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We analyze and compare the optimality of approximate and probabilistic universal programmable
quantum processors. We define several characteristics how to quantify the optimality and we study
in detail performance of three types of programmable quantum processors based on (1) the C-NOT
gate, (2) the SWAP operation, and (3) the model of the quantum information distributor - the QID
processor. We show under which conditions the measurement assisted QID processor is optimal.
We also investigate optimality of the so-called U-processors and we also compare the optimal ap-
proximative implementation of U(1) qubit rotations with the known probabilistic implementation
as introduced by Vidal, Masanes and Cirac [ Phys. Rev. Lett. 88, 047905 (2002)].

I. PROGRAMMABLE PROCESSORS

Classical programmable processors are realized as a hardware that perform an operation (called computation) on
a data register according to instructions (program) encoded in a program register (software). It is one of the central
issues of computer science whether there exist a universal (classical) processor that performs all possible classical
transformations of the data register of the size of d bits [1]. Let us, for simplicity, consider only reversible classical
computation (though the conclusions are valid also for irreversible classical programs). The register composed of d
classical bits can be reversibly transformed in 2d! different ways (permutations), e.g. we consider that on a single bit
we apply only two programs: the identity and the NOT operation. For a single-bit data register the controlled-NOT
(CNOT) gate serves as a universal classical processor [the CNOT gate is defined as follows CNOT : j, k → j, j ⊕ k
(j, k = 0, 1)]. That is, if the program register (consisting of a single bit) has the value (is in the state) k = 0 then the
identity operation is realized on the data bit. Similarly, if k = 1 then the NOT operation is performed on the data
bit. It is clear that such ”control” devices realizing different programs for different bit values of the program register,
are universal programmable processors also for larger data registers. The size of the program register (in terms of
the number N of bits) is given by the relation 2d! = 2N , because 2N represents the number of different states of the
register of the size N . As a result we obtain that universal processor for d-bit data register consists of approximately
N ≈ 2d(d− 1) bits, i.e. it is exponentially large.

In their seminal paper [2] Nielsen and Chuang showed that the quantum analogue of universal programmable
processor does not exist, i.e. it is not possible even in principle to design a universal deterministic programmable
quantum processor. Information about the quantum operation cannot be encoded into the state of arbitrarily large
program register. In order to realize n unitary transformation of the data register one must use n dimensional
program register. The same holds also in the classical case, but unlike there, in the quantum case even for a single
qubit the number of possible programs (unitary transformations) is uncountably infinite. This requires inseparable
quantum systems as program registers, but such systems are usually excluded from the standard quantum theory.
The nonexistence of universal programmable quantum device is another example of no-go theorems in quantum
information processing.

Let us consider two completely positive maps E ,F given by Kraus operators {Ej}, {Fk}, respectively. In addition,
let us assume that these two operations can be realized with a fixed processor G, i.e. a unitary operation acting on
the joint data plus program Hilbert space Hd ⊗Hp. Denote |ΞE〉, |ΞF 〉 the corresponding pure states of the program

register, i.e. E [̺] =
∑

j Ej̺E
†
j with Ej = 〈j|G|ΞE〉, where F [̺] =

∑

j Fj̺F
†
j with Fj = 〈j|G|ΞF 〉, and {|j〉} is

some fixed basis of Hp. Calculating
∑

j E
†
jFj one derives the following identity

∑

j

E†
jFj = 〈ΞE |ΞF 〉I = cI . (1.1)

This equation is necessary for simultaneous realization of both operations E ,F on the processor G. We remind us
the ambiguity of Kraus decomposition, i.e. when applying this criterion one must take into account all possible
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decompositions. A special case is achieved when c = 0, i.e. the encoding program states are orthogonal. In such a
way any finite number of quantum operations can be realized by encoding them into mutually orthogonal states. Let
us apply this condition to the case of unitary operations U1, . . . , Un. For them the Kraus decomposition is unique and

we obtain the set of conditions U †
jUk = cjkI. Obviously cjj = 1, but in all other cases (j 6= k) it is necessary to set

cjk = 0 in order to satisfy Eq. (1.1). It means that encoding n unitaries requires n-dimensional program space. By
construction it can be seen that such dimension of the program Hilbert space is also sufficient. One can simply define
the processor as G =

∑

j Uj⊗|j〉〈j|. Using this criterion of compatibility (1.1) one can investigate the programmability

of different families of processes. For instance, in Ref. [3] we have shown that the family of phase damping channels
can be implemented on a quantum processor, but the family of amplitude damping channels cannot.

