · ⊕
Cmn = Cn ⊗ Cm and let Pj : Cn ⊗ Cm → Cmj be a projection onto the jth copy of Cm.
Then PjΦEPk = E [|ϕj〉〈ϕk|] =

∑
l Pj |ψl〉〈ψl|Pk =

∑
l |Pjψl〉〈Pkψl|. Define d2 operators

Vr : Cn → Cm by their action Vrϕj = Pjψr. With the help of these operators E [|ϕj〉〈ϕk|] =∑
r |Pjψr〉〈Pkψr| =

∑
r |Vrϕj〉〈Vrϕk| =

∑
r Vr|ϕj〉〈ϕk|V ∗r . By linearity E [A] =

∑
r VrAV

∗
r

is defined on all A ∈Mn, i.e. on all operators defined on n-dimensional complex Hilbert space.
That is, the mapping E can be written in operator Kraus form and therefore it is completely
positive. This proves the theorem.

The Choi theorem provides us with a relatively simple test whether a given linear map E on
d-dimensional system is completely positive, or not. In particular, it is sufficient to verify that
the Choi matrix is positive. We have seen that ΦE = (E ⊗ I)[M ], where M : H⊗H → H⊗H
is a specific positive operator. Therefore, P+ = (tr [M ])−1M = 1

d

∑d
j,k=1 |ϕj ⊗ ϕk〉〈ϕj ⊗ ϕk|

is a density operator. Consequently, the complete positivity can be tested by application of E ⊗I
on a specific quantum state P+. In the following theorem we shall see that this particular state
allows us to relate the channels on d-dimensional system with states of d2-dimensional system,
i.e. of a composite system of a pair of d-dimensional systems. As we shall see in the last chapter
on entanglement, this state is an example of maximally entangled state.

Exercise 41. Verify that P+ is a pure state.

Theorem 9. (Choi-Jamiolkowski isomorphism.) Consider a d-dimensional quantum system,
ϕ1, . . . , ϕd ∈ H being its orthonormal basis, and a linear map E : L(Hd) → L(Hd). Define
an operator P+ = 1

d

∑
jk |ϕj〉〈ϕk| ⊗ |ϕj〉〈ϕk|, i.e. a one-dimensional projector onto a subspace

spanned on the state ψ+ = 1√
d

∑
j ϕj ⊗ ϕj . A mapping

J : E 7→ ΩE = (E ⊗ I)[P+] (5.45)

defines an isomorphism between linear maps on d-dimensional system and linear operators on
d×d-dimensional Hilbert space L(Hd⊗Hd), a so-called Choi-Jamiolkowski isomorphism. The
inverse mapping reads

J−1 : Ω 7→ EΩ : EΩ[X] = tr2[(I ⊗XT )Ω] , (5.46)
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where tr2 stands for partial trace over the second Hilbert space. In particular (according to
above theorem), the Choi-Jamiolkowski isomorphism maps completely positive maps to positive
elements L+(Hd ⊗ Hd) and channels are isomorphic to states ω ∈ S(Hd ⊗ Hd) such that
dtr2[ω] = Id.

Proof. By definition the mapping J is linear, i.e. J (E1 + λE2) = J (E1) + λJ (E2). Similarly,
also J−1 is linear, hence, the linear structures of the set of linear maps and set of linear operators
L(Hd ⊗Hd) are preserved. It is sufficient to prove that J−1 defined above is indeed an inverse
mapping to J , i.e.

EΩE [X] = tr2[(I ⊗XT )ΩE ] = tr2[(I ⊗XT )(E ⊗ I)[P+]] (5.47)

=
1
d

∑
j,k

tr2[(I ⊗XT )(E [|ϕj〉〈ϕk|]⊗ |ϕj〉〈ϕk|)]

=
1
d

∑
j,k

E [|ϕj〉〈ϕk|]tr
[
XT |ϕj〉〈ϕk|

]
=

1
d

∑
j,k

E [|ϕj〉〈ϕk|]
〈
ϕk |XTϕj

〉
= E [

∑
jk

〈ϕj |Xϕk 〉 |ϕk〉|ϕk〉] = E [X]

for all X ∈ L(Hd), i.e. EΩE = E for all linear maps E . In a similar way (left for reader as
exercise) we can prove that ΩEΩ = Ω for all Ω ∈ L(Hd⊗Hd), i.e. J ◦J−1 = J−1◦J = id.

Let us note that for linear maps E the Choi matrix χE and Choi-Jamiolkowski state ωE are
closely related via ΦE = dΩE . This fact follows directly from the comparison of the definitions
of ΦE and ΩE . The following proposition is a different version of the Choi-Jamiolkowski iso-
morphism holding between the Hilbert spaces of Hilbert-Schmidt operators on d−dimensional
Hilbert space and vectors from d2-dimensional Hilbert space.

Proposition 65. A mapping

A 7→ ψA = (A⊗ I)ψ+ , ψ+ =
1√
d

∑
j

ϕj ⊗ ϕj (5.48)

defines an isomorphism between the Hilbert spaces L(Hd) endowed with the Hilbert-Schmidt
scalar product (A|B) = tr [A∗B] and Hd ⊗Hd with the canonical scalar product, i.e.

d 〈ψA |ψB 〉 = tr [A∗B] . (5.49)

Proof. The proof is similar to the proof of the Choi-Jamiolkowski isomorphism. Let us fix the
orthonormal basis ϕ1, . . . , ϕd ∈ Hd that is used in the definition of ψ+. An operator A ∈
L(H) takes the form A =

∑
j,k Ajk|ϕj〉〈ϕk| and according to definition it results in vector

ψA = (A ⊗ I)ψ+ = 1√
d

∑
j,k(Aϕk) ⊗ ϕk = 1√

d

∑
j,k Ajkϕj ⊗ ϕk. Starting from a state

ψ ∈ Hd⊗Hd such that ψ =
∑
jk ψjkϕj ⊗ϕk the inverse mapping uniquely defines an operator

Aψ =
√
d
∑
j,k ψjk|ϕj〉〈ϕk|. It is left as an exercise for the reader that AψA = A and ψAψ = ψ.

Moreover, the calculation

〈ψA |ψB 〉 = 〈 (A⊗ I)ψ+ | (B ⊗ I)ψ+ 〉 = 〈ψ+ | (A∗B ⊗ I)ψ+ 〉

=
1
d

∑
j

〈ϕj |A∗Bϕj 〉 =
1
d

tr [A∗B]
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shows that the scalar product is preserved as it is required for isomorphism between Hilbert
spaces.

5.5 Classes of channels

5.5.1 Strictly contractive channels

By Proposition 63 we know that each channel is contractive, i.e., the trace distance between two
states cannot increase under the action of a channel. In this section we investigate the properties
of strictly contractive channels.

Definition 44. A channel E is strictly contractive if for all states %1, %2 ∈ S(H), the inequality

‖E(%1 − %2)‖tr ≤ k ‖%1 − %2‖tr (5.50)

is valid for some 0 ≤ k < 1.

Example 63. (Depolarizing channels) Let H be a finite dimensional Hilbert space. An example
of strictly contractive channels is provided by the one-parameter family of depolarizing channels.
For each 0 ≤ p ≤ 1, we define

Dp(%) = p
1
d
I + (1− p)% .

For two states %1 and %2, we get

‖Dp(%1 − %2)‖tr = (1− p) ‖%1 − %2‖tr .

Thus, the contractivity factor k in (5.50) equals 1− p. This shows that the channel Dp is strictly
contractive when p 6= 0.

Proposition 66. Consider a pair of quantum channels E ,F and assume that E is strictly contrac-
tive. The compositions E ◦ F ,F ◦ E , and convex combination λE + (1− λ)F (with 0 < λ ≤ 1)
are strictly contractive.

Proof. The strict contractivness of E ◦ F comes from the following inequality

‖E ◦ F(%1 − %2)‖tr ≤ ‖E(%1 − %2)‖tr ≤ k ‖%1 − %2‖tr , (5.51)

and similarly for F ◦ E . For a convex combination the following calculation

‖(λE + (1− λ)F)(%1 − %2)‖tr ≤ λ ‖E(%1 − %2)‖tr + (1− λ) ‖F(%1 − %2)‖tr

≤ (kλ+ 1− λ) ‖%1 − %2‖tr

< ‖%1 − %2‖tr

implies that λE + (1− λ)F is a strictly contractive channel for 0 < λ ≤ 1.

Proposition 67. Let E and F be two channels. Their tensor product E ⊗F is strictly contractive
only if both E and F strictly contractive.
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Proof. Suppose that F is not strictly contractive. Hence, there are states ξ1 and ξ2, ξ1 6= ξ2, such
that

‖F(ξ1 − ξ2)‖tr = ‖ξ1 − ξ2‖tr .

Fix a state η and denote %1 = η ⊗ ξ1 and %2 = η ⊗ ξ2. Then we get

‖E ⊗ F(%1 − %2)‖tr = ‖E(η)⊗F(ξ1 − ξ2)‖tr = ‖F(ξ1 − ξ2)‖tr = ‖ξ1 − ξ2‖tr

= ‖%1 − %2‖tr ,

which shows that the channel E ⊗ F is not strictly contractive.

An interesting consequence of the above proposition is that E ⊗ I is not strictly contractive
even if E is a strictly contractive.

Proposition 68. Every channel can be approximated arbitrarily well with strictly contractive
channels.

Proof. Fix a state ξ ∈ S(H). The mapping Fξ : % 7→ ξ is a strictly contractive channel. Let E
be a channel. For each n = 1, 2, . . ., we define

En =
1
2n
Fξ + (1− 1

2n
)E . (5.52)

Clearly, En is strictly contractive. The calculation

‖E − En‖ =
1
2n

‖E − Fξ‖ ≤
1
n

finishes the proof.

An important property of strictly contractive channels is stated in the following theorem. It
is a direct application of Banach fixed points theorem, and the proof can be found e.g. from
Wikipedia.

Theorem 10. (Banach fixed point theorem) Let E be a strictly contractive channel. There is a
unique state ξ such that E(ξ) = ξ. The state ξ called the fixed point E . Moreover, for every state
%, we have

lim
n→∞

En(%) = ξ ,

where the sequence {En(%)}∞n=1 converges in the trace norm.

Exercise 42. Find the fixed point of the depolarizing channel Dp (see Example 63).

The following example demonstrates that there are nontrivial channels with more than one
fixed point.

Example 64. (Fixed points of unitary channels.) Let U be a unitary operator having eigenvalues.
The eigenvectors ψj of U determine pure states Pj = |ψj〉〈ψj |. Since the eigenvalues of U have
modulus 1 (see Example 9 in Section 2.2.3), we have σU (Pj) = Pj . Therefore, any operator
being a linear combination

∑
j cjPj of projectors Pj is a fixed point of σU .
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5.5.2 Random unitary channels

Definition 45. A channel E is a random unitary channel if it is a convex mixture of unitary
channels, that is,

E(%) =
∑
j

pjUj%U
∗
j , (5.53)

where 0 ≤ pj ≤ 1 and
∑
j pj = 1.

The set of random unitary channels is a convex subset of Oc. It is also closed under compo-
sition, i.e., E1 ◦ E2 is a random unitary channel when ever E1 and E2 are.

A random unitary channel E can be implemented by a unitary transformation U =
∑
j Uj ⊗

|ϕj〉〈ϕj |. Indeed, if the environment is initially prepared in a state ξ, then the random unitary
channel is implemented

E(%) =
∑
j

〈ϕj | ξϕj 〉Uj%U∗j , (5.54)

and for conjugate channel we get

E ′(%) =
∑

ξjktr [Uj%U∗k ] |ϕj〉〈ϕk|. (5.55)

If ξ is diagonal, i.e. only the entries ξjj are nonzero, then

E ′(%) =
∑
j

ξjj |ϕj〉〈ϕj | = ξ , (5.56)

i.e. one of the conjugated channels is the contraction to a specific fixed state ξ.

Proposition 69. (Random orthogonal unitary channels.) Let H be a finite dimensional Hilbert
space and U1, . . . , Ud2 unitary operators forming an orthogonal basis of L(H). Then

E(T ) =
1
d2

d2∑
j=1

UjTU
∗
j =

1
d

tr [T ] I = A0(T ) . (5.57)

Proof. Let ψ+ = 1√
d

∑d
l=1 ϕl ⊗ ϕl and ϕ1, . . . , ϕd is an orthonormal basis of H. According to

Choi-Jamiolkowski isomorphism the image of each unitary transformation Uj is a pure state as-
sociated with a vector ψj = (I⊗U)ψ+ satisfying 〈ψj |ψk 〉 = tr

[
U∗j Uk

]
= dδjk. Since vectors

are are mutually orthogonal and form a complete basis of H⊗H it follows that
∑
j |ψj〉〈ψj | =

I ⊗ I . Consequently, ΩE = (I ⊗ E)[P+] = 1
d2

∑
j |ψj〉〈ψj | = 1

d2 I ⊗ I = (I ⊗ A0)[P+]. The
identity of Choi operators ΩE = ΩA0 implies E = A0, which proves the proposition.

Example 65. (Private quantum channels.) A private quantum channel is a cryptographic com-
munication protocol aiming to transmit quantum states in a secure way [1]. The security is based
on the shared classical key represented by identical sequences of random bits in possessions
of both communicating parties. The protocol works as follows. Alice wants to transfer states
%1, . . . , %n to Bob. The classical key is used to set encoding channels E1, . . . , En used by Alice,
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and decoding channels D1, . . . ,Dn used by Bob. In each run Bob receives a state Ej(%j) and
applying the proper decoding channel Dj he reveals the original state %j = Dj ◦ Ej(%).

We assume that %j can be arbitrary state. Therefore, we must have Dj = E−1
j , and this

implies that Ej must be unitary. Thus, Ej = σUj and Dj = σU∗j for some unitary operators Uj .
The question is how many bits is needed in order to protect a single quantum bit, i.e., how many
communication runs n are encoded in the sequence of bits of size N .

Let {U1, . . . , Um} be a set of unitary operators defining the encoding and decoding channels.
A sequence of N random bits forming the key defines a random sequence Uj1 , . . . , Ujn deter-
mining the sequence of encoding and decoding channels in n runs, i.e. Ujl ∈ {U1, . . . , Um}.
For anyone except Bob Alice is randomly applying unitary channels, hence she is implementing
a random unitary channel constituting the private quantum channel

EPQC(%) =
∑
j

pjUj%U
∗
j , (5.58)

where pj is the probability of operator Uj in the random sequence Uj1 , . . . , Ujn determined by
the classical key. The security is achieved if the output state EPQC(%) is independent of %, i.e.
EPQC(%) =

∑
j pjUj%U

∗
j = %0 for some fixed state %0.

Proposition 69 guarantees the existence of random unitary channel with the required prop-
erties. In particular, the private quantum channel with m = d2 mutually orthogonal unitary
operators {Uj} and pj = 1/d2 satisfies all requirements. As a result we get that if the encoding
and decoding channels are associated with mutually orthogonal unitary operators, then the pri-
vate quantum channel can be implemented and the required key is of the length N = n logm =
log d2 = 2n log d. In conclusion, secure transmission of d-dimensional quantum state can be
done with 2 log d classical bits.

5.5.3 Pure decoherence channels

The concept of decoherence was originally introduced as a process standing behind the disap-
pearance of the interference patterns. In a sense, due to the decoherence the initial superposition
of pure states is transforming into a mixture of the (orthogonal) pure states. These pure states de-
fines the so-called decoherence basis. Nowadays in the literature the decoherence is sometimes
understood as arbitrary nonunitary dynamics. Therefore, we shall refer to the original concept as
to pure decoherence channels.

Definition 46. A channel E describes pure decoherence if its power series E , E2, E3, . . . , con-
verges to the channel

diagb : % 7→ diagb(%) =
∑
b

〈ϕj |%|ϕj〉|ϕj〉〈ϕj | , (5.59)

where b = {ϕ1, . . . , ϕd} is the decoherence basis.

If the decoherence basis b is fixed and E1, E2 are pure decoherences with respect to this basis,
then the convex combination λE1 + (1−λ)E2 and the composition E1 ◦ E2 are pure decoherence
channels with the same basis b. Moreover, E1 and E2 commutes, i.e. E1 ◦ E2 = E2 ◦ E1. If
the decoherence basis of E1 is different from the decoherence basis of E2, then their convex
combination and composition are no longer pure decoherence channels. The proofs of these
statements are left to readers as exercises.
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Proposition 70. Consider a channel E(%) =
∑
j Aj%A

∗
j expressed in the operator sum form. It

is a pure decoherence channel if and only if the Kraus operatorsAj commute with the projections
e1, . . . , ed (ej = |ϕj〉〈ϕj |). It follows that for a pure decoherence channel its Kraus operators
Aj mutually commute, i.e., [Aj , Ak] = 0 for all j, k.

Proof. Preservation of operators ej implies that E(T ) = T for all operators T belonging to
subalgebra generated by projectors e1, . . . , ed. This subalgebra Ab is a maximal commutative
subalgebra of the algebra of bounded operators L(H). Consequently, the identity

(E(T )− T )(E(T )− T )∗ = 0

holds for all T ∈ Ab. Using the relations E(T )E(T )∗ = TT ∗ = E(TT ∗) and
∑
j A

∗
jAj = I the

right side can be rewritten into the identity∑
j

[
AjTT

∗A∗j −AjTA
∗
jT

∗ − TAjT
∗A∗j − TA∗jAjT

∗] =
∑
j

[T,Aj ][T,Aj ]∗ = 0 .

It holds if and only if [T,Aj ] = 0 for all T ∈ Ab and all j. Moreover, because the subalgebra
Ab is the maximal commutative subalgebra, it follows that Kraus operators Aj must mutually
commute, too.

On the other hand the identities [Aj , en] = 0 imply [Aj , T ] = 0 for all T ∈ Ab and, con-
sequently, the above arguments can be reversed to prove that EB(T ) =

∑
j AjTA

∗
j = T for all

T ∈ Ab including the projectors e1, . . . , ed.

Proposition 71. (Dilations of pure decoherence channels.) If E is pure decoherence channel then
E [%] = trenvU(%⊗ωenv)U∗ and U =

∑
j |ϕj〉〈ϕj |⊗Uj is a controlled-U unitary transformation

with system playing the role of the control system. The vectors ϕj form the decoherence basis.

Proof. The preservation of the decoherence basis elements ϕj , i.e. the identity U(ϕj ⊗ ψ) =
ϕj ⊗ ψ′, implies that ψ′ = Ujψ in order to preserve the scalar product. Using this condition
for all j the operator U is defined on the whole Hilbert space and takes the form of so-called
control-ed-U transformation

U =
∑
j

|ϕj〉〈ϕk| ⊗ Uj . (5.60)

The decohering system is playing the role of the control system and the environment is the target
system.

5.6 Example: qubit channels

In this section we demonstrate that already for the simplest possible quantum system, namely,
qubits, the characterization of the channels is quite a complex task. An important steps were
made in [75].

Recall from Section 3.1.3 that the state space of a two-dimensional Hilbert space can be
nicely represented as the Bloch ball. Hence, qubit channels can be illustrated as mappings on
the Bloch ball. Adopting this point of view, the channels are represented by 4 × 4-matrices of
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an affine form. In particular, let us choose the (unnormalized) operator basis σ0 = I, σx, σy, σz .
Then the matrix elements Ejk = 1

2 tr [σjE [σk]] form a matrix

E =


1 0 0 0
τx Txx Txy Txz
τy Tyx Tyy Tyz
τz Tzx Tzy Tzz

 , (5.61)

and channel is acting as ~r 7→ ~r′ = T~r + ~τ .
The crucial trick used in the characterization of qubit channels is based on the singular value

decomposition and the one-to-one relation between the unitary qubit channels and orthogonal
rotations in three-dimensional space.

Lemma 4. A matrix T can be written in the so-called singular value decomposition as T =
Q1DsvQ2, where Q1, Q2 are matrices of orthogonal rotations (QTj = Q−1

j for j = 1, 2) and
Dsv is a diagonal positive matrix Dsv = diag{µ1, . . . , µd}, where µj are the so-called singular
values of matrix T .

Proof. From polar decomposition it follows that T = |T |Q for positive matrix |T | and some
orthogonal rotation Q. The positive matrix is selfadjoint and therefore can be diagonalized, i.e.
|T | = Q1DsvQ

T
1 by some orthogonal matrixQ1. DefiningQ2 = QT1 Q we get the singular value

decomposition of T .

For a general orthonormal matrix detQ = ±1. However, in Example 62 we have shown
that unitary channels are associated with special orthogonal matrices RU , i.e. R−1

U = RTU and
detRU = 1. Fortunately, for the case of qubit the correspondence is one-to-one, i.e. each
special orthogonal matrix is associated with some unitary channel σU . We need to modify the
above lemma a bit in order to use it for our purposes. Each three-dimensional orthogonal matrix
Q is either a rotation (detQ = 1), or can be written as a product of some rotation R and the
inversion −I , i.e. Q = ±R, where detR = 1. Thus, T = Q1DsvQ2 = R1(±Dsv)R2 =
(R1R2)RT2 (±Dsv)R2 = RS, where S = RT2 (±Dsv)R2 is semi-definite (either positive, or
negative) and R is a rotation.

The rotation Rk associated with a unitary channel σk[%] = σk%σk forms a diagonal matrix
with [Rk]jj = −1 if j 6= k and [Rk]kk = 1. Combining Rk with Dsv = diag{µ1, µ2, µ3}
two of the values µj will change their sign. By definition, if Dsv determines a quantum channel,
then RkDsv must describe a quantum channel as well. Hence, the semidefinitness of S can be
replaced by its self-adjointness. Since every self-adjoint real matrix can be diagonalized by some
rotationRV it follows that T = RS = RRTVDRV , whereD = {λ1, λ2, λ3} is a diagonal matrix
composed of eigenvalues of S. Let us note that λj are not singular values of T . In fact they are
not necessarily positive. However, |λj | = µj are the singular values of T .

As a result we get that T = RUDRV for suitable rotations RU , RV , D = diag{λ1.λ2, λ3},
where |λ1|, |λ2|, |λ3| are the singular values of T . In such case the action of the channel E can
be written as

~r 7→ ~r′ = RUDRV ~r +RU~t , (5.62)

and consequently each qubit channel E can be written as

E = σU ◦ D ◦ σV , i.e. E(%) = UD(V %V ∗)U∗ , (5.63)
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where σU (%) = U%U∗, σV (%) = V %V ∗ and D : ~r → ~r′ = D~r + ~t with ~t = RTU~τ . That is,
arbitrary qubit channel is unitarily equivalent to a channel of the form D parametrized only by 6
real parameters. Moreover, most of the interesting properties of E are the properties of D.

The above decomposition of E via DE = D is not unique, because signs of any pair of
parameters λj can be changed by permutation, i.e. by applying one of the channels σj . Only the
product λ1λ2λ3 is fixed for each channel E .

Proposition 72. Let us denote by DE the ”diagonal” channel associated with E . Then the fol-
lowing equivalences hold.

• A channel E is completely positive if and only if DE is completely positive.

• A channel E is strictly contractive if and only if DE is strictly contractive.

• A channel E is unital if and only if DE is unital.

5.6.1 Complete positivity constraints

The positivity constraint of D (and E) requires that |λj | ≤ 1, because otherwise the length of
the Bloch vector will increase and negative region will be reached. In fact, the image of the pure
states (Bloch sphere boundary) under D defines an ellipsoid(

r′1 − t1
λ1

)2

+
(
r′2 − t2
λ2

)2

+
(
r′3 − t3
λ3

)2

= 1 . (5.64)

The interpretation is that each quantum channel transforms the Bloch sphere into an ellipsoid
(inside the original Bloch sphere), but the converse is not true. Not all ellipsoids included in
Bloch sphere can be achieved by some quantum channel.

Let us consider a channel E with Kraus operators Aj =
∑
k ajkσk. Then

Tjj =
∑
k

tr [σjAkσjA∗k] =
∑
k,l,l′

akla
∗
kl′ tr [σjσlσjσl′ ] =

∑
l

jl
∑
k

akla
∗
kl (5.65)

where jl = ± depending on the σjσlσj = ±σl. Defining the positive numbers ql =
∑
k akla

∗
kl

we get

T00 = q0 + q1 + q2 + q3 = 1 ,
T11 = q0 + q1 − q2 − q3 ,

T22 = q0 − q1 + q2 − q3 ,

T33 = q0 − q1 − q2 + q3 .

