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We describe a class of programmable devices that can discriminate between two quantum states. We con-
sider two cases. In the first, both states are unknown. One copy of each of the unknown states is provided as
an input, or program, for the two program registers, and the data state, which is guaranteed to be prepared in
one of the program states, is fed into the data register of the device. This device will then tell us, in an optimal
way, which of the templates stored in the program registers the data state matches. In the second case, we know
one of the states while the other is unknown. One copy of the unknown state is fed into the single program
register, and the data state which is guaranteed to be prepared in either the program state or the known state,
is fed into the data register. The device will then tell us, again optimally, whether the data state matches the
template or is the known state. We determine two types of optimal devices. The first performs discrimination
with minimum error, and the second performs optimum unambiguous discrimination. In all cases we first treat
the simpler problem of only one copy of the data state and then generalize the treatment to n copies. In
comparison to other works we find that providing n�1 copies of the data state yields higher success prob-
abilities than providing n�1 copies of the program states.
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I. INTRODUCTION

Quantum state discrimination �1� is a basic tool for many
tasks in quantum information and quantum communication.
In the prototype problem a quantum processor generates a
quantum system as its output which is in one of a set of
known states but we do not know which and want to deter-
mine the actual state. If the possible states are not orthogonal
this cannot be done with 100% probability of success since
the cloning of quantum states is impossible. There are two
basic strategies to accomplish state discrimination. In the
first, every time a measurement is performed we want to
identify the state of the output with one of the possible states.
Clearly, errors must be permitted and in the error minimizing
strategy the optimum measurement is such that the probabil-
ity of error is minimum. The case of discriminating with
minimum error between two possible states was treated in
the pioneering work by Helstrom �2�. More recently, the in-
terest was focused on the unambiguous discrimination. In
this strategy we are not permitted to make an erroneous iden-
tification of the state. The cost associated with this condition
is that sometimes we fail to identify the state altogether. In
the optimum strategy the probability of failure is a minimum.
The optimal value of the failure probability for two known
and equally likely pure states was obtained by Ivanovic,
Dieks, and Peres �IDP bound �3–5��. Later Jaeger and Shi-
mony �6� generalized the IDP bound for arbitrary preparation
probabilities of the states, i.e., for arbitrary prior probabilities
of the two possible states.

The actual state-distinguishing device for two known
states depends on the two states, ��1� and ��2�, i.e., these two
states are “hard wired” into the machine. Another approach is

to supply the information about the states to be distinguished
as inputs, in particular as quantum inputs. That is, one en-
codes the information about the states one wants to distin-
guish into a quantum state, which is then a kind of quantum
program, that is sent into the discriminator at the same time
as the particle whose state is to be identified. The first such
device was proposed by Dušek and Bužek �7�. This device
distinguishes the two states cos�� /2��0�±sin�� /2��1�, and
the angle � is encoded into a one-qubit program state in a
somewhat complicated way. The device does not achieve the
maximum possible success probability for all input states,
but its success probability, averaged over the angle �, is
greater than 90% of the optimal value.

In a series of recent works, Fiurášek et al. investigated a
closely related programmable device that can perform a von
Neumann projective measurement in any basis, the basis be-
ing specified by the program. Both deterministic and proba-
bilistic approaches were explored �8�, and experimental ver-
sions of both the state discriminator and the projective
measurement device were realized �9�. Sasaki et al. devel-
oped a related device, which they called a quantum matching
machine �10�. Its input consists of K copies of two equatorial
qubit states, which are called templates, and N copies of
another equatorial qubit state �f�. The device determines
which of the two template states �f� is closest. This device
does not employ the unambiguous discrimination strategy,
but optimizes an average score that is related to the fidelity
of the template states and �f�. Programmable quantum de-
vices to accomplish other tasks have been explored by a
number of authors �11–22�.

Recently two of us proposed an approach to a program-
mable state discriminating machine in which the program is
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related in a simple way to the states ��1� and ��2� that one is
trying to distinguish �18�. In order to introduce the range of
problems to be dealt with here and to establish a uniform
terminology we begin with a brief review of the problem
investigated in that work. A system of three qubits, labeled A,
B, and C, is considered and we assume that the qubit A is
prepared in the state ��1�, and the qubit C is prepared in the
state ��2�. Qubit B is guaranteed to be prepared in either ��1�
or ��2�, with a probability �1 of being in ��1� and a probabil-
ity �2=1−�1 of being in ��2�. The states ��1� or ��2� are
different and unknown. Our task is to find whether the state
of qubit B is ��1� or ��2�. One way of looking at this problem
is to view the qubits A and C as a program, and we refer to
their states as program states. They are sent into the program
registers, also denoted by A and C, of some device, called a
programmable state discriminator, and the third, unknown
qubit is sent into the data register, denoted by B, of this
device. The state of qubit B is called the data state. The
device then identifies the data state with one of the two un-
known program states with optimal probability of success.
Despite the complete lack of classical information about the
program states, matching the data state to one or the other
program state is still possible due to symmetry properties
that are intrinsically quantum mechanical, and are similar to
those first employed by Barnett et al. �23� for the purpose of
comparing unknown states. The program is the most elemen-
tary possible, and consists of copies of the states one is try-
ing to distinguish. It should be noted at this point that our
terminology is not unique. In various contexts the program
states are also called reference states or templates, and the
data state the sample. The programmable discrimination can
then also be called template matching or state identification.
However, in what follows we will use our original terminol-
ogy introduced in Ref. �18�, i.e., we will use the terms, pro-
gram state and data state throughout the paper.

The original results in Ref. �18� were for unambiguous
discrimination and for qubit data and program states. They
have recently been extended to qudits by Hayashi et al., both
for optimum unambiguous discrimination �19� and for mini-
mum error discrimination �20�. Their investigations are re-
stricted to equal prior probabilities, where the data state
equally likely matches one or the other of the program states,
but they also dealt with the case in which an arbitrary num-
ber of copies is provided for each of the two program states.

In the present paper we generalize the programmable state
discriminator introduced in Ref. �18� in several other direc-
tions and develop a comparative study of programmable
state discriminators based on the two measurement strategies
of minimum-error discrimination and optimum unambiguous
discrimination. For this purpose in Sec. II we first reformu-
late the problem of programmable discrimination of pure
states as a problem of discrimination between two mixed
quantum states. Section III is devoted to the case that both of
the pure states to be discriminated are unknown so we need a
program state for each. In Sec. III A we treat the error mini-
mizing version of the programmable state discriminator, con-
sidering both a joint measurement on all three qubits, and
also a measurement prescription that is restricted to two-
qubit measurements only. In Sec. III B we rederive the re-
sults of Ref. �18� for the unambiguous version of the pro-

grammable state discriminator partly for comparison’s sake
but also using the consistent approach based on the equiva-
lent mixed state discrimination problem. It should be noted,
in this context, that the results of Ref. �18� were obtained in
a somewhat ad hoc manner and the current approach gives a
solid foundation to those results. We also compare the opti-
mal probabilities obtained in Secs. III A and III B for the two
possible strategies. In Sec. IV we fill another gap and show
how to construct devices that can optimally discriminate be-
tween one known and one unknown state using both mini-
mum error and optimum unambiguous strategies. That is, we
know what ��1� is, but do not know ��2�. Then we need a
reference state only for the unknown state, which constitutes
the program in this case. We can say that this line of inves-
tigation characterizes the quality of the source that produces
the states to be discriminated, or the quality of our knowl-
edge about the source, respectively. If both possible states
are known �the original IDP and Helstrom problem� there is
no need for a program, the states are hard wired into the
optimal device. If one of the states is known we need a
program for the unknown state while the other is hard wired
into the device and if both states are unknown we need a
program for both.

In Secs. V and VI, we investigate the effect of the avail-
able resources on the performance of these devices. Suppose
that instead of a single copy of the data state we are provided
with n copies. In Sec. V we generalize the two unknown
qubit scenarios of Sec. III for the case when n copies of the
data state, and one copy each of the program states, are pro-
vided. In Sec. VI we provide a similar generalization of the
one known and one unknown qubit scenarios treated in Sec.
IV. Finally, in Sec. VII we conclude with a brief discussion
of how these results can be used to characterize the prepara-
tion quality �source quality� and to quantify the available
resources.

