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Entanglement, purity and energy: Two qubits vs Two modes
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1Research Center for Quantum Information, Slovak Academy of Sciences, Dúbravská cesta 9, 84511 Bratislava, Slovakia
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We study the relationship between the entanglement, mixedness and energy of two-qubit and two-
mode Gaussian quantum states. We parametrize the set of allowed states of these two fundamentally
different physical systems using measures of entanglement, mixedness and energy that allow us to
compare and contrast the two systems using a phase diagram. This phase diagram enables one
to clearly identify not only the physically allowed states, but the set of states connected under an
arbitrary quantum operation. We pay particular attention to the maximally entangled mixed states
(MEMS) of each system. Following this we investigate how efficiently one may transfer entanglement
from two-mode to two-qubit states.

PACS numbers: 03.67.-a

I. INTRODUCTION

In this paper we present a parametrization of the states
of two qubits and the Gaussian states of a two-mode con-
tinuous variable system in terms of entanglement, purity
and energy. This allows one to compare these two funda-
mentally different physical systems using a entanglement-
purity-energy (EPE) phase diagram. The relationship
between these three properties gives us some insight into
the set of allowed states in both systems and, in par-
ticular, the distinction between separable and entangled
states, both pure and mixed. Also there has been consid-
erable interest in recent years in the maximally entangled
mixed states (MEMS) of two qubits and two modes. Here
we re-examine this type of state and its dependence on
the energy in the system.

Entanglement is the resource used in many quantum
information protocols including quantum teleportation,
quantum cryptography and quantum communication. In
the simplest form, these protocols ideally require maxi-
mally entangled pure states. It is highly likely though
that in any real implementation the states will be mixed
to some degree. It is then desirable to know how this
mixedness limits the amount of entanglement.

Qubits have been the mostly studied basic informa-
tion unit in quantum information theory. As a two-level
quantum system they have been experimentally realised
in many different physical set-ups. Two qubits provide
the simplest discrete quantum system where non-trivial
properties of entanglement can be studied. The entan-
glement can be unambiguously quantified using different
measures and the maximally entangled pure states are
the so-called Bell pairs. For mixed states, those states
which maximise the entanglement for a given degree of
purity are the MEMS states introduced by Ishizaka and
Hiroshima [1]. They were studied in more depth by Ver-
straete et al. in Ref. [2] who derived the unitary oper-
ation which must be applied in order to maximise the

entanglement of a state ρ. An Ansatz for the MEMS,
which is seen to be locally equivalent to a diagonal state
transformed under one of the aforementioned unitary op-
erations, was presented in Ref. [3]. Different measures
of entanglement do not have the same dependence on a
given measure of mixedness. Thus the MEMS depend on
which measures are chosen and this fact is investigated
in detail in Ref. [3].

The previous studies of maximally entangled mixed
states use entanglement and mixedness to characterize
the set of two-qubit states. Indeed, in Ref. [4] the au-
thors use a concurrence-purity (CP) phase diagram to
graphically present the set of physically allowed states.
A physical realization of two qubits could be two two-
level atoms or two polarized photons where the | 0〉 and
| 1〉 qubit levels are the ground and excited atomic lev-
els in the former or vertical and horizontal polarization
states in the latter case. It is the case that the energy
in the system has a direct influence on the entanglement
and mixedness properties. For instance, if we know there
are zero or two excitations in the system composed of
two atoms we can tell without ambiguity that the two-
qubit is both pure and separable. For other energies the
connection between entanglement, mixedness and energy
is not so clear. The first aim of this paper is to explore
this relationship with particular emphasis on “frontier”
states - those states that lie on the edge of the physically
allowed states.

We will also investigate the relationship between en-
tanglement, mixedness and energy for two-mode Gaus-
sian states. Interest in the information processing abil-
ities of continuous variable quantum systems has grown
dramatically in recent years due mainly to the experi-
mental benefits of generating and measuring entangled
states compared to a discrete quantum system. The sim-
plest system one can then study is that of two modes
of, say, an electromagnetic field. Also, by restricting to
Gaussian states, those states with a Gaussian Wigner
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phase space representation, there exists solid measures
of entanglement when the energy in the system is finite.
The idea of a Bell state in this system is not clearly de-
fined as it is possible in theory to have arbitrarily large
entangled states limited only by the ability to squeeze
states.