It follows that

T11 ± T22 ≤ T00 ± T33 ,

−T11 ± T22 ≤ T00 ∓ T33 ,

or in a more compact form

|T11 ± T22| ≤ |1± T33| . (5.66)
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The above inequalities fixes the values of T11, T22, T33 to form a tetrahedron with vertices
(1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1). The derived conditions are necessary, but not
sufficient for channel being completely positive. For channels of the form D this condition reads
|λ1 ± λ2| ≤ |1 ± λ3|. Without proof we shall state the sufficient and necessary conditions [75]
for complete positivity of channels D.

Proposition 73. A channelD is completely positive if and only if the following inequalities hold

(λ1 + λ2)2 ≤ (1 + λ3)2 − t23 (5.67)
(λ1 − λ2)2 ≤ (1− λ3)2 − t23 (5.68)[

1− |~λ|2 − |~t|2
]2

≥ 4[λ2
1(t

2
1 + t22) + λ2

2(t
2
2 + t23) + λ2

3(t
2
3 + t21)− 2λ1λ2λ3] (5.69)

The direct calculation shows that the Choi matrix of D reads

ΦD =
1
2


1 + t3 + λ3 t1 − it2 0 λ1 + λ2

t1 + it2 1− t3 − λ3 λ1 − λ2 0
0 λ1 − λ2 1 + t3 − λ3 t1 − it2

λ1 + λ2 0 t1 + it2 1− t3 + λ3

 . (5.70)

The positivity of this matrix is equivalent to conditions in the above proposition.

5.6.2 Unital channels

Let us recall that a channel E is called unital if E(I) = I . In the Bloch sphere picture the unital
channels are those for which ~τ = ~t = ~0, hence the ellipsoid is centered in the total mixture. In
the discussion we shall restrict only to matrices D, i.e. only to three real parameters.

Example 66. (Pauli channels.) Pauli channel is defined as a convex combination of Pauli oper-
ators, i.e.,

EPauli(%) =
∑
j

qjσj%σj , (5.71)

where 0 ≤ qj ≤ 1,
∑
j qj = 1. It is clear that these channels are unital. Since each Pauli unitary

channel itself is associated with a diagonal matrix D, it follows that arbitrary Pauli channel is
also diagonal. In particular, DPauli = diag{λ1, λ2, λ3} such that

λ1 = q0 + q1 − q2 − q3 ,

λ2 = q0 − q1 + q2 − q3 ,

λ3 = q0 − q1 − q2 + q3 .

Due to normalization of probability distribution {qj} it follows that for unital channels the con-
ditions |λ1±λ2| ≤ |1±λ3| are both necessary and sufficient for complete positivity of E . Thus,
the set of all unital channels is unitarily equivalent to the set of Pauli channels.

The three parameters ~λ = (λ1, λ2, λ2) ∈ R3 restricted by conditions |λ1 ± λ2| ≤ |1 ± λ3|
form a tetrahedron, i.e. a simplex with extremal points being the four unitary channels corre-
sponding to Pauli operators. In particular, I ↔ (1, 1, 1), σx ↔ (1,−1,−1), σy ↔ (−1, 1,−1)
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and σz ↔ (−1,−1, 1). Let us note an interesting fact that all the Pauli channels mutually com-
mute although the Pauli operators are not commuting.

In the case q1 = q2 = q3 = q and q0 = 1 − 3q the Pauli channels are called depolarizing
channels. Since 0 ≤ qj ≤ 1 it follows that 0 ≤ q ≤ 1/3. After the action of these channels
the Bloch sphere is homogenuously contracted into a ball of radius |1 − 4q|. Except for q = 0
these channels are strictly contractive. For q = 1/4 the depolarizing channel maps the whole
Bloch ball into the maximally mixed state ~r = ~0. If q = 1/3, then λj = −1/3 for all j and the
resulting channel is known as the best physical approximation of quantum NOT gate described
in Example 51. Let us note that quantum NOT gate would correspond to transformation ~r → −~r,
i.e. to space inversion −I .

If q1 = q2 = 0, then the channels are called phase damping channels and describe the pure
decoherence processes. In this case λ3 = 1 and λ1 = λ2 = λ, i.e. the Bloch ball is not contracted
in direction z, i.e. phase-damping channels are not strictly contractive.
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6 Measurement models and instruments

Until now we have treated a measurement apparatus as a device taking quantum systems as
its inputs and producing measurement outcomes as outputs. The distribution of outcomes is
determined by the particular input state. In this level of description, measurement apparatuses
are described by observables.

It could happen that the systems are still available after the measurement is performed, and
we may try to obtain more information by measuring some other observable. Or perhaps we aim
to use the measurement apparatus as a preparator, producing some preferred state. In this kind
of situations we need a more detailed description of measurement apparatuses than observables.
Instruments and measurement models are suited for this purpose.

6.1 Measurement models

A standard reference on measurement models is [18], where measurement models are called
premeasurements.

6.1.1 Definition

Let us first think about a typical measurement procedure in an informal way. A measurement
procedure starts by coupling the system to a measurement apparatus, or a probe. After some time,
the system and the probe are decoupled, and a measurement is carried out on the probe. Due to
the coupling stage the system and the probe become correlated and the measurement outcome
distribution gives us information about the system. The whole procedure can be interpreted
directly as a measurement on the system corresponding to some observable A. The following
definition formalizes this idea.

Definition 47. Let A : F → L(H) be an observable. A measurement model (memo) M is a
quadruple M = 〈K, %0,V,F〉, where

• K is a Hilbert space attached to the probe.

• %0 is a state on K. It is the initial state of the probe.

• V is a channel from T (H ⊗ K) to T (H ⊗ K). It describes the measurement interaction
between the system and the probe.

• F is an observable with the outcome space (Ω,F) and taking values in K. It is the pointer
observable describing the measurement on the probe.

If the following probability reproducibility condition holds, then M is a measurement model for
the observable A:

tr [%A(X)] = tr [V(%⊗ %0)(I ⊗ F(X))] ∀X ∈ B(Ω), % ∈ S(H) . (6.1)

The probability reproducibility condition simply means that M leads to same measurement
outcome probabilities as A. We can also interpret this condition in the opposite order: any
quadruple 〈K, %0,V,F〉 defines a unique observable A by equation (6.1). This is actually what
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happens when we start to describe some measurement scheme. We don’t fix A in the beginning
but we calculate it from the given memo.

Example 67. (Stern-Gerlach measurement on a spin- 1
2 particle.) Let us take another look on

the Stern-Gerlach measurement described in Section 4.1.1. A spin- 1
2 particle is described by the

Hilbert space C2 ⊗ L2(R3) and can be understood as a bipartite composite system consisting of
spatial and spin degrees of freedom. During the Stern-Gerlach experiment an external magnetic
field couples the spatial degrees of freedom with the spin degrees of freedom. Depending on
the spin orientation, the particle passing the Stern-Gerlach apparatus is deflected either to up or
down. The channel V describing the coupling acts as follows:

ϕ↑ ⊗ ψ 7→ ϕ↑ ⊗ V+ψ ,

ϕ↓ ⊗ ψ 7→ ϕ↓ ⊗ V−ψ .

Here {ϕ↑, ϕ↓} is an orthonormal basis of C2, ψ ∈ L2(R3), and V± are unitary operators defined
on L2(R3). Assuming an initial state corresponding to a vector ϕ ⊗ ψ0 = (aϕ↑ + bϕ↓) ⊗ ψ0,
the transformation due to the measurement coupling is

ϕ⊗ ψ0 7→ ω = aϕ↑ ⊗ ψ+ + bϕ↓ ⊗ ψ− , (6.2)

where ψ± ≡ V±ψ0.
A detector is measuring the presence of the particle in a certain region, hence it is the pointer

observable measuring the position of the particle. In Stern-Gerlach measurement a screen is used
as a detector of particles in the plane orthogonal to incoming beam of particles. We are interested
whether the particle is observed in upper or lower half plane of the screen. Thus, in the ideal case
the pointer observable consists of two projections P±, and the probabilities p± for observing
particles in upper (+) or lower (−) half planes are

p± = tr [|ω 〉〈ω|(I ⊗ P±)] = |a|2〈ψ+|P±|ψ+〉+ |b|2〈ψ−|P±|ψ−〉 , (6.3)

where

〈ψ|P+|ψ〉 =
∫

upper h.p.
|ψ(~r)|2 d~r , 〈ψ|P−|ψ〉 =

∫
lower h.p.

|ψ(~r)|2 d~r (6.4)

for every ψ ∈ L2(R3). Defining the effects E± on C2 as

E± = 〈ψ+|P±|ψ+〉|ϕ↑〉〈ϕ↑|+ 〈ψ−|P±|ψ−〉|ϕ↓〉〈ϕ↓| , (6.5)

we obtain the following expression for the probabilities p± only in terms of the spin state

p± = 〈ϕ|E±|ϕ〉 . (6.6)

If the measurement outcomes are labeled by ↑ and ↓, then the resulting observable A is given by

A(↑) = E+ , A(↓) = E− .

The sharpness of A depends on the initial state ψ0 and on the unitary operators V±. In particular,
A is sharp if and only if 〈ψ±|P±|ψ±〉 = 1 and 〈ψ∓|P±|ψ∓〉 = 0.

In a real experiment the effects E+ and E− are not projections. For a more realistic descrip-
tion of the Stern-Gerlach measurement, we refer to Chapter VII in [15].
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6.1.2 Normal measurement models

There is a class of measurement models which is enough for almost all situations. This usually
makes the investigation simpler.

Definition 48. A measurement model M = 〈K, %0,V,F〉 is normal if

• %0 is a pure state;

• V is a unitary channel, i.e., there is a unitary operator V onH⊗K such that V(·) = V ·V ∗;

• F is a sharp observable.

At first instance, normal measurement models may seem to be of very special type. Of course,
if we start from a description of some real measurement scheme, these conditions of normality
may not be fulfilled. However, from a theoretical perspective we can explain the central role of
normal memos.

The fact that we can usually restrict to normal memos is justified by the dilation theorems
discussed earlier. Namely, as we have seen in Section 3.4.2, every state can be purified. In the
similar way, we have seen in 5.2.2 that every channel has a Stinespring dilation to a unitary
channel. Finally, an observable has a dilation to a sharp observable. Hence, by choosing suitably
large Hilbert space K, we can extend the given memo to a normal memo.

6.2 Instruments

If after a measurement of an observable A the system is still available, one may try to perform
some other measurement to gain (potentially) more information about the original state. In fact,
we can use the measurement procedure as a state preparator. In both of these cases, we need to
know not only the outcome probabilities, but also the influence of the first measurement on the
system and, consequently, on later measurements. We need not to know all the details of the
measurement model which was used, and often such a detailed description is not available or it
is too complicated. The concept of an instrument neatly captures the relevant description of the
measurement process for the above mentioned intentions. Instruments were first systematically
studied by E.B. Davies and his book [29] is still a recommendable source.

6.2.1 Definition and Ozawa’s Theorem

Let M = 〈K, %0,V,F〉 be a measurement model for an observable A. After the measurement
of A is performed, we measure another observable B on the system. Altogether we find a joint
probability distribution of the values of A and B, and we denote by p%(A ∈ X & B ∈ Y ) the
probability that A-measurement gives an outcome fromX and B-measurement gives an outcome
from Y . The subindex refers to the initial state % of the system.

Since the probability reproducibility condition holds between M and A, we have

p%(A ∈ X & B ∈ Y ) = tr [V(%⊗ %0)B(Y )⊗ F(X)] . (6.7)

Let us fix the set X for a moment. It turns out to be useful to define an operator IMX (%) such that

p%(A ∈ X & B ∈ Y ) = tr
[
IMX (%)B(Y )

]
. (6.8)
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This is indeed possible, and a comparison of (6.7) and (6.8) indicates that

IMX (%) = trK [V(%⊗ %0)I ⊗ F(X)] . (6.9)

If we require that (6.8) holds for all observables B, then formula (6.9) gives the unique choice
for the operator IMX (%).

The mapping % 7→ IMX (%) has a unique linear extension to T (H), and therefore we will con-
sider IMX as a linear mapping from T (H) to T (H). The following properties are straightforward
to verify:

(I1) For each X , IMX is an operation;

(I2) If % ∈ S(H), then tr
[
IMΩ (%)

]
= 1 and IM∅ (%) = O;

(I3) If % ∈ S(H) and {Xj} is a sequence of mutually disjoint sets, then

tr
[
IM∪jXj (%)

]
=
∑
j

tr
[
IMXj (%)

]
.

The properties of the mapping IM can be abstracted and this leads to following definition of
a one kind of generalized measure.

Definition 49. A mapping I from an outcome space (Ω,F) to the set of operations on T (H) is
called an instrument if it satisfies the properties (I1)-(I3).

We have seen that each measurement model M defines an instrument IM, and we say that
IM is the instrument induced by M. The following fundamental theorem due to Ozawa [66]
says that the converse implication also holds.

Theorem 11. (Ozawa’s theorem) If I is an instrument, then there exists a measurement model
M = 〈K, %0,V,F〉 such that I = IM. Moreover, M can be chosen to be normal.

6.2.2 A-compatibility

Let I be an instrument. It defines a unique observable A by the formula

tr [IX(%)] = tr [%A(X)] ∀X ∈ F , % ∈ S(H) . (6.10)

We say that I satisfying (6.10) is A-compatible. This connection simply means that I and A give
the same measurement outcome probabilities. It is useful to think this as an equivalence relation
in the set of instruments. For a given observable A, there is hence an equivalence class [I] of
A-compatible instruments. Each particular A-compatible instrument I describes a certain way to
measure A, leading to a certain kind of state transformations. Example 68 below demonstrates
that every observable A has (infinitely many) A-compatible instruments.

Example 68. (Trivial instrument) Let A be an observable. Fix a state ξ. Then the formula

IX(%) = tr [%A(X)] ξ (6.11)
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defines an A-compatible instrument. In fact, we have

tr [IX(%)] = tr [%A(X)] tr [ξ] = tr [%A(X)] ,

showing that (6.10) holds. Instruments of this form are called trivial instruments.

Let M be a memo. It defines an instrument IM through formula (6.9). On the other hand,
IM defines an observable by condition (6.10). Combining these two conditions we get

tr [%A(X)] = tr
[
IMX (%)

]
= tr [trK [V(%⊗ %0)I ⊗ F(X)]] = tr [V(%⊗ %0)I ⊗ F(X)] .

This is exactly the probability reproducibility condition (6.1).
We conclude that the three different perspectives can be adopted to describe a measurement

apparatus in three different levels of description. These perspectives lead to three different math-
ematical objects: measurement models, instruments and observables. These different layers of
description are connected in the following way:

M−→ I −→ A , A −→ [I] , I −→ [M] ,

meaning that whereas each memo uniquely defines an instrument and each instrument uniquely
defines an observable, the opposite relations are not unique. Each observable defines an equiv-
alence class of instruments and each instrument defines an equivalence class of measurement
models.

6.2.3 Conditional output states

Let us go back to the setting of Subsection 6.2.1, where we have two observables A and B. We
measure first the observable A, and after that we measure the observable B. Altogether we find a
joint probability distribution of the values of A and B, and in an initial state % this is given by

p%(A ∈ X & B ∈ Y ) = tr [IX(%)B(Y )] ,

where I is an A-compatible instrument depending on the way how the A-measurement is per-
formed. The conditional probability p%(B ∈ Y | A ∈ X) can be thus written in the form

p%(B ∈ Y | A ∈ X) =
p%(A ∈ X & B ∈ Y )

p%(A ∈ X)
=

tr [IX(%)B(Y )]
tr [IX(%)]

≡ tr [%̃XB(Y )] .

The state

%̃X =
1

tr [IX(%)]
IX(%)

is called a conditional output state.
It is worth to notice two things. First of all, the conditional output state %̃X is defined only

when tr [%A(X)] = tr [IX(%)] 6= 0. The reason is simply that we cannot define the conditional
probability p%(B ∈ Y | A ∈ X) if pA

% (X) = 0. As a second point, notice that the mapping
% 7→ %̃X is not, in general, linear. However, it is linear (and hence a channel) whenX = Ω, since
in this case %̃Ω = IΩ(%).
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If the set Ω of measurement outcomes is finite or countably infinite, the conditional output
state corresponding to an outcome x is

%̃x =
1

tr [Ix(%)]
Ix(%) , (6.12)

where we have adopted short hand notations %̃x ≡ %̃{x} and Ix ≡ I{x}.

Example 69. (Conditional output states for a trivial instrument.) Let us recall Example 68 and
consider again the trivial instrument I defined in (6.11). We then have

%̃X =
1

tr [IX(%)]
IX(%) = ξ (6.13)

for all X and % such that tr [IX(%)] 6= 0. Hence, the conditional output state does not depend on
the particular measurement outcome nor the input state.

The reason for the name trivial instrument can now be explained. Suppose we make an A-
measurement and after that a B-measurement. If the A-measurement is described by the trivial
instrument, then we get

p%(B ∈ Y | A ∈ X) = tr [%̃XB(Y )] = tr [ξB(Y )] = pB
ξ (Y ) .

This is just the same as measuring the trivial observable Y 7→ pB
ξ (Y )I in the state %. In other

words, B-measurement does not produce any additional information on the input state %. All
measurements following the A-measurement are ”trivialized”.

6.3 Disturbance caused by a measurement

It is one of the basic lessons of quantum physics that a measurement on a quantum system causes
an unavoidable disturbance in the sense that after the measurement system is in a different state
than before the measurement. In Subsection 6.3.1 we give one simple and precise formulation
of this idea in terms of instruments. We note, however, that this is only one version of the ”No
information without disturbance” statement. In the following form the result has been stated e.g.
in [18].

In Subsection 6.3.2 we take a look on the famous BB84 quantum key distribution protocol
to demonstrate how one can sometimes benefit from the unavoidable disturbance in quantum
measurements.

6.3.1 No information without disturbance

Is there a way to make a measurement of an observable A without causing any disturbance?
This would mean that performing a measurement of A does not affect any other measurements
performed later on the system. In particular, knowing the measurement outcome for A cannot
make any difference for the measurement outcome distribution of an observable B, that is,

p%(B ∈ Y | A ∈ X) = p%(B ∈ Y ) .
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for all X,Y ∈ F and % ∈ S(H). Since B can be chosen to be any observable, this is to require
that

%̃X = %

for all X ∈ F and % ∈ S(H). Written in terms of the related A-compatible instrument I, this
requirement is

IX(%) = cX(%) % ∀X ∈ F , % ∈ S(H) , (6.14)

where cX(%) is a non-negative number, possibly depending on X and %.
Due to the linearity of IX it follows that the number cX(%) does not depend on % and we can

set cX ≡ cX(%). Indeed, let %1 and %2 be two different states. Since IX is linear, we get

IX(%1 + %2) = IX(%1) + IX(%2) = cX(%1) %1 + cX(%2) %2 , (6.15)

and, on the other hand,

IX(%1 + %2) = cX(%1 + %2)(%1 + %2) = cX(%1 + %2) %1 + cX(%1 + %2) %2 . (6.16)

Comparing these two equations we see that cX(%1) = cX(%1 + %2) = cX(%2) for all %1, %2,
hence cX(%) ≡ cX .

Taking trace in both sides of (6.14), we get

tr [%A(X)] = tr [IX(%)] = cX .

As this is true for all states %, we have

cX = tr [|ϕ 〉〈ϕ|A(X)] = 〈ϕ |A(X)ϕ 〉

for all unit vectors ϕ ∈ H. Therefore, due to Proposition 4 in Section 2.2 this implies that
A(X) = cXI . Thus, A is necessarily a trivial observable which does not provide any information
on the state of the system (see Example 46 in Section 4.5). We conclude that in order to acquire
at least some non-trivial information, the measurement must produce some disturbance.

6.3.2 BB84 quantum key distribution

The fact that measurements necessarily disturb the observed systems can be exploited in cryp-
tographic protocols as a tool to identify the presence of an eavesdroper. Let us discuss the most
profound example of quantum cryptography - the so-called BB84 quantum key distribution pro-
tocol originally proposed in 1984 by Ch.Bennett and G.Brassard [5].

The goal of this protocol is to establish (in a secure way) a cryptographic key between two
parties, conventionally called Alice and Bob. To explain this protocol, we define the following
orthonormal bases for a two dimensional Hilbert space H,

a+ = b+ = {ϕ,ϕ⊥} = {ψ0,+, ψ1,+} , (6.17)
a× = b× = {ϕ+, ϕ−} = {ψ0,×, ψ1,×} , (6.18)

where ϕ± = 1√
2
(ϕ0 ± ϕ1). The symbols a, b denotes Alice’s and Bob’s sides, respectively. The

BB84 protocol consists of the following steps:
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1. In each run Alice and Bob independently and randomly choose orthonormal bases: either
+, or ×, i.e. they both generate a random bit ajr and bkr , respectively (jr, kr ∈ {+,×}
for each run r).

2. Alice generates another random bit xr ∈ {0, 1} and sends the pure state associated with
the vector ψxr,jr to Bob.

3. Bob performs a sharp measurement according to bit value bkr (recall Example 34) and
records an outcome yr = {0, 1} with a conditional probability p = |

〈
ψyr,bkr |ψxr,ajr

〉
|2

depending on the state received from Alice.

4. After the previous steps have been repeated long enough (e.g. 100 runs), Alice and Bob
compare their choices of bases. If they disagree, i.e. jr 6= kr, that particular run is ignored,
meaning that the bits xr and yr are discarded. In this procedure the original bit sequences
~x = x1, · · ·xn and ~y = y1, · · · yn are transformed into smaller bit sequences ~x′ and ~y′.

5. The identical subsequences ~x′ ≡ ~y′ form the rough key. The goal of the key distribution
protocol is achieved. Alice and Bob shares the same sequences of random bit values. In
order to prove that this is indeed the case we have to evaluate the probabilities for all cases.
Omitting the subindex r we obtain the formula

| 〈ψy,bk |ψx,ak 〉 |2 = δak,bkδxy +
1
2
(1− δak,bk) , (6.19)

meaning that if the bits jr, kr coincide, i.e. Alice and Bob have chosen the same basis,
then the bit values x, y are perfectly correlated. However, if jr 6= kr, then the values x, y
are completely independent. Therefore, these later cases are discarded from the strings
~x, ~y and the postselected subsequences ~x′, ~y′ fit perfectly.

The goal of BB84 is not to communicate any private information, but only to establish a key
that can be afterwards used for the (classical) perfectly secure communication protocol one time
pad [80]. A potential adversary Eve is always considered to have unlimited resources, but her
possibilities are restricted by physical laws. Her only task is to learn the key in a way that no one
recognizes her existence. It is not difficult to transfer random string from Alice to Bob, but the
problem is to do it in a secure way so that no one else has access to the distributed key. Since
nothing important is transferred in key distribution, it is not a big issue if the eavesdropper learns
part of the key, as long as her presence can be detected. If this happens, Alice and Bob discard
their keys and start to establish a new one. But is this possible?

There is no known classical strategy and the security of BB84 was not discussed yet. Let
us note that if classical systems are measured any introduced disturbance can be theoretically
undone by the eavesdropper, thus her presence cannot be detected. In the case of BB84 a general
strategy of the eavesdrop-er is based on the coupling of her system with the transmitted particles.
After that she can wait until Alice and Bob publicly announce the bases they used in each run and
measure her system in order to estimate the bit values. From Alice & Bob’s point of view Eve
performs a specific pointer observable, hence realizing a measurement model of some observable
on systems transmitted from Alice to Bob.
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However, there is no error-free measurement distinguishing among the four possible states
associated with vectors ψx,aj , because they are not mutually orthogonal. As we have discussed
previously some disturbance is necessarily introduced. Consequently, the sent and received states
are different and there is a nonvanishing probability that the rough keys ~x′, ~y′ do not match
perfectly. In order to find differences Alice and Bob release random bits from their rough keys
and compare publicly their bit values. In the ideal and strict version of the protocol any difference
implies that the whole key must be discarded.

For the details of how much key must be released in order to detect the eavesdropper with a
very high probability we refer to overview paper by Gisin et al [38]. The proof of unconditional
security of BB84 can be found in [59], [76].

There are several alternative proposals for quantum key distribution and also for quantum
secret communication. A common idea of all these protocols is that the security, in particular the
detection of adversaries, is based on the unavoidable disturbance caused by measurements.

Example 70. Let us consider the simplest version of attack on BB84 key distribution protocol.
Let us assume that Eve is measuring each transmitted particle independently trying to guess
what is the state. One option for her is to randomly switch between the same bases as are used
by Alice and Bob. Let us denote by elr with lr ∈ {+,×} the basis chosen by Eve in rth run.
Her outcome value zr ∈ {0, 1} is perfectly correlated with Alice’s and Bob’s bit values only if
her choice coincide with the choices of Alice and Bob, simultaneously. However, a chance that
jr = kr = lr is once in four runs, i.e. probability is 1/4. Hence, she can learn half of the bits.