II. DISCRIMINATION OF UNKNOWN PURE STATES AND
ITS CONNECTION TO THE DISCRIMINATION OF

MIXED STATES

Let us begin by briefly reviewing the problem that was
originally addressed in Ref. �18�. We consider a system of
three qubits, labeled A, B, and C, and assume that the qubit A
is prepared in the state ��1�, and the qubit C is prepared in
the state ��2�. Qubit B is guaranteed to be prepared in either
��1� or ��2�, with a probability �1 of being in ��1� and a
probability �2=1−�1 of being in ��2�. The states ��1� or ��2�
are different and unknown. Our task is to find whether the
state of qubit B is ��1� or ��2�. One way of looking at this
problem is to view the qubits A and C as a program. They are
sent into the program register of some device, called a pro-
grammable state discriminator, and the third, unknown qubit
is sent into the data register of this device. The device then
tells us, with an optimal probability of success, which one of
the two program states the unknown state of the qubit in the
data register corresponds to. We can consider this problem as
a task in measurement optimization. We want to find an op-
timal measurement strategy that, with a maximum probabil-
ity of success, tells us which one of the two program states,
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stored in the program register, matches the unknown state,
stored in the data register. In Ref. �18� only unambiguous
discrimination was treated, in which the measurement is al-
lowed to return an inconclusive result but never an erroneous
one. Here we want to investigate the measurement strategy
of minimum-error discrimination, as well. In general, we
want to determine the best possible measurement for identi-
fying the state of the qubit B. Our task is then reduced to the
following measurement optimization problem. One has two
input states

��1� = ��1�A��1�B��2�C,

��2� = ��1�A��2�B��2�C, �2.1�

where the subscripts A and C refer to the program registers
�A contains ��1� and C contains ��2��, and the subscript B
refers to the data register. Our goal is to optimally distinguish
between these inputs, with respect to some reasonable crite-
ria, keeping in mind that one has no knowledge of ��1� and
��2� beyond their a priori probabilities.

Assuming the states ��1� and ��2� to be completely un-
known, we have to find the measurement strategy that is
optimal on average. Thus, we have to take the average of the
input with respect to all possible qubit states. The problem is
then equivalent to distinguishing between two mixed states,
given by the density operators,

�1 = ���1���1�	av, �2.2�

�2 = ���2���2�	av, �2.3�

that occur with the prior probabilities �1 and �2, respec-
tively. Any state of a particular qubit �A, B, or C� can be
represented using the Bloch parametrization given by ��i�
=cos��i /2��0�+ei�i sin��i /2��1� �i=1,2�, with �0� and �1� de-
noting an arbitrary set of orthonormal basis states. Here �
and � are the polar and azimuthal angle on the Bloch sphere.
After performing the averaging with respect to all possible
values of � and � we arrive at

�1 =
1

6
PAB

sym
� IC, �2.4�

�2 =
1

6
IA � PBC

sym, �2.5�

where PAB
sym=
i=1

3 �ui�AC AC�ui� and PBC
sym=
i=1

3 �ui�BC BC�ui� are
the projectors onto the symmetric subspaces of the corre-
sponding qubits, AB and BC, respectively. Here we used the
two-qubit basis states

�u1�AB = �0�A�0�B, �u2�AB =
�0�A�1�B + �1�A�0�B

�2
, �2.6�

�u3�AB = �1�A�1�B, �ū2�AB =
�0�A�1�B − �1�A�0�B

�2
, �2.7�

and the analogous expressions for the qubit combination BC.
Due to the symmetry of the state �1 with respect to inter-
changing qubits A and B the antisymmetric state �u4�AB does

not enter the expression for the density operator. Equations
�2.4� and �2.5� reduce our state identification problem to the
problem of discriminating between these two mixed states.

When one of the two states that we want to distinguish is
known, we arrive at a simpler variant of the discrimination
problem. We do not need to provide a template for the
known state, and one of the program registers, say A, can be
eliminated from the problem. It is convenient to define the
single-qubit basis states in such a way that the known pure
state serves as one of the basis states, denoted by �0�, so
��1�= �0�. We then have to distinguish two cases, the qubit B
is either in the state �0�B, occurring with the prior probability
�1, or it is in the unknown state of the qubit C, occurring
with the prior probability �2. These two cases correspond to
the density operators

�1� = �0�BB�0� � ����CC���	av =
1

2
�0�BB�0� � IC

=
1

2
��u1�BC BC�u1� + �v2�BC BC�v2�	 , �2.8�

�2� = ����B���CB���C���	av =
1

3
PBC

sym. �2.9�

Here

�v2�AB = �0�A�1�B. �2.10�

In addition, we introduce

�v̄2�AB = �1�A�0�B, �2.11�

together with the analogous expression for the qubit combi-
nation BC. ��u2� , �ū2�	 and ��v2� , �v̄2�	 form alternative bases
for the subspace with exactly one qubit in the state �1�. They
will prove useful later when we consider the various dis-
crimination scenarios in the following sections.

After these preliminary considerations we are now in a
position to investigate different possible measurements for
identifying the state of the qubit B, i.e., for distinguishing
between the two density operators given by Eqs. �2.4� and
�2.5� or, alternatively, by Eqs. �2.8� and �2.9�. Before doing
so, we briefly recall the underlying theoretical concepts for
treating the strategies of discriminating two mixed states.
Any measurement suitable for distinguishing between the
mixed states �1 and �2, occurring with the prior probabilities
�1 and �2=1−�1, respectively, can be formally described
with the help of three positive detection operators 	0, 	1,
and 	2, whose sum is the identity,

	0 + 	1 + 	2 = I . �2.12�

These operators are defined in such a way that for j
=1,2 Tr��	 j� is the probability to infer from the measure-
ment that the system is in the state � j if it has been prepared
in a state �, while Tr��	0� is the probability that the mea-
surement result is inconclusive, i.e., that the measurement
fails to give a definite answer. When all detection operators
are projectors, the measurement is a von Neumann measure-
ment, otherwise it is a generalized measurement based on a
positive operator-valued measure �POVM�. Once the detec-
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tion operators of a generalized measurement have been
found, Neumark’s theorem guarantees that schemes for actu-
ally realizing the measurement can be devised by determin-
ing suitable projections in an enlarged Hilbert space that re-
sults from appending an ancilla to the original system
�24,25�.

The above POVM is appropriate for unambiguous state
discrimination. For minimum-error discrimination inconclu-
sive results do not occur, so that

	0 = 0, �2.13�

and we require that the probability of errors in the discrimi-
nation procedure is a minimum. For two mixed states this
problem was originally solved by Helstrom �2�. The error
probability is always larger than zero unless the states to be
distinguished are orthogonal, and it can be expressed as

Perr = �1 Tr��1	2� + �2 Tr��2	1�

= �1 + Tr���2�2 − �1�1�	1� , �2.14�

where in the second line Eqs. �2.12� and �2.13� have been
used, as well as the relation �2=1−�1. After introducing the
operator


 = �2�2 − �1�1 = 

k

�k��k���k� �2.15�

it is obvious that the minimum of the error probability is
obtained when 	1 is the projector onto those eigenstates ��k�
of 
 that belong to negative eigenvalues �k. The optimum
detection operators therefore read

	1
opt = 


k�k0

��k���k�, 	2
opt = 


kk0

��k���k� , �2.16�

where �k�0 for 1�k�k0 and �k0 for kk0. Clearly,
these two operators are projections, and the optimal
minimum-error measurement for discriminating between two
quantum states is, therefore, always a von Neumann mea-
surement. The resulting minimum error probability Perr

min

= PE is given in Ref. �2� by

PE =
1

2
�1 − Tr��2�2 − �1�1�� =

1

2�1 − 

k

��k� . �2.17�

In optimum unambiguous discrimination which is the
other frequently used strategy, errors are not allowed to oc-
cur. This requirement is equivalent to

�1	2 = �2	1 = 0 �2.18�

�see, for example �1��. In the optimum measurement scheme
the failure probability, i.e., the probability for getting an in-
conclusive outcome, is minimized, taking into account the
constraint that the eigenvalues of the operator 	0= I−	1
−	2 are non-negative. The failure probability is always non-
zero unless the states to be discriminated are orthogonal. It
can be expressed as

Qfail = �1 Tr��1	0� + �2 Tr��2	0� = 1 − �1 Tr��1	1�

− �2 Tr��2	2� = 1 − Psucc, �2.19�

where Eqs. �2.12� and �2.18� have been used, and where we

also introduced the success probability Psucc of the measure-
ment. Optimum unambiguous discrimination between two
mixed states is an issue of ongoing theoretical research
�26–32�. In contrast to minimum-error discrimination, there
does not exist a compact formula expressing the minimum
probability of inconclusive results, i.e., the minimum failure
probability, for unambiguously discriminating two mixed
states that are completely arbitrary. However, analytical so-
lutions can be obtained for certain special classes of density
operators, including the cases that are of interest for this
paper.