Properties of quantum programmable processors have been studied already by many authors and from different
perspectives [4–10]. In the present paper we focus our attention on optimality and universality of approximate and
probabilistic programmable quantum processors. The paper is organized as follows: In the Section II we study
optimality of programmable quantum processor, in the Section III we analyze in detail optimality of three models of
programmable quantum processors: the CNOT, the QID and the SWAP processors. The Section IV is devoted to
approximative programming. We will show in which sense the QID processors are optimal. In the Section V we relax
the universality condition and we discuss programmable processor that allows us to implement one-parametric group
of single-qubit rotations. We conclude our paper in Section VI with a brief summary of our results.

II. UNIVERSALITY AND OPTIMALITY

Even though universal deterministic programmable quantum processors do not exist [2] one can investigate various
approximations of these processors (this is a general approach when one deals with quantum-mechanical no-go theo-
rems). One can study scenarios how to achieve the universality by relaxing few of the ideal conditions. In principle,
there are two options: i) an approximative implementation of quantum programs, or ii) a probabilistic implementation
of quantum programs. In the first case we allow some imprecision ǫ in the implementation of the desired quantum
programs, whereas in the second case we relax the condition that the programmability is deterministic by introducing
a concept of the success probability Psuccess. Important point is that even though the implementation of the program
is only probabilistic, the measurement outcomes tell us exactly when the desired operation is performed. It is not
difficult to see that in both of these cases the universal programmable processors (either approximate or probabilistic)
do exist [4, 6, 11–13]. However, since the universality is conditioned by some imperfections the question of optimality
of encoding of quantum operations into states of quantum program registers is of importance [6, 13, 14].

For a given processor G one can should study whether it is universal in an approximate, or in a probabilistic sense
(or both). Different (approximate or probabilistic) universal programmable processors can be compared with the help
of the approximation parameter ǫ, or the probability success Psuccess, respectively. There are several ways how to
characterize the optimality via these parameters. Let remind us the exact definition of these parameters:

The approximate programmable processors perform a quantum operation T with the precision ǫ(T ) =
minξ D(T , Eξ), where Eξ[̺] = TrpG(̺ ⊗ ξ)G† and D(., .) quantifies the distance between two quantum operations.
In the probabilistic case we perform a measurement on the program register at the output of the processor. In prin-
ciple, we can distinguish two cases: either the measurement is fixed (measurement-assisted processor), or the choice
of an arbitrary von Neumann measurement is a part of the quantum programming. After recording an outcome m
of the measurement of the program register the data register is transformed into the state ̺m = Tm[̺] = 1

pm
Im[̺],

where pm = TrIm[̺] and Im is a linear completely positive, but not necessarily trace-preserving, map. Only in cases
when pm 6= pm(̺) the transformation Tm corresponds to some quantum operation, i.e. it is a completely positive
trace-preserving linear map. Without the measurement, or better to say without the post-selection, the data register
is transformed by some quantum operation Eξ. These maps are always performed with a probability equal to unity.
For each program state one can express the realized operation as a convex combination Eξ =

∑

j qjTj and the problem
is whether it is possible to find a measurement M such that the operation Tj was realized with the probability qj . The
decomposition of Eξ =

∑

m qmTm is called realizable if there exists a measurement M of the program register with
outcomes m such that Tm = 1

pm
Im. The success probability Psuccess(T ) of the operation T is defined as the maximum

of probabilities p over all program states ξ with the realizable decomposition Eξ = pT + (1 − p)N . The situation
is simple if one uses the measurement-assisted quantum processor, i.e. the measurement is fixed for all inputs. The
universality of such device was demonstrated explicitly in Ref. [11], but the optimality is still an open question. It
is clear that limits of measurement-assisted processors are stronger than limits for probabilistic processors where one
can vary measurements in order to increase success probabilities.

There are several approaches how to compare performance of quantum programmable processors. One can use either
extremal (worst) cases, or average values to evaluate the accuracy/success of approximate/probabilistic processors,
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i.e.

P
G

success =

∫

T
dT Psuccess(T ), ǫG =

∫

T dT ǫ(T )

PG
success = min

T
Psuccess(T ), ǫG = maxT ǫ(T )

There is also a freedom in the choice of the function D(., .) in the definition of the accuracy ǫ(T ) of the approximation.
The larger the success probability the better the probabilistic processor and similarly, the smaller the error the better

the approximate processor. We will use the notation PG,M
success and P

G,M

success for the parameters of the measurement-
assisted quantum processor specified by the unitary transformation G and the program-register measurement M . The

following relations hold: maxM PG,M
success ≤ PG

success and maxM P
G,M

success ≤ P
G

success.
Also the universality of quantum processors is usually understood in two different ways: i) either with respect to

an implementation of all quantum operations, or ii) with respect to a realization of all unitary transformations of the
program register. In some cases the set of implemented operations can be reduced (restricted) to smaller families of
quantum operations. It is clear that due to a unitary representation of any completely positive tracepreserving linear
map both of the meaning of universality are closely related. In order to define optimal quantum processor we usually
fix the size of the data and program register, d = dimHd and N = dimHp. The main open problem of quantum
processor’s optimality is to find this functional dependence for success probabilities and approximation accuracy. In
other words, for a fixed length of data and program register the task is to find the class of processors maximizing the
success probability and minimizing the approximation parameter.