Let us assume that if the eavesdropper gets outcome zr, then she resend to Bob a state asso-
ciated with the vector ψzr,elr . Under the considered circumstances this is the best what Eve can
do in order to minimize the disturbance. A probability that jr = kr 6= lr is also 1/4, i.e. the
second half of the rough key is disturbed. The conditional probability that the original state and
the resend one coincide (if jr = kr 6= lr) is 1/2, hence, a quarter of bits in the rough keys is
different. Therefore, it is sufficient to publish 1/4 of the key to find at least one difference with
a very large probability.

6.4 Repeatable measurements

Given an observable A, we can ask what kind of A-compatible instruments there exist. It should
be perhaps emphasized that there are no preferred or canonical A-compatible instrument. Differ-
ent instruments simply describe different kind of measurements of A, which influence the system
in different ways. We may, of course, want to perform the measurement of A in a certain way and
wish to influence the system in some way suitable for our purposes. For instance, one possibility
is that we use our measurement to prepare the system. We then require that this preparation
procedure makes the measurement outcome in the iterated measurement completely predictable.
This leads to the notion of a repeatable measurement. An overview on repeatable measurements
is presented in [14]. An extensive discussion on repeatability and some other related concepts
can be found in [18].

6.4.1 Repeatability

To formulate the above idea of a measurement device as preparator, let A be a discrete observable.
Suppose that we perform a measurement of A in a state %, and that the measurement is described
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by an A-compatible instrument I. Let x be a measurement outcome which have nonzero proba-
bility to occur, i.e., pA

% (x) 6= 0. The conditional output state corresponding to the measurement
outcome x is

%̃x =
1

tr [Ix(%)]
Ix(%) , (6.20)

where we use the short hand notation Ix ≡ I{x}.
Assume then that after recording some measurement outcome x, we repeat the measurement

using the same system. Naturally, the measurement outcome now depends on the instrument
I. We require that we get the same measurement outcome x as in the first measurement with
probability 1. Hence, we set the condition

tr [%̃xA(x)] = 1 . (6.21)

This leads us to the following definition.

Definition 50. An instrument I is repeatable if tr [%̃xA(x)] = 1 holds whenever tr [%A(x)] 6= 0.

Repeatability is thus a property of instruments and it does not depend on the other details
of measurement models. Sometimes we say that a measurement model M is repeatable - this
means that the induced instrument IM is repeatable.

Example 71. (Trivial instrument is not repeatable.) Let us continue with Example 68. Let A be
a discrete observable, ξ a state, and I the trivial instrument determined by ξ. For each state %
and measurement outcome x such that tr [%A(x)] 6= 0, we then have %̃x = ξ. Thus, if the trivial
instrument I is repeatable, then tr [ξA(x)] = 1 whenever A(x) 6= O. However, since

1 = tr [ξ] =
∑
x

tr [ξA(x)] =
∑

x:A(x) 6=O

1 ,

the repeatability condition can hold only if there is just a single nonzero effect in the range of A.
In this case, the observable A is of the following form:

A(x) = I for some outcome x, A(y) = O for all the other outcomes y . (6.22)

We conclude that trivial instruments are never repeatable, unless the corresponding observable A
is of the banal form (6.22).

The repeatability condition can be written in different but equivalent forms.

Proposition 74. For an instrument I, the following conditions are equivalent:

(i) I is repeatable.

(ii) tr [Ix(Ix(%))] = tr [Ix(%)] for every outcome x and state %.

(ii) tr [Iy(Ix(%))] = 0 for all outcomes x 6= y and every state %.
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Proof. Using equations (6.10) and (6.20), we see that the repeatability condition (6.21) for I is
equivalent to

tr [Ix(Ix(%))] = tr [Ix(%)] , (6.23)

which has to hold whenever tr [Ix(%)] 6= 0. If tr [Ix(%)] = 0, then both sides in (6.23) give 0.
Therefore, (i) and (ii) are equivalent.

The equivalence of (ii ) and (iii) follows immediately by noticing that∑
y

tr [Iy(Ix(%))] = tr [IΩ(Ix(%))] = tr [Ix(%)] .

Here we have used the fact that IΩ is trace preserving.

Which observables admit repeatable instruments? It is easy to see that a necessary condi-
tion is that each nonzero effect has eigenvalue 1. Namely, assume that a discrete observable A
has an A-compatible repeatable instrument. Let A(x) 6= O. Then there is a state % such that
tr [%A(x)] 6= 0. Repeatability condition then implies that tr [%̃xA(x)] = 1. Hence, the effect A(x)
has eigenvalue 1.

On the other hand, suppose that A is a discrete observable and that each nonzero effect A(x)
has eigenvalue 1. For each outcome x satisfying A(x) 6= O, choose a unit vector ψx ∈ H such
that A(x)ψx = ψx. For an outcome y with A(y) = O, fix an arbitrary unit vector ψy ∈ H. Then
define an instrument I as

Ix(%) = tr [%A(x)] |ψx 〉〈ψx| .

This instrument is A-compatible since

tr [Ix(%)] = tr [%A(x)] tr [|ψx 〉〈ψx|] = tr [%A(x)] .

Using condition (ii) in Proposition 74 it easy to see that I is repeatable,

tr [Ix(Ix(%))] = tr [%A(x)] tr [Ix(|ψx 〉〈ψx|)] = tr [%A(x)] tr [|ψx 〉〈ψx|A(x)] = tr [Ix(%)] .

We have thus reached the following result, first proved in [18].

Proposition 75. Let A be a discrete observable. The following conditions are equivalent:

(i) There exists an A-compatible repeatable instrument.

(ii) If A(x) 6= O, then A(x) has eigenvalue 1.

As a conclusion, we have seen that repeatable measurements are possible, but they set some
requirements for the observable in question.
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6.4.2 Approximate repeatability

One could formulate the repeatability condition also in the general case and not only for discrete
observables. In the general case, the repeatability of an instrument I means that

tr [IX(IX(%))] = tr [IX(%)] (6.24)

for every X ∈ F and % ∈ S(H). However, according to a result of Ozawa [67], there is no
A-compatible repeatable instruments unless A is discrete.

The fact that repeatable instruments do not exists for non-discrete observables may seem
controversial with the current quantum technology, where a single particle can be repeatedly
localized with high precision. One can make a practical argument that in any real experiment
there can be only finite number of possible measurement outcomes. However, this issue can also
be explained by modifying the repeatability condition slightly, giving perhaps some additional
insight to the problem.

An overview of relaxations to the repeatability condition can be found in [17] and [21]. To
demonstrate this kind of approach, we follow the seminal article of Davies and Lewis [30] and
describe one possible way to relax the repeatability condition. For simplicity, we assume the
outcome space of observables and instruments to be the Borel measure space (R,B(R)).

For every ε > 0 and x ∈ R, we denote by Ix;ε the closed interval centered in x and with the
length ε, i.e., Ix;ε = [x− 1

2ε, x+ 1
2ε]. For every X ⊆ R, we then denote

Xε =
⋃
x∈X

Ix;ε .

Thus, if the diameter of a set X (defined as the least upper bound of the distances between pairs
of points in X) is d(X), the the diameter of Xε is d(X) + ε.

Definition 51. Let ε > 0. An instrument I is ε-repeatable if

tr [IXε(IX(%))] = tr [IX(%)] (6.25)

for every X ∈ B(R) and every % ∈ S(H).

The condition (6.25) has the following meaning. Assume that an outcome from a subset X is
recorded. Then a repeated application of the same measurement gives an outcome from Xε with
probability 1. When ε is close to 0, then ε-repeatable instrument is almost like a repeatable one.
Formally, the definition of ε-repeatability would make sense also for ε = 0; in this case it would
reduce to the usual definition of repeatability.

Exercise 43. Show that if and an instrument I is ε-repeatable, then it is ε′-repeatable for every
ε′ ≥ ε.

As a conclusion of the previous discussion and Exercise 43, for a given observable A, we are
interested to find the smallest possible number ε such that there exists A-compatible instrument
I which is ε-repeatable.

Proposition 76. Let A be an observable and assume there is ε > 0 such that for every open
interval X with diameter d(X) = ε, the effect A(X) has eigenvalue 1. Then there exists a
ε-repeatable A-compatible instrument.
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Proof. For each n ∈ Z, denote Xn = [nε, (n + 1)ε). Then (Xn) is a sequence of mutually
disjoint sets and ∪nXn = R. From the assumption follows that for each n ∈ Z, we can choose
a pure state %n such that tr [%nA(Xn)] = 1. The formula

IX(%) :=
∑
n

tr [%A(X ∩Xn)] %n

defines an A-compatible instrument I. Indeed, to see that each IX is completely positive, fix an
orthonormal basis {ϕk} for H. Expanding the trace in this basis, IX can be written in the Kraus
form

IX(%) =
∑
k,n

Ak,n%A
∗
k,n ,

where

Ak,n := |ψn 〉〈A(X ∩Xn)
1
2ϕk| .

By Proposition 61 this shows that IX is completely positive.
To prove that I is ε-repeatable, let X ∈ B(R) and % ∈ S(H). We then get

tr [IXε (IX(%))] =
∑
n

∑
k

tr [%nA(Xε ∩Xk)] tr [%A(X ∩Xn)]

=
∑
n

tr [%nA(Xε)] tr [%A(X ∩Xn)] .

If X ∩Xn 6= ∅, then Xn ⊆ Xε. This implies that either tr [%A(X ∩Xn)] = 0 or tr [%nA(Xε)] =
1. Therefore

tr [IXε (IX(%))] =
∑
n

tr [%A(X ∩Xn)] = tr [%A(X)] .

Example 72. (Approximate repeatability of the canonical position observable) Let us recall the
canonical position observable Q introduced in Example 35, Section 4.2. It is a sharp observable
and thus each Q(X) 6= O has eigenvalue 1. On the other hand, Q(X) 6= O whenever X is a
nonempty open interval. We conclude from Proposition 76 that there exists a ε-repeatable Q-
compatible instrument for each ε > 0. There is thus no theoretical limit for the precision of
repeatability.

6.5 Lüders measurements

Lüders measurements are perhaps the most often used type of measurement models and instru-
ments in applications. For this reason we spend some time on this topic.
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6.5.1 Sharp Lüders measurement and ideality

Let us start with a discussion of a specific kind of measurement model for a discrete sharp ob-
servable associated to an orthonormal basis. Let {ψj} be an orthonormal basis for H and A the
associated sharp observable, i.e. A(j) = |ψj〉〈ψj | (recall Example 34 in Section 4.2).

To construct a measurement model for A, fix a Hilbert space K with the same dimension as
H. Let {φj} be an orthonormal basis for K, and choose the pointer observable F to be the sharp
observable associated to this basis, i.e., F(j) = |φj 〉〈φj |. Let V : H⊗K → H⊗K be a unitary
operator such that

V (ψj ⊗ φ0) = ψj ⊗ φj ∀j .

The initial state %0 of the apparatus is chosen to be %0 = |φ0 〉〈φ0|.
If the system is initially in a state ψ =

∑
ciψi, then the composition of the system and the

apparatus will be in the state

|V (ψ ⊗ φ0) 〉〈V (ψ ⊗ φ0)| =
∑
i,j

c̄icj |ψi 〉〈ψj | ⊗ |φi 〉〈φj | . (6.26)

We then get

tr [|V (ψ ⊗ φ0) 〉〈V (ψ ⊗ φ0)| I ⊗ F(k)]

= tr

∑
i,j

c̄icj |ψi 〉〈ψj | ⊗ |φi 〉〈φj |

 I ⊗ |φk 〉〈φk|


=

∑
i,j

c̄icj tr [|ψi 〉〈ψj | ⊗ |φi 〉〈φj | I ⊗ |φk 〉〈φk|]

=
∑
i

|ci|2 tr [|ψi 〉〈ψk| ⊗ |φi 〉〈φk|]

=
∑
i

|ci|2
(∑
r,s

〈ψr ⊗ φs |ψi ⊗ φi 〉 〈ψk ⊗ φk |ψr ⊗ φs 〉

)
= |ck|2 .

On the other hand, we have

tr [|ψ 〉〈ψ|A(k)] = |ck|2 ,

and the probability reproducibility condition is therefore satisfied. We conclude that M =
〈K, φ0, V,F〉 is a measurement model of the observable A.
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Let us then calculate the instrument IM corresponding to M. We get

IMk (|ψ〉〈ψ|) = trK [|V (ψ ⊗ φ)〉〈V (ψ ⊗ φ)|(I ⊗ F(k))]

= trK

∑
i,j

c̄icj |ψi 〉〈ψj | ⊗ |φi 〉〈φj |

 (I ⊗ |φk〉〈φk|)


=

∑
i,j

c̄icj trK [(|ψi 〉〈ψj | ⊗ |φi 〉〈φj |)(I ⊗ |φk〉〈φk|)]

=
∑
i

|ci|2 trK [|ψi 〉〈ψk| ⊗ |φi 〉〈φk|]

=
∑
i

|ci|2
(∑
r,s,t

〈ψr ⊗ φs |ψi ⊗ φi 〉 〈ψk ⊗ φk |ψt ⊗ φs 〉 |ψr 〉〈ψt|

)
= |ck|2|ψk〉〈ψk| ,

which can be written in the form

IMk (%) = Pk%Pk , (6.27)

where Pk = |ψk〉〈ψk|. This memo M and instrument IM are called Lüders memo and Lüders
instrument of A, respectively.

As a generalization, we make the following definition.

Definition 52. The Lüders instrument IL for a discrete observable A is defined as

ILx (%) = A(x)
1
2 %A(x)

1
2 . (6.28)

Notice that for a projection P , we have P
1
2 = P . Therefore, the instrument IM in (6.27) is

indeed of the Lüders form (6.28).

Exercise 44. Let A be a discrete observable (not necessarily sharp) and define an instrument I
as

Ix(%) = A(x)%A(x) .

Find an example showing that I is not, in general, A-compatible.

It is not possible to perform a measurement of a non-trivial observable without at least some
disturbance in forthcoming measurements. Hence, it is interesting to ask what is the effect of
this unavoidable disturbance. In the following we concentrate on this question in the case of the
Lüders instrument of a discrete sharp observable.

Exercise 45. Let A be a sharp discrete sharp observable. Show that the corresponding Lüders
instrument IL is repeatable.

As seen in Subsection 6.3.1, the non-disturbance condition

%̃x = % (6.29)
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cannot hold for all x and %, unless A is trivial. We can still ask if (6.29) would hold for some
states %.

Let A be a sharp discrete observable. An eigenvector ψx of A(x) corresponding to the
eigenvalue 1 satisfies A(x)ψx = ψx, and this also implies that A(x)

1
2ψx = ψx. Therefore,

if % = |ψx 〉〈ψx|, then A(x)
1
2 %A(x)

1
2 = %. Hence, in a Lüders measurement the state % does not

change at all. This motivates the following definition.

Definition 53. Let A be a sharp discrete observable. An A-compatible instrument I is ideal if
for every x ∈ Ω and % ∈ S(H), the following implication holds:

pA
% (x) = 1 ⇒ Ix(%) = % . (6.30)

We already saw that the Lüders instrument of a discrete sharp observable A is ideal. This is
actually a unique property of the Lüders instrument. Indeed, we have the following result [18].

Proposition 77. Let A be a sharp discrete observable. An A-compatible instrument I is ideal if
and only if I is Lüders instrument.

6.5.2 Lüders theorem

Let A and B be two discrete observables. Suppose that we make a Lüders measurement of A, and
after that, we perform a measurement of B. We can then ask whether the measurement of B is
disturbed by the measurement of A or not. We consider B not to be disturbed if the measurement
outcome probabilities of B-measurement do not depend on whether A has been measured first or
not. Hence, if IL is the A-compatible Lüders instrument, the non-disturbance condition reads

tr
[
ILΩ(%)B(y)

]
= tr [%B(y)] ,

required to hold for all outcomes y and states %.
Assume, for a moment, that A and B commute, i.e., A(x)B(y) = B(y)A(x) for all x, y.

Recall from Theorem 1 in Section 2.2.2 that this implies A(x)
1
2 B(y) = B(y)A(x)

1
2 for all x, y.

Thus, we get

tr
[
ILΩ(%)B(y)

]
=
∑
x

tr
[
A(x)

1
2 %A(x)

1
2 B(y)

]
=
∑
x

tr [A(x)%B(y)] = tr [%B(y)] . (6.31)

Thus, B is not disturbed by the A-measurement.
We can also start from the assumption that the measurement statistics of B are not altered by

the measurement of A at all. To proceed in this direction, we suppose that A is sharp. Then the
assumption means that∑

x

tr [A(x)%A(x)B(y)] = tr [%B(y)] (6.32)

for every state %, so that∑
x

A(x)B(y)A(x) = B(y) . (6.33)
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For each x′, we get (by multiplying the both sides of (6.33) by A(x′) on the left)

A(x′)B(y) =
∑
x

A(x′)A(x)B(y)A(x) = A(x′)B(y)A(x′) (6.34)

and similarly (by multiplying the both sides of (6.33) by A(x′) on the right)

B(y)A(x′) =
∑
x

A(x)B(y)A(x)A(x′) = A(x′)B(y)A(x′) . (6.35)

Here we have used the fact that A(x′)A(x) = A({x} ∩ {x′}) = δx,x′A(x′); see Proposition 42
in Section 4.2. A comparison of (6.34) and (6.35) shows that A and B commute. We thus arrive
to the following conclusion, first observed by Lüders [58].

Theorem 12. (Lüders Theorem) Let A and B be discrete observables and suppose that A is sharp.
A Lüders measurement of A does not disturb B if and only if A and B commute.

Is there a version of Lüders theorem for a general pair of discrete observables? Namely, do
two discrete observables commute if their Lüders measurements do not disturb them mutually?
The answer to this question is negative and a counterexample was given in [2]. This means that
there are observables A and B such that A and B do not commute but, in spite of that, a Lüders
measurement of A does not disturb B.

Even though there is no general Lüders Theorem for all pairs of discrete observables, the
statement can be extended to certain classes of observables, such as two-outcome observables.
All this kind of results are commonly referred as generalized Lüders Theorem. For more about
this topic, see [20] and [40].

6.5.3 Example: mean king problem

Once upon a time ... Alice (a physicists) was sailing in the ocean. A big storm surprised her and
she ended up on an island ruled by king Brutus. Brutus loves cats. One day he learned about
a cat being alive and dead at once and he started to hate quantum physicists. Nevertheless, he
decided to give Alice her last chance. Here is his deadly challenge:

I shall take a spin- 1
2 system and make a measurement of either σx, or σy , or σz , thereby

getting an outcome 1 or−1. Your task is to correctly guess the outcome I obtain. You are allowed
to prepare the system before I measure it. In the morning, I shall make the choice, perform the
measurement and give you back the measured system. For the whole day you will have full access
to my royal laboratory. However, the sunset shall close and lock the doors without the possibility
to take anything out of the lab. I shall tell you my choice of the measurement and you must
immediately make your final guess. You have only one chance.

What are the chances of Alice to survive this game? Is she going to stay in a similar situ-
ation as the Schrödinger’s cat? Before continuing the story, let us stress that some details must
be specified more precisely. It is implicitly assumed that the instruments describing the king’s
measurement apparatuses are of the Lüder’s form. Hence, the states corresponding to the vectors
| ↑b〉 and | ↓b〉 are the conditional output states related to the outcomes ±1, respectively, and
b = x, y, z identifies the choice of the measurement σb.
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Exercise 46. If the system is in a state | ↑x〉, then the outcome of σx is 1 with probability 1.
Hence, if Alice would know before the choice of Brutus, then the problem would be easy. Show
that this strategy fails even in a situation of two possible choices, i.e., show that there is no state
% such that the outcome for the observables σx and σy can be predicted with probability 1.

As seen in Example 46, the measurement outcome obtained by the king will be random
whatever way Alice prepares the system. Therefore, Alice chances to survive must depend on
the fact that she will know at the end the king’s choice. The question is whether this information
comes too late or not.

Our goal is not to analyze the problem in its whole generality, but rather to demonstrate that
the problem can be solved and Alice can find the king’s outcome with certainty. This problem
was originally consider in [79]. Here we present a slightly different solution.

Alice prepares two spin- 1
2 systems into the singlet state σ = |ψ 〉〈ψ|,

|ψ〉 =
1√
2

(| ↑〉 ⊗ | ↓〉 − | ↓〉 ⊗ | ↑〉) ,

which has the same form in any orthonormal basis. Alice keeps the first system and the second
one she gives to the king. Suppose that the king performs a measurement of σb. The conditional
output state corresponding to the measurement outcome ±1 is

1
tr
[
IL±1(σ)

]IL±1(σ) ≡ |Φb,± 〉〈Φb,±| ,

where

Φb,+ = | ↓b〉 ⊗ | ↑b〉 , Φb,− = | ↑b〉 ⊗ | ↓b〉 .

Alice can count on the additional information she gets after performing her measurement.
Let us define an orthonormal basis {θ1, θ2, θ3, θ4} of C2 ⊗ C2 in the following way:

θ1 =
1√
2
| ↑z〉 ⊗ | ↓z〉+

1
2
e−iπ/4| ↑z〉 ⊗ | ↑z〉 −

1
2
eiπ/4| ↓z〉 ⊗ | ↓z〉 ,

θ2 =
1√
2
| ↑z〉 ⊗ | ↓z〉 −

1
2
e−iπ/4| ↑z〉 ⊗ | ↑z〉+

1
2
eiπ/4| ↓z〉 ⊗ | ↓z〉 ,

θ3 =
1√
2
| ↓z〉 ⊗ | ↑z〉+

1
2
eiπ/4| ↑z〉 ⊗ | ↑z〉 −

1
2
e−iπ/4| ↓z〉 ⊗ | ↓z〉 ,

θ4 =
1√
2
| ↓z〉 ⊗ | ↑z〉 −

1
2
eiπ/4| ↑z〉 ⊗ | ↑z〉+

1
2
e−iπ/4| ↓z〉 ⊗ | ↓z〉 .

Alice’s observable A is the sharp observable associated to this basis, i.e., A(k) = |θk 〉〈 θk| for
k = 1, 2, 3, 4.

The following table contains the conditional probability distributions (columns) measured by
Alice for all possibilities of the king’s measurement choice and outcome:

x,+1 x,−1 y,+1 y,−1 z,+1 z,−1
1 1/2 0 1/2 0 0 1/2
2 0 1/2 0 1/2 0 1/2
3 0 1/2 1/2 0 1/2 0
4 1/2 0 0 1/2 1/2 0
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The numbers in this table are the overlaps |〈 θk |Φb,± 〉|2. The last two columns are easy to
calculate as the vectors θk are given in terms of | ↑z〉 and | ↓z〉. To calculate the other columns,
one can use the expansions

| ↑x〉 =
1√
2

(| ↑z〉+ | ↓z〉) , | ↓x〉 =
1√
2

(| ↑z〉 − | ↓z〉) ,

| ↑y〉 =
1√
2

(| ↑z〉+ i| ↓z〉) , | ↓y〉 =
1√
2

(| ↑z〉 − i| ↓z〉) .

It is straightforward to verify that if b is announced, the outcomes 1, 2, 3, 4 uniquely match
with the king’s results ±1. In conclusion, Alice can solve the problem set by the king. Let
us note that the solution strongly depends on the fact that the measurements are described by
Lüder’s instruments. Without such assumption the perfect success rate cannot be achieved.

6.6 Programmable quantum processors

The concept of programmable quantum processors was originally introduced in [64]. The results
presented in this section are based on Refs. [44, 87, 89].

6.6.1 Programs and processors

As we have learned in the beginning of this chapter, a measurement model M is a quadruple
M = 〈K, %0,V,F〉. If we change the probe state %0 to another probe state %′0, we get a new
measurement model M′ = 〈K, %′0,V,F〉. In this way, we can potentially realize different ob-
servables just by changing the probe state and keeping other components of the memo fixed.
Probe states can be seen as quantum programs since they encode different measurement models.
The rest of the memo components then define a quantum processor, which can be programmed
by choosing appropriate probe state.

Definition 54. A (programmable) quantum processor is a triple 〈K, V,F〉 where

• K is a Hilbert space attached to the apparatus

• V is a unitary channel from T (H⊗K) to T (H⊗K). It describes interaction between the
system and the apparatus.

• F is a pointer observable.