III. TWO-QUBIT PROGRAM, SINGLE COPY OF THE
DATA STATE

A. Minimum-error discrimination strategy

1. Joint measurement on all three qubits

We begin by investigating the measurement that discrimi-
nates, with minimum probability of error, between the den-
sity operators given by Eqs. �2.4� and �2.5�. For this purpose
we define the orthonormal basis states in the eight-
dimensional Hilbert space spanned by the three qubits as

�1� = �0�A�0�B�0�C, �2� = �0�A�0�B�1�C,

�3� = �0�A�1�B�0�C, �4� = �1�A�0�B�0�C,

�5� = �0�A�1�B�1�C, �6� = �1�A�0�B�1�C,

�7� = �1�A�1�B�0�C, �8� = �1�A�1�B�1�C. �3.1�

The numbering of the states is essentially the binary number
formed by the bit values on the right-hand side shifted by 1.
Note, however, that in the case of �4� and �5� the order is
reversed. Expanding the expressions for �1 and �2 in this
basis and introducing the notations,

�r1� =
�3� + �4�

�2
, �r2� =

�5� + �6�
�2

, �3.2�

�s1� =
�2� + �3�

�2
, �s2� =

�6� + �7�
�2

, �3.3�

we obtain the spectral representations

�1 =
1

6
�


l=1

2

�rl��rl� + �1��1� + �2��2� + �7��7� + �8��8� ,

�3.4�

�2 =
1

6
�


l=1

2

�sl��sl� + �1��1� + �4��4� + �5��5� + �8��8� .

�3.5�

When we express the operator 
=�2�2−�1�1 with the help
of the basis states given by Eq. �3.1�, we arrive at an eight-
dimensional square matrix which is block-diagonal if the
columns and rows are numbered according to the numbering
of the basis states. It can be written as
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 =�
L1 0 0 0

0 L3 0 0

0 0 L3 0

0 0 0 L1

� , �3.6�

where L1= ��2−�1� /6 and

L3 =
1

12��2 − 2�1 �2 0

�2 �2 − �1 − �1

0 − �1 2�2 − �1
� . �3.7�

Since the eigenvalues of L3 are ��2−�1� /6 and

�± =
1

12
��2 − �1 ± ���2 − �1�2 + 3�1�2� , �3.8�

the complete set of eigenvalues of the operator 
 is given by

�1 = �2 = �−, �3 = �4 = �+,

�k =
�2 − �1

6
�5 � k � 8� . �3.9�

The corresponding eigenstates, ��k�, are found to be ��7�
= �1�, ��8�= �8�,

��1� =
a−�2� + �3� + b−�4�
�1 + �a−�2 + �b−�2

,

��3� =
a+�2� + �3� + b+�4�
�1 + �a+�2 + �b+�2

,

��5� =
�2� + �3� + �4�

�3
, �3.10�

where

a± = ± ���1 − �2�2 + 3�1�2 − �1,

b± = � ���1 − �2�2 + 3�1�2 − �2. �3.11�

The eigenstates ��2�, ��4�, ��6� follow from replacing the
ordered set ��2�,�3�,�4�	 by the ordered set ��5�,�6�,�7�	 in the
expressions given by Eq. �3.10�. By inserting the eigenvalues
of 
 into Eq. �2.17� we find after a little algebra that the
minimum probability of error can be written in the following
compact way,

PE = �min�1 −
1

2

�max

�max − �min + �1 − �max�min
 ,

�3.12�

where �max ��min� is the larger �smaller� of �1 and �2. This
result is in agreement with the one derived in Ref. �20� for
the special case that �max=�min=1/2.

The above expression lends itself to a transparent inter-
pretation. The error probability Pe would be �min if we did
not perform any measurement at all but would simply guess,
always choosing the state whose a priori probability is
larger. The factor in the bracket, multiplying �min, is the im-

provement due to the optimized measurement. It is a slowly
varying function of the prior probabilities, its value lying
between 0.71 and 0.75 in the entire 0��min�1/2 interval.
To be specific, let us assume that the qubits are labeled in
such a way that �1 is the smaller of the two prior probabili-
ties, i.e., that �1�0.5. In this case �1 and �2 are the only
negative eigenvalues, and the optimum detection operators
	1

opt and 	2
opt for minimum-error identification take the form

given by Eq. �2.16� with k0=3. This means that the qubit B is
inferred to be in the state of qubit A when a projection onto
the subspace spanned by the eigenstates of 	1

opt is successful,
and after successful projection onto the complementary sub-
space it is inferred to be in the state of qubit C.

From the structure of the eigenstates ��k� determining the
optimum detection operators, and from the definition of the
basis states, given by Eq. �3.1�, it is obvious that the smallest
possible error probability, PE, can only be obtained by per-
forming a joint measurement on all three qubits simulta-
neously. The question therefore naturally arises as to what is
the smallest value of the error probability achievable under
the restriction that only joint measurements on two qubits are
allowed. In the following we study this problem. This situa-
tion is worth examining for two reasons. First, two-qubit
measurements are easier to perform than three-qubit ones.
Second, by comparing the results of the two- and three-qubit
measurements, we see how the additional quantum informa-
tion contained in the third qubit affects the result.

2. Restriction to two-qubit-measurements

First let us assume that the qubit C is not accessible, but
that we are able to perform a joint measurement on the qubits
A and B. This would be the case, for example, if a copy of
only one of the two states we are trying to distinguish is
provided. Starting again from Eqs. �2.4� and �2.5�, the prob-
lem of identifying the state of B is then equivalent to dis-
criminating between the two reduced density operators,

TrC �1 =
1

3
PAB

sym, �3.13�

TrC �2 =
1

4
IA � IB, �3.14�

with the prior probabilities �1 and �2, respectively.

The operator 
̃=�2 TrC �2−�1 TrC �1, relevant for
minimum-error discrimination, is now given by


̃ = ��2

4
−

�1

3



i=1

3

�ui�AB AB�ui� +
�2

4
�ū2�AB AB�ū2� .

�3.15�

When �1�3�2 /4 �or �1�3/7� all four eigenvalues of 
̃ are
positive, and from Eq. �2.16� the optimum detection opera-
tors are obtained as 	2

opt= I and 	1
opt=0. Hence the minimum

error probability is achieved by guessing that the quantum
system is always in the state that is more probable, in this
case ��2�, without performing any measurement at all. This is
a special situation, described earlier �33�, which has been
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observed in connection with a different problem of two-
qubit-discrimination �34�.

On the other hand, for �13�2 /4 �or �13/7� we
readily find that 	2

opt= �ū2�AB AB�ū2� and 	1
opt

=
i=1
3 �ui�AB AB�ui�, i.e., that the error probability is smallest

when the qubit B is guessed to be in the state of qubit A after
a successful projection onto the symmetric subspace of qu-
bits A and B, while there is no guessing involved after a
successful projection onto the antisymmetric subspace of qu-
bits A and B. It is then known with certainty to be not in the
state of qubit A.

The results for the minimum error probability, following
from Eqs. �3.15� and �2.17�, can be summarized as

PE
AB = ��1 if �1 �

3

7

3

4
�1 − �1� otherwise.� �3.16�

Similarly, a joint measurement on the qubits B and C yields
the minimum error probability

PE
BC = �3

4
�1 if �1 �

4

7

1 − �1 otherwise.
� �3.17�

Figure 1 also reveals that by performing the optimal two-
qubit measurement an error probability can be achieved that
is almost as low as the absolute minimum error probability,
PE, given by Eq. �3.12� where the latter can only be reached
by a joint measurement on all three qubits. Even when the
advantage of the three-qubit measurement is largest, which
happens for equal prior probabilities, �1=�2=1/2, the dif-
ference in the respective minimum error probabilities for
state identification is only marginal,

PE
AB = PE

BC = 0.375, PE =
1

2
−

1

4�3
= 0.356. �3.18�

In the next paragraph we compare the minimum prob-
abilities of error with the minimum probability of failure
arising in the other important measurement strategy, that of
unambiguous discrimination.