Extremally entangled states of two-mode Gaussian
states were studied in Refs. [5, 6] where it was demon-
strated that by fixing not only the global purity, but
also the purities of the reduced density matrices of both
modes, there exist maximally and minimally entangled
states. In what follows we will simply fix the total en-
ergy in the system and then look for the physically al-
lowed states at this energy, including those that are max-
imally entangled. The EPE phase diagram offers a nice
visual aide to the allowed states. The distinction between
separable and entangled states is clear to see and, while
maximally entangled states coincide with the previous
work, in this picture the minimally entangled states are
just the separable states.

The rest of the paper is organised as follows. In section
II we cover the case of two qubits in some detail with par-
ticular regard to the extremal states. Section III covers
the two-mode Gaussian states where we find some sim-
ilarities and differences with previous efforts to describe
these states. In section IV we look at how entanglement
can be transferred from two-mode to two-qubit states.
We conclude in section V with some closing remarks.

II. TWO-QUBIT STATES

Two qubit states are completely specified by 15 pa-
rameters and as such, it is difficult to find an appropriate
parametrization in which to view the state space. There-
fore we want to reduce the number of parameters involved
while simultaneously retaining as much non-trivial infor-
mation about the states as possible.

We choose to use the entanglement, purity and energy.
First we need to define the quantities we will use to quan-
tify the entanglement, mixedness and energy for qubits.
For entanglement we choose to employ the concurrence.
This is an easily calculable measure for the entanglement
of two qubits in the state ρ given by the explicit formula,

C(ρ) = 2 max{µj} −
∑

j

µj , (1)

where {µj} are the square roots of the eigenvalues of the
matrix R = ρ(σy ⊗ σy)ρ∗(σy ⊗σy) and ρ∗ is the complex
conjugate of the density matrix ρ. C(ρ) ranges from zero
for separable states to one for maximally entangled Bell
states. The tangle,

τ(ρ) = [C(ρ)]2 , (2)

and the entanglement of formation,

EoF (ρ) = h(x+) + h(x−) , (3)

where x± = (1 ±
√

1 − [C(ρ)]2)/2 and,

h(x) = −x log2 x (4)

and the concurrence are equivalent measures of entangle-
ment. The negativity,

N(ρ) =
||ρΓ|| − 1

2
, (5)

and the logarithmic negativity,

LN (ρ) = log2 ||ρΓ|| , (6)

where ||A|| = Tr
√
AA† and ρΓ is the partial transpose of

ρ with respect to one or other of the subsystems, are two
measures of entanglement we could also have used here.
The ordering of states is changed depending on the choice
of entanglement measures [7, 8, 9]. In Ref. [2] the au-
thors investigate in detail how the maximally entangled
mixed states depend on the choice of measures for both
entanglement and mixedness. For instance, when purity
is chosen to measure the mixedness and concurrence the
entanglement, the MEMS are those states defined in Eq.
(18) whereas if the negativity is used to measure entan-
glement, the Werner states,

ρW = r|Ψ〉〈Ψ | + (1 − r)

4
I , (7)

where |Ψ〉 is a maximally entangled state and I is the
identity, achieve the highest degree of entanglement for
a given amount of purity. Here we are interested in what
parameters we can use to view the set of physically al-
lowed states of a two-qubit system in such a way as to
gain as much information as possible. We take gener-
ally the entanglement, the mixedness and the energy,
while the measures we choose to quantify these prop-
erties are not so important. It only affects the shape
of the entanglement-energy-purity diagram as can seen
when comparing Fig. 3 to Fig. 4(a).

To quantify the mixedness of a state ρ we will use the
purity,

P (ρ) = Tr[ρ2] . (8)

In general, for d-dimensional systems P (ρ) ranges from
1/d for completely mixed states to 1 for pure states. It
is closely related to the linear entropy measure of mixed-
ness, SL(ρ) = d

d−1 (1 − P (ρ)), d > 1, which ranges from
zero for pure states to one for the maximally mixed d-
dimensional state.