A programmable quantum processor can be used to realize instruments, observables and
channels. The probe state %0 being the quantum program encodes all these objects. All possible
observables and instruments realized by a given quantum processor are given by the usual set of
formulas

tr [%A(X)] = tr [IX(%)] = tr [V (%⊗ %0)V ∗(I ⊗ F(X))] , (6.36)

when %0 runs through all states of the apparatus. The realizable channels correspond to the
non-selective state changes. Hence, they are given by

% 7→ trK [V (%⊗ %0)V ∗] . (6.37)

The pointer observable therefore plays no role in the realization of channels.
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6.6.2 Programming channels

In this section we consider realization of channels using programmable quantum processors. As
we said earlier, the pointer observable F does not play any role and therefore for the sake of this
section a programmable quantum processor will be represented by a couple 〈K, G〉, where G is
a unitary transformation defined on H⊗K.

Proposition 78. Let E1 and E2 be two different channels.

(a) There is a quantum processor realizing E1 and E2.

(b) In any realization of E1 and E2 by a single quantum processor, the program states ξ1, ξ2
can be chosen to be pure, i.e. ξ1 = |Ξ1〉〈Ξ1| and ξ2 = |Ξ2〉〈Ξ2|, and satisfies the identity

〈Ξ1 |Ξ2 〉 I =
∑
j

A∗jBj , (6.38)

where Aj are Kraus operators of E1 and Bj are Kraus operators of E2.

Let us note a freedom in the specification of Kraus operators for a given channel E that plays
important role in the above proposition. We may assume that the number of Kraus operators is
(countably) infinite by adding suitable number of zero operators O. Moreover, for the purposes
of the above theorem the Kraus operators are ordered by their index values. For example, a
channel E(%) = q%+ (1− q)U%U∗ has Kraus operators ordered as in many different ways:

√
qI ,

√
1− qU , O , O , . . . ,√

1− qU ,
√
qI , O , O , . . . ,

√
qI , O ,

√
1− qU , O , . . . ,

O ,
√

1− qU ,
√
qI , O , . . . , etc .

All of these Kraus decompositions (although containing the same Kraus operators) are consid-
ered to be different for the purposes of the Eq. (6.38).

Proof. According to Stinespring theorem (see Section 5.2.2) we known that each channel E
can be implemented as a unitary transformation VE on a extended quantum system H ⊗ KE by
preparing the system KE in a state ξE . These object form together a dilation 〈KE , VE , ξE〉 of the
channel E . Let 〈K1, V1, ξ1〉 and 〈K2, V2, ξ2〉 be dilations for the channels E1 and E2, respectively.
Define a unitary transformation G acting on H⊗K1 ⊕K2 as follows

G = V1 ⊕ |ϕ2〉〈ϕ2|+ V2 ⊕ |ϕ1〉〈ϕ1| , (6.39)

where ϕj ∈ Kj and V1, V2 are defined above. Our claim is that a programmable processor
〈K1 ⊕ K2, G〉 implements both channels E1, E2. In particular, preparing the program register in
the state ξ1 ∈ S(K1 ⊕K2) results in transformation

% 7→ trK1⊕K2 [G(%⊗ ξ1)G∗] = trK1 [V1(%⊗ ξ1)V ∗1 ] = E1(%) , (6.40)

and similarly for program state ξ2 ∈ S(K1 ⊕K2) encodes the channel E2.
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In order to prove the part (b) of the proposition let us evaluate the action of a programmable
processor on a pure input state, i.e. when both system and probe are in the pure state. Let us
note that a general unitary transformation acting on a bipartite system H ⊗ K can be written as
G =

∑
j,k Ejk ⊗ |ϕj〉〈ϕk|, where vectors ϕj form an orthonormal basis of K and operators Ejk

must be chosen so that unitarity is guaranteed (find the conditions). We get

G|ψ〉 ⊗ |Ξ〉 =
∑
j,k

Ejk|ψ〉 ⊗ 〈ϕk |Ξ 〉 |ϕj〉 =
∑
j

Aj |ψ〉 ⊗ |ϕj〉 , (6.41)

where Aj =
∑
k Ejk 〈ϕk |Ξ 〉. Tracing out the probe (program) system we end up with the

channel

|ψ〉〈ψ| 7→
∑
j

Aj |ψ〉〈ψ|A∗j , (6.42)

written in the operator sum form. Starting with two different pure states ξ1, ξ2 we get particular
operator sum form for two channels E1, E2 with operators Aj , Bj , respectively. Let us calculate
the following sum∑

j

A∗jBj =
∑
j,k,k′

E∗jkEjk′ 〈Ξ1 |ϕk 〉 〈ϕ′k |Ξ2 〉 = I
∑
k,k′

〈Ξ1 |ϕk 〉 δkk′ 〈ϕ′k |Ξ2 〉

= I 〈Ξ1|

(∑
k

|ϕk〉〈ϕk|

)
|Ξ2〉 = 〈Ξ1 |Ξ2 〉 I , (6.43)

where we used the completeness of basis {ϕj} and the normalization of operators Ejk, in partic-
ular,

∑
j E

∗
jkEjk′ = Iδkk′ . This proves that the identity holds, but it remains to prove that it is

sufficient to consider only pure states. The sufficiency follows from the purification. In particu-
lar, if we have two mixed program states ξ1, ξ2, then the programmable processor G′ = G⊗Ianc

implements the same channels, but with pure states associated with vectors Ξ1,Ξ2 ∈ K ⊗Hanc

such that tranc[|Ξj〉〈Ξj |] = ξj .

Corollary 1. Arbitrary pair of channels E1, E2 can be realized on the same programmable proces-
sor using orthogonal program states. Moreover, in such case the program space dimK ≥ n1n2,
where n1, n2 are the dimensions of the minimal Stinespring dilations of channels E1, E2, respec-
tively.

Let us note that the (b) part of the proposition allows for a special solution for all pairs of
channels. In fact, in order to satisfy the identity we can always set 〈Ξ1 |Ξ2 〉 = 0 and reorder the
Kraus operators so that Aj 6= O,Bj = O for j = 1, . . . ,m, Aj = O,Bj 6= O for m < j ≤ n,
and Aj = Bj = O for j > n. It means that a pair of channels can be implemented on a
programmable processor using a pair of suitable orthogonal states to encode the channels. The
dimension of the Hilbert space K is given by the total number of nonvanishing Kraus operators
needed to describe both channels, i.e. n = dimK in our construction.

Each programmable processor 〈K, G〉 defines a linear mapping

G : S(K) → Ochan(H), ξ 7→ Eξ : Eξ(%) = trK[G(%⊗ ξ)G∗] . (6.44)

Let us note that the number of parameters describing the channels on a system H is fixed, how-
ever, the number of parameters of program states can be made arbitrarily large. Therefore, it
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seems that we can design a universal quantum processor being able to implement all channels.
Formally, for universal programmable processor the mapping G will be surjective. In order to
give an answer let us stress that for the purposes of universality it is sufficient to consider only
the realization of unitary channels. Unitary channels on H ⊗ H system are capable to perform
any channel on subsystem H. This is a consequence of the existence of the minimal Stinespring
dilation. The next theorem is in a sense surprising result due to Nielsen & Chuang [65].

Theorem 13. (Nonexistence of a universal programmable processor.) There is no quantum
processor realizing all unitary channels.

Proof. Applying Proposition 78 we see that in order to implement two unitaries, the program
states must be orthogonal, because

U∗1U2 = cI ⇔ U1 = U2e
iη, or c = 0 . (6.45)

The first option means that U1, U2 are the same up to a phase factor, which is physically irrele-
vant, so the orthogonality is the only relevant option. And since the set of all unitary channels
is uncountable it follows that the Hilbert space K cannot be separable. Therefore, no universal
quantum processor exists.

Example 73. (Programming the phase damping channels.) Consider a set of phase damping
channels Eη acting on a two-dimensional system as

Eη(%) = η%+ (1− η)U~n%U∗~n , (6.46)

where U~n = ~n · ~σ. These channels are decoherence channels with the decoherence basis defined
by eigenvectors of U~n. Let us fix this unitary transformation and let ϕ+, ϕ− be the eigenvectors
corresponding to eigenvalues ±1 of U~n. In turns out that 〈ϕ±|%|ϕ±〉 = 〈ϕ±|Eη(%)|ϕ±〉 and

γ =
|〈ϕ±|Eη(%)|ϕ∓〉|
|〈ϕ±|%|ϕ∓〉|

=
√

1 + 4η(1 + η) . (6.47)

The parameter γ is called a decoherence rate. The larger it is the faster is the decoherence process
if the powers of the channel are applied.

Our goal is to investigate an implementation of channels Eη on the same programmable pro-
cessor. In particular, what must be the size of the program space K? A direct calculation shows
that the Eq.(6.38) for this particular case is fulfilled

√
η1η2I +

√
(1− η1)(1− η2)U∗U = [

√
η1η2 +

√
(1− η1)(1− η2)]I . (6.48)

It means that a pair of channels Eη1 , Eη2 can be realized with the program states satisfying
〈Ξ1 |Ξ2 〉 =

√
η1η2 +

√
(1− η1)(1− η2). The question is, whether this relation can hold

simultaneously for all pairs of channels. For η = 0, 1 the channels are unitary (U, I , respec-
tively) and, of course, in this case the states |ΞI〉, |ΞU 〉 are orthogonal. Moreover, it follows
that 〈ΞI |Ξη 〉 =

√
η and 〈ΞU |Ξη 〉 =

√
1− η, i.e. Ξη is a superposition of ΞI and ΞU with

amplitudes
√
η,
√

1− η, respectively. That is, the program states

Ξη =
√
ηΞI +

√
1− η ΞU . (6.49)
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encoding the channels Eη satisfy the Eq.(6.38). Indeed, a programmable processor

G = I ⊗ |ΞI〉〈ΞI |+ U ⊗ |ΞU 〉〈ΞU | (6.50)

realizes the channels Eη with program states |Ξη〉〈Ξη| defined above. As a result we get that
phase damping channels can be realized on a programmable processor using only a two-dimen-
sional program space.

Example 74. (Programming the decoherence bases.) Consider the same set of channels as in
the previous example, but now let us fix the damping parameter η. The problem is whether the
set of channels

E~n(%) = ηI + (1− η)U~n%U∗~n (6.51)

can be realized on some programmable processor. Let us note that for η = 0 the problem is
equivalent to implementation of unitary channels, which is not possible. On the other hand for
η = 1 the problem is trivial, since the set consists of only single element - the identity channel.

The following calculation for a pair of channels E~n, E~m

ηI +
√

1− ηU∗~nO +
√

1− ηOU~m = ηI (6.52)

shows that unlike for unitary channels in this case the orthogonality of program states is not nec-
essary. In particular, 〈Ξ~n |Ξ~m 〉 = η. Hence, the question is how many vectors with pairwisely
the same scalar product there exist in k-dimensional program space K.

Let us consider a bit different problem: how many equally overlapping vectors is in K?
The overlap is the square of the absolute value of the scalar product. Thus, the solution to this
problem gives at least as many vectors as the solution of the original problem. The point is
that the number of such states is finite (for finite dimensional space), and moreover, the value of
overlap η is given by the dimension. The larger the dimension the larger is the value of η. In the
limit of an infinite-dimensional space the vectors coincides, hence the program states implement
the identity channel. It turns out that for this type of encoding only finite number of channels E~n
for a special value of η can be realized on single programmable processor. Alternatively, we can
use orthogonal states to encode the channels E~n and in this case the only constraint is that the
number of channels E~n must be countable. This is the same situation as for the case of unitary
channels.

Out of these two example we can make an interesting physical conclusion. Essentially, we
get that the decoherence rate (for a fixed basis) can be adjusted by the state of the environment
without affecting the strength of the interaction, i.e. with a fixed programmable processor. How-
ever, the decoherence basis cannot be completely controlled by the states of the environment
and the interaction (defining the programmable processor) must be adjusted. In general, it is an
interesting question which parameters of channels can be adjusted by changing the environment
(program) and which require different interactions.

Corollary 2. Arbitrary countable set of channels can be always realized on the same pro-
grammable quantum processor by using orthogonal program states. Similarly, like in the pre-
vious corollary, for the dimension of the program space we have dimK ≥ n1n2 . . . , where nj is
the dimension of the minimal Stinespring dilation of the channel Ej .
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Exercise 47. A contraction is a quantum channel that maps the whole state space into a single
quantum state, i.e. Aξ : S(H) 7→ ξ. Find a quantum processor implementing all contractions on
d-dimensional quantum system. (Hint: SWAP operator)

Exercise 48. Show that the maximally mixed state as the program state can encode only unital
channels. (Hint: No hint.)

6.6.3 Programming channels imperfectly

No universal programmable quantum processor implementing all channels does exist. There are
two basic approaches how to weaken the universality requirements.

• approximate universality - channels are implemented only approximately and the quantity

εG(E) = max
ξ∈S(K)

f(G(ξ), E) (6.53)

is used to evaluate the quality of the realization of the channel E on the programmable
processor G. Let us note that G is the mapping associated with G (cf. Eq.(6.44)) and
f(·, ·) ∈ [0, 1] measures the fidelity of channels, i.e. f(E1, E2) = 1 if and only if E1 = E2.
That is, if ε(E) = 1 we say the channel is implemented perfectly. Let us note that each
programmable processor is approximately universal, but the differences are in the quantity
ε(E). The overall goal is to find a channel optimizing (in some sense) this quality measure
with respect to given resources that are usually quantified by the dimension of the program
space K. That is, the particular goal is to find an optimal approximate programmable
processor for a given size of the program register K.

• probabilistic (unambiguous) universality - channels are successfully implemented with
some success probability psuccess associated with particular success outcome of the pointer
observable F. Moreover, the realization is unambiguous in a sense, that we know whether
the channel is implemented, or not. In this case the programmable processors are exploited
to realize selective measurements resulting in transformation

% 7→ %′ = Tξ(%) =
1

tr
[
Iξsuccess(%)

]Iξsuccess(%) (6.54)

where Iξsuccess is the completely positive map associated with the success outcome and
depending on the program state ξ. The probability to find the success outcome is

psuccess = tr
[
Iξsuccess(%)

]
. (6.55)

Our goal is to implement channels, hence we are interested only in those cases when Tξ
is a valid quantum channel. In particular, it is linear if and only if the probability psuccess

is independent of %, i.e. the completely positive map Iξsuccess is proportional to a trace-
preserving map. Only in such case we say that a channel has been implemented and
psuccess defines the success probability of the implementation of some channel Tξ.
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For a given programmable processor we can define a set of probabilistic programs Sprob =
{ξ ∈ S(K) : Tξ is a channel } as those states that really implements some channel. For a
given programmable processor the success probability can be defined for all channels, i.e.
psuccess(E) = 0 if there is no ξ ∈ Sprob such that Tξ = E . Having this in mind we can
say that each programmable processor is universal. Similarly like for the approximate sce-
nario also in this case the goal is to find an optimal probabilistic programmable processor
given the size of the program space K. The optimality is defined in terms of the success
probability psuccess(E).

If for a given processor ε(E) = 0, or psuccess(E) = 0 we usually say that the processor
is not universal. It is not surprising that in both these regimes (approximate and probabilistic)
the universal processors (after this redefinition of universality) do exist, i.e. there do exist pro-
grammable processors such that minE ε(E) > 0 and minE psuccess(E) > 0. Further, we shall
give examples of universal processors implementing unitary channels.

Example 75. (Universal approximate programming of unitary channels.) As in the case of
(deterministic) implementation of channels also for approximate programming the choice of the
pointer observable is irrelevant. Let us consider a programmable processor being the controlled-
U operation

G =
∑
j

Uj ⊗ |ϕj〉〈ϕj | , (6.56)

where {ϕ1, . . . , ϕk} is an orthonormal basis of the program space K. Our task is to approxi-
mately implement all unitary channels. Consider a general program state ξ. Then the realized
channel is a random unitary channel

Eξ : Eξ(%) =
∑
j

〈ϕj |ξ|ϕj〉Uj%U∗j =
∑
j

qjUj%U
∗
j . (6.57)

Let us note that {qj} is an arbitrary probability distribution on k elements. The fidelity (one
minus distance) between a unitary transformation U and the set of channels Eξ vanishes (distance
is maximal) if f(U,Uj) = 0 for all j. Strictly speaking, this holds of f(·, ·) is convex. From
convexity it also follows that

ε(U) = max
ξ
f(U, Eξ) = max

j
f(U,Uj) . (6.58)

A usual choice for quantifying the fidelity of channels is to use the so-called process fidelity being
defined as fidelity between the corresponding states under Choi-Jamiolkowski isomorphism, i.e.

f(E1, E2) = tr
[√√

ω1ω2
√
ω1

]
, (6.59)

where ωj = (Ej ⊗ I)[ψ+]. For unitaries we have f(U1, U2) = |tr [U∗1U2] |. Therefore, the
processorGwill be universal if and only if the operators {Uj} span the whole space of operators,
i.e. span{Uj} = L(H). This gives a lower bound onK since k = dimK ≥ dimL(H) = d2. For
k < d2 no programmable quantum processor with G being a controlled-U transformation exists.

Let us fix the dimension k = d2. In this case we can find the optimal programmable processor
within the family of controlled-U processors [89]. In particular, the choice of U1, . . . , Ud2 that
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are mutually orthogonal in the Hilbert-Schmidt sense will do the job in the sense of minimum
error. In this case

min
U

ε(U) = min
U

max
j
|tr [U∗Uj ] | =

1
d
, (6.60)

where the minimum is achieved by the unitary channel U = 1
d

∑
j Uj being the equal linear

combination of all the channels Uj defining the programmable processor.
This result is surprising, because every unitary channel U is approximated by one of the

unitary channels U1, . . . , Ud2 . It means that effectively only d2 program states |ϕj〉〈ϕj | are
used to approximate all unitary channels. Let us note that since the set of deterministically
implemented channels {Eξ} contains the contraction into the total mixture E0 : % 7→ 1

dI encoded
in a program state ξ = 1

d2 I ∈ S(K), it follows that none of the channels is realized with
ε(E) < 1/d. In fact,

f(E , E0) = tr

[√
√
ωE

1
d2
I
√
ωE

]
=

1
d

tr [ωE ] =
1
d

(6.61)

for arbitrary channel E . That is, the total mixture as the program state approximates all channels
with a fixed value of ε(E) = 1/d.

Example 76. (Universal probabilistic programming of unitary channels.) As in the previous
example consider a controlled-U programmable processor

G =
∑
j

Uj ⊗ |ϕj〉〈ϕj | , (6.62)

and let us perform a projective pointer observable such that Fsuccess is a one-dimensional projec-
tor, i.e. Fsuccess = |φ〉〈φ| = Fφ for some φ ∈ K. For a pure program state |Ξ〉〈Ξ| the total action
of the selective measurement implemented by the programmable quantum processor results in
the unnormalized state associated with unnormalized vector

ψ ⊗ Ξ 7→ Ωsuccess =
∑
j

[(Ujψ)⊗ (Fφϕj 〈ϕj |Ξ 〉)]

=
∑
j

〈φ |ϕj 〉 〈ϕj |Ξ 〉 Ujψ ⊗ φ

giving the probability

psuccess =
∑
j

〈ϕj′ |Pφ|ϕj〉〈ϕj |PΞ|ϕj′〉〈ψ|U∗j′Uj |ψ〉 . (6.63)

If φ ∈ K is chosen such that 〈ϕj′ |Pφ|ϕj〉 = c for all j, j′, then the probability can be written in
the form

psuccess = c〈ψ|A∗ΞAΞ|ψ〉 , (6.64)

where AΞ =
∑
j 〈ϕj |Ξ 〉Uj and the transformation

|ψ〉〈ψ| 7→ 1
psuccess

cAΞ|ψ〉〈ψ|A∗Ξ (6.65)
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is accomplished. Channels with only single Kraus operator are necessarily unitary. Indeed, if
AΞ is a unitary operator UΞ, then psuccess = c is independent of the input state %. Otherwise the
implemented transformation is not a channel.

We left open two questions. What is the value of c? For which pure program states |Ξ〉〈Ξ|
the operators AΞ are unitary? It is straightforward to verify that the vector φ = 1√

dimK

∑
j ϕj

satisfies the equalities 〈ϕj′ |Pφ|ϕj〉 = c = 1/dimK for all values of j, j′. If AΞ = UΞ is unitary
the probability of success equals psuccess(UΞ) = 1/dimK. That is, for each implemented unitary
transformation the success probability is the same.

Can we implement all unitary transformations with nonzero success probability? The answer
is yes, we can. The operator AΞ =

∑
j 〈ϕj |Ξ 〉Uj =

∑
j ajUj is a complex linear combination

of unitary operators {Uj}. The coefficients aj are normalized in the following sense
∑
j |aj |2 =

〈Ξ |Ξ 〉 = 1. We know that each operator can be expressed as a complex linear combination of
operator basis elements. For a d-dimensional system its operator basis consists of d2 operators.
It is possible to choose an operator basis consisting only of unitary operators, i.e. linear span of
unitary operators equals to L(H). However, a general unitary operator basis is not necessarily
capable to express all unitary operators as normalized linear combinations. Therefore, suppose
the unitary operators forming the operator basis are mutually orthogonal, i.e. tr

[
U∗j Uj′

]
= dδjj′

for all j, j′ = 1, . . . , d2. In such case we can write U =
∑
j ajUj with aj = 1

d tr
[
U∗j U

]
and the

unitarity implies that

1 =
1
d

tr [U∗U ] =
1
d

∑
j,j′

a∗j′aj tr
[
U∗j′Uj

]
=

1
d
d
∑
j

|aj |2 =
∑
j

|aj |2 ,

i.e. the linear combinations are normalized as it is required.
For example, the unitary operators Urs (r, s = 0, . . . d− 1)

Urs =
d−1∑
l=0

e−i2πsl/d|l 	d r〉〈l| (6.66)

form an orthogonal basis, i.e. tr [U∗rsUr′s′ ] = dδrr′δss′ . In conclusion, using a programmable
processor 〈K = H⊗H, G,F〉 with unitary transformation

G =
d−1∑
r,s=0

Urs ⊗ |ϕrs〉〈ϕrs| (6.67)

and two-valued pointer observable

Fsuccess = |φ〉〈φ| ,F0 = I − Fsuccess , (6.68)

where φ = 1
d

∑
r,s ϕrs ∈ H ⊗ H, each d-dimensional unitary channel U =

∑
r,s arsUrs is

implemented with the success probability

psuccess(U) = 1/d2 (6.69)

by using the program state corresponding to vector Ξ =
∑
r,s arsϕrs ∈ H ⊗ H. That is, a

universal probabilistic programmable processors do exist.
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6.6.4 Programming observables

Each program state ξ ∈ S(K) encodes a channel, an observable and an instrument, thus each pro-
grammable quantum processor induces mappings from the program state space into a set of chan-
nels, observables and instruments, respectively, of the considered data system. In the previous
sections we have studied the properties of a processor-induced mapping for channels. We have
shown that this mapping cannot be onto, i.e., there is no (deterministic) universal programmable
processor concerning the implementation of channels. Is there a universal programmable pro-
cessor for observables?

Let us start with an assumption that a program state ξ implementing an effect E is pure,
i.e., ξ = |Ξ〉〈Ξ| for some unit vector Ξ ∈ K, and that the pointer observable F is discrete and
sharp, i.e. Fj =

∑
α∈lj |φα〉〈φα| are mutually orthogonal projectors. The vectors {φα} form

an orthonormal basis of K and lj denotes a subset of indexes defining. The action of a general
unitary operator G reads

G(ψ ⊗ Ξ) =
∑
α

Bα(Ξ)ψ ⊗ φα , (6.70)

where and, formally, Bα(Ξ) = Bα = 〈φα|G|Ξ〉. A probability to find the outcome ωj equals

pj = 〈ψ|
∑
α∈lj

B∗αBα|ψ〉 = 〈ψ|Ej(Ξ)|ψ〉 , (6.71)

where the effects Ej(Ξ) = Ej =
∑
α∈lj B

∗
αBα define the implemented observable A. Using a

mixed program state ξ =
∑
k πk|Ξk〉〈Ξk| we perform an observable

Aξ : ωj 7→ Ej =
∑
k

∑
α∈lj

πkB
∗
α(Ξk)Bα(Ξk) , (6.72)

i.e. a convex combination of observables encoded by pure program states.

Proposition 79. If a pair of sharp observables A,B with effects being one-dimensional projec-
tors Pj , Qj , respectively, can be implemented on the same programmable processor 〈K, G,F〉
with sharp pointer observable F, then dimK ≥ dimH = d and the program states ΞA,ΞB are
orthogonal. It is assumed that at least one of the projectors P1, . . . , Pd is not included among the
projectors Q1, . . . , Qd, i.e. the sets of projectors are different.