B. Optimum unambiguous discrimination strategy

The optimum measurement for unambiguously identify-
ing the state of the data qubit B was found in Ref. �18� using
a method that relied on a special ansatz for the detection
operators, justified by the symmetry properties of the inputs.
For completeness, here we reconsider the problem in the
framework of the optimum unambiguous discrimination of
two mixed states.

In the following we apply the method developed in Ref.
�30� which, in turn, is a special case of the more general
approach in Ref. �32�. Starting from Eqs. �3.4� and �3.5�, we
denote the projectors onto the supports of �1 and �2 by P1
and P2, respectively. The eigenstates of the operators I− P2
and I− P1 are easily found to be

�a1� =
�2� − �3�

�2
, �a2� =

�6� − �7�
�2

, �3.19�

�b1� =
�3� − �4�

�2
, �b2� =

�5� − �6�
�2

. �3.20�

Clearly, �2�ai�=0 and �1�bi�=0 for i=1,2. The most general
ansatz for the detection operators, satisfying 	1�2=	2�1=0
as required for unambiguous discrimination, therefore reads
�30�

	1 = 

i,j=1

2

�ij�ai��aj�, 	2 = 

i,j=1

2

�ij�bi��bj� . �3.21�

From Eq. �2.19� we readily find that these two detection
operators give rise to the failure probability

Qfail = 1 −
1

8

i=1

2

��1�ii + �2�ii� . �3.22�

Note that due to the structure of the two given density op-
erators the failure probability does not depend on the off-
diagonal elements of the detection operators given by Eq.
�3.21�, a property that is common to all problems of opti-
mum unambiguous discrimination of two mixed states that
have been explicitly solved so far �29–32�. We are therefore
free to choose �ij =�ij =0 for i� j, a choice that guarantees
that 	0 is positive for the largest possible values of �ii and
�ii �i=1,2�, i.e., that Qfail can be made as small as possible.

When we represent the operator 	0 in the basis defined in
Eqs. �3.1�, we again arrive at a block-diagonal eight by eight
matrix, similar to Eq. �3.6�, given by

FIG. 1. �Color online� Comparison of the optimum perfor-
mances of the error minimizing strategy and the unambiguous dis-
crimination strategy for the discrimination of two unknown pure
states. The minimum error probabilities PE resulting from a three-
qubit measurement �full line� and PE

AB, PE
BC resulting from two-

qubit measurements �dashed-dotted and dashed-double dotted line,
respectively� are compared to the failure probabilities for unam-
biguous discrimination QF

AB, QF
BC �dotted lines� and QF

POVM �dashed
line�. The error and failure probabilities are plotted vs the prior
probability �1 that the state of the data qubit B matches the state of
the program qubit A.
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	0 =�
1 0 0 0

0 M��11,�11� 0 0

0 0 M��22,�22� 0

0 0 0 1
� . �3.23�

Here we introduced the abbreviation

M�a,b� =
1

2�2 − a a 0

a 2 − a − b b

0 b 2 − b
� . �3.24�

The eigenvalues of M�a ,b� are found to be 1 and

�±�a,b� = 1 −
1

2
�a + b ± ��a − b�2 + ab� , �3.25�

where obviously �±�a ,b�=�±�b ,a�. All eigenvalues of 	0

are nonnegative provided that �+��ii ,�ii� is nonnegative for
i=1,2 which holds true when �ii� �4−4�ii� / �4−3�ii�.
Hence in order to make Qfail as small as possible, while
keeping 	0 a positive operator, we chose the equality sign
and put

�ii =
4 − 4�ii

4 − 3�ii
�i = 1,2� . �3.26�

After inserting these expressions into Eq. �3.22� the re-
sulting function of �11 and �22 has to be minimized, taking
into account that 0��ii�1, which follows from the fact that
Tr��	1� describes a probability for any density operator �. In
accordance with the optimization problem solved in Ref.
�18�, we find that the failure probability takes its smallest
possible value when �11=�22=�, where

� =�0 if �1 �
1

4
�2

2

3
�2 −��2

�1
 if

1

4
�2 � �1 � 4�2

1 if �1  4�2.
� �3.27�

Using Eqs. �3.21� and �3.1� we arrive at the optimum detec-
tion operators

	1
opt = �IA � �ū2�BC�ū2�BC, �3.28�

	2
opt =

4 − 4�

4 − 3�
�ū2�AB�ū2�AB � IC, �3.29�

where the value of � in the different parameter regions for �1
and �2 is given by Eq. �3.27�. Clearly, in the first parameter
region 	1

opt=0, while 	2
opt describes a projection onto the

antisymmetric two-qubit state �ū2�AB. Similarly, in the third
parameter region a projection onto the antisymmetric state
�ū2�BC has to be performed for optimum unambiguous dis-
crimination. The failure probabilities resulting from these
two von Neumann measurements are �18�

QF
AB = 1 −

�2

4
=

3

4
+

�1

4
, QF

BC = 1 −
�1

4
. �3.30�

In the intermediate region of the prior probabilities the opti-
mum measurement is a generalized measurement, yielding
the failure probability �18�

QF
POVM =

2 + ��1�1 − �1�
3

�1

5
� �1 �

4

5
 , �3.31�

where we took into account that �2=1−�1.
As seen in Fig. 1, the minimum failure probability is al-

ways at least twice as large as the minimum error probability
PE for identifying the qubit state. This agrees with the gen-
eral relation between the failure probability of optimal un-
ambiguous discrimination and the error probability of
minimum-error discrimination of two mixed states that was
derived in Ref. �35�. Figure 1 also shows that the advantage
of performing a generalized measurement, as compared to
the best projective two-qubit measurement, is small. For �1
=�2=0.5, where QF

AC=QF
BC=7/8=0,875 the failure prob-

ability is only reduced to the value QF
POVM=5/6=0.833. Of

course, the surprise is not the high value of the failure prob-
ability but that the success probability is finite for the dis-
crimination of completely unknown states. As we shall see in
the next section, these relatively large failure probabilities
are somewhat reduced when one of the reference states is
known.

IV. ONE-QUBIT PROGRAM, SINGLE COPY OF THE
DATA STATE

A. Minimum-error discrimination between one known and
one unknown state

Now we treat the simplified case in which we want to
decide whether the qubit B is in the known state �0�B, or
whether it is in the unknown state of the program qubit
stored in register C. We then have to distinguish between the
density operators �1� and �2� given by Eqs. �2.8� and �2.9� that
refer to the first and second alternative, respectively, and that
occur with the prior probabilities �1 and �2. The subsequent
treatment proceeds along exactly the same lines that we fol-
lowed in the previous sections.

For minimum-error identification we have to determine
the eigenvalues and eigenstates of the operator 
�=�2�2�
−�1�1�. It is easy to obtain the spectral representation


� = ��2

3
−

�1

2
�u1��u1� +

�2

3
�u3��u3� + 


i=±
�i��i���i� ,

�4.1�

where �±= 1
12�2�2−3�1±�4�2

2+9�1
2� and

��±� =
�u3� − c±�ū2�

�1 + c±
2

, c± =
2�2 ± �4�2

2 + 9�1
2

3�1
. �4.2�

By making use of Eq. �2.17� we find that the minimum error
probability for identifying the state of the qubit B is given by
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PE� = �min�1 −
1

2

�max

�max − �min + ���max − �min�2 + 2�min�max
 .

�4.3�

According to Eq. �2.16� it is reached with the help of the
detection operators

	1
opt = ���−�BC��−�BC if �1 �

2

5

�u1�BC�u1�BC + ��−�BC��−�BC otherwise,
�

�4.4�

and 	2
opt= IBC−	1

opt, where we have made use of the identity
IBC= �u1��u1�+ �u3��u3�+
i=±��i���i�. Clearly, the measure-
ment that identifies the state of the qubit B with the smallest
possible error is a joint projection measurement on the qubits
B and C.

To close this section we briefly investigate the case that
we can only perform a measurement on the qubit B alone,
which means that our identification problem amounts to dis-
criminating between the density operator �1�= �0�BB�0� and the
uniformly mixed state �2�=TrC �2�= 1

2 IB. For minimum-error
identification we consider the eigenvalues and eigenstates of
the operator 
�= ��2 /2−�1��0�BB�0�+�2 /2�1�BB�1�, and ob-
tain in the standard way, the minimum error probability

PE� = ��1 if �1 �
1

3

1

2
�1 − �1� otherwise.� �4.5�

If �1�1/3 the error probability is smallest when the qubit B
is always assumed to be in the unknown state of the qubit C,
while otherwise a projection measurement characterized by
the operators 	1

opt= �0�BB�0� and 	2
opt= �1�BB�1� has to be per-

formed in order to minimize the error.
As can be seen from Fig. 2, for �1�2/5 the optimum

two-qubit measurement leads to a substantial reduction of

the minimum error probability in comparison to the optimum
single-qubit measurement. The difference is largest for �1
=1/3, where PE� =0.22 but PE� =0.33.