The energy of two two-level atoms with resonance fre-
quency ω0 is defined here as the expectation value of the

Hamiltonian, Hatom = ~ω0σ
(1)
z + ~ω0σ

(2)
z , where σz is

the Pauli matrix satisfying σz | j〉 = (−1)j+1 1
2 | j〉, for the

ground and excited atomic states {| 0〉, | 1〉}. We set ~

and ω0 to 1 leaving H = σ
(1)
z + σ

(2)
z . We will use the

average excitation number in the system,

E(ρ) = 1 + Tr[Hρ] . (9)
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E(ρ) ranges from zero (for ρ = | 00〉〈00 |) to two (ρ =
| 11〉〈11 |) for the physically allowed two-qubit states.

A concurrence and purity phase diagram is one method
which tells us much about the set of physically allowed
states. This phase diagram is shown in Fig. 1. It is
bound by the maximally entangled mixed states defined
later in Eq. (18). Also shown in this figure are the
Werner states from Eq. (7). We now add another param-
eter the energy of the states. The relationship between
the energy, purity and entanglement is already known
for certain extreme two-qubit states. These are the pure
states, the separable states and the maximally entan-
gled mixed states mentioned above. The entanglement-
purity-energy (EPE) phase diagram for these states is
shown in Fig. 2. Each point in these diagrams repre-
sents the set of states,

{ρ : E(ρ) = E,C(ρ) = C,P (ρ) = P} . (10)

We first go through explicitly the boundaries of Fig. 2
which are more clearly shown in Fig. 4(a).

A. Pure States

For the pure states, P = 1, we have,

|Ψ〉 = a|α1〉|β1〉 + b|α2〉|β2〉 , (11)

by the Schmidt decomposition, where a, b ∈ R, 0 ≤ a, b ≤
1 with a2 + b2 = 1, and 〈αj |αk〉 = δjk = 〈βj |βk〉. The
concurrence for |Ψ〉 is C(|Ψ〉〈Ψ |) = 2ab. The maxi-
mum/minimum energy of |Ψ〉 for a given concurrence is
easily seen to be Emax/min = 2b2. Thus for a concurrence
C, the pure states on the EPE diagram are contained in
a circle centered on E = 1, C = 0, P = 1 with radius 1,
(E−1)2 +C2 ≤ 1. This is the blue curve in Fig. 4 (curve
satisfying P = 1).

B. Separable States

Separable states of a bipartite system may be expressed
as a convex sum of product states,

ρsep =
∑

j

pjρ
A
j ⊗ ρB

j . (12)

This form is not particularly useful as it is difficult in
general to find such a decomposition. Here we want to
investigate the dependence of the purity and energy for
the separable states. In particular we would like to know
the bounds on these states i.e. given a separable state
ρ with purity, P , what is the maximum energy ρ can
have? This is equivalent to finding the minimum purity
of separable state with a certain purity. Given the Hamil-
tonian we use to calculate the energy, it is reasonable to
assume the separable states with maximum or minimum
energy for a given purity will be diagonal in the basis
{| 00〉, | 01〉, | 10〉, | 11〉}.

Thus we first consider the following density matrices,

ρ =







p1 0 0 0
0 p2 0 0
0 0 p3 0
0 0 0 p1






, (13)

with E(ρ) = 1, C(ρ) = 0, P (ρ) = 2p2
1 + p2

2 + p2
3 and 2p1 +

p2 + p3 = 1. States of this form include the completely
mixed state but the pure states | 00〉 or | 11〉 cannot be
expressed in this way. We shift the energy of the state ρ
by a fixed amount, ǫ, to get ρǫ,

ρǫ =







p1 + ǫ 0 0 0
0 p2 − ǫ 0 0
0 0 p3 0
0 0 0 p1






, (14)

so that the energy is now E(ρǫ) = 1 + ǫ and the purity is
P (ρǫ) = (p1+ǫ)