Proof. Implementation of a sharp observable A : ωj 7→ Pj = |ϕj〉〈ϕj | on a programmable
quantum processor requires that the pointer observable have at least d = dimH outcomes, i.e. it
consists of d orthogonal projectors Fj =

∑
α∈lj |φα〉〈φα|, where lj denotes a subset of indexes

labeling the orthonormal basis of the program system K such that |l1| + · · · + |ld| = dimK.
According to previous paragraph the unitary operator G acts as

G(ψ ⊗ ΞA) =
∑
α

Aαψ ⊗ φα . (6.73)

and the identity
∑
α∈lj A

∗
αAα = Pj holds. Moreover, since Pj are one-dimensional projectors

it follows that for each α ∈ lj the operator A∗αAα is proportional to Pj . In particular, A∗αAα =
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U
(j)
α Pj , where U (j)

α are arbitrary unitary operators. Similarly for the observable B

G(ψ ⊗ ΞB) =
∑
α

Bαψ ⊗ φα , (6.74)

andB∗αBα = V
(j)
α Qj , where V (j)

α are unitary andQj = |ψj〉〈ψj |. Calculating the scalar product
〈G(ψ ⊗ ΞA) |G(ψ ⊗ ΞB) 〉 we obtain the identity

〈ΞA |ΞB 〉 = 〈ψ|
∑
α

A∗αBα|ψ〉 (6.75)

holding for all ψ ∈ H only if∑
α

A∗αBα = 〈ΞA |ΞB 〉 I . (6.76)

Defining W (j)
α = U

(j)∗
α V

(j)
α we get

〈ΞA |ΞB 〉 I =
∑
j

Pj

∑
α∈lj

W (j)
α

Qj =
∑
j

∑
α∈lj

〈ϕj |W (α)
j |ψj〉

 |ϕj〉〈ψj |
=

∑
jk

wjajk|ϕj〉〈ϕk| ,

where we used the notation wj =
∑
α∈lj 〈ϕj |W

(α)
j |ψj〉 and ψj =

∑
k ajkϕk. This equality

holds only if wjajk = cδjk, i.e. either wj = 0, or ajk = 0 for j 6= k. The first option implies
〈ΞA |ΞB 〉 = 0. The last option means that bases defining the observables A,B coincide, however
we assume that the bases are different. In conclusion, if two sharp observables are realizable on
the same programmable processor the program states ΞA,ΞB must be orthogonal.

According to Ozawa’s representation theorem (Theorem 11 in Section 6.2.1) each instrument
can be realized by a normal measurement model. Therefore, if a universal programmable pro-
cessor implementing all observables would exists, it can be chosen so that the pointer observable
F is sharp. As a consequence of the above proposition it follows that a universal programmable
processor implementing all sharp observables does not exist.

Example 77. Consider a controlled-U programmable quantum processor 〈K, G,F〉 as in Ex-
ample 76, i.e., K = H ⊗ H, G =

∑
j Uj ⊗ |ϕj〉〈ϕj | (Uj are mutually orthogonal) and

Fsuccess = |φ〉〈φ| with φ = 1
d

∑
j ϕj . A pure program state Ξ =

∑
j ajϕj encodes effects

E =
1
d2

∑
jk

a∗jakU
∗
j Uk (6.77)

with tr [E] = 1
d2 d

∑
j |aj |2 = 1/d. It follows that only effects with a given trace can be imple-

mented.
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7 Entanglement

7.1 Composite bipartite systems

In quantum theory the paradigm of a composite quantum system is intimately related with the
mathematical concept of tensor product of Hilbert spaces. As we have seen in Section 3.4 the
composite quantum system composed of subsystemsA andB is associated with a tensor product
HAB = HA⊗HB . As a result of the combination of the tensor product structure and the principle
of superposition the quantum theory is embedded with a phenomenon of entanglement.

Our goal is not to give an extensive overview of entanglement theory. For an interested
reader we recommend the recent reviews [50] and [71] that covers also the quantum information
aspects of entanglement. In this chapter we go through the basic mathematical properties of
quantum entanglement. To simplify the discussion, we shall assume that Hilbert spaces are finite
dimensional.

7.1.1 Vectors

Definition 55. Let η ∈ HA ⊗HB be a unit vector. It is called

1. factorized if η = φ⊗ ψ for some vectors φ ∈ HA, ψ ∈ HB .

2. entangled otherwise.

The following example gives a concrete instance of entangled vectors. In particular, it demon-
strates that entangled vectors exists.

Example 78. Let ϕ1, ϕ2 ∈ H be two orthogonal unit vectors and let α, β be two non-zero
complex numbers such that |α|2 + |β|2 = 1. The vector η = αϕ1 ⊗ ϕ1 + βϕ2 ⊗ ϕ2 ∈ H ⊗H
is entangled. To see this, choose unit vectors ϕ3, ϕ4, . . . ∈ H such that the set {ϕ1, ϕ2, ϕ3, . . .}
is an orthonormal basis for H. A general factorized vector from H⊗H takes the form φ⊗ ψ =
(
∑
i ciϕi)⊗

(∑
j djϕj

)
. Comparing this expression with η we get conditions

c1d1 = α, c2d2 = β, c1d2 = c2d1 = 0 .

Multiplying the first two equations and the last two, it follows that αβ = 0. But this is not
possible, and therefore η is entangled.

Consider orthonormal bases {ϕi}dAi=1 for HA and {ψj}dBj=1 for HB . A general factorized
vector takes the form

η = ϕ⊗ ψ =
∑
i,j

cidjϕi ⊗ ψj

Let us notice that if the orthonormal bases do not contain ϕ and ψ, the coefficient cidj related to
ϕi ⊗ ψj is nonvanishing at least for some values of i, j satisfying i 6= j. On the other hand, if
ϕ ∈ {ϕi} for some i = i0 or ψ ∈ {ψj} for some j = j0, then the superposition is trivial, i.e.,
η = ϕ⊗ ψ.
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Based on this observation we conclude that a vectors of the form
∑d
j=1 ajϕj ⊗ ψj , where

d = min{dA, dB} are necessarily entangled providing that at least two coefficients aj are
nonzero. Notice that the entangled vector in Example 78 is just a special case of this kind. The
following theorem is saying that arbitrary entangled vector can be written in this form if suitable
orthonormal bases of HA and HB are chosen. This result, known as Schmidt decomposition, is
very useful in many applications.

Theorem 14. (Schmidt decomposition) For each vector ψ ∈ HA⊗HB there exists an orthogonal
basis {e1, . . . , edA} of HA and {f1, . . . , fdB} of HB such that

ψ =
rs∑
j=1

√
λjej ⊗ fj , (7.1)

where λ1, . . . , λrs are decreasingly ordered nonzero positive numbers forming the so-called
Schmidt vector ~λψ . The Schmidt rank rs(ψ) ≤ min{dA, dB} is the total number of nonvan-
ishing elements in ~λψ .

Proof. Consider orthonormal bases {ϕ1, . . . , ϕdA} and {φ1, . . . , φdB} of Hilbert spacesHA and
HB , respectively. A general vector ψ ∈ HA ⊗HB takes the form

ψ =
dA∑
j=1

dB∑
k=1

xjk ϕj ⊗ φk , (7.2)

where the complex numbers xjk form a dA×dB matrixX . In the polar decompositionX = UF ,
where U is a dA × dB isometry matrix and F =

√
X∗X is dB × dB positive matrix. Due to

positivity of F there exists a unitary matrix V such that V ∗FV = D and D is a diagonal matrix
of square roots of eigenvalues of the matrix X∗X , i.e. D = diag{

√
λ1, . . . ,

√
λdB}. Without

loss of generality we assume that eigenvalues λj are decreasingly ordered. Since the nonzero
eigenvalues of dB × dB matrix X∗X and dA × dA matrix XX∗ coincide it follows that the
number of nonvanishing eigenvalues λj is smaller or equal to the smallest of the Hilbert space
dimensions. That is, if dA < dB then λj = 0 for all j > λA. Without loss of generality let us
assume that dB ≤ dA. Putting altogether we get the so-called singular value decomposition of
the operator X

X = UV ∗DV = W ∗DV . (7.3)

Writing xjk =
∑dB
l,m=1 w

∗
lj

√
λlδlmvmk the vector ψ takes the form

ψ =
dB∑
l=1

√
λl

 dA∑
j=1

w∗ljϕj

⊗

(
dB∑
k=1

vlkψk

)

=
dB∑
l=1

√
λl el ⊗ fl .

Since W and V are unitary the vectors {el} and {fl} form orthonormal sets in HA and HB ,
respectively.
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Using Schmidt decomposition we can immediately see some interesting consequences related
to our earlier discussions. Suppose that the compound system is in a pure state |ψ 〉〈ψ|. Then
the individual subsystems are described by states

%A =
∑
j

λj |ej〉〈ej | , %B =
∑
j

λj |fj〉〈fj | . (7.4)

Especially, the spectra of %A and %B differ only in the degree of the degeneracy of the eigenvalue
0 (see Proposition 38 in Section 3.4). Therefore, if the composite system is in a pure state, the
states of the subsystems have the same purity and entropy. The Schmidt rank rs equals to ranks
of density operators %A, %B .

7.1.2 Positive operators

Definition 56. Let F ∈ L+(HA ⊗HB) be a positive operator. It is called

1. factorized if F = FA⊗FB . We denote by Lfac
+ ⊂ L+(HA⊗HB) the set of all factorized

positive operators.

2. separable if F belongs to the convex hull of Lfac
+ , i.e. F =

∑
j pjF

A
j ⊗ FBj . We denote

by Lsep
+ the set of all separable operators.

3. entangled if F is not separable.

If replacing L+ by S(H) (states) or by E(H) (effects) we get a similar classification of
quantum states, or effects, respectively. For instance, the states can be classified in the following
way.

Definition 57. A state % ∈ S(HA ⊗HB) is called

1. factorized if % = %A ⊗ %B . Let us denote by S fac the set of factorized states.

2. separable if % ∈ co(S fac) ≡ Ssep.

3. entangled if % ∈ S \ Ssep.

The following lemma follows directly from the definition of separable states as the convex
closure of factorized states.

Proposition 80. The set of separable states Ssep is convex and closed in trace norm topology.

The introduced distinction between separable and entangled states is due to R.Werner [83].

7.1.3 Operations and channels

Let us recall some notation from Chapter 5. By O we denote the set of all quantum operations,
i.e., trace-decreasing completely positive linear maps. A set of channels is a subset Oc ⊂ O
containing all trace-preserving completely positive linear maps.

Definition 58. A quantum channel E : L(HA ⊗HB) → L(HA ⊗HB) is called
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1. local/factorized if E = EA⊗EB and EA, EB are channels defined on subsystems A and B,
respectively. We will denote as Ofac

c ⊂ Oc the set of all local channels.

2. nonlocal if E ∈ Oc \ Ofac
c .

3. separable if E =
∑
j FAj ⊗ FBj , where FAj ,FBj are local operations. Osep

c stands for the
set of separable channels. Let us note that setting FAj ,FBj to be the local operations is not
a mistake. Therefore, the set of separable channels Osep

c is not a convex hull of factorized
channels.

4. LOCC (stands for local operations and classical communication) if it can be written as a
sequence of local quantum operations assisted by the exchange of classical communica-
tion. Let us assume that in the first round Bob performs a measurement described by an
instrument j1 7→ FBj1 defined on a discrete outcome space Ω1, i.e.

∑
j1∈Ω FBj1 = FB1

is a quantum channel. The observed outcome j1 is lossly communicated to Alice. In
the second round Alice chooses a measurement described by an instrument j2 7→ FAj2|j1
(j2 ∈ Ω2) conditioned on the received information j1 from Bob and communicates the
outcome j2 back to Bob. Repeating n rounds of communication Alice and Bob jointly
apply an LOCC channel

ELOCC =
∑

· · · (FAj4|j3,j2,j1 ⊗F
B
j3|j2,j1)(F

A
j2|j1 ⊗F

B
j1) ,

where
∑
j1
FBj1 = FB1 ,

∑
j2
FAj2|j1 = FA2|j1 , etc., are channels, i.e. tracepreserving

completely positive maps. After the last information exchange either Alice, or Bob per-
forms quantum channels Fjn,...,j1 that finish the implementation of the LOCC channel
ELOCC. The set of all LOCC operations we shall denote by OLOCC

c ⊂ Oc and clearly
OLOCC
c ⊂ Osep

c .

5. entangled if E ∈ Oc \ OLOCC
c .

Example 79. (One-way LOCC channel.) Suppose that the communication of Alice and Bob is
restricted and only Alice can communicate information to Bob, but not vice versa. Since actions
of Alice and Bob commute it is sufficient to consider only a single communication from Alice
to Bob. Alice makes a measurement described by an instrument j 7→ FAj (

∑
j FAj = EA is

a channel). After Bob receives the value of j he applies a channel EBj . In this way we get the
so-called one-way LOCC channel taking the form

E1−LOCC [%] =
∑
j

(FAj ⊗ EBj )[%] , (7.6)

where EBj are channels and FAj are operations forming the instrument.

Example 80. (LOCC preparation of factorized bases.) Consider a channel E defined on a com-
posite system of two d-dimensional systems associated with Hilbert space HAB = Hd ⊗Hd

E [%] =
∑
j,k

Ajk%A
∗
jk (7.7)
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where Ajk = |ψjk⊗φjk〉〈ϕj ⊗ϕk| and vectors {ϕ1, . . . , ϕd} form an orthonormal basis ofHd.
The complete positivity constraint

∑
jk A

∗
jkAjk = I requires that vectors ωjk = ψjk⊗φjk form

an orthonormal basis of HAB . The question is whether such channel is LOCC, or not.
Consider the following LOCC procedure. Let Alice and Bob perform local measurements

described by Lüders instruments j 7→ Fj , where Fj(ξ) = |ϕj〉〈ϕj |ξ|ϕj〉〈ϕj |. At this step their
actions result in transformation

% 7→ (FAj ⊗FBk )[%] = %jk,jk|ϕj ⊗ ϕk〉〈ϕj ⊗ ϕk| (7.8)

providing that Alice got a result j and Bob observed an outcome k. In order to complete the
LOCC channel Alice and Bob exchange the outcomes they found, thus, a classical communica-
tion in both directions is needed. In the last step both of them apply local channels EAjk ⊗ EBjk
depending on the particular outcomes j, k:

EAjk : |ϕj〉〈ϕj | 7→ |ψjk〉〈ψjk| ,
EBjk : |ϕk〉〈ϕk| 7→ |φjk〉〈φjk| .

Therefore, the final state after all these operations takes the form

%′ =
∑
j,k

%jk,jk|ψjk ⊗ φjk〉〈ψjk ⊗ φjk| , (7.9)

which coincides with the action of the channel given by Kraus operators Ajk. Therefore the
sequence of LOCC operations implements the separable channel defined in Eq.(7.7).

It remains to show explicitly that a nontrivial example of the factorized basis ψjk ⊗ φjk do
exist, i.e. ψjk 6= ψj for all k and φjk 6= φk for all j. For simplicity, let us assume that the system
is three-dimensional. It is easy to verify that the following vectors form an orthonormal basis of
H3 ⊗H3

ϕ1 ⊗ ϕ1+2 , ϕ1 ⊗ ϕ1−2 , ϕ3 ⊗ ϕ2+3 , ϕ3 ⊗ ϕ2−3 , ϕ2 ⊗ ϕ2 ,
ϕ2+3 ⊗ ϕ1 , ϕ2−3 ⊗ ϕ1 , ϕ1+2 ⊗ ϕ3 , ϕ1−2 ⊗ ϕ3 ,

(7.10)

where we used the short-hand notation ϕj±k = 1√
2
(ϕj ± ϕk).

Exercise 49. Convince yourself that vectors forming the basis in Eq. (7.10) cannot be discrimi-
nated perfectly if only LOCC strategies are allowed. Find a maximal subset of these vectors that
can be perfectly discriminated by means of LOCC.

Let us note that in classical theory all channels are LOCC. In fact, the classical communi-
cation is nothing else but an exchange of classical systems. Consider we want to implement a
classical transformation on a composite system, one part being in the possession of Alice and
second one in the possession of Bob. Alice can send her system to Bob (classical communi-
cation). Bob can apply the desired operation locally and send the Alice’s system back to Al-
ice. In this way the operation on a joint system is accomplished. Thus, all classical operations
are implementable in LOCC manner by using only two information exchanges. The inclusions
Ofac
c ⊂ OLOCC

c ⊂ Osep
c ⊂ Oc imply that in quantum case there are channels that are not LOCC,

because all the inclusions are strict, i.e. they do not reduce to equalities. Perhaps the most sur-
prising and the most nontrivial relation is that OLOCC

c 6= Osep
c , i.e. not every separable channel

can be implemented in the LOCC manner and we can formulate the following proposition.
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Proposition 81. The set Osep
c \ OLOCC

c is nonempty.

Proof. The proof is based on counter-example which was originally reported in [7]. Consider a
similar separable channel on Hd ⊗Hd composite system as in Example 80, i.e.

E∗[%] =
∑
j,k

Bjk%B
∗
jk (7.11)

with Bjk = A∗jk = |ϕj ⊗ ϕk〉〈ψjk ⊗ φjk|. Thus, the channel E∗ is the adjoint channel to
channel E defined in Example 80. However, unlike E , it turns out that this channel is not LOCC
although it is separable. The crucial difference between these two separable channels is that
the Lüder’s measurement in the basis ψjk ⊗ φjk cannot be implemented locally. Therefore, the
LOCC procedure exploited for the implementation of E fails for E∗.

If E∗ would be an LOCC channel, then the elements of the product basis ψjk ⊗ φjk will
be perfectly distinguishable in a single shot. That is, the sharp observable described by projec-
tors Pjk = |ψjk ⊗ φjk〉〈ψjk ⊗ φjk| can be realized by applying the LOCC realization of E∗
and performing local sharp observables on both sides in basis ϕ1, . . . , ϕd ∈ Hd. Therefore, the
existence of LOCC realization of the channel E∗ is equivalent to the perfect (single shot) distin-
guishability of states ψjk ⊗ φjk by local operations and classical communications. The proof
of impossibility of perfect LOCC discrimination is a bit technical and can be found for example
in [31].

Comparing Example 80 with Proposition 81 it seems that we come to a paradox. Alice
and Bob can easily prepare the factorized states corresponding to vectors ψjk ⊗ φjk by LOCC
channel starting from states associated with vectors ϕj ⊗ ϕk. However, if they forgot which
state is actually prepared, they are no longer able to identify it by means of LOCC. This is a
kind of pointwise irreversibility of LOCC operations. The phenomenon described in the proof of
Proposition 81 is called nonlocality without entanglement.

Example 81. (Twirling channel) Let Alice randomly chooses some unitary channel σU [·] =
U · U∗ and send her choice to Bob. Bob applies the same unitary channel on his part of the
system. Without any doubts the resulting transformation constitutes an LOCC channel, which is
known under the name twirling and reads

T [X] =
∫
U(d)

dU U ⊗ UXU∗ ⊗ U∗ , (7.12)

where dU is Haar measure on the group of unitary operators U(d). We prove that on selfadjoint
operators X the twirling performs the transformation

T [X] =
tr [XP+]
d+

P+ +
tr [XP−]
d−

P− . (7.13)

The invariance property of Haar measure dU implies that the operator T [X] commutes with
all unitary operators of the type U ⊗ U , i.e. [T [X], U ⊗ U ] = 0 for all U ∈ U(d). If X
is selfadjoint, then T [X] is also selfadjoint. Therefore, in its spectral form it reads T [X] =∑
j xjPj , where xj are real numbers and Pj are projections. The commutation of T [X] with

unitaries U ⊗ U implies that each projector Pj must also commute with all operators of the



644 Guide to mathematical concepts of quantum theory

type U ⊗ U . Therefore, the corresponding subspaces Hj = Pj(Hd ⊗ Hd) = {ψ ∈ Hd ⊗
Hd such that Pjψ = ψ} are invariant under the action of operators U ⊗ U .

It turns out there are only two invariant subspaces ofHd⊗Hd: symmetric and antisymmetric
subspace. A vector ψ ∈ Hd⊗Hd is called symmetric (antisymmetric) if Sψ = ±ψ, respectively,
where S is the so-called swap operator defined as S =

∑
jk |ϕj⊗ϕk〉〈ϕk⊗ϕj |, where the vectors

ϕ1, . . . , ϕd form an orthonormal basis of Hd. The definition of S is independent of the choice
of the basis of Hd. Let us define the operators P± being the projectors onto the symmetric and
antisymmetric subspaces, respectively. Defining the vectors ψj±k = 1√

2
(ϕj ⊗ ϕk ± ϕk ⊗ ϕj)

for j 6= k and ψj+j = ϕj ⊗ ϕj we can write

P± =
∑
jk

|ψj±k〉〈ψj±k| , (7.14)

and, equivalently, P± = 1
2 (I ± S). Let us note that vectors ψj±k (j, k = 1, . . . , d) are forming

an orthonormal basis ofHd⊗Hd. Formally, the vectors ψj−j are associated with the zero vector
0 ∈ Hd ⊗ Hd. It follows that the dimensions of symmetric and antisymmetric subspaces are
d± = d(d± 1)/2.

As a result of the above discussion we obtain that the operator T [X] written in its spectral
form is a linear combination of mutually orthogonal projectors P+ and P−, i.e.

T [X] = a+(X)P+ + a−(X)P− . (7.15)

Our goal is to verify that a±(X) = tr[XP±]
d±

, thus the twirling channel has the form (7.13). In
order to verify that Eq. (7.12) and Eq. (7.13) define the same mapping, it is sufficient to verify
their actions on elements of arbitrary operator basis. We shall use the operators Ej±k,m±n =
|ψj±k〉〈ψm±n| forming an orthonormal operator basis, i.e. each operator X can be written as a
linear combination of these basis operators.

Define an orthogonal operator basis containing the operators P±. For arbitrary operator Y
orthogonal to P±, i.e. tr [Y jP±] = 0. Therefore, according to Eq. (7.15) tr [Y ∗T [X]] = 0. And
consequently, It is sufficient to verify that the values of tr [P±T [Ej±k,m±n]] coincide for both
expressions of the twirling channel given in Eq. (7.12) and in Eq. (7.13). Direct calculation gives

tr [P±T [Ej±k,m±n]] = tr

[
P±

∫
U(d)

dU U ⊗ UEj±k,m±nU
∗ ⊗ U∗

]

= tr

[
Ej±k,m±n

∫
U(d)

dU U ⊗ UP±U
∗ ⊗ U∗

]
= tr [Ej±k,m±nP±]

and, simultaneously,

tr [P±T [Ej±k,m±n]] =
tr [Ej±k,m±nP+]

d+
tr [P±P+] +

tr [Ej±k,m±nP−]
d−

tr [P±P−]

= tr [Ej±k,m±nP±] .

That is, the action of the twirling channel is described by Eq. (7.13).
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7.2 Entanglement vs LOCC

In this section we use LOCC channels to give operational meaning to the key concept of this
chapter - entanglement. Roughly speaking, the entanglement is a property of quantum states
exhibiting the “quantumness” of composite quantum systems in comparison with the composite
classical systems. As we said earlier, for composite classical systems all the states are trivially
related by some LOCC channels since any classical channel is LOCC. In quantum case we shall
use the LOCC relation between the states to define an ordering of quantum states.

Definition 59. The subset of states

OLOCC
% = {%′ ∈ S(HA ⊗HB) : %′ = FLOCC(%) for some FLOCC ∈ OLOCC

c }

is called an LOCC orbit of a state % ∈ S(HA ⊗HB).

Definition 60. We say that % is LOCC smaller than ξ (denoted as % ≤LOCC ξ) if % ∈ OLOCC
ξ ,

or equivalently, if there exists an LOCC operation FLOCC : ξ 7→ %.

The above relation defines an LOCC-induced partial ordering of the state space.

Definition 61. We say that states % and ξ are LOCC equivalent (and denote % ∼LOCC ξ) if
% ≤LOCC ξ and ξ ≤LOCC %.

Proposition 82. Following statements hold:

1. % ≤LOCC ξ if and only if OLOCC
% ⊆ OLOCC

ξ . Consequently, states % and ξ are LOCC
equivalent if and only if OLOCC

% = OLOCC
ξ .

2. Consider a factorized pure state ω = |ϕ⊗ ϕ〉〈ϕ⊗ ϕ|. Then OLOCC
ω = Ssep.

3. Ssep ⊆ OLOCC
% for arbitrary state % ∈ S(HA ⊗HB).

4. All separable states are mutually LOCC equivalent and, moreover, the set of separable
states Ssep is closed under LOCC channels and Ssep =

⋂
%O

LOCC
% .