B. Optimum unambiguous discrimination between one known
and one unknown state

Finally we want to compare the minimum error probabili-
ties with the minimum failure probability in unambiguously
identifying the qubit state. For this purpose we again use the
method described in Refs. �30,32�. By taking a reduction
theorem �26� into account, from Eqs. �2.8� and �2.9� it fol-
lows that the most general ansatz for the detection operators
can be written as

	1 = ��ū2��ū2�, 	2 = ��v̄2��v̄2� + �u3��u3� , �4.6�

where �v̄2�= ��u2�− �ū2�� /�2. Here again the subscript BC has
been dropped. Clearly, 	1�2�=	2�1�=0 as required for unam-
biguous discrimination. As follows from Eq. �2.19�, these
detection operators yield the failure probability

Qfail� = 1 −
�1

4
� −

�2

6
�2 + �� �4.7�

which has to be minimized under the constraint that 	0= I
−	1−	2 is a positive operator. For 	0 we obtain the expres-
sion

	0 = I − ��ū2��ū2� − �u3��u3� −
�

2
��u2� − �ū2����u2� − �ū2�� .

�4.8�

The eigenvalues of 	0 are �1=1, �2=0, and �±= �2−�
−�±��2+�2� /2, and they all are nonnegative provided that
�� �2−2�� / �2−��. In order to minimize Qfail while keeping
	0 a positive operator we therefore choose

� =
2 − 2�

2 − �
. �4.9�

Upon substituting � into Eq. �4.7� and determining the small-
est value of the resulting function of �, taking into account
that 0���1, we find that the minimum failure probability
is obtained when

� = �
0 if 3�1 � �2

2�1 −� �2

3�1
 if �2 � 3�1 � 4�2

1 if 3�1  4�2.
� �4.10�

Using Eqs. �4.10� and �4.9� in Eq. �4.6� yields the explicit
expressions for the optimum detection operators.

If 3�1��2, which implies that �1�1/4, we have 	1
opt

=0 and 	2
opt= �1�BB�1� � IC, i.e., the optimum measurement is

a projection measurement on the qubit B alone. On the other
hand, for 3�14�2, i.e., �14/7, the optimum measure-
ment is a joint projection measurement on the qubits B and
C, where 	1

opt= �ū2�BC BC�ū2� and 	2
opt= �1�B B�1� � �1�C C�1�.

The failure probability of these two von Neumann measure-
ments is given by

FIG. 2. �Color online� Failure and error probabilities for the
various strategies of discriminating between one known and one
unknown state vs the prior probability �1. The minimum error prob-
abilities PE� resulting from a joint measurement on the qubits B and
C �full line� and from a single-qubit measurement, PE� �dashed-
dotted line� are compared to the failure probabilities for unambigu-
ous identification QF�

B, QF�
BC �dotted lines�, and QF�

POVM �dashed
line�.
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QF�
B = 1 −

1 − �1

2
,

QF�
BC = 1 −

�1

4
−

�2

3
=

2

3
+

�1

12
. �4.11�

In the intermediate parameter region the optimum measure-
ment is a generalized measurement, yielding the failure prob-
ability

QF�
POVM =

�1

6
+

1 + �3�1�1 − �1�
3

�1

4
� �1 �

4

7
 .

�4.12�

The benefit of performing the generalized measurement is
only marginal, as evidenced by Fig. 2. In fact, the reduction
of the failure probability compared to the best of the two
types of von Neumann measurements is largest for �1=0.4,
where QF�

B=QF�
BC=0.7, while the generalized measurement

yields the failure probability QF�
POVM=0.683. In agreement

with the general relation derived in Ref. �35�, the latter value
is more than twice as large as the minimum error probability
PE� which for �1=0.4 takes its maximum value 0.258.

A comparison of Figs. 1 and 2 reveals that, as expected,
the minimum probabilities of error and failure are smaller
when one reference state is known than in the case when
both reference qubits are in unknown states.

V. TWO-QUBIT PROGRAM, n COPIES OF DATA STATE

A. Formulation of problem

We now return to the situation in which we possess only
one copy of each of the two states we are trying to distin-
guish, but now we have n�1 copies of the unknown state.
This means that we want a POVM that will distinguish the
two n+2 qubit states

��1� = ��1�A � ��1�1 � ¯ ��1�n � ��2�C,

��2� = ��1�A � ��2�1 � ¯ ��2�n � ��2�C, �5.1�

that occur with a priori probabilities �1 and �2, respectively.
Again we give two protocols, one for minimum error dis-
crimination, and one for optimum unambiguous discrimina-
tion between the states.

To this end we now define the spaces and operators that
we will need. Let � be the space of symmetric states in
�n+1H, where H is the two-dimensional space for a single
qubit. � is an n+2 dimensional subspace. ��1� is an element
of � � H=S1 and ��2� is an element of H � �=S2. Their
intersection, S0=S1�S2, is the space of symmetric states in
�n+2H. S0 is a subspace of dimension n+3. Let K be the
subspace of �n+2H generated by S1 and S2. The dimension
of K is 3n+5. Let S3 be the orthogonal complement of S0 in
S1, let S4 be the orthogonal complement of S0 in S2, and let L
be the orthogonal complement of S0 in K. As was discussed
in Sec. II, because we do not know what ��1� and ��2� are,
our problem is to discriminate between the density matrices
that result from averaging ��1���1� and ��2���2� over ��1�

and ��2�. This yields the two density matrices

�1 =
1

2n + 4
PS1

=
1

2n + 4
P� � I ,

�2 =
1

2n + 4
PS2

=
1

2n + 4
I � P�, �5.2�

where PS1
and PS2

are the projections onto S1 and S2, and P�

and I onto � and H, respectively. Consequently, we reduced
the problem to discriminating between the
�2n+4�-dimensional spaces S1 and S2 in K, which is equiva-
lent to discriminating between the �n+1�-dimensional sub-
spaces S3 and S4 in the �2n+2�-dimensional space L.

We will now choose some bases in order to construct
Jordan bases for these subspaces. Jordan bases ��pj� � j
=0, . . . ,N	 and ��rj� � j=0, . . . ,N	 for two �N+1�-dimensional
subspaces, Sp and Sr, in general position, are orthonormal
bases of their respective subspaces ���pj�	 for Sp and ��rj�	 for
Sr� that, in addition, satisfy �rj � pk�=� jk cos �k. The angles �k

are called the Jordan angles. Now, let �0� and �1� be ortho-
normal basis vectors for H. Further, let �uj

�n+1�� �j=0, . . . ,n
+1� be the unique unit vector in the symmetric subspace of
n+1 qubits, �, which is the sum of �n+1�-tuples with j ones
and n− j+1 zeros,

�u0
�n+1�� = �0 . . . 0� ,

�u1
�n+1�� =

�0 . . . 01� + �0 . . . 10� + ¯ + �10 . . . 0�
�n + 1

,

]

�un+1
�n+1�� = �11 . . . 1� . �5.3�

Then the structure of the two density operators in �5.2�, in
particular the decomposition on the right-hand side, suggests
that we consider �ej,��= �uj

�n+1�� � ��� and �f j,��= ��� � �uj
�n+1��,

where �=0,1 and 0� j�n+1. These vectors form orthonor-
mal bases for S1 and S2, respectively. Let �uj

�n+2�� �j
=0, . . . ,n+2� be the unique unit vector in the symmetric sub-
space of n+2 qubits, S0, which is the sum of �n+2�-tuples
with exactly j ones and n+2− j zeros. This vector can be
expressed in terms of either the S0 or S1 basis, since it is in
both spaces. A direct calculation shows that

�uj
�n+2�� =�n + 2 − j

n + 2
�ej,0� +� j

n + 2
�ej−1,1� , �5.4�

and

�uj
�n+2�� =�n + 2 − j

n + 2
�f j,0� +�� j

n + 2
�f j−1,1� �5.5�

for 0� j�n+2. In particular, �u0
�n+2��= �00. . .0� and

��un+2
�n+2���= �11. . .1�.
We now introduce the vectors
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�gj� =� j

n + 2
�ej,0� −�n + 2 − j

n + 2
�ej−1,1� , �5.6�

and

�hj� =� j

n + 2
�f j,o� −�n + 2 − j

n + 2
�f j−1,1� , �5.7�

for 1� j�n+1. The �gj�’s and �hj�’s form orthonormal bases
for S3 and S4. Each vector on the right-hand side of the above
expressions has exactly j ones. Therefore, if j�k