2+(p2−ǫ)2+p2
3+p

2
1. The minimum purity

for a given energy, E, is thus Pmin = 1
4 (1+2(E−1)2) for

1
2 ≤ E ≤ 3

2 to preserve positivity of the density matrices.
In order to calculate the minimum purity of states ρ with
energy E(ρ) ≥ 3

2 we take the following density matrices,

ρ =







ǫ 0 0 0
0 p− ǫ 0 0
0 0 1 − p 0
0 0 0 0






, (15)

where ρ = | 00〉〈00 | when ǫ = p = 1. For these states we
haveE(ρ) = 1+ǫ and purity P (ρ) = (p−ǫ)2+(1−p)2+ǫ2.
The minimum purity in this case is simply,

Pmin(ρ) =
3

2
E2 − 2E + 1 , (16)

with 0 ≤ E ≤ 1
2 . Similarly, for 3

2 ≤ E ≤ 2,

Pmin(ρ) =
3

2
E2 − 4E + 3 . (17)

These three sections are symmetric about E = 1 as one
would expect and Pmin = 3

8 for each of the relevant ex-

pressions at E = 1
2 and E = 3

2 . This is the green curve
in Fig. 4 (curve satisfying C = 0).

C. MEMS

The maximally entangled mixed states (MEMS) with
respect to concurrence and purity measures are conve-
niently expressed using their concurrence, C, as a pa-
rameter,

ρMEMS = C|φ+〉〈φ+ | + 1

3
| 01〉〈01 |

+

(

1

3
− C

2

)

(| 00〉〈00 |+ | 11〉〈11 |) ,
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for C ∈ [0, 2
3 ] while,

ρMEMS = C|φ+〉〈φ+ | + (1 − C)| 01〉〈01 | , (18)

for C ∈ [ 23 , 0], where |φ+〉 = 1√
2
(| 00〉 + | 11〉). As they

are written above the MEMS have zero energy while the
dependence of purity on the concurrence is given by,

P =
1

3
+
C2

2
, (19)

for C ∈ [0, 2
3 ] and,

P = C2 + (1 − C)2 , (20)

for C ∈ [ 23 , 1]. We can find the maximum energy these
states attain by applying local unitary operations, U ∈
SU(2)⊗SU(2). Take U = U1(θ1, ~n1)⊗U2(θ2, ~n2), with,

Uj = exp [−iθj(~nj · ~σ)] , (21)

where |~nj | = 1 for j = 1, 2 and ~σ = (σx, σy , σz) are the
Pauli matrices. Applying U gives ρ′ = UρMEMSU

† with
energy,

E(ρ′) = 1 +
1

3

[

sin2 θ2(1 − n2
2,z) − sin2 θ1(1 − n2

1,z)
]

.

(22)
Thus when C ≤ 2

3 the MEMS have an energy in the range

and 2
3 ≤ E ≤ 4

3 . For C ≥ 2
3 , the same calculation gives

an energy for the locally transformed states,

E(ρ′) = 1+(1−C)
[

sin2 θ2(1 − n2
2,z) − sin2 θ1(1 − n2

1,z)
]

,
(23)

and so C ≤ E ≤ 2−C for these states. The MEMS lines
with maximum and minimum energy are the red curves
in Fig. 4 (curves beginning at E = 1, P = 1, C = 1).

The entanglement-purity-energy phase diagram is
plotted in Fig. 2 for 100,000 randomly generated den-
sity matrices confirming the boundaries described above.
There are some points on this diagram worth highlight-
ing,

• {C,P,E} = {1, 1, 1} represents all the Bell states,

|Φ±〉 =
1√
2
(| 00〉 ± | 11〉) ,

|Ψ±〉 =
1√
2
(| 01〉 ± | 10〉) , (24)

• {1, 0, 1} represents all pure states of the form,

|ψ〉 = a| 00〉+ b| 01〉 + c| 10〉+ a| 11〉 . (25)

• {1, 0, 0} represents | 00〉.
• {1, 0, 2} represents | 11〉.
• {0, 1

4 , 0} represents the completely mixed state, ρ =
1
41I.

• {0, 1
4 ≤ P ≤ 1

3 , 1 − 1√
6
≤ E ≤ 1 + 1√

6
} represents

all the separable states, including the completely
mixed state, which cannot be entangled by unitary
operations.