5. The separable states form an LOCC equivalence class of LOCC smallest element, i.e. if
% ≤LOCC ξ for all ξ ∈ S(HA ⊗HB), then the state % is separable.

Proof. 1. A general element in %′ ∈ OLOCC
% can be written as %′ = FLOCC(%). The relation

% ≤LOCC ξ implies that there exists an LOCC channel FLOCC such that % = FLOCC(ξ)
and, consequently, %′ = FLOCC ◦ FLOCC(ξ). It follows that %′ ∈ OLOCC

ξ , i.e. OLOCC
% ⊂

OLOCC
ξ . It is straightforward to see that LOCC equivalence requires that the inclusions

OLOCC
% ⊂ OLOCC

ξ and OLOCC
ξ ⊂ OLOCC

% holds simultaneously.

2. Consider a general separable state ξ =
∑
j pj |ψj ⊗ ϕj〉〈ψj ⊗ ϕj | ∈ Ssep. A mapping

Aψj ⊗ Aϕj , where Aψ : S(H) 7→ |ψ〉〈ψ| is a contraction into a pure state, is an LOCC
channel and ω → F (j)

LOCC(ω) = (Aψj ⊗Aϕj )(ω) = |ψj ⊗ ϕj〉〈ψj ⊗ ϕj |. Since the set of
LOCC channels is convex, it follows that FLOCC =

∑
j pjF

(j)
LOCC is an LOCC channel,

too. It follows that ξ = FLOCC(ω), hence Ssep ⊂ OLOCC
ω . LOCC channels form a subset
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of separable channels, but a general separable channel applied to the state ω can produce
only separable state. That is, no entangled state % belongs to the LOCC orbit of the state
ω, i.e. OLOCC

ω = Ssep.

3. Starting with a general state % ∈ S(HA ⊗HB) we can apply the local channel Aϕ ⊗Aϕ
resulting in transformation % 7→ |ϕ⊗ϕ〉〈ϕ⊗ϕ| ≡ ω. Because, Ssep = OLOCC

ω it follows
that for each separable state ξ = FLOCC(ω) = FLOCC ◦ (Aϕ ⊗Aϕ)(%), i.e. ξ ≤LOCC %.
Thus, the statement holds, i.e. Ssep ⊂ OLOCC

% for all %.

4. It is a simple consequence of the previous facts that separable states are LOCC equivalent,
because we have shown that ω 7→ ξ 7→ ω for all separable states ξ by means of LOCC
channels. It means OLOCC

ω = OLOCC
ξ = Ssep for all separable states ξ ∈ Ssep, i.e. the set

of states Ssep forms an LOCC equivalence class. It follows that separable states are closed
under LOCC channels and also Ssep =

⋂
%O

LOCC
% .

5. In the previous point we proved that separable states form an LOCC equivalence class. In
point 3 it is shown that separable states are comparable with all states and they are smaller
than any other quantum state, i.e. they are the smallest elements. This is their unique
property and, thus, it can be used to characterize the separable states as it is done in this
point.

In less formal words Proposition 82 is saying that the separable (not entangled) states are
the LOCC-smallest elements of the state space, hence the LOCC ordering gives some interesting
structure only to the set of entangled states. In what follows we characterize also the maximal
elements (i.e. those states that are either larger than any other state, or incomparable). As we shall
see not only that there do exist the maximal elements, but there exists also an LOCC equivalence
class of the greatest elements (i.e. states that are greater than any other state) of the state space.
As a consequence of the above proposition we can give operational meaning to definitions of
entangled and separable states and also introduce the concept of the maximally entangled states.
Corollary 3 can be used as an alternative operational definition of the entanglement.

Corollary 3. A state is entangled if and only if it does not belong to the equivalence class of
smallest elements with respect to LOCC-induced ordering. In other words, a state is entangled if
and only if it cannot be prepared from a separable state by means of LOCC channel.

Definition 62. If a state % belongs to the LOCC equivalence class of the greatest element (if such
element exists), then the state % is called the maximally entangled state.

Proposition 83. The following statements are equivalent:

1. Ψ is maximally entangled.

2. OΨ = S(HA ⊗HB).

3. Ψ = (U ⊗ I)Ψ+(U∗ ⊗ I), where U is unitary, Ψ+ = |ψ+〉〈ψ+|,

ψ+ =
1√
d

d−1∑
j=0

ϕj ⊗ ϕj , (7.16)
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where ϕ0, . . . , ϕd−1 are mutually orthogonal unit vectors in HA,HB and d = min{dA,
dB}.

4. Ψ is a pure state and TrAΨ = TrBΨ = 1
d

∑d−1
j=0 |ϕj〉〈ϕj |.

Proof. The equivalences 1 ⇔ 2 and 3 ⇔ 4 are direct consequences of the definitions. Therefore,
we shall focus on equivalence relation 2 ⇔ 3. Before we start with the proof, let us note that
the states (U ⊗ I)Ψ+(U∗ ⊗ I) and Ψ+ are locally unitary equivalent, hence they are LOCC
equivalent. Therefore, we can fix the state shared by Alice and Bob to be Ψ+ defined in Eq.
(7.16). For simplicity we shall assume that dA = dB = d. According to Schmidt decomposition
a general vector can be written as φ =

∑
j ajϕj ⊗ ϕj . Let us assume that Alice and Bob

share the maximally entangled state Ψ+. The Choi-Jamiolkowski isomorphism implies that φ =
(I ⊗ Rφ)ψ+ with Rφ =

√
d
∑
j aj |ϕj〉〈ϕj |. Alice adds a d-dimensional ancilla in a state

|ϕ0〉A′〈ϕ0| and applies an isometry transformation G : ϕ0⊗ϕj → (Uj ⊗Rφ)ψ+ on systems A′

and A, where Uj are shift operators, i.e. Ujϕj′ = ϕj′⊕j . After Alice applied her transformation
the composite system is described by a pure state associated with the vector

ψA′AB =
1√
d

∑
j,j′

aj′ϕj⊕j′ ⊗ ϕj′ ⊗ ϕj =
1√
d

∑
k

ϕk ⊗

 ∑
j,j′:j⊕j′=k

aj′ϕj′ ⊗ ϕj


Alice performs a projective measurement of the ancilla system associated with the Lüder’s instru-
ment k 7→ Ik(%) = 〈ϕk|%|ϕk〉|ϕk〉〈ϕk|, hence measuring an outcome k the composite system
ends up in

ψ
(k)
A′AB = ϕk ⊗

∑
j,j′:j⊕j′=k

aj′ϕj′ ⊗ ϕj . (7.17)

Alice sends the outcome she found to Bob who applies the unitary channel Uk : % → U∗k%Uk
(the inverse of the shift unitary channel) to obtain a state associated with a unit vector

ψ
(k)
AB =

∑
j,j′:j⊕j′=k

aj′ϕj′ ⊗ ϕj	k =
∑
j′

aj′ϕj′ ⊗ ϕj′ = φAB (7.18)

which is the same for all values of k. It follows that each pure state Φ = |φ〉〈φ| can be obtained by
an LOCC channel from the state Ψ+. Moreover, since a general mixed state %AB is a mixture of
pure states, it follows that the corresponding mixture of LOCC channels can be used to transform
Ψ+ to any mixed state %AB , thus OΨ+ = S(HA ⊗HB), which proves the equivalence.

Example 82. Let us consider an explicit example showing that arbitrary pure state can be
achieved by an LOCC channel from the state ψ+ for the composite system of two qubits. A
general pure state Φ = |φ〉〈φ| with φ = aϕ0 ⊗ ϕ0 + bϕ1 ⊗ ϕ1 written in its Schmidt form. Add
a single qubit ancilla in a pure state |ϕ0〉〈ϕ0| and apply the local unitary operator on Alice’s side

ϕ0 ⊗ ϕ0 7→ aϕ0 ⊗ ϕ0 + bϕ1 ⊗ ϕ1 (7.19)
ϕ0 ⊗ ϕ1 7→ aϕ1 ⊗ ϕ0 + bϕ0 ⊗ ϕ1 (7.20)
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to get

1√
2
[ϕ0 ⊗ (aϕ0 ⊗ ϕ0 + bϕ1 ⊗ ϕ1) + ϕ1 ⊗ (aϕ0 ⊗ ϕ1 + bϕ1 ⊗ ϕ0)] . (7.21)

Alice performs a measurement of a two-valued observable associated with basis vectors ϕ0, ϕ1

and sends the observed outcome b to Bob. If the received value is b = 0, then Bob will do
nothing. If b = 1, Bob will apply a unitary channel such that ϕ1 7→ ϕ0 and ϕ0 7→ ϕ1 to obtain
the joint state associated with the vector φ.

The last proposition guarantees the existence of the maximally entangled states. A general
question on the existence of LOCC channel between arbitrary pair of states is a very difficult
one. The following theorem completely characterize the LOCC ordering between pure states.
A proof of this theorem is quite long and requires several additional lemmas and therefore it is
omitted. For an interested reader we refer to [63] and [65].

Theorem 15. (Majorization criterion) Let ~λψ, ~λφ are the Schmidt vectors of ψ, φ ∈ HA ⊗HB ,
respectively. Then

Φ ≤LOCC Ψ ⇔ ~λψ < ~λφ ⇔
n∑
j=1

λ
(j)
ψ ≤

n∑
j=1

λ
(j)
φ ∀n ≤ d = min{dA, dB} , (7.22)

where Ψ = |ψ〉〈ψ| and Φ = |φ〉〈φ| are the projectors representing the pure states.

There are many interesting and surprising results concerning the quantum entanglement. The
following discussion cannot be considered as a complete list of all results and known facts on
quantum entanglement.

Let us note that a unitary channel σU is separable if and only if it is local, i.e. U = UA⊗UB .
This follows directly from the uniqueness of the operator sum decomposition for unitary chan-
nels. Consider a composite system HAB = H ⊗ H and define a unitary self-adjoint operator
VSWAP(ϕ⊗ψ) = ψ⊗ϕ for all ϕ,ψ ∈ H. As the name is suggesting this unitary operator deter-
mines a unitary channel swapping the systems, i.e. mapping %AB to %BA = VSWAP%ABVSWAP.
By unitarity it is not separable, hence it is not LOCC, because VSWAP 6= UA ⊗ UB . This is
not completely unexpected, because the exchange of quantum systems is exactly the procedure
that is not permitted in LOCC concept. However, this observation suggests that states %AB and
%BA can be LOCC inequivalent, i.e. the shared entanglement may not be symmetric with respect
to the exchange of individual parties. The following result, presented in [46], gives a precise
meaning to this fact.

Proposition 84. (Exchange asymmetry of entanglement.) Consider HAB = H ⊗H and define
a unitary self-adjoint operator VSWAP(ϕ ⊗ ψ) = ψ ⊗ ϕ for all ϕ,ψ ∈ H. There are states %AB
for which the state %BA = VSWAP%ABVSWAP is not LOCC equivalent to %AB .

In summary, the exchange of systems cannot be implemented by an LOCC channel even
if the state is known. That is, pointwise the transformation %AB 7→ %BA is not LOCC. Such
asymmetry of entanglement can have practical implications. For example, as it is shown in [86],
this asymmetry property has an interesting consequence for the so-called super-dense coding
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(see Example 84) in which the communication capacity is different if Alice and Bob exchange
the roles of sender and receiver although the shared state remains the same.

Another interesting and surprising feature of quantum entanglement is that LOCC channels
do not preserve the LOCC ordering [54], [88], [90].

Proposition 85. LOCC-ordering is not preserved under the action of local channels. In particu-
lar,

% ≤LOCC ω 6⇒ (EA ⊗ I)(%) ≤LOCC (EA ⊗ I)(ω) , (7.23)

where EA is a channel applied on subsystem A only.

Proof. Consider the following counter-example. Let us define two pure entangled states of a
composite system H⊗H of a pair of three-dimensional systems associated with vectors:

ψ1 = (ϕ2 ⊗ ϕ2 + ϕ3 ⊗ ϕ3)/
√

2 , (7.24)

ψ2 =
√
q ϕ1 ⊗ ϕ1 +

√
1− q ϕ2 ⊗ ϕ2 , (7.25)

where ϕ1, ϕ2, ϕ3 form an orthonormal basis of H. Consider a local channel EA defined via
Kraus operators M1 = |ϕ1〉〈ϕ1|+ |ϕ2〉〈ϕ2| and M2 = |ϕ3〉〈ϕ3|. Applying this local channel to
the above pure states we get the states

%out
1 = (|ϕ2 ⊗ ϕ2〉〈ϕ2 ⊗ ϕ2|+ |ϕ3 ⊗ ϕ3〉〈ϕ3 ⊗ ϕ3|)/2 , (7.26)
%out
2 = |ψ2〉〈ψ2| . (7.27)

According to Theorem 15 the input state |ψ1〉〈ψ1| can be mapped to |ψ2〉〈ψ2| by an LOCC
channel, but the inverse is not possible unless q = 1/2, i.e. |ψ2〉〈ψ2| <LOCC |ψ1〉〈ψ1|. However,
since %out

1 is separable, the transformation %out
1 → %out

2 cannot be an LOCC channel, but still the
transformation %out

2 → %out
1 can be LOCC, because the set of separable states is contained in the

LOCC orbit of each entangled state. Consequently, %out
1 > %out

2 . This example shows that the
statement of the proposition holds.

An interesting question is how generic is the above property. That is, which channels on a
subsystem do preserve the LOCC ordering? It is straightforward to see that unitary channels
cannot affect the LOCC ordering, because they do not change the amount of entanglement.

Definition 63. A channel E : T (H) → T (H) is entanglement-breaking if for all input states
ω ∈ S(H⊗Hanc), the output states E ⊗ Ianc(ω) are separable for all possible Hanc.

By definition also the entanglement-breaking channels [48] trivially preserves the LOCC
ordering, because they completely destroy any entanglement present in the state.

Proposition 86. A channel E is entanglement-breaking if and only if E is of the form E(%) =∑
j ξj tr [%Fj ], where ξj are states and the positive operators Fj defines a discrete POVM, i.e.∑
j Fj = I .
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Proof. By definition if E is entanglement-breaking then the state ω = (E ⊗ I)[Ψ+] is separable,
i.e. ωE =

∑
n pn|ϕn〉〈ϕn| ⊗ |φn〉〈φn|. Consider a map E ′ of the form E ′(%) =

∑
n ξntr [%Fn]

with ξn = |φn〉〈φn| and Fn = dpn|ϕn〉〈ϕn|, where d is the dimension of the Hilbert space
the channel E acts on. Let us note that trAωE = 1

dI =
∑
n pn|φn〉〈φn|, thus the positive

operators Fn are properly normalized (
∑
n Fn = I) and they form a POVM. Due to Choi-

Jamiolkowski isomorphism the state ωE determines the channel E uniquely. Therefore, since
ωE′ = (E ′ ⊗ I)[Ψ+] =

∑
n pn|ϕn〉〈ϕn| ⊗ |φn〉〈φn| = ωE we can conclude that E = E ′, hence

if E is entanglement-breaking, then it has the desired form.
Conversely, if E is defined as E(%) =

∑
j ξj tr [%Fj ], then

(E ⊗ I)(ω) =
∑
j

(ξj ⊗ I)trA[(Fj ⊗ I)Ω] =
∑
j

qjξj ⊗Qj ,

where qj = tr [(Fj ⊗ I)Ω] and Qk = q−1
j trA[

√
Fj ⊗ IΩ

√
Fj ⊗ I] are positive operators with

tr [Qj ] = q−1
j tr [(Fj ⊗ I)Ω] = 1, i.e. Qj are density operators.

As a result we get that entanglement-breaking channels can be interpreted as measure and
prepare procedures. In particular, they can be implemented as a particular instrument in which
the measured system is replaced by a new system in the state ξj conditioned on the observed
outcome Fj .

Example 83. (Hilbert space basis of maximally entangled states.) Let us stress once more that
maximally entangled states on Hd ⊗Hd composite system are related by local unitary channels
meaning that if Ψ1 = |ψ1〉〈ψ1| and Ψ2 = |ψ2〉〈ψ2| are maximally entangled states, then there
exist a unitary operator U : Hd → Hd such that Ψ1 = (U ⊗ I)Ψ2(U∗ ⊗ I). Let us define
unitary operators U1, U2 such that ψj = (Uj ⊗ I)ψ+, where ψ+ is the vector corresponding to
the canonical maximally entangled state Ψ+. Due to Choi-Jamiolkowski isomorphism

〈ψ1 |ψ2 〉 =
1
d

tr [U∗1U2] . (7.28)

This formula implies that maximally entangled states are orthogonal if and only if the corre-
sponding unitary operators are orthogonal in the Hilbert-Schmidt sense. As we have seen explic-
itly in Example 76 there do exists an orthogonal operator basis composed of unitary operators
only, i.e. tr

[
U∗j Uk

]
= δjk for all j, k = 1, . . . , d2. Consequently, the vectors ψj = (Uj ⊗ I)ψ+

are mutually orthogonal and form a complete orthonormal basis of Hd ⊗Hd also known as Bell
basis. An observable associated with this basis, j 7→ |ψj〉〈ψj |, is called Bell observable, or Bell
measurement.

Exercise 50. Consider a composite system of a pair of two-dimensional systems, i.e. H =
C2 ⊗ C2. Verify that the vectors (σj ⊗ I)ψ+ ∈ H with ψ+ = 1√

2
(ϕ ⊗ ϕ + ϕ⊥ ⊗ ϕ⊥) are

mutually orthogonal. The operators σ0 = I, σ1 = σx, σ2 = σy, σ3 = σz are the Pauli operators,
i.e. σx = |ϕ〉〈ϕ⊥|+ |ϕ⊥〉〈ϕ|, σy = −i(|ϕ〉〈ϕ⊥| − |ϕ⊥〉〈ϕ|), σz = |ϕ〉〈ϕ| − |ϕ⊥〉〈ϕ⊥|.

Example 84. (Superdense coding). The existence of Bell basis is interesting per se, because
the maximally entangled states are locally perfectly equivalent on one side (via local unitary
channels), but still they are perfectly distinguishable in a single experiment only if the parties are
allowed to communicate quantum systems. The superdense coding is a communication protocol
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in which two classical bits can be transmitted in a secure way by using a single maximally
entangled state of a pair of two-dimensional systems. Suppose two partners, Alice and Bob, are
separated by a large distance, but sharing a maximally entangled state Ψ+ and an ideal quantum
channel for transmission of a two-dimensional system. They are allowed to use the channel only
once. How much information can be transferred from Alice to Bob?

The elements of the Bell basis are related by local unitary channels, i.e. Ψj = (σj ⊗
I)Ψ+(σj ⊗ I), where σ0 = I, σ1 = σx, σ2 = σy, σ3 = σz are four Pauli operators forming
the operator basis and satisfying tr [σjσk] = 2δjk. Therefore, tr [ΨjΨk] = δjk and Alice can
choose one the four unitary channels to generate one of the basis state Ψj . If Bob receives her
system, he can perfectly identify which channel has been chosen by Alice by performing the Bell
measurement. Since Alice has four possibilities she can communicate two bits of information
to Bob. This communication procedure is known as the superdense coding and was originally
discussed in [9].

Let us note that locally the systems of Alice and Bob are described by the total mixture, i.e.
%A = %B = 1

2I . The total mixture is not affected by the unitary channel applied by Alice,
hence the system sent through the channel is always described by the same state - the total mix-
ture. Consequently, the transmitted system does not contain any relevant information. Therefore,
the communication is perfectly secure and noone intercepting the transferred system can learn
anything.

7.3 Entanglement detection

Introducing the concept of LOCC operations results in a division of the quantum state space of
a composite system into two subsets: separable states Ssep and entangled states Sent. The main
goal of entanglement theory is to identify whether a state is entangled or not. In particular, there
are two mutually related versions of this problem:

• experimental - A system is given in an unknown state. Find (experimentally) whether it
is entangled or not.

• mathematical - A complete (mathematical) description of a state is given. Determine
whether it is entangled or not.

In our discussion we address both these problems, but by no means this text can be considered
as an exhaustive overview of the problem. We shall describe only the basic results and for more
details we refer to [63] and [65].

7.3.1 Entanglement detection via linear operators

In any quantum measurement we are measuring probability distributions potentially containing
a solution to our entanglement detection problem. For example, performing an informationally
complete measurement each probability distribution uniquely specifies some quantum state %.
Thus, we have a complete description of quantum state and the experimental decision problem
reduces to mathematical decision problem. However, the complete tomography is a difficult
experimental task. Therefore, we are interested in the existence of some simpler tests.
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If we assume that the number of copies of the system is unlimited, then our most general
knowledge is represented by probability distributions p%(Fk) = tr [Fk(%⊗ · · · ⊗ %)], where Fk
are joint quantum effects forming a POVM on n copies of the composite systems. Associating
real values xk with particular outcomes Fk for any observable we can introduce the mean value
f(%) :=

∑
k xkp%(Fk) being the mean value of a selfadjoint operator F =

∑
k xkFk, i.e. f =

trF (%⊗ · · · ⊗ %). The value of f separates the state space into two subsets:

(i) S+ = {% ∈ S(H) | f(%) ≥ 0}

(ii) S− = {% ∈ S(H) | f(%) < 0}

It turns our that for specific operators F all the separable states are included only in one of the
two subsets.

Definition 64. An operatorW is entanglement witness if tr [%⊗ · · · ⊗ % W ] ≥ 0 for all % ∈ Ssep

and W is not positive.

The requirement that W is not positive guarantees that S− is not empty.

Lemma 5. If 〈Φ|A|Φ〉 ≥ 0 for all factorized vector states Φ, then A is selfadjoint.

As a consequence of the above lemma we can formulate the alternative definition of entan-
glement witnesses.

Lemma 6. An operator W is an entanglement witness if and only if 〈Φ |WΦ 〉 ≥ 0 for all
factorized vector states Φ ∈ H⊗2n.

Definition 65. An operator W ∈ Ls(H⊗H) is a linear entanglement witness if
〈ψ ⊗ ϕ |Wψ ⊗ ϕ 〉 ≥ 0 for all factorized vectors ψ ⊗ ϕ ∈ H ⊗H and W is not positive.

The definition of entanglement witness implies that if tr [%⊗nW ] < 0, then the state % is
entangled. As we have discussed in Chapter 3, a general state % ∈ S(H⊗H) can be expressed in
Bloch vector form as % = 1

d (I + ~r · ~E), where E1, . . . , Ed2−1 are mutually orthogonal traceless
operators, i.e.

%⊗n =
1
dn

(I⊗n + ~r · ~E ⊗ I ⊗ · · · ⊗ I + · · ·+ ~r · ~E ⊗ · · · ⊗ ~r · ~E) .

Similarly, the entanglement witnesses W ∈ Ls(H⊗2n) can be expressed as

W = w0I
⊗n + ~w1 · ~E ⊗ I ⊗ · · · ⊗ I + · · ·+ I ⊗ · · · ⊗ I ⊗ ~wn · ~E (7.29)

+~w12
~E ⊗ ~E ⊗ I ⊗ · · · ⊗ I + · · ·+ ~w1...n

~E ⊗ · · · ⊗ ~E ,

and hence

tr
[
%⊗nW

]
=

1
d2

w0 + ~r · (~w1 + · · ·+ ~wn) + · · ·+
∑

j1,...,jn

rj1 · · · rjnw
1,...,n
j1,...jn

 . (7.30)
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It follows that arbitrary polynom of nth degree in % expressed via Bloch vector ~r is associated
with some entanglement witness and vice versa. For linear (or single copy) entanglement wit-
nesses the expression for mean value reduces to

tr [%W ] =
1
d2

(w0 + ~w · ~r) (7.31)

and for a given witness W the condition tr [%W ] = 0 defines a hyperplane in the Bloch represen-
tation of the state space separating the subsets S+ and S−.

Definition 66. Let W and W ′ be two entanglement witnesses. We say that W is better witness
than W ′ (W � W ′) if all the states detected by W ′ are detected also by W , i.e. if for all % the
following implication holds:

tr [W ′(%⊗ · · · ⊗ %] < 0 ⇒ tr [W (%⊗ · · · ⊗ %)] < 0 .

This relation defines a partial ordering on the set of entanglement witnesses. An entanglement
witness W is called optimal if it is the maximal element with respect to partial order among
witnesses, i.e. either W �W ′, or W and W ′ are incomparable.

Proposition 87. There is no linear entanglement witness detecting all entangled states.