�gj�hk� = 0, �5.8�

and ��gj�	 and ��hj�	 form Jordan bases for S3 and S4. Let Tj

be the two-dimensional vector space spanned by the nonor-
thogonal but linearly independent vectors �gj� and �hj�. The
Tj form a decomposition of L into n+1 mutually perpendicu-
lar two-dimensional subspaces. A calculation shows that

�f j,0�ej,0� =
n + 1 − j

n + 1
,

�f j−1,1�ej−1,1� =
j − 1

n + 1
, �5.9�

and

�ej−1,1�f j,0� = �f j−1,1�ej,0� =
�j�n + 2 − j��1/2

n + 1
. �5.10�

Therefore,

�hj�gj� = −
1

n + 1
, �5.11�

and the Jordan angles are all the same. The two density op-
erators that we wish to distinguish can now be expressed as

�1 =
1

2�n + 2��PS0
+ 


i=1

n+1

�gi��gi�� ,

�2 =
1

2�n + 2��PS0
+ 


i=1

n+1

�hi��hi�� , �5.12�

where

PS0
= 


j=0

n+2

�uj
�n+2���uj

�n+2�� �5.13�

is the projection onto S0.

B. Minimum error discrimination strategy

For minimum-error identification we have to determine
the eigenvalues and eigenstates of the operator 
=�2�2
−�1�1 which, using Eq. �5.12�, can be written as


 =
1

2n + 4
���2 − �1�PS0

+ �2 
 �hi��hi� − �1 
 �gi��gi�� .

�5.14�


 is diagonal in S0 and it is straightforward to carry out the
diagonalization in each of the two-dimensional subspaces
spanned by �gi� and �hi�, yielding the spectral representation,


 = 

j=0

n+2

�0�uj��uj� + 

i=1

n+1

��+��i+���i+� + �−��i−���i−�� ,

�5.15�

where

�0 =
�2 − �1

2n + 4
, �5.16�

and

�± =
1

4�n + 2�
��2 − �1 ±���2 − �1�2 +

4n�n + 2�
�n + 1�2 �1�2 .

�5.17�

The eigenvalue associated with S0, �0, has a degeneracy �n
+3� and the eigenvalues associated with S3 and S4, �±, have
a degeneracy of �n+1� each. Furthermore, in the nonor-
thogonal basis of the two-dimensional subspace Ti given by
�gi� and �hi�,

��i±� =
�gi� − c±�hi�

�1 + c±
2 − 2c±/�n + 1�

, �5.18�

where

c± = �n + 1��1 −

�2

�n + 1�2 − �1

�2n + 4��±
� . �5.19�

We find that �− is unconditionally negative, �0 is negative if
�2��1 and positive otherwise, and �+ is unconditionally
positive. By making use of Eq. �2.17� we find that the mini-
mum error probability for identifying the state of the data
qubits is given by

PE = �min�1 −
n

n + 1

�max

�max − �min +���max − �min�2 +
4n�n + 2�
�n + 1�2 �min�max� , �5.20�
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where �min ��max� is the smaller �larger� of ��1 ,�2	. Accord-
ing to Eq. �2.16�, the minimum error probability is reached
with the help of the optimum detection operators

	1
opt = �


i=1

n+1

��i−���i−� if �1 �
1

2

PS0
+ 


i=1

n+1

��i−���i−� if �1 �
1

2
� , �5.21�

which is the projection onto the strictly negative eigenspace
of 
, and 	2

opt= IK−	1
opt, where the identity IK= PS0

+
i=1
n+1���i+���i+�+ ��i+���i+��. PS0

is given in Eq. �5.13�.
Clearly, the measurement that identifies the state of the data
qubits with the smallest possible error is a joint projection
measurement on all of the qubits. It should be noted that for
n=1 the formulas in this section reduce to those of Sec.
III A, whereas for n→� we have that PE→�min/2�1/4.

C. The optimal universal unambiguous bound

We now want to consider the unambiguous discrimination
between the subspaces S1 and S2 in K, or equivalently be-
tween S3 and S4 in L. Let Si

� be the orthogonal complement
of Si in K. Si

� is equal to the orthogonal complement of Si+2
in L. Si

� is an �n+1�-dimensional subspace. The POVM
which unambiguously distinguishes between S1 and S2 has
the form 	1=�PS2

�, and 	2=�PS1
�, where the P’s are or-

thogonal projections onto S1
� or S2

�, and the � and � are
positive real numbers between zero and one, which are so
chosen that 	1, 	2, and 	0= I−	1−	2 are the elements of a
POVM on K.

Let us define �gi
�� in S1

�, and �hi
�� in S2

� by the formulas

�hi� = −
1

n + 1
�gi� +

�n�n + 2�
n + 1

�gi
�� ,

�gi� = −
1

n + 1
�hi� +

�n�n + 2�
n + 1

�hi
�� , �5.22�

on Ti, and we have that

PS1
� = 


i=1

n+1

�gi
���gi

��, PS2
� = 


i=1

n+1

�hi
���hi

�� . �5.23�

The � and � can now be chosen so that 	0 restricted to each
Ti is nonnegative. The matrix which represents 	0 on Ti, in
the basis ��gi� , �gi

��	, is

�1 − �
n2 + 2n

�n + 1�2 − �
�n�n + n�
�n + 1�2

− �
�n�n + n�
�n + 1�2

1 − � −
�

�n + 1�2
� . �5.24�

This matrix must be positive. Therefore, 	1, 	2, and 	0
form a POVM if and only if

1 − � − � − ��
n2 + 2n

�n + 1�2  0, �5.25�

provided that

0 � �,� � 1. �5.26�

We also have that

Tr�	1�1� =
�n

2n + 2
, Tr�	2�2� =

�n

2n + 2
. �5.27�

If we are given �1 with probability �1 and �2 with prob-
ability �2 then the probability that this POVM successfully
distinguishes S1 from S2 is

Psucc =
n

2n + 2
��1� + �2�� , �5.28�

if the � and � satisfy the constraints above. If we set

� =
1 − �

1 −
n2 + 2n

�n + 1�2�

�5.29�

in the above formula, which is the maximum allowed by
�5.25�, and differentiate, we find that Psucc has a maximum
value when

� =�
0 if �1 �

1

1 + �n + 1�2

n + 1

n2 + n
�n + 1 −��2

�1
 if

1

1 + �n + 1�2 � �1 �
�n + 1�2

1 + �n + 1�2

1 if �1 
�n + 1�2

1 + �n + 1�2 .
� �5.30�
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The maximum value of Psucc is

Pmax =
1

n + 2
�n + 1

2
− ��1�2�1/2� , �5.31�

provided 1
1+�n+1�2 ��1�

�n+1�2

1+�n+1�2 , using the center line in

�5.30�. This clearly can be obtained by a POVM only. If �1 is
to the left of this interval �first line in �5.30�� the optimum
measurement is the projection PS1

�, which unambiguously

identifies �2 with a success probability Psucc
�2� =�2n / �2n+2�. If

�1 is to the right of this interval �last line in �5.30�� the
optimum measurement is the projection PS2

� which unam-

biguously identifies �1 with a success probability Psucc
�1�

=�1n / �2n+2�. It should be noted that the optimum failure
probability is given as QF=1− Psucc. For n=1 these expres-
sions reproduce the corresponding ones in Sec. III B. For
�1=�2=1/2, when their difference is the largest, QF

POVM=1
− Pmax= n+4

2n+4 and QF
�1,2�=1− Psucc

�1,2�= 3n+4
4n+4 , as a function of n.

For n→� we have QF
POVM→1/2 and QF

�1,2�→3/4, so the
POVM outperforms the projective measurements quite sig-
nificantly. Furthermore, PE�QF

POVM/2 always holds, as it
should.