Let us take a process fidelity to quantify the distance between two maps, i.e. D(E , T ) = 1−F (E , T ) = 1−f(ΦE ,ΦT ),
where ΦE = E ⊗ I[Ψ+] (Ψ+ is the projector onto maximally entangled state |ψ+〉 = 1√

d

∑

j |j〉 ⊗ |j〉) and f(̺, σ) =

(Tr
√√

̺ σ
√
̺)2 is the state fidelity function. From the definition of the quantities Psuccess(T ), ǫ(T ) and properties of

process fidelity it follows that [13]

Perror(T ) ≥ ǫ(T ) , (2.1)

where Perror(T ) = 1 − Psuccess(T ). The probabilistic realization of T means that a given program state ξ induces
the map Eξ = PsuccessT + PerrorN . One can say that program encoded in state ξ approximates the transformation T
with the precision quantified by ǫ = 1 − F (Eξ, T ). Using the concavity of process fidelity one can directly show that
ǫ ≤ 1 − Psuccess + PerrorF (N , T ) ≤ 1 − Psuccess which gives the above inequality.

Similar relations hold also for the derived average, and worst case quantities. This inequality is not saturated in
general (for fixed quantum processor), however it might be the case that for the optimal values (optimized over all
processors) these two numbers coincide. It could be an interesting result if, moreover, the same optimal processors
are optimal for approximate as well as probabilistic scenario.

For our purposes it will be useful to have an expression for the process fidelity between an arbitrary channel E
(defined as E [̺] =

∑

r Ar̺A
†
r) and a unitary transformation U . The state ΦU = U ⊗ I[Ψ+] is pure, i.e.

√
ΦU = ΦU .

It follows that

F (U, E) = 〈ΦU |E ⊗ I[Ψ+]|ΦE〉 =
1

d2

∑

j,k

〈j|U †E [|j〉〈k|]U |k〉 =
1

d2

∑

r

|TrU †Ar|2 .

III. PROGRAMMABILITY OF UNITARY TRANSFORMATIONS

In this section we will pay attention to a simpler problem of implementation of all unitary maps. In such case there
exists a unique Haar measure dU that enables us, in principle, to calculate also the average error and average success
probability. In what follows we shall analyze three examples of quantum processors.

A. Controlled NOT

At the beginning of this paper we have seen that the controlled NOT (CNOT) gate serves as universal classical
programmable processor implementing the programs on a single classical bit. Its quantum version, GCNOT = I ⊗
|+〉〈+|+σz ⊗|−〉〈−| (with |±〉 = 1√

2
(|0〉± |1〉)), is not universal, but still it can serve as a good and simple example of

a quantum processor realizing approximatively and probabilistically a specific subclass of unitary operations. Using
this device we are able to realize deterministically arbitrary channel of the form E [̺] = p̺ + (1 − p)σz̺σz . Vidal



4

and Cirac [15, 16] showed that using the measurement-assisted CNOT processor one can probabilistically implement
arbitrary U(1) rotation Uϕ = exp(−iϕσz) with the probability Psuccess(Uϕ) = 1/2. The fixed measurement is specified
by the basis |0〉, |1〉.

In Ref. [17] we studied different choices of measurement for the CNOT processor. We found that arbitrary measure-
ment enables us to realize probabilistically a whole set of unitary transformations Uϕ, though in this case probability
distributions PM

success(Uϕ) are different for different measurements M . Of course, the transformations I, σz are al-
ways implemented with the probability equal to. The success probability for a fixed measurement M is given by
the relation Psuccess = cos2 ξ cos2 η + sin2 ξ sin2 η, where the angle η specifies the choice of the measurement and ξ
represents the states encoding the unitary transformations Uϕ for ϕ = arccos( cos ξ cos η√

cos2 ξ cos2 η+sin2 ξ sin2 η
). Except the

cases when η = kπ/2 (for k = 0, 1, 2, 3, . . .), each unitary operation Uϕ is realized. Therefore, either I, or σz is realized

on measurement-assisted CNOT processor with the smallest probability depending on whether sin2 η is larger than
cos2 η, or not. In particular PCNOT,η

success = min{cos2 η, sin2 η}. The average success probabilities for measurement-assisted
CNOT are given as follows

P
CNOT,η

success =
1

2π

(
∫ 2π

0

dξ sin2 ξ + cos2 η

∫ 2π

0

dξ cos 2ξ

)

=
1

2
.