Proof. Suppose that W is a linear entanglement witness detecting all entangled states. Let
ψ,ϕ ∈ H be two orthogonal unit vectors, and denote Φ± = 1√

2
(ψ ⊗ ψ ± ϕ⊗ ϕ). Both Φ±

are entangled vectors as shown in Example 78, and therefore, we have 〈Φ+ |WΦ+ 〉 < 0 and
〈Φ− |WΦ− 〉 < 0. This implies that

0 > 〈Φ+ |WΦ+ 〉+ 〈Φ− |WΦ− 〉 = 〈ψ ⊗ ψ |Wψ ⊗ ψ 〉+ 〈ϕ⊗ ϕ |Wϕ⊗ ϕ 〉 ,

which contradicts the fact that W is positive on factorized states.

Theorem 16. (Horodecki [47]) A quantum state % is separable if and only if tr [%W ] ≥ 0 for all
linear entanglement witnesses W .

Proof. If % is separable, then, by the definition, tr [%W ] ≥ 0 for all linear entanglement witnesses
W .

Assume then that % is entangled. We need to find a linear entanglement witness W such that
tr [%W ] < 0. The set Ssep of separable states is a closed and convex subset of real Banach space
Ts(H ⊗ H). It follows from the Hahn-Banach theorem (see e.g. [74, Theorem 3.4]) that there
exists a linear functional f : Ts(H⊗H) → C and r ∈ R such that

f(%) < r < f(η) (7.32)

for all η ∈ Ssep. However, the dual space of Ts(H ⊗ H) is Ls(H ⊗ H), and hence there is
an operator F ∈ Ls(H ⊗ H) such that f(%) = tr [%F ] for every % ∈ Ts(H ⊗ H). Defining
W = F − rI we get the required entanglement witness, for which tr [%W ] = f(%)− r < 0.

Corollary 4. A quantum state is entangled if and only if there exists a linear entanglement
witness W such that tr [%W ] < 0.



654 Guide to mathematical concepts of quantum theory

Exercise 51. For a given arbitrary bipartite entangled state %0 ∈ S(HA ⊗ HB), find a linear
entanglement witness W0 detecting this state. (Hint: see the proof of Theorem 16)

Example 85. (Clauser-Horne-Shimony-Holt entanglement witness.) Historically, an inequality
based on this entanglement witness was one of the first tests of quantum entanglement [26].
Consider the following operator defined on H2 ⊗H2

WCHSH = 2I ⊗ I − |~a · ~σ ⊗ (~b · ~σ +~b′ · ~σ) + ~a′ · ~σ ⊗ (~b · ~σ −~b′ · ~σ)| , (7.33)

where ~a,~a′,~b,~b′ are unit real three-dimensional vectors. Let us use the notation A = ~a ·
~σ,A′ = ~a′ · ~σ,B = ~b · ~σ,B′ = ~b′ · ~σ. For product states %A ⊗ %B tr [(A⊗B)(%A ⊗ %B)] =
tr [A%A] tr [B%B ] and |tr [%~x · ~σ] | ≤ 1 if ||~x|| = 1. It follows that

tr [WCHSH%A ⊗ %B ] = 2− |tr [A%A] tr [(B +B′)%B ] + tr [A′%A] tr [(B −B′)%B ] |
≥ 0 . (7.34)

Due to convexity WCHSH is positive on all separable states, hence it is a linear entanglement
witness. In order to see it is not trivial, let us consider the singlet state Ψ− = |ψ−〉〈ψ−| with
ψ− = 1√

2
(ϕ⊗ϕ⊥ −ϕ⊥ ⊗ϕ). Let us note that the definition of ψ− is independent of the vector

ϕ ∈ H2. Since 〈ψ+|~x · ~σ ⊗ ~y · ~σ|ψ+〉 = 1
2 tr [(~x · ~σ)∗(~y · ~σ)] = ~x · ~y we obtain

tr [WCHSHΨ+] = 2− |~a · (~b+ ·~b′) + ~a′ · (~b−~b′)| . (7.35)

Setting

~a = (1, 0, 0) ; ~a′ = (0, 1, 0) ; ~b =
1√
2
(1, 1, 0) ; ~b′ =

1√
2
(1,−1, 0) , (7.36)

we find that tr [WSWAPΨ+] = 2− 2
√

2 < 0. The inequality

tr [WSWAP] ≥ 0 , (7.37)

is known as CHSH inequality that was originally proposed as a test of the paradigm of local
realism [33]. As we have seen due to entanglement the quantum systems violate this inequality.

7.3.2 Entanglement via not completely positive linear maps

In this section we shall see that the complete positivity constraints on physical transformations
are intimately related with the concept of entanglement. Consider a positive linear transformation
F : L(H) → L(H) defined on a system A, i.e., F [T ] ≥ O for all positive operators T ∈ L(H).
If F is applied to a separable state %AB =

∑
j pj%

(j)
A ⊗ %

(j)
B of a composite system A + B, we

obtain

%′AB ≡ (F ⊗ I)[%AB ] =
∑
j

pjF [%(j)
A ]⊗ %

(j)
B , (7.38)

which is positive. However, if %AB is entangled, then the operator (F ⊗ I)[%AB ] need not be
positive. Certainly, if F is completely positive then the positivity of (F ⊗ I)[%AB ] is guaran-
teed. As one recalls from Chapter 5, this was actually the reason why we introduced completely
positive mappings. See for instance Example 50.
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This observation leads us to an important application of positive, but not completely positive
mappings in the detection of entanglement present in a composite state %AB . Namely, if the
operator %′AB = (F ⊗ I)[%AB ] is negative, then the state %AB is entangled. Moreover, the
following proposition holds.

Proposition 88. A state % is separable if and only if for all positive (not necessarily completely
positive) mappings F the operator (F ⊗ I)(%) is positive.

Proof. According to Choi-Jamiolkowski isomorphism each linear entanglement witness W on a
composite system A and B determines some linear mapping FW via relation

FW (ξ) = trB [(ξT ⊗ I)W ] . (7.39)

We shall prove that linear witnesses and positive maps are in one-to-one correspondence. Con-
sequently, the results achieved for linear entanglement witnesses can be translated into the lan-
guage of positive maps. In particular, such relation makes this proposition completely equivalent
to statement in Theorem 16. Let us remind that if W is positive on all vectors, then the map FW
is completely positive.

Suppose F is a positive linear map, vectors ϕ1, . . . , ϕd ∈ H is an orthonormal basis in Hd

and operators ejk = |ϕj〉〈ϕk| form an orthonormal operator basis. Then

〈ψ ⊗ ϕ|WF |ψ ⊗ ϕ〉 = 〈ψ ⊗ ϕ|(F ⊗ I)[Ψ+]|ψ ⊗ ϕ〉
= 〈ψ|F [ejk]|ψ〉〈ϕ|ejk|ϕ〉 = 〈ψ|F [tr [ejkPϕ] ejk]|ψ〉
= 〈ψ|F [PTϕ ]|ψ〉 ≥ 0 ,

where we used the notation Pϕ = |ϕ〉〈ϕ| and the last inequality holds due to positivity of the
transposition map P 7→ PT and F . That is, the operator WF is positive on product vectors
ψ ⊗ ϕ.

Suppose W is an entanglement witness. Then for the induced linear map FW the following
identity holds 〈ψ|FW [X]|ψ〉 = 〈ψ|trA[W (XT ⊗ I)]|ψ〉. Setting X = PTϕ we get the inequality

〈ψ|trA[W (Pϕ ⊗ I)]|ψ〉 = 〈ϕ⊗ ψ|W (Pϕ ⊗ I)|ϕ⊗ ψ〉 = 〈ϕ⊗ ψ|W |ϕ⊗ ψ〉 ≥ 0

proves that 〈ψ|FW [PTϕ ]|ψ〉 is positive. Since a general positive operator is a positive sum of
one-dimensional projectors it follows that F [X] ≥ O for all X ≥ O.

Although Proposition 88 is closely related to Theorem 16, there is one important difference
between linear entanglement witnesses and positive, but not completely positive maps. The last
ones determine nonlinear separability tests via the formula (F ⊗ I)(%) ≥ O.

Similarly like the entanglement witnesses, also the positive maps F divides the states space
into two subsets: i) SF+ = {% : F ⊗ I(%) ≥ O}, and ii) SF− = {% : F ⊗ I(%) 6≥ O}. Let us note
that the subset SF+ is convex and contains all separable states.

A typical example of positive, but not completely positive, mapping is the transposition map
τ : % → %T , where transposition is performed with respect to the basis ϕ1, . . . , ϕd in which the
maximally entangled state takes the form Ψ+ = 1

d

∑
jk |ϕj〉〈ϕk| ⊗ |ϕj〉〈ϕk|. We use a short-

hand notations τA[%] = (τ ⊗ I)[%] and τB [%] = (I ⊗ τ)[%] for partially transposed operators.
The corresponding entanglement witness is Wτ = 1

d

∑
jk |ϕj〉〈ϕk| ⊗ |ϕk〉〈ϕj | = 1

dWSWAP,
where WSWAP is the SWAP operator. The transformations τA ⊗I and I ⊗ τB are called partial
transpositions of subsystems A and B, respectively.
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Definition 67. A state % ∈ S(HA ⊗ HB) is called a PPT state (PPT is standing for positive
partial transpose) if it remains positive under partial transposition. We denote the convex set of
PPT states by Sppt = Sτ+. If % 6∈ Sppt, then we say it is an NPPT state.

We can formulate the following separability test.

Proposition 89. (PPT separability criteria.) If a state %AB is NPPT, then it is entangled.

The question is how strong is the entanglement criterion provided by the partial transposition.
It turns out that except the simplest case of 2 × 2 and 2 × 3 dimensional composite systems the
set of PPT entangled states is not empty, i.e., Sppt ∩ Sent 6= ∅.

Theorem 17. (Woronowicz [84]) All positive linear maps F : L(C2) → L(C2) and F :
L(C2) → L(C3) are of the form

F = F1
cp + F2

cp ◦ τ (7.40)

where F1
cp,F2

cp are completely positive mappings.

If a positive mapping can be written in the form 7.40, it is called decomposable. As a direct
consequence of Theorem 17 we obtain the following characterization of quantum entanglement
for simplest composite systems.

Theorem 18. (Perez-Horodecki criterion.) For C2⊗C2 and C2⊗C3 systems a state is separable
if and only if it is PPT.

Proof. According to Theorem 17 all the positive, but not completely positive, linear mappings
on the considered types of systems are related to the transposition map via completely positive
maps. Therefore, the operator %′ = (F ⊗ I)(%) is not positive if and only if % 6∈ Sppt. Hence,
the positivity of %′ is guaranteed by the positivity of partially transposed state (τ ⊗ I)(%).

In order to show that for larger dimensional systems the set of entangled PPT states is not
empty we introduce the so-called range criterion for separability [49]. It is based on the follow-
ing simple observation. By definition, if a state is separable then there exists a family of product
states {ψj ⊗ φj} spanning the whole range of %. If we find that there is no family of product
vectors {ψj ⊗ φj} spanning the whole range of % we can conclude it is not separable, hence it is
entangled.

Proposition 90. (Range criterion.) If the range of % ∈ S(HA ⊗HB) is not spanned by a family
of product vectors {ψj⊗φj}, then % is entangled. In particular, if the range of % does not contain
any product vector, then the state % is entangled.

Example 86. (Symmetric and antisymmetric states.) Consider a composite Hilbert space Hd ⊗
Hd of two systems of the same type. A vector ψ ∈ Hd⊗Hd is called symmetric if it is preserved
under the SWAP transformation, i.e., VSWAPψ = ψ. If VSWAPψ = −ψ, then the vector is
called antisymmetric. Symmetric and antisymmetric vectors are mutually orthogonal and define
mutually orthogonal subspaces of Hd ⊗ Hd. In a similar way, we may define symmetric and
antisymmetric states. In particular, if the range of % is contained in the symmetric (antisymmetric)
subspace we say the state is symmetric (antisymmetric). Important property of antisymmetric
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vectors is that they cannot be of product form. In particular, applying the SWAP operator onto a
product vector ψ ⊗ φ we obtain φ ⊗ ψ 6= −ψ ⊗ φ. Thus, the antisymmetric subspace contains
only entangled vectors. Consequently, the antisymmetric states have no product vector in their
range and based on our previous observation they must be entangled.

In what follows we shall show that the range criterion and Peres-Horodecki criterion are
different in a sense that there exist entangled states passing the PPT test, but still are identifiable
by the range criterion. Recall from Section 2.2.3 the complex conjugate operator J related to an
orthonormal basis {ϕj}. We assume that the orthonormal basis is fixed and denote φ∗ = Jφ.
Then τ [|φ〉〈φ|] = |φ∗〉〈φ∗|. Therefore, if a product vector ψ ⊗ φ belongs to the range of %, then
the product vector ψ ⊗ φ∗ belongs to the range of τB [%].

Definition 68. A set of orthogonal product vectors {ψ1⊗ϕ1, . . . , ψm⊗ϕm} withm < dAdB is
an unextendible product basis if there is no factorized vector φ ∈ HA⊗HB such that φ ⊥ ψj⊗ϕj
for all j.

Example 87. (Construction of PPT entangled state.) Consider an unextendible product basis
consisting of m < dAdB vectors ωj = ψj ⊗ ϕj . Define a projector Πupb =

∑
j |ωj〉〈ωj | and

a state %upb = 1
d1d2−m (I − Πupb). By definition the range of % does not contain any product

state. The range criterion implies that this state cannot be separable. The vectors ψj ⊗ ϕ∗j are
also mutually orthogonal. Therefore τB [Πupb] =

∑
j |ψj ⊗ φ∗j 〉〈ψj ⊗ φ∗j | is a projector, and

consequently I − τB [Πupb] is a projector, too. Therefore, τB [%upb] = 1
d1d2−m (I − τB [Πupb])

is a positive operator, hence, the state %upb is a PPT entangled state. We can thus conclude that
Sent ∩ Sppt 6= ∅.

Example 88. (Entanglement witness for detection of %upb.) Unextendible product basis [8] can
be used to design nondecomposable positive maps that can serve as novel tools for the entangle-
ment detection. In particular, the projector Πupb onto elements of UPB is strictly positive on all
factorized vectors, i.e. minψ⊗ϕ〈ψ ⊗ ϕ|Πupb|ψ ⊗ ϕ〉 = ε > 0, because of the unextendability of
the product basis. Let us note that ε = 0 implies that there exists a factorized vector orthogonal to
all vectors in UPB, which is a contradiction. Let P⊥φ = |φ〉〈φ| is a projector and φ is orthogonal
to vectors in UPB, i.e. Πupbφ = 0. Since for the operator Wφ

upb = Πupb − dεP⊥φ we have

〈ψ ⊗ ϕ|Wφ
upb|ψ ⊗ ϕ〉 ≥ ε(1− | 〈φ |ψ ⊗ ϕ 〉 |2) ≥ 0 , (7.41)

for all product vectors ψ ⊗ ϕ, it follows that Wφ
upb is positive on all separable states. Moreover,

the inequality

tr
[
%upbW

φ
upb

]
= − ε

d1d2 −m
< 0 (7.42)

implies it is an entanglement witness detecting the PPT entangled state %upb. Using the Choi-
Jamiolkowski isomorphism we can define an indecomposable positive map providing an entan-
glement criteria qualitatively different from the PPT criteria.

Exercise 52. Show that vectors ϕ0⊗ϕ0−1, ϕ2⊗ϕ1−2, ϕ0−1⊗ϕ2, ϕ1−2⊗ϕ0, ϕ0+1+2⊗ϕ0+1+2

form an unextendible product basis and verify that the state defined in the above example is in-
deed a PPT entangled state. Find the entanglement witness and associated positive, but not com-
pletely positive map. In the definition we used the shorthand notation to denote a superposition



658 Guide to mathematical concepts of quantum theory

of orthonormal states ϕ0, ϕ1, ϕ2 with equal absolute values of their amplitudes, but potentially
different signs. For example, ϕ0−1 stands for 1√

2
(ϕ0 − ϕ1).

A linear mapping

R(T ) = tr [T ] I − T (7.43)

is called reduction. Since for a positive operator T we have

0 ≤ 〈ψ |Tψ 〉 ≤ tr [T ] ,

this mapping is positive. However, it is not completely positive. Consider a bipartite state %AB =
%A⊗ %B + ΓAB . Let us note that %A = trB%AB , %B = trA%AB and ΓAB is a traceless operator.
Then

(R⊗ I)[%AB ] = (I − %A)⊗ %B + trAtrB [ΓAB ]I ⊗ trA[ΓAB ]− ΓAB
= I ⊗ %B − %AB . (7.44)

Similarly, (I ⊗R)[%AB ] = %A ⊗ I − %AB .

Lemma 7. A separable state % satisfies the following operator inequalities:

I ⊗ %B − % ≥ O , I ⊗ %A − % ≥ O . (7.45)

Proof. We prove only that for separable states % ≤ I ⊗ %B . It is straightforward that for each
state %A ∈ S(HA) the inequality %A ≤ I holds. That is, factorized mixed states %A ⊗ %B are
smaller than I ⊗ %B . Consider a mixture % =

∑
j pj%

(j)
A ⊗ %(j)

B . Since
∑
j pj%

(j)
B = %B we have

pj%
(j)
B ≤ %B . Consequently,

% =
∑
j

%
(j)
A ⊗ pj%

(j)
B ≤ I ⊗

∑
j

pj%
(j)
B ≤ I ⊗ %B . (7.46)

Based on this lemma we can formulate the following useful separability criterion:

Proposition 91. (Reduction criterion) Let % be a state of a composite system A + B. If either
I ⊗ %B − % 6≥ O or %A ⊗ I − % 6≥ O, then % is entangled.

Proof. It remains to show that this criterion is not trivial in a sense that there are entangled
states for which I ⊗ %B − % < O. Consider, for instance, the maximally entangled state Ψ+,
for which by definition %A = %B = 1

dI . In such case (R ⊗ I)[Ψ+] = 1
dI ⊗ I − Ψ+ and

〈ψ+| 1dI ⊗ I −Ψ+|ψ+〉 = (1− d)/d < 0, i.e. the operator (R⊗ I)[Ψ+] is negative.

Proposition 92. If

max
U
〈Ψ+|(U∗ ⊗ I)%(U ⊗ I)|Ψ+〉 >

1
d
, (7.47)

then the state % is entangled.
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Proof. The entanglement witness associated with the reduction map reads

WR = (R⊗ I)[Ψ+] =
1
d
I −Ψ+ . (7.48)

It follows that if tr[WR%] = 1
d − 〈Ψ+|%|Ψ+〉 < 0, then the state % is entangled. Maximizing

these witnesses over all maximally entangled states we come to above inequality.

The quantity defined on left side of the inequality in Proposition 92 is known as a maximally
entangled fraction of the state % and can be used to quantify the degree of entanglement. In fact,
it says how close in fidelity is the given state to some maximally entangled state.

7.3.3 Entanglement distillation

Most of the papers on quantum entanglement glorifies its importance in quantum information
theory and highlights its conceptual position within the quantum theory itself. Indeed, particular
entangled states exhibit very interesting features and they deserve a special attention of math-
ematician, physicists and computer scientists. However, it is fair to say that we are lacking an
operationally clear understanding of the difference between separable and entangled states.

One class of extremely interesting states are the so-called maximally entangled states, i.e.
states locally unitary equivalent to Ψ+. Not only they relate the structures of linear maps and
linear operators (via Choi-Jamiolkowski isomorphism), but because of their unique properties,
they seem to provide us with a very rich information resource suitable for information processing.
Probably the most prominent example is a procedure for quantum state teleportation. The goal
of this communication protocol is to transfer a quantum state from side A to side B just by
classical communication. A classical solution would be based on estimation and transmission of
parameters of the unknown state, but the precision of such state transfer is limited by the accuracy
of our estimation. The simplest quantum solution would be to send the system in an unknown
state directly through an ideal quantum channel between the sides A and B. However, in this
case the transmission is not based on classical information exchange as it is in the definition of
the problem. Moreover, the accuracy depends on our abilities to reduce the communication noise
and preserve the ideality of the channel. Surprisingly, quantum theory offers one more solution
based on peculiar properties of maximally entangled states.

Example 89. (Quantum state teleportation [6]) Consider a pure state of three systems of the
same dimension. Two systems are in possession of Alice and one is in possession of Bob. We
assume that Alice and Bob share a maximally entangled state Ψ+. The total state of all three
systems of the same dimension is ΩA′AB = %A′ ⊗ ΨAB

+ , where %A is a state that is going to be
transmitted from Alice to Bob. The success of the state teleportation is based on the following
identity. For all unitary transformations U : H → H and states % ∈ S(H)

trA′A
[
(ΨA′A

U ⊗ I)(%A′ ⊗ΨAB
+ )(ΨA′A

U ⊗ I)
]

=
1
d2
U∗%BU , (7.49)

where ΨU = (U ⊗ I)Ψ+(U∗ ⊗ I), Ψ+ = 1
d

∑
jk |ϕj ⊗ ϕj〉〈ϕk ⊗ ϕk| is projection onto

the maximally entangled state, and %A = %B . This identity is interpreted as a postselective
state transformation of the system B in the measurement process described by Lüder’s state
transformer associated with an effect ΨU = Ψ∗

U = Ψ2
U . This effect can be observed with the
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probability p = 〈ΩA′AB |ΨA′A
U ⊗ I|ΩA′AB〉 = 1

d2 . Consequently, if Alice performs a local
measurement observing the effect ΨU , then Bob’s system is described by a unitarily transformed
state %. This fact is hidden to Bob unless this information is communicated from Alice. After
receiving the information that Alice observed the wanted outcome Bob can undo the unwanted
unitary transformation and retrieve the original state %.

Luckily enough there do exists an orthonormal basis of H ⊗ H composed of maximally
entangled states, hence the Alice’s measurement can be composed of projections ΨU1 , . . . ,ΨUd2

such that
∑
j ΨUj = I ⊗ I . The identity

〈Ψ+|I ⊗X|Ψ+〉 =
1
d
trX (7.50)

implies that orthogonality of 〈ΨU |ΨV 〉 = 0 is equivalent to orthogonality of operators U, V
in the Hilbert-Schmidt sense, i.e. trU∗V = 0. That is, the projections ΨUj forming Alice’s
projective measurement are associated with a orthogonal operator basis consisting of unitary
transformations U1, . . . , Ud2 . It follows that for each outcome corresponding to some projection
ΨUj Bob can perform a unitary transformation Uj to retrieve the original state % on his side. This
procedure for deterministic and perfect transmission of quantum states from Alice to Bob (just by
using classical communication) is called quantum teleportation. In each run Alice is sending to
Bob only 2d bits of classical information that themselves contain no information about the state,
i.e. the sequence of outcomes is completely random. The teleportation procedure is an example
of LOCC channel implementing the transformation %A′ ⊗ ΨAB

+ 7→ ΨA′A
+ ⊗ %B providing that

the local correction channel U is applied also on Alice’s system A′.

Exercise 53. Prove the identity in Eq. (7.49).

For perfect quantum teleportation it is crucial that the state Ψ+ shared by Alice and Bob is
maximally entangled. It follows from the definition of maximally entangled states that there is
no LOCC channel transforming in a deterministic manner a state ω into Ψ+. However, there can
be an LOCC channel acting on n copies of ω that asymptotically maps the state ω⊗n into m < n
(approximate) copies of Ψ+ in a deterministic way.

Definition 69. Consider a sequence of LOCC channelsF1,F2, . . . ,Fn such that eachFj acts on
j copies of bipartite states ω ∈ S(H⊗H), respectively. We say that {Fn}n is an entanglement
distillation protocol for a state ω0 if and only if

lim
n→∞

||trn\m[Fn[ω⊗n0 ]]−Ψ⊗m
+ ||tr = 0 , (7.51)

where trn\m stands for partial trace over n − m pairs. The limiting fraction m/n is called an
entanglement distillation rate.

The entanglement distillation is a very complex task. For a general overview we refer to al-
ready mentioned review papers on entanglement theory [50] and [71]. Via the following proposi-
tion the entanglement distillation gives an interesting operational meaning to the concept of PPT
entanglement criterion.

Proposition 93. If % ∈ Sppt, i.e. τB [%] ≥ O, then it cannot be distilled, i.e. the entanglement
distillation rate is zero.