If we use the universal POVM 	1, 	2, and 	0 to unam-
biguously discriminate between the states ��1� and ��2�
without averaging over them, we find that the probability of

success, P̃succ is

P̃succ = �1���1�	1��1� + �2���2�	2��2�

=
n

n + 1
��1� + �2���1 − ���1��2��2� , �5.32�

where the � and � satisfy the same constraints as above.
Inserting their optimal values from Eqs. �5.30� and �5.29� we
find

P̃opt =
1 − ���1��2��2

n + 2
�n + 1 − 2��1�2�1/2� , �5.33�

with the same restrictions on �1 as in the previous paragraph.
If we average the overlap term over all possible choices of
the ��i�’s we can replace it with its average value of 1 /2, and
we recover �5.31�.

As expected, the optimal success probability is an increas-
ing function of n. The more copies of the unknown qubit we
possess, the greater our chance of identifying it.

The n→� limit of P̃opt can also be achieved by a different
strategy than the one we are employing here. With a very
large number of copies of the unknown qubit, we could em-
ploy state reconstruction techniques to find out its state �36�.
For example, suppose we have determined the state of the
unknown qubit to be ��0�. While we know what this state is,
we do not know if it is equal to the first or the second pro-
gram state, ��1� or ��2�. We therefore project each of the two
program states onto the state orthogonal to the reconstructed
state. That is, we take the program qubit that we know is in
the state ��i� �i=1 or 2� and measure the projection operator
P0�= ��0

����0
��. If ��0�= ��1�, which is given with the a priori

probability �1, then this measurement succeeds �gives 1�

with a probability of ���1
� ��2��2, and if ��0�= ��2�, which is

given with the a priori probability �2, it succeeds with the
same probability. Therefore, the total probability of success
is just ��1+�2����1

� ��2��2, which is the same as the n→�

limit of Eq. �5.33�. While these strategies give the same re-
sult for an infinite number of copies, there is a difference
between them for n finite. The strategy that led to Eq. �5.33�
will never produce an erroneous result, while the strategy
based on state reconstruction can. If our determination of the
state of the unknown qubit is not exact, which will, in gen-
eral, be the case for finite n, then ��0

�� will not be orthogonal
to either ��1� or ��2�, and this will lead to errors.

VI. ONE-QUBIT PROGRAM, n COPIES OF DATA STATE

In this section we return to the case when one of the states
to be determined is known and the other is unknown. How-
ever, in contrast to the treatment that was presented in Sec.
IV, we now provide n copies of the states to be determined.
In other words, we now have n data registers, B1 , . . . ,Bn, and
in each one we either have a copy of the known state �0� or a
copy of the unknown state ��� stored in the program register
C. Our task is then to decide whether the qubit Bi is in the
known state �0�Bi

, or whether it is in the unknown state of the
program qubit stored in register C, for all i.

Thus, we assume that we have a system of n+1 qubits,
labeled B1 , . . . ,Bn, and C where C is the program qubit and
B1 , . . . ,Bn are the data qubits. Qubit C is always prepared in
the state ���. Qubits Bi, the data qubits, are guaranteed to be
all prepared in either �0� or all in ���, but we do not know
which of these two alternatives occurs. The prior probabili-
ties of these two alternatives are �1 and �2=1−�1, respec-
tively. Our task is then to find the optimal measurement
�POVM� that will distinguish the two n+1 qubit states,

��1� = �0�1 � ¯ �0�n � ���C,

��2� = ���1 � ¯ ���n � ���C, �6.1�

where we dropped the subscript B for the data registers as it
leads to no confusion.

If the state ��� is completely unknown, we have to find the
best measurement strategy that is optimal on average. Thus,
we have to take the average of the input with respect to all
possible qubit states. The identification problem is then
equivalent to distinguishing between two mixed states, given
by the density operators

�1� = ���1���1�	av = ��0���n�����0���n����	av, �6.2�

�2� = ���2���2�	av = ������n+1������n+1�	av, �6.3�

that occur with the prior probabilities �1 and �2, respec-
tively. The unknown qubit state can be represented again
using the Bloch parametrization as ���=cos�� /2��0�
+ei� sin�� /2��1�, with �0� and �1� denoting an arbitrary set of
orthonormal basis states. Here � and � are the polar and
azimuthal angles on the Bloch sphere. After performing the
averaging with respect to all possible values of � and � we
arrive at
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�1� =
1

2
�0���n��0���n�

� IC, �6.4�

�2� =
1

�n + 2�
PB1¯BnC

sym , �6.5�

where PB1¯BnC
sym is the projector to the �n+2�-dimensional

symmetric subspace of the corresponding n+1 qubits,
B1¯BnC, and IC= �0�CC�0�+ �1�CC�1�. Equations �6.4� and
�6.5� reduce the problem of the programmable state discrimi-
nator with the single-qubit program and n copies of the data
state to the problem of discriminating between these two
mixed states.

At this point it is useful to introduce the following basis
for the �n+2�-dimensional symmetric subspace of the n+1
qubits

�u1� = �0 . . . 0� ,

�u2� =
�0 . . . 01� + �0 . . . 10� + . . . + �10 . . . 0�

�n + 1
,

]

�un+2� = �11 . . . 1� . �6.6�

We also introduce

�v2� = �0 . . . 01� . �6.7�

The two nonorthogonal but linearly independent vectors, �u2�
and �v2�, span a two-dimensional subspace of the entire Hil-
bert space. It will prove useful later on to define two other
vectors in this subspace as

�v̄2� =
�0 . . . 10� + ¯ + �10 . . . 0�

�n
. �6.8�

and

�ū2� =
1

�n + 1
�v̄2� −� n

n + 1
�v2� . �6.9�

The two sets, ��v2� , �v̄2�	 and ��u2� , �ū2�	, each form an ortho-
normal basis in the two-dimensional subspace. We then have
to distinguish between the density operators �1� and �2� given
by Eqs. �6.4� and �6.5� that refer to the first and second
alternative, respectively, and that occur with the prior prob-
abilities �1 and �2. After re-expressing �1� in terms of the
basis states �ui� �i=1, . . . ,n+2� and �v2�, defined by Eqs.
�6.6� and �6.7�, respectively, the density operators to be dis-
criminated read

�1� =
1

2
��u1��u1� + �v2��v2�� , �6.10�

�2� =
1

n + 2
�


i=1

n+2

�ui��ui� . �6.11�

The subsequent treatment proceeds exactly along the same
lines that we followed in the previous sections.

A. Minimum-error discrimination

For identifying the data state with minimum error we
have to determine the eigenvalues and eigenstates of the op-
erator 
�=�2�2�−�1�1�, where �1� and �2� are given by Eqs.
�6.4� and �6.5�. From the explicit expression of these two
density operators it is clear that 
� is diagonal except in the
two-dimensional subspace spanned by �v2� and �v̄2�. It is
straightforward to carry out the diagonalization in this sub-
space yielding the spectral representation,


� = �1�u1��u1� + 

i=−

+

�i��i���i� + 

j=3

n+2

� j�uj��uj� , �6.12�

where

�1 = � �2

n + 2
−

�1

2
 , �6.13�

�± =
1

2
� �2

n + 2
−

�1

2
±�� �2

n + 2
−

�1

2
2

+
2�1�2n

�n + 1��n + 2�
 ,

�6.14�

and

� j =
�2

n + 2
, �6.15�

for j3. Furthermore

��±� =
�v2� − c±�v̄2�

�1 + c±
2

, �6.16�

where

c± =
n + 1

2�n

�2� +
n − 1

2�n + 1�
�1 ±���2� − �1�2 +

4n

n + 1
�2��1

�1
.

�6.17�

Here we introduced �2�=2�2 / �n+2� which is the weight of
�2� in the intersection of the supports of the two density op-
erators to be discriminated. We find that �− is uncondition-
ally negative, �1 is negative if �2 / �n+2���1 /2 and positive
otherwise, and �+ ,� j 0 for j3. By making use of Eq.
�2.17� we find that the minimum error probability for identi-
fying the state of the data qubits is given by
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PE� = �min�1 −
n

n + 1

�max

�max − �min +���max − �min�2 +
4n�min�max

n + 1
� , �6.18�

where we introduced �min ��max� as the smaller �larger� of
��1 ,2�2 / �n+2�	. According to Eq. �2.16�, the minimum er-
ror probability is reached with the help of the detection op-
erators

	1
opt = ���−���−� if �1 �

2

n + 4

�u1��u1� + ��−���−� if �1 �
2

n + 4
� , �6.19�

and 	2
opt= I−	1

opt, where we have to use the identity I
= �u1��u1�+
i=3

n+2�ui��ui�+
i=−
+ ��i���i�. Clearly, the measure-

ment that identifies the state of the data qubits with the
smallest possible error is a joint projection measurement on
the qubits Bi �for i=1, . . . ,n� and C. It should be noted that
for n=1 the formulas in this section reduce to those of Sec.
IV A; whereas for n→� we have that PE→0 since in this
latter case the mixed states that we are trying to distinguish
become essentially orthogonal. The vanishing of the error
probability for n→� is in accordance with the fact that the
data state can be in principle exactly determined by tomog-
raphic methods, without any joint measurement, provided
that an infinite number of copies is available. After the data
state has been determined, it is of course possible to tell
without error whether it is equal to the state �0� or not.