A straightforward calculation shows that in the average sense all measurement-assisted CNOT processors are equiva-
lent. On the other hand they are not equivalent in the sense of the worst success probabilities.

It is not easy to calculate these quantities for the case when we are allowed to alternate (optimize) measurements in
order to increase the success probability. In particular, it is difficult to express analytically the dependence ξ = ξ(ϕ)
and consequently to find an analytic expression for the optimal success probability Psuccess(Uϕ). It is clear that each
of the transformations can be realized with the probability strictly larger than 1/2, i.e. PCNOT

success > 1/2 and also

P
CNOT

success > 1/2.
Let us assume that we want to perform unitary transformations Uϕ approximatively. What is then the optimal

program state ξϕ approximating the given Uϕ on the CNOT processor? Denoting by Ep[̺] = p̺+ (1 − p)σz̺σz and
using the derived expression for the process fidelity between an arbitrary channel and a unitary transformation we
get for the error

ǫ(Uϕ) = 1 − max
p
F (Uϕ, Ep) = 1 − 1

4
max{|TrU †

ϕ|2, |TrU †
ϕσz|2} , (3.1)

i.e. it is optimal to encode the operation Uϕ into one of two program states encoding the identity and σz operation,
i.e. state |±〉. The encoding is optimal for the state for which the overlap between the desired transformation
and the program I (or σz) is larger. In particular, ǫ(Uϕ) = 1 − max{cos2 ϕ, sin2 ϕ}. That is, the characteristics
of the approximate programmable CNOT processor describing the quality of the realization of the set of unitary
transformations Uϕ are the following

ǫCNOT = max
ϕ

ǫ(Uϕ) = 1/2 , (3.2)

ǫCNOT =
1

2π

∫

dϕ ǫ(Uϕ) = 1/2 − 1/π . (3.3)

One can directly verify that the bound Perror ≥ ǫ holds in all its variations. It is saturated only for the worst case
typical for the optimal measurement-assisted CNOT processor compared with the worst case approximation error,

when we have P
CNOT,η=π/4
error = ǫCNOT = 1/2.

B. Quantum information distributor

Originally, the quantum information distributor (QID) was introduced as a device performing the optimal quantum
cloning and the optimal quantum NOT operation. In [11] the authors showed that the QID can be used as a
universal measurement-assisted processor realizing all unitary transformations. The QID is a device with a data
register representing by a qudit (d dimensional quantum system) and program register represented by two qudits,
i.e. N = d2. It belongs to the family of U processors [3], or equivalently the controlled-U gates. It is defined as
GQID =

∑

k Uk ⊗ |θk〉〈θk|, where k = 0, . . . , d2 − 1, Uk ≡ Uab =
∑

r e
i2πar/d|r − b〉〈r| (for qubits sigma operators),

|θk〉 = Uk ⊗ I|θ0〉, |θ0〉 = 1√
d

∑

j |j〉 ⊗ |j〉. In other words, the unitary operators Uk form an orthogonal operator basis

TrU †
jUk = dδjkI, and the states |θk〉 form the basis of two-qudit Hilbert space composed of maximally entangled states.
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In particular, for qubit Uk = σk and {|θk〉} is the Bell basis. The program states |θk〉 encode unitary transformations

Uk. A general program state ξ induces one of the generalized Pauli channels Eξ[̺] =
∑

k pkUk̺U
†
k with pk = 〈θk|ξ|θk〉.

Using the measurement basis |mj〉 ≡ |mxy〉 = | − x〉 ⊗ 1√
d

∑

r e
i2πy/d|r − x〉 one can probabilistically implement

an arbitrary unitary transformation with the probability Psuccess = 1/d2 [12]. The result |m00〉 = 1
d2

∑

k |θk〉 =

|0〉 ⊗ 1√
d

∑

r |r〉 indicates the successful realization of the program U . In particular, using this measurement basis the

action of the processor can be written in the following form

GQID|ψ〉 ⊗ |Ξ〉 =
1

d2

∑

j

UjA(Ξ)U †
j |ψ〉 ⊗ |mj〉 , (3.4)

where A(Ξ) =
∑

k〈θk|Ξ〉Uk. If A(Ξ) is a unitary operation then probabilities of outcomes mj are data independent
and they read p(mj) = 1

d2 . The described measurement-assisted quantum processor implements unitaries with the
success probability

P
QID,M

success = PQID,M
success = 1/d2 . (3.5)

It is of interest to show whether this is the optimal measurement-assisted probabilistic realization, or not. Note that
this processor is indeed very specific, because it performs all unitaries with the same probability Psuccess(U) = 1/d2.
A similar conclusions like in the case of CNOT processor can be made. In particular, this measurement-assisted
QID processor is optimal in the sense of worst case optimality, because using different measurements will result in
nontrivial success probability distributions over the set of unitary transformations.