Entanglement 661

Proof. Any LOCC channel can be written as % 7→ %′ = FLOCC[%] =
∑
j Aj⊗Bj%A∗j⊗B∗j . We

will show that PPT property is LOCC invariant, i.e. τB [%] ≥ O implies that τB [(FLOCC[%])] ≥
O. For the partial transposition of the subsystemB the following identity holds τB [(A⊗B)%(C⊗
D)] = (A⊗DT )τB [%](C⊗BT ). It follows that τB [%′] =

∑
j Aj⊗ (B∗j )

T τB [%]A∗j ⊗BTj , and it
is straightforward to see that the composition of an LOCC channel with the partial transposition
map results in a completely positive map. Moreover, since τB [%] ≥ O, then necessarily also
τB [%′] ≥ O. It follows that the maximally entangled state cannot be distilled out of any PPT
entangled state, because τB [%⊗n] = (τB [%])⊗n.

Definition 70. A quantum state % ∈ S(H⊗H) is called bound entangled if and only if it cannot
be distilled. Let us denote by Sbound the subset of bounded entangled states.

The existence of bound entangled states is indeed a strange feature of quantum entanglement
that attracted lot of attention. One of the main unsolved problems of the entanglement theory is
the existence, or nonexistence of so-called NPPT bound entangled states, i.e. the existence of
states that cannot be distilled, but can be identified by means of Peres-Horodecki PPT criterion.

The following proposition provides a partial answer to another interesting problem related to
the question how much entangled the bound entangled states are.

Proposition 94. For PPT states

max
U
〈Ψ+|U∗ ⊗ I%U ⊗ I|Ψ+〉 ≤ 1/d . (7.52)

Proof. The adjoint map τ∗ to the transposition map τ is again the transposition map, i.e.
tr [τ [A∗]B] = tr [A∗τ [B]] and τ∗ = τ . This follows from the fact that tr [X] = tr

[
XT
]
.

Setting X = A∗B we get the identity tr [τ [A∗]B] = tr [τ [τ [A∗]B]] = tr [τ [B](τ ◦ τ)[A∗]] =
tr [A∗τ [B]]. Using the identity τ ◦ τ = I we obtain tr [%ΨU ] = tr [(τ ⊗ I)[%](τ∗ ⊗ I)[ΨU ]],
where ΨU = (I ⊗ U)Ψ+(I ⊗ U∗). Let us remind that (τ ⊗ I)[Ψ+] = 1

dVSWAP, hence

tr [%ΨU ]=tr [τA[%](I ⊗ U)τA[Ψ+](I ⊗ U∗)]=
1
d

tr [τA[%](I ⊗ U)VSWAP(I ⊗ U∗)] .(7.53)

The operator (I ⊗ U)VSWAP(I ⊗ U∗) is selfadjoint with eigenvalues ±1. The mean value of
a selfadjoint operator in arbitrary state is bounded by its largest and smallest eigenvalue. If the
state % is a PPT state, then the operator τA[%] is also a valid quantum state. Therefore, for PPT
states we find that tr [%ΨU ] ≤ 1/d for all unitary operators U , hence also the maximum over U
is bounded by 1/d.

It follows that for PPT entangled states their maximally entangled fraction is always smaller
than 1/d. Moreover, comparing this proposition with the Proposition 92 we can conclude that
the reduction criterion is weaker than PPT criterion.

7.4 Example: Werner states

In this section we shall investigate the properties of a one-parametric set of Werner states, intro-
duced by R. Werner in [83]. In some sense their properties are generic, which makes this class
of states important from the point of view of entanglement theory.
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Definition 71. A state % ∈ S(Hd ⊗Hd) is called Werner state if [%, U ⊗ U ] = 0 for all unitary
operators U : Hd → Hd.

It follows that

%µ = µ
1
d+

P+ + (1− µ)
1
d−

P− , (7.54)

where P± are projectors onto symmetric and antisymmetric subspaces ofHd⊗Hd (see Example
81) and d± = dimP± = d(d ± 1)/2. That is, the Werner states %µ are convex combinations of
mixed states d−1

± P±.
We shall use the same notation as in Example 81. As usually, let ϕ1, . . . , ϕd be an orthonor-

mal basis of Hd. The vectors ϕj±k form an orthonormal basis of H ⊗H, too. Let us note that
by definition ϕj−j is the zero vector for all j. That is, we have d(d + 1)/2 symmetric vec-
tors ϕj+k and d(d− 1)/2 nonzero antisymmetric vectors ϕj−k forming bases of symmetric and
antisymmetric subspaces, respectively. Therefore,

P± =
d∑

j,k=1

|ϕj±k〉〈ϕj±k| =
1
2
(I ± VSWAP) . (7.55)

Using the operators I and VSWAP the Werner states can be expressed as

%µ =
µ

d(d+ 1)
(I + VSWAP) +

1− µ

d(d− 1)
(I − VSWAP)

=
1

d(d2 − 1)
[(d+ 1− 2µ)I + (2dµ− d− 1)VSWAP] .

Proposition 95. A Werner state %µ is entangled if and only if µ < 1/2.

Proof. Let us start with the observation that the functional tr [VSWAPω] is invariant under the
action of the twirling channel T (ω) =

∫
U(d)

dU U ⊗ UωU∗ ⊗ U∗ described in Example 81, i.e.
tr [VSWAPT (ω)] = tr [VSWAPω] for all states ω. In fact, as a result of the twirling channel arbi-
trary state ω is mapped into some Werner state %µ with some specific value of µ. Therefore, as
the twirling is an LOCC channel, if ω is separable, then also the corresponding Werner state %µ =
T (ω) must be separable. Consequently, since for pure product states tr [VSWAP(|ϕ⊗ φ〉〈ϕ⊗ φ|)]
= | 〈ϕ |φ 〉 |2 ∈ [0, 1] it follows that for each Werner state %µ with tr [VSWAP%µ] ≥ 0 there ex-
ist a separable state ω0 = |ϕ ⊗ φ〉〈ϕ ⊗ φ| such that %µ = T [|ϕ ⊗ φ〉〈ϕ ⊗ φ|]. Therefore, if
tr [VSWAP%µ] ≥ 0, then the Werner state %µ must be separable.

Let us note that the selfadjoint operator VSWAP is proportional to the entanglement witness
associated with the partial transposition criterion. Therefore, if tr [VSWAPω] < 0, then the state
ω is entangled. By definition VSWAPψ = ±ψ if ψ is symmetric, or antisymmetric, respectively.
Therefore, tr [VSWAPP±] = ±d± and for Werner states

tr [VSWAP%µ] = µ
tr [VSWAPP+]

d+
+ (1− µ)

tr [VSWAPP−]
d−

= 2µ− 1 . (7.56)

That is, for values µ ≥ 1/2 the Werner states are separable and for µ < 1/2 the Werner states
are entangled.
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Proposition 96. A Werner state is PPT if and only if µ ≥ 1/2.

Proof. Applying a partial transposition on VSWAP we obtain τA[VSWAP] = τA[
∑
|ϕj⊗ϕk〉〈ϕk⊗

ϕj |] =
∑
|ϕk⊗ϕk〉〈ϕj ⊗ϕj | = dΨ+. For a general vector ψ the mean value is between largest

and smallest eigenvalue of the τA[%µ]. For arbitrary ψ ⊥ ψ+ the mean value 〈ψ|τA[%µ]|ψ〉 =
(d+1−2µ)
d(d2−1) ≥ 0, because d > 1. The vector ψ+ is an eigenvector of τA[%µ] associated with a

potentially negative eigenvalue. A direct calculation gives

〈ψ+|τA[%µ]|ψ+〉 =
1

d(d2 − 1)
〈ψ+| [(d+ 1− 2µ)I + (2dµ− d− 1)dΨ+] |ψ+〉

=
1

d(d2 − 1)
[(2µ− 1)(d2 − 1)] =

2µ− 1
d

.

It follows that the partial transposition of a Werner state results in a positive operator only if
µ ≥ 1/2.

Proposition 97. The reduction criterion does not detect the entanglement of Werner states for
d ≥ 3. For d = 2 the reduction criterion identifies that Werner states are entangled for µ < 1/2.

Proof. Since trA[I ⊗ I] = trB [I ⊗ I] = dI and trA[VSWAP] = trB [VSWAP] = I we obtain for
Werner states

trA%µ = trB%µ =
d2 + d− 2µd+ 2µd− d− 1

d(d2 − 1)
I =

1
d
I . (7.57)

The reduction criterion requires

O ≤ 1
d
I ⊗ I − %µ =

1
d(d2 − 1)

[((d+ 1)(d− 2) + 2µ)I − (2dµ− d− 1)VSWAP] .(7.58)

Since the eigenvalues of VSWAP are ±1 it follows that eigenvalues of the operator 1
dI ⊗ I − %µ

are

x± = (d+ 1)(d− 2) + 2µ∓ (2dµ− d− 1) = (d+ 1)(d− 2) + 2µ∓ 2dµ± (d+ 1)
= (d+ 1)(d− 2± 1) + 2µ(1∓ d) .

They are negative, hence the reduction criterion is violated, only if d = 2 and µ < 1/2 as it is
stated in the Proposition.

The importance of Werner states is based on the fact that an application of the twirling chan-
nel T to arbitrary state % results in a particular Werner state with some value of µ. Since this
channel is LOCC the state T [%] ≤LOCC %. Consequently, the distillability of states can be stud-
ied via distilability of Werner states. In particular, the question on the existence of bound NPPT
states can be reduced the existence of bound NPPT Werner states in the following sense. If all
entangled Werner states are distillable, then arbitrary NPPT entangled state is.
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Appendix A: Mathematical preliminaries

This appendix is a very short refresher on some mathematical topics that are of use in quantum
theory. By no means it is a complete list of all necessary mathematical tools. In what follows we
shall review the definitions, basic results and provide some illustrative examples on mathematical
concepts of relations and convexity. In the era of internet a common reference to some topics
discussed here is the free encyclopedia - wikipedia.

Relations

Equivalence relation

We recall that a relation on a set Ω is a subset R of Ω× Ω. If R is a relation on Ω, we use xRy
to denote that (x, y) ∈ R.

An equivalence relation on Ω is a relation R on Ω such that

• xRx for every x ∈ Ω (reflexive);

• if xRy and yRz, then xRz (transitive);

• if xRy, then yRx (symmetric).

We usually denote an equivalence relation by ∼, or some variant of this symbol containing sub-
scripts. The equivalence class of an element x is the set [x] ≡ {y ∈ Ω | x ∼ y}.

A collection P of disjoint, nonempty sets X ⊆ Ω is a partition of Ω if ∪X∈PX = Ω. The
equivalence classes of an equivalence relation ∼ form a partition, which we denote P∼. Also,
for each partition P of Ω, we get an equivalence relation ∼P by defining

x ∼P y iff x and y belong to a same member of P. (7.1)

If∼ is an equivalence relation and we form the corresponding partition P∼, then P∼ determines
∼ through (7.1). Similarly, starting with a partition P , the equivalence classes related to ∼P are
just the sets belonging to P . In conclusion, equivalence relations and partitions are two different
descriptions of the same structure.

Example 90. A transformation group on a set Ω is a collection G of bijective mappings f : Ω →
Ω which is a group under compositions. This means that

(a) the identity mapping 1Ω belongs to G;

(b) if f1, f2 ∈ G, then the composition mapping f1 ◦ f2 belongs G;

(c) for each f ∈ G, the inverse mapping f−1 belongs to G.

If G is a transformation group on Ω, we define a relation ∼G on Ω in the following way:

x ∼G y iff there exists f ∈ G such that f(x) = y. (7.2)

Using the properties (a)-(c), it is straightforward to verify that ∼G is an equivalence relation.
Thus, each transformation group defines an equivalence relation.
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Every equivalence relation is of the form ∼G for some transformation group G. Indeed, let ∼
be an equivalence relation on Ω. We define G∼ to be the following collection of mappings:

G∼ := {f : Ω → Ω|f is a bijective and f(x) ∼ x ∀x ∈ Ω} .

Since ∼ is reflexive, transitive and symmetric, it follows that G∼ is a group under compositions.
The group G∼ determines the original equivalence relation ∼ through (7.2).

Partial order

A partial order on Ω is a relation R on Ω which is reflexive, transitive and also has the following
property:

• if xRy and yRx, then x = y (antisymmetric).

We usually denote a partial order by 4 or ≤, or some variants. A set with a partial order on it is
a partially ordered set, or poset for short.

An element x ∈ Ω is

- maximal if x 4 y implies that x = y;

- minimal if y 4 x implies that x = y.

Preordering

A relation R on Ω is a preorder if it is reflexive and transitive. Hence, both equivalence relation
and partial order are special cases of preorders.

Let R be a preordering and denote

x ∼ y iff xRy and yRx .

Then ∼ is an equivalence relation. We denote by [x] the equivalence class of an element x, and
define

[x] 4 [y] iff xRy .

In this way, we get a partial order 4 on the set P∼ of all equivalence classes.

Convex sets

A mahematical feature reflecting the statistical description of physical world is called convexity.
In this section we shall introduce the basic concepts and properties of convex sets.

Definition 72. (Convex set.) A subset S ⊂ V (V is real linear space) is convex if for any x, y ∈ S
also the elements λx+ (1− λ)y ∈ S for all λ ∈ [0, 1].

Example 91. (Convex sets.)
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1. Segment of a line = {~r ∈ Rn : ~r = t~r1 + (1− t)~r2 where ~r1, ~r2 ∈ Rn and t ∈ [0, 1]}

2. Square = {~r ∈ R2 : |x| ≤ 1, |y| ≤ 1}

3. Sphere = {~r ∈ Rn : |~r|2 ≤ 1}

4. Set of probability distributions = Σn = {~p ∈ Rn+ :
∑n
j=1 pj = 1} is a so-called probability

simplex. In particular, Σ2 is a segmet of line, Σ3 is a triangle, Σ4 is tetrahedron, etc.

Definition 73. A set S ⊂ V is called a convex cone if it is closed under multiplication by positive
scalars (ta ∈ S iff a ∈ S for all t ≥ 0) and under linear combinations, i.e. a+ b ∈ S iff a, b ∈ S.

Example 92. (Convex cones.)

1. Positive semi-line={~r ∈ Rn : ~r = t~r0 where ~r0 ∈ Rn and t ∈ R+}

2. Positive vectors={~r ∈ Rn : rj ≥ 0 ∀j}

3. Convex angle={~r ∈ Rn : t~r1 + s~r2, s, t ≥ 0}

4. Set of positive operators=L+(H) = {A : H → H, A ≥ 0}

Definition 74. (Convex hull.) Let A be a set of points in real vector space V . Convex hull of
A (denoted as co(A)) is a minimal convex set containing A. Equivalently, convex hull is an
intersection of all convex sets containing A, i.e. co(A) =

⋂
X:A⊂X X .

Definition 75. (Affine (linear) combination.) A linear combination
∑
j ajxj is called affine if∑

j aj = 1. Note that aj are arbitrary real numbers.

Definition 76. (Convex (linear) combination.) A linear combination
∑
j ajxj is called convex

if
∑
j aj = 1 and aj ≥ 0 for all j.

Definition 77. (Affine linear independence.) Set of vectors A = {x1, . . . , xm} is affinely de-
pendent if

∑
j ajxj = 0 for some affine combination {aj}. We say the vectors in A are affinely

indepenent if none of them can be expressed as affine combination of others.

Similarly, like the linear transformations of vector spaces are preserving the linear structure
of vector spaces, the so-called affine mappings are all the transformations preserving the convex
structure. That is, under affine transformations the convex sets are trasnformed into convex sets.

Definition 78. (Affine map.) We say that a mapping F : S → V (S ⊂ V is a convex subset of
some real vector space V ) is affine if and only if for all affine linear combinations x =

∑
j pjxj ∈

S the following identity holds F (x) =
∑
j pjF (xj). It follows that linear maps are affine and

the set of affine maps form a group.

A typical example of a transformation that is not linear, but still affine, is the so-called vector
translation T~t : Rn → Rn, i.e. ~r 7→ ~r′ = ~t + ~r. A linear combination ~r1 + ~r2 is mapped into
T~t~r1 +T~t~r2 = 2~t+~r1 +~r2 6= ~t+ ~r1 +~r2 = T~t(~r1 +~r2), hence T~t is not a linear transformation.
However, applying the translation to an affine linear combination ~r =

∑
j aj~rj (with

∑
j aj = 1)

we obtain
∑
j aj(~t+ ~rj) = ~t

∑
j aj +

∑
j aj~rj = ~t+ ~r. That is, T~t is the affine transformation.

The following theorem is of use in various applications. Since it is not used in the main text
we shall omit the proof.
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Theorem 19. (Carathéodory’s theorem.) If a point x ∈ Rn lies in a convex hull of set A, then
there is a subset A′ ⊂ A consisting of at most n+ 1 points such that x lies in the convex hull of
A′.

Definition 79. (Extremal point) An element x ∈ S of a convex set S is called extremal if and
only if x = 1

2 (x1 + x2) implies x1 = x2 = x. The set of extreme points of a set S will be
denoted by Sext.

Example 93. (Convex sets without extremal points.)

1. Any linear space (for example line, plane) is convex, but without extremal points.

2. Set X of strictly positive functions f : [0, 1] → R is obviously convex. Define a function
fµ ≡ µf for positive µ. It is easy to check that f(x) = 1

2 [fµ(x) + f(2−µ)(x)], i.e. each
element of X can be written as convex combination of other two elements.

Previous examples show that not all convex sets have some extremal points, i.e. it is possible
that Sext = ∅. However, if the set of extremal points is nont empty, it is of interest whether
the convex hull of extremal points, or its closure, coincides with the whole convex set, or not.
Since Sext ⊂ S ⊂ Rn, then according to Carathéodory’s theorem each element of co(Sext)
can be written as a convex combination of at most n + 1 extremal points. Consequently, if
co(Sext) = S, then each point in S can be expressed as a convex combination of at most n + 1
extremal points of S. The following theorem is roughly saying that this is the case providing that
the convex sets are compact.

Theorem 20. (Krein-Milman theorem.) Every compact convex set S in a locally convex space
is the closed convex hull of its extreme points, i.e. S = co(Sext)

Example 94. (Simplex.) A simplex is a convex hull of n + 1 affinely independent points
e1, . . . , en+1 in n-dimensional real vector space. It is called regular if ‖ej − ek‖ = const
for all j 6= k. The defining points e1, . . . , en+1 are the only extremal points of the simplex. By
definition each element of the simplex can be expressed in a unique way via its extremal points,
i.e. x =

∑
j xjej (xj ≥ 0,

∑
j xj = 1). If

∑
j ajej =

∑
j a

′
jej for aj 6= a′j , then it would mean

that the points e1, . . . , en+1 are not affinely independent.

Example 95. (Extreme points of a sphere Sn−1.) Our task is the following: Show that an element
x ∈ Sn−1 is an extreme point of the sphere Sn−1 = {x ∈ Rn : ‖x‖ ≤ 1} if and only if ‖x‖ = 1
and that any element x ∈ Sn−1 can be written as a convex combination of at most two extremal
points irrespective on the dimension n.

We will prove something more general. Consider a unit sphere (‖x‖ ≤ 1) in a normed space.
First we will show that normalized elements (‖x‖ = 1) are extremal points of this such sphere.
Assume x = 1

2 (x1 + x2). The property of norm (‖a+ b‖ ≤ ‖a‖+ ‖b‖) implies

1 = ‖x‖ =
1
2
‖x1 + x2‖ ≤

1
2
(‖x1‖+ ‖x2‖) ≤ 1 , (7.3)

because ‖xj‖ ≤ 1 (points in the sphere). The last inequality is saturated if and only if ‖x1‖ =
‖x2‖ = 1. In order to prove that x1 = x2 = x we will use the rectangular identity ‖a− b‖2 +
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‖a+ b‖2 = 2(‖a‖2 + ‖b‖2) (hence we assume that the norm is induced by a scalar product!) by
replacing a→ x1/2 and b→ x2/2. We obtain

1
4
‖x1 − x2‖2 +

∥∥∥∥1
2
(x1 + x2)

∥∥∥∥2

=
1
2
(‖x1‖2 + ‖x2‖2) (7.4)

1
4
‖x1 − x2‖2 + 1 = 1 , (7.5)

hence necessarily ‖x1 − x2‖ = 0 which implies that x1 = x2 and it is straightforward to see that
also x1 = x2 = x. Extremality of boundary points of sphere is proved providing that the norm
is generated by a scalar product, which is the case for the sphere Sn−1.

In order to prove that these are the only extremal points we shall show that arbitrary point
can be expressed as a convex combination of two points from the boundary. Consider x and
define x1 = x/ ‖x‖ and x2 = −x/ ‖x‖. These points belong to boundary, hence, they are the
extremal points. It is easy to see that for arbitrary x the following convex decomposition holds
x = 1+‖x‖

2 x1 + 1−‖x‖
2 x2. Therefore, only the elements from boundary are extremal and each

nonextremal point can be written as a convex combination of two extremal points.
In conclusion, let us note that for arbitrary normed space (also not induced by some scalar

product) the extremal points of a unit ball must belong to a topological boundary (in norm topol-
ogy), i.e. if x ∈ Sext, then ‖x‖ = 1. However, the inverse is not necessarily true. Consider
for example a norm given by the maximal component, i.e. |x| = maxj |xj |. Such norm is not
generated by a scalar product, i.e. the rectangular identity does not hold. The unit sphere form a
cube in Rn and extremal points of the cube are only its corners, i.e. not arbitrary vector |x| = 1
is extremal.

Convex functions

Definition 80. (Convex funtion.) A function f : Rn → R ∪ {∞} is said to be convex if

λf(x) + (1− λ)f(y) ≥ f(λx+ (1− λ)y) (7.6)

for all 0 ≤ λ ≤ 1.

Definition 81. (Concave function.) Function f is concave if and only if −f is convex, i.e.

λf(x) + (1− λ)f(y) ≤ f(λx+ (1− λ)y) (7.7)

Proposition 98. (Concave function on a convex set.) Let S be convex and closed set with at least
one extreme point. A concave function f attains its minimum at some extreme point of S.
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Appendix B: List of Symbols

List of Hilbert space operators

• L(H) . . . set of bounded linear operators

• Ls(H) . . . set of bounded selfadjoint operators (T ∈ L(H) and T = T ∗)

• E(H) . . . set of effects (T ∈ Ls(H) and O ≤ T ≤ I)

• P(H) . . . set of projections (T = T ∗ = T 2)

• T (H) . . . set of trace class operators

• Ts(H) . . . set of selfadjoint trace class operators (T ∈ Ls(H) ∩ T (H))

• S(H) . . . set of states (T ∈ T (H), T ≥ O and tr [T ] = 1)

• Sext(H) . . . set of pure states (T ∈ S(H), tr
[
T 2
]

= 1)

• Sus(H) . . . set of unnormalized states (T ∈ T (H), T ≥ O and 0 ≤ tr [T ] ≤ 1)

• S fac(H) . . . set of factorized states

• Ssep(H) . . . set of separable states

List of channels and operations

• Mcp . . . set of completely positive linear mappings

• O . . . set of quantum operations (E ∈ Mcp and E is trace-decreasing)

• Oc . . . set of quantum channels (E ∈ Mcp and E is trace-preserving)

• Ofac
c . . . set of all local channels

• Osep
c . . . set of separable channels

• OLOCC
c . . . set of all LOCC channels
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[77] P. Staňo, D. Reitzner, and T. Heinosaari. Coexistence of qubit effects. Phys. Rev. A, 78:012315, 2008.
[78] W.F. Stinespring. Positive functions on C∗-algebras. Proc. Amer. Math. Soc., 6:211–216, 1955.
[79] L. Vaidman, Y. Aharonov, and D. Albert. How to ascertain the values of σx, σy, and σz of a spin-1/2

particle. Phys. Rev. Lett., 58:1385–1387, 1987.
[80] G. Vernam. Cipher printing telegraph system for secret wire and radio telegraphic communications.

J. Am. Inst. Electr. Eng., 45:109–115, 1926.
[81] D.F. Walls and G.J. Milburn. Quantum Optics. Springer-Verlag, second edition, 2008.
[82] T.-C. Wei, K. Nemoto, P.M. Goldbart, P.G. Kwiat, W.J. Munro, and F. Verstraete. Maximal entangle-

ment versus entropy for mixed quantum states. Phys. Rev. A, 67:022110, 2003.
[83] R.F. Werner. Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable

model. Phys. Rev. A, 40:4277–4281, 1989.
[84] S. L. Woronowicz. Positive maps of low dimensional matrix algebras. Rep. Math. Phys., 10:165–183,

1976.
[85] S. Yu, N. Liu, L. Li, and C.H. Oh. Joint measurement of two unsharp observables of a qubit.

arXiv:0805.1538v1 [quant-ph], 2008.
[86] M. Ziman and V. Bužek. Correlation-assisted quantum communication. Phys. Rev. A, 67:042321,

2003.
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