B. Unambiguous discrimination

Finally we want to determine the minimum failure prob-
ability for the unambiguous discrimination between the
states given by �6.10� and �6.11�. For this purpose we again
use the method described in Refs. �30,32�. Taking one of the
reduction theorems derived in Ref. �26� into account, the

most general ansatz for the detection operators can be written
as

	1 = ��ū2��ū2�, 	2 = ��v̄2��v̄2� + 

i=3

n+2

�ui��ui� , �6.20�

where �v̄2� and �ū2� were given in �6.8� and �6.9�, respec-
tively. Clearly, 	1�2�=	2�1�=0 as required for unambiguous
discrimination. As follows from Eq. �2.19�, these detection
operators yield the failure probability

Qfail� = 1 −
�1�n

2�n + 1�
−

�2n

n + 2
−

�2�n

�n + 1��n + 2�
�6.21�

which again has to be minimized under the constraint that
	0= I−	1−	2 is a positive operator, in complete analogy to
our procedure in Sec. IV A. For 	0 we obtain the expression

	0 = �u1��u1� − ��ū2��ū2� + �v2��v2� − ��v̄2��v̄2� + �v̄2��v̄2� .
�6.22�

The eigenvalues of 	0 are �1=1, �i=0 for 3� i�n+2, and
�±= �2−�−�±���+��2−4��n / �n+1�� /2. They all are
nonnegative provided that �� �n+1��1−�� / �n+1−n��. In
order to minimize Qfail while keeping 	0 a positive operator
we therefore choose

� =
�n + 1��1 − ��

n + 1 − n�
. �6.23�

Upon substituting this expression into Eq. �6.21� the failure
probability becomes a function of � alone and it is easy to
determine its optimum. Taking into account that 0���1,
we find that the minimum failure probability is obtained
when

�opt = �
0 if �n + 2��1 � 2�2/�n + 1�

n + 1

n
�1 −� 2�2

�n + 1��n + 2��1
 if

2�2

n + 1
� �n + 2��1 � 2�n + 1��2

1 if �n + 2��1  2�n + 1��2.
� �6.24�

Substituting these values into �6.23� yields �opt. Using �opt

and �opt in Eqs. �6.20� and �6.22� yields an explicit expres-
sion for the optimum detection operators.

If �n+2��1�2�2 / �n+1�, which implies that �1�2/ �2
+ �n+1��n+2��, we have 	1

opt=0 and 	2
opt= �v̄2��v̄2�

+
i=3
n+2�ui��ui�, which means that the optimum measurement is

a projection measurement on the subspace orthogonal to the
span of �1�, i.e., a projection on its kernel. On the other hand,
for �n+2��12�n+1��2, i.e., �12�n+1� / �3n+4�, the op-
timum measurement is a joint projection measurement on the
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kernels of �1� and �2�, where 	1
opt= �ū2��ū2� and 	2

opt=
i=3
n+2�ui��ui�. In the intermediate parameter region the optimum measure-

ment is a generalized measurement. The failure probability of these optimal measurements can be summarized as

QF� =�
�1 +

�2

n + 1
if �1 �

2

2 + �n + 1��n + 2�

�1

2
+

�2

n + 2
+� 2�1�2

�n + 1��n + 2�
if

2

2 + �n + 1��n + 2�
� �1 �

2�n + 1�
2�n + 1� + �n + 2�

�1
n + 2

2n + 2
+ �2

2

n + 2
if �1 

2�n + 1�
2�n + 1� + �n + 2�

.
� �6.25�

We notice the above expressions reduce to the corresponding
expressions of Sec. IV A for n=1, as they should. Then, as in
that section, it is also true here that the benefit of performing
the generalized measurement is only marginal. To see the
closeness of the best projective valued measurement �PVM�
to the optimal POVM we compare their performance in sev-
eral ways. The two PVMs �first and last line in �6.25�� de-
liver the same result for �1=2/ �n+4�. In fact, the reduction
of the POVM failure probability �middle line� compared to
those of the projective measurements is largest for this value
of �1. In Fig. 3 we display the PVM and POVM failure
probabilities for this value of �1 as a function of n. We see
that the two curves remain close together for all values of n.
The difference between these two curves as a function of n
reaches a maximum, however. It is maximal for n=5 as dis-
played in Fig. 4. Finally, in Fig. 5 we display the ratio of the
PVM failure probability to the POVM failure probability as a
function of n. Asymptotically, the POVM outperforms the
PVM by 50%, their ratio tending to the limiting value of 1.5.
However, as we see from the figure, one needs about 1000
copies of the data state to reach the asymptotic region. Since
the difference is maximal for five copies we can conclude
that one does not need more than five copies in order to
demonstrate performance enhancement due to the optimal
POVM.

To close this section we also notice that, in agreement
with the general relation derived in Ref. �35�, the optimal

POVM failure probability is always more than twice as large
as the minimum error probability PE� of the previous subsec-
tion.

VII. CONCLUSION

We have described a number of quantum devices that dis-
criminate between two quantum states. We do not possess
complete information about the states to be discriminated.
Our devices have two inputs, one for the qubit whose iden-
tity is to be determined, and the other for the copies of one or
both of the possible states that it can be in. In the case that
only one of the states is provided, it is assumed that the other
state is known, and this knowledge is built into the device.
The states sent into the second input can be regarded as a
program. To change the set of states between which we are
discriminating, we do not have to change the device, but
merely supply it with a different program.

We want to point out a striking feature of the program-
mable state discriminators in which copies of both of the
states to be discriminated are provided. Neither the optimal
detection operators nor the boundaries for their region of
validity depend on the unknown states. Therefore, these de-
vices are universal, they will perform optimally for any set
of unknown states. Only the probability of success for fixed
but unknown states will depend on the overlap of the states.
However, both this expression and its average over all pos-
sible inputs is optimal.

The devices described here demonstrate the role played
by a priori information. All of them have a smaller success

FIG. 3. �Color online� Comparison of the optimum perfor-
mances of the failure probabilities of the projective measurements
�upper curve� and the failure probability of the POVM �lower
curve� vs the number of copies n for the value of �1=2/ �n+4�,
when their difference is the largest for the unambiguous discrimi-
nation of one known state from one unknown state when n copies
of the data state are provided.

FIG. 4. �Color online� The difference between the upper curve
and the lower curve in Fig. 3 as a function of n. The difference
between the performance of the PVM and POVM is maximum for
n=5.
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probability than the one designed for a case in which we
know both of the input states, and the device for two un-
known input states has a smaller success probability than the
one designed for the case when we know one of the input
states. There is a trade off between flexibility and success
probability. The greater the amount of information about the
states that is carried by a quantum program, the smaller the
probability of successfully discriminating between the states,
but the larger the set of states for which the device is useful.
This flexibility suggests that programmable discriminators
will be useful as parts of larger devices that produce quantum
states that need to be identified.

We conclude our paper by summarizing what we know
about programmable discriminators with quantum programs
in which the programs consist of copies of the states to be
discriminated. The most general problem of this type is when
we have nA copies of the state of the program system A, nC
copies of the state of the program system C, and nB copies of
the state of the data system B. In this case, the task is to
discriminate two input states

��1
in� = ��1�A

�nA��1�B
�nB��2�C

�nC,

��2
in� = ��1�A

�nA��2�B
�nB��2�C

�nC, �7.1�

where the subscripts A and C refer to the program registers
�A contains ��1� and C contains ��2��, and the subscript B
refers to the data register. Our goal would be to optimally
distinguish between these inputs, keeping in mind that one
has no knowledge of ��1� and ��2� beyond their a priori
probabilities. The problem in which the number of copies of
the program states are equal and greater than one, but we
have only one copy of the data state solved for equal a priori
probabilities �19�. The problem in which we have only one
copy of each program state, but an arbitrary number of cop-
ies of the data state has been solved here. The general prob-
lem remains open.
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