The approximate realization is again similar to the case of CNOT gate. Both of them belong to the family of U
processors, i.e. they are of the form G =

∑

j Uj ⊗|j〉〈j|, where Uj are arbitrary unitary operations and program states

{|j〉} form an orthonormal basis of Hp. These processors are not very “rich” from the point of view of approximative
implementation of all unitary transformations. In fact, these processors deterministically perform the random unitary

channels E~p[̺] =
∑

j pjUj̺U
†
j with pj = 〈j|ξ|j〉 providing that the program register was initially prepared in the state

ξ. As we shall see for the approximative programming only the basis states |j〉 are useful. In fact

ǫ(U) = max
~p
F (U, E~p) = 1 − 1

d2

∑

j

pj|TrU †Uj |2 = 1 − 1

d2
max

j
{|TrU †Uj |2} . (3.6)

For a unitary U the best approximation is achieved by the program state |j〉 maximizing the overlap |TrU †Uj|2. For
the QID processor an arbitrary U can be written as a linear combination of the operators Uk, i.e. U =

∑

k αkUk and
ǫ(U) = 1− 1

d2 maxj |αkTrUkUj |2 = 1−maxj |αj |2. Thus, the quality of approximations on the QID processor is given
by

ǫQID = max
U

ǫ(U) = 1 − 1/d2 . (3.7)

This value is achieved for the unitary transformation U = 1
2

∑

j Uj.

C. SWAP

The quantum SWAP gate acts on two registers of the same size, d = N , and its performance is defined in the

following way GSWAP(̺⊗ ξ)G†
SWAP = ξ⊗ ̺. Taking the SWAP gate as a processor we can implement all contractions

to a single point specified by the program state, i.e. Cξ[̺] = ξ for all input states ̺. It is clear that such processor does
not belong to the family of U processors. Indeed it cannot be used to realize any unitary transformation. However,
unlike for U processors, for each program state the SWAP processor implements different program, which makes it
exceptional, because there is no redundancy in the state space of the program register. Let remind us that for U
processors all states having the same diagonal elements in the basis of vectors |j〉 encode the same quantum operation.
The set of contractions is closed under convex combinations and except extremal points of the whole set of quantum
operations (pure-state contractions) they contain also totally random channel, i.e. a contraction to the total mixture.

Let us consider an arbitrary measurement M of the program register. The probability of measuring the result |m〉
is given as

p(m) = Tr[QmGSWAP(̺⊗ ξ)G†
SWAPQm] = Tr[ξ ⊗ |m〉〈m|̺|m〉〈m|] = 〈m|̺|m〉 ,
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where we used the notation Qm = I ⊗ |m〉〈m|. That is, for any measurement the resulting probability distribution
depends on the initial state of the data, i.e. no specific quantum operation is associated with particular results. Or,
to be more precise, for each outcome the contraction to a fixed point ξ is realized. Therefore, measurement-assisted
SWAP processors are in some sense trivial and do not provide us with any improvement of performance. Therefore ,
it does not make much sense to apply measurements at the output of the SWAP processor. Consequently, the SWAP

processor is not suitable for performing probabilistically any unitary transformation, i.e. P SWAP
success = P

SWAP

success = 0.
In what follows we will see that from the point of view of approximative implementation of unitary transformations,

the SWAP processor acts much better. Let us calculate the error ǫ(U) = 1− 1
d2 maxΞ

∑

r |TrU †Ar(Ξ)|2, where Ar(Ξ)
are Kraus operators associated with pure program states, i.e. Ar(Ξ) = 〈r|GSWAP|Ξ〉 = 〈r|∑j,k |k〉〈j| ⊗ |j〉〈k|Ξ〉 =

|Ξ〉〈r|. In the matrix (basis) representation of GSWAP one can use any basis, i.e. even a basis containing the state
vector |Ξ〉. Our task is to find ǫ(U) = 1 − 1

d2 maxΞ

∑

r |〈r|U †|Ξ〉|2. Choosing the basis containing the vector |Ξ〉
we obtain that we have to maximize the length of the column of the unitary transformation U †. But we know that
columns form mutually orthonormal vectors, and therefore in this basis the expression

∑

r |〈r|U †|Ξ〉|2 = 1. This
means that each pure program state |Ξ〉 approximates each unitary operation with the same accuracy measured by
ǫ(U) = 1 − 1/d2. And consequently

ǫSWAP = ǫSWAP = 1 − 1/d2 . (3.8)

Thus, the worst case accuracy of the QID and the SWAP processors are the same. Nevertheless, it should be noted
that for the QID the program space is twice as large as the program space for the SWAP processor. Therefore, we can
conclude that the SWAP processor is more optimal (suitable) for approximate programming. However, the situation
is completely different for probabilistic programming.

IV. OPTIMALITY OF APPROXIMATE PROCESSORS

Each quantum processor induces a mapping G from the set of program states into a subset of all quantum operations
applied on the data register, i.e. G : ξ 7→ Eξ. Let us denote by ΓG ⊂ Γ the subset of deterministically implementable
quantum programs, where Γ stands for the set of all possible quantum operations. Since ΓG is a linear image of the
set of program states, it is convex. The question of optimality then can be illustrated in the following way. Denote
by ∂Γ the boundary with respect to some topology. Then the worst case optimality parameter measures the distance
between the points of the sets ΓG and ∂Γ. Formally, ǫG = maxT ∈ΓG

minE∈ΓD(E , T ).
For the process fidelity we have

ǫG = 1 − min
T ∈ΓG

max
E∈Γ

F (E , T ) . (4.1)

Let us consider E ′, T ′ that optimize the accuracy. Because of the fact that F (
∑

k pkEk, T ′) ≥ ∑

k pkF (Ek, T ′) it
follows that E ′ can be always chosen to be the extremal quantum operation of the set Γ. Let us formulate the main
problem: given a data register of size d and given the program register of size N . What is the optimal approximate
processor? This problem is indeed difficult and only partial results are known.

Let us pay attention to an optimal realization of all unitary transformations. In this case the approximate processor
is universal if it performs an arbitrary unitary transformation with nonzero accuracy, i.e. 0 < ǫ(U) ≤ 1. For instance,
the CNOT processor is not universal in this sense, but the SWAP processor is. The necessary and sufficient condition
for a processing being universal is the following: The process fidelity has to nonzero for all unitary transformations
which means that F (U, ξ) = 1

d2

∑

r |TrU †Ar(ξ)|2 > 0. The general processor can be written in the form G =
∑

jk Ajk ⊗ |j〉〈k|. Providing that Ajk form a complete operator basis the process fidelity is different from zero for

all unitary transformations. In particular, for the SWAP processor the operators Ajk = |k〉〈j| undoubtedly form a
complete basis.

For the d-dimensional data register the processor can be universal (implementing all unitaries) only if the operators
Ajk form an operator basis, i.e. they are independent and the total number of them is d2. This necessarily means
that universal processors for the d dimensional program registers must use at least d dimensional program register.
It is easy to see that U processors with such program size cannot be universal, because they do not contain sufficient
amount of independent operators, Ajk = δjkUj . The existence of an approximate universal processor of this size is
guaranteed by an example of the SWAP processor. The question is whether this processor is optimal, i.e. whether
ǫSWAP = 1−1/d2 attains indeed the minimal value for a universal processor of the program size N = d. D’Arianno and
Perrinoti [6, 14] found that this is indeed the case for a single qubit (although they considered a different processor).

In some sense such an error can be achieved trivially. The process fidelity will be nonzero for all quantum operations
providing that at least for one of the program states ξ encodes an operation T such that the state ΦT has the full rank,
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i.e. Tr
√√

ΦEΦT
√

ΦE > 0 for all E . This condition is only sufficient, but not necessary for a processor to be universal.
Anyway, once we are discussing the problem in general, this condition is sufficient to derive the the lower bound on
the accuracy of approximate processors. Consider that the processor enables us to perform a contraction into the total
mixture, i.e. let us consider the map A[̺] = 1

dI. Then for any E the process fidelity reads F (A, E) = 1
d2 [Tr

√
ΦE ]2,

because ΦA = 1
d2 I. The minimum is achieved for pure states ΦE corresponding to unitary transformations. That is,

all other programs are approximated by this operation better than unitaries and therefore for such universal processor
ǫG ≥ 1 − 1/d2. The SWAP as well as the QID processors can realize the transformation A and they both saturate
this bound.

Let us restrict the original problem and ask the following question: What is the optimal U processor? To be
able to discuss optimality processors they have to be universal. It means that this question does not make any
sense for program registers of the size N < d2. The QID is an example of an approximate processor in the case
when N = d2. For the U processors the situation is simpler because the process fidelity is given by the formula
F (U, E) = 1

d2

∑

r |TrU †Ar|2. Let us fix the dimension of the program space to be N = d2, i.e. we work with d2

unitaries Uj . The first question is which of the U processors is optimal in implementing all unitary transformations.
We know that the best approximation is achieved for the basis states |j〉 and ǫ(U) = 1− 1

d2 maxj{|TrU †Uj |2}. That is,
the worst case is represented by a unitary Ux having the smallest maximal overlap with “elementary” programsUj . Our

aim is to show that this worst case is optimized for mutually orthogonal operators σj , i.e. Trσ†
jσk = dδjk. Processors

having as elementary programs mutually orthogonal unitaries are all equivalent. In particular, the approximation of
the operator Ux = 1

d

∑

j σj maximize the error to ǫ(Ux) = 1− 1/d2. Each unitary transformation can be expressed in
a suitable orthogonal operator basis in such form, i.e. each unitary operation can represent the worst case for some
processor.

Consider that we know the transformation Ux for a processor with nonorthogonal unitaries. Let us define a processor
using orthogonal operators σj such that Ux = 1

d

∑

j σj . Let us express also the elementary operators Uj in this new

operator basis Uj =
∑

a ujaσa. Calculating the overlap we obtain the following bound

|TrUxUk|2 = |1
d

∑

j

ukj |2 ≤
∑

j

|ukj |2 ≤ 1 , (4.2)

where we used the identities Trσ†
aσb = dδab and TrU †

kUk = d
∑

j |ukj |2 = d. Consequently, the error is minimized for

|TrUxσk|2 = 1 and therefore we can conclude that the U processors with orthogonal elementary programs are indeed
optimal, i.e. the QID processor is an optimal approximate U-processor for N = d2 dimensional program register.

This optimality result for approximate processors can be used directly for probabilistic processors by using the
inequality Perror ≥ ǫ, or equivalently Psuccess ≤ 1 − ǫ. The problem is now the following: Which of the U processors
is optimal in a probabilistic realization of unitary transformations? Based on the answer to the similar question
for approximative programming we can say that the optimal success probability is less or equal to 1 − ǫ = 1/d2,
i.e. Psuccess ≤ 1/d2. However, we know that the measurement-assisted QID processor saturates this bound, i.e.
PQID,M

success = 1/d2, and therefore the QID is an example of the optimal probabilistic U processor implementing all
unitary transformations.

V. OPTIMALITY FOR U(1) ROTATIONS

In this section we will relax the universality condition and we will study an implementation of a one-parametric
group of unitary transformations. An example of the universal processor performing this task is the CNOT processor.
Our aim will be to specify the dependence of the approximation error and the success probability on the size N of
the program register.

Let us start with the approximative realization of Uϕ = exp(iϕA) on U processors, i.e. we use processors of the form
G =

∑

j Uj ⊗ |j〉〈j|, where j = 1, . . . , N . Since the approximation error is specified by overlaps between Uϕ and Uj ,

it is reasonable to assume that Uj are from the linear span of unitaries Uϕ. Otherwise, we would obtain TrU †
ϕUj = 0

which is not interesting for approximative realization of Uϕ, i.e. the associated states |j〉 do not approximate any
transformation Uϕ.

In particular, Uj are from the group Uϕ. The overlap between two unitaries Uϕ, Uϕ′ is given by the expression

|TrU †
ϕUϕ′ |2 = |Tr exp[i(ϕ′ − ϕ)A]|2 = |∑n e

i(ϕ′−ϕ)an |2, where an are eigenvalues of A. The closer the angles ϕ′, ϕ
are, the larger is the overlap. In what follows we will assume that the data register is two-dimensional, i.e. A = ~a · ~σ,
Uϕ = cosϕI + i sinϕ (~a · ~σ) and |TrU †

ϕUϕ′ |2 = 4 cos2(ϕ′ − ϕ).
Let us consider a processor with N dimensional program register performing N unitaries Uϕj

. The question is,
what are the best choices of angles ϕj in order to minimize the approximation error of the implementation of the
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whole group Uϕ (ϕ ∈ [0, 2π]). The program state |j〉 best approximates those angles ϕ that lie in the vicinity of
the angle ϕj (the difference ϕj − ϕ is smaller than the differences ϕk − ϕ for k 6= j). Because of the identity
cos2(ϕj −ϕ+ π) = cos2(ϕj −ϕ) the state |j〉 approximates with the same accuracy the unitaries Uϕ and Uϕ+π. That
is, it is enough to consider only implementation of unitaries specified by angles within the interval ϕ ∈ [0, π]. The
whole problem can be illustrated in the following way. The angles ϕj divide the half-circle (angles from 0 to π) into N
regions. The state |j〉 approximates optimally all the angles from the interval [ϕj − 1

2 (ϕj − ϕj−1), ϕj + 1
2 (ϕj+1 −ϕj)]

(for simplicity we assume that ϕ1 = 0 and ϕj < ϕj+1). The best choice of ϕj is such that the half-circle is divided
into equally large regions, i.e. the angles ϕj are separated by the same angle ϕj+1 − ϕj = π/N . In such case the
approximation error reads

ǫG = 1 − 1

4
4 cos2(π/(2N)) = 1 − cos2(π/(2N)) (5.1)

because for arbitrary ϕ the smallest difference is minj{ϕj − ϕ} ≤ π/(2N), i.e. the overlap is maximal and the error
ǫG is optimal. The average error of implementation of the operations Uϕ equals to

ǫG =
1

2
(1 − N

π
sin

π

N
) . (5.2)

Based on this result we can bound the optimal probabilistic realization of qubit operations Uϕ using the N dimen-
sional program register and the U processor

PG
success ≤ cos2(

π

2N
) , (5.3)

P
G

success ≤ 1

2
(1 +

N

π
sin

π

N
) . (5.4)

Now the question is whether there exists a measurement-assisted U processors saturating these bounds. In what
follows we will present an example of the U processor that saturates this bound in a limit sense, i.e. for large program
registers.

In Refs. [15, 16] the authors proposed a way how to increase the success probability to arbitrarily close to unity
by using large program registers with the dimensionality N = dimHp = 2n, where n is the number of qubits in the
program register. They found a network of the controlled U form composed of n sequentially applied k-Toffoli gates
for k = 1, 2 . . . n. The k-Toffoli (Tk) implements a controlled NOT operation with k control qubits and a single target
qubit. The whole processor acts on n+ 1 qubits, where the first qubit represents the data and all other qubits form
the program register. The k-Toffoli gate uses qubits 1, . . . k as control qubits (this includes the program qubit as
the qubit number 1) and the (k + 1)th qubit is the target qubit. The whole processor is described by the operator
G = Tn(Tn−1 ⊗ I) . . . (T2 ⊗ I⊗(n−2))(T1 ⊗ I⊗(n−1)). Vidal et al. showed [15, 16] that it is possible to choose program
states and a measurement such that the success probability scales as

PM
success(Uϕ) = 1 − (1/N) (5.5)

for an arbitrary operation Uϕ = eiϕσz . Thus, we find that PG,M
success = P

G,M

success = 1− (1/N), which is consistent with the

derived bound, but scales differently, because PG
success ≤ 1 − sin2(π/2N) → 1 − (π/(2N))2 for large N . This means

that the saturation of the bound is still an open question. Moreover, let remind us that the derived formula for the
measurement-assisted U processor holds only for dimensions N = 2n, where n is the size of the program register in
the number of qubits.

VI. CONCLUSION

One of the goals of the research in the field of quantum computing is a construction of programmable quantum
processor. It follows from the work of Nielsen and Chuang that perfect programmable processor does not exist.
In this paper we have analyzed two different scenarios relaxing the condition of universality: approximate imple-
mentation of quantum programs (approximate processors) and probabilistic implementation of quantum programs
(probabilistic processors). We have discussed the problems of optimality of universal approximate processors and
universal (measurement-assisted) probabilistic processors. Using examples of the CNOT, the QID and the SWAP
processors we have shown explicitly the validity of the general relation between the approximation error ǫG and the
success probability PG

success, respectively. In particular, we have seen that the inequality Perror ≥ ǫ is not saturated in
general case. For instance, the SWAP processor is completely useless in probabilistic programming P SWAP

error = 1, but
approximatively it performs optimally.



9

We have studied in detail optimality of restricted class of processors - the so called U processors. We have shown
that the QID processor is optimal in implementing unitary transformations on a qudit with N = d2 dimensional
program register. Under the same settings we have analyzed the restricted universality of an implementation of only
one parametric set of unitary transformations. Unlike the QID processor we have found that the presented example
of the U processor does not saturate the bound derived from approximative implementation. That is, the question of
optimality for this processor is an open question.

The optimality questions of universal processors (either approximate, or probabilistic) represent a difficult open
problem of quantum information science [18]. In this paper, we have described current state of the art and we have
presented known results. The question of efficient programmability of quantum computers makes these problems of
optimality very attractive and they deserve further investigation.
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