III. TWO-MODE GAUSSIAN STATES

We now consider a two-mode continuous variable sys-
tem occupying a Hilbert space which is the tensor prod-
uct of two Fock spaces. The creation and annihilation

operators for the jth mode will be denoted by a†j and aj

respectively and these give rise to the quadrature phase

operators xj = (aj + a†j) and pj = (aj − a†j)/i. We will
only consider Gaussian states of this system which are,
by definition, states which have a Gaussian characteristic
or quasi-probability function in phase space. For these
states it is only necessary to specify the first and second
statistical moments of the quadrature operators. Denot-
ing X = (x1, p1, x2, p2), to specify ρ we need the mean
values (〈X〉) and the covariance matrix σ where,

σij =
1

2
(〈XiXj〉 + 〈XjXi〉) − 〈Xi〉〈Xj〉 . (26)

Unitary operations on ρ correspond to symplectic oper-
ations on σ [13]. Thus,

UρU † ⇔ SσS⊤ . (27)

where S ∈ Sp(2, (R)) or SΩS⊤ = Ω and,

Ω =

(

ω 0
0 ω

)

, ω =

(

0 1
−1 0

)

. (28)

A local unitary operation Uloc = U1 ⊗ U2 correspond to
the local symplectic operation Sloc = S1 ⊕ S2 and each
Sj satisfies SjωS

⊤
j .

We can set the first moments of X to zero by means
of local unitary operations which do not affect the en-
tanglement or purity properties of ρ. It has been shown
that by local unitary operations any CM σ of a two-mode
state can also be brought to the so-called standard form
[10, 11],

σsf = S⊤σS =







a 0 c+ 0
0 a 0 c−
c+ 0 b 0
0 c− 0 b






. (29)

Writing σsf ≡ σ (we drop the sf subscript from now
on for clarity) as

σsf = S⊤σS =

(

α γ
γ⊤ β

)

, (30)

the coefficients a, b, c+ and c− are determined by the local
symplectic invariants,

Det α = a2, Det β = b2 and Det γ = c+c− . (31)

The global symplectic invariants, invariant under Sp(4,R)

operations, are,

Det σ = (ab− c2+)(ab− c2−) ,

∆ = Det α+ Det β + 2Det γ , (32)
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the latter being known in the literature as the seralian

[12] while the former is related to the purity by,

P =
1√

Det σ
. (33)

These local and global invariants determine all the entan-
glement and mixedness properties of a two-mode Gaus-
sian state ρ.

Positivity of ρ and the commutation relations for
quadrature phase operators mean that the CM σ is re-
quired to satisfy [13, 14],

σ + iΩ ≥ 0 , (34)

which in turn means,

∆ ≤ 1 + Det σ , (35)

in order to be a proper covariance matrix. Any covariance
matrix can be written as [15],

σ = S⊤νS , (36)

where S ∈ Sp(4,R) and,

ν = diag(ν−, ν−, ν+, ν+) , (37)

is the covariance matrix corresponding to a tensor prod-
uct of two thermal states. The state ν in Eq. (37) has a
density matrix which is the tensor product of two thermal
states,

ρ = ρ
(−)
th ⊗ ρ

(+)
th , (38)

with,

ρ
(±)
th =

2

ν± + 1

∞
∑

j=0

(

ν± − 1

ν± + 1

)j

| j〉〈j | , (39)

and the average photon number in each of the thermal

states, ρ
(±)
th , is

n̄(±) =
ν± − 1

2
. (40)

The quantities {ν+, ν−} are called the symplectic eigen-
values as they are invariant under symplectic operations.
In terms of the global invariants Detσ and ∆ the sym-
plectic eigenvalues have the simple expression,

2ν2
± = ∆ ±

√

∆2 − 4Detσ . (41)

Taking ν− ≤ ν+, Eq. (34) reads,

ν− ≥ 1 . (42)

We can now carry out a similar investigation of the
relation between the entanglement, purity and energy
of two-mode quantum states as we have shown for two
qubits in the previous section. This is the natural way to

approach the concept of maximally entangled states in
continuous variable systems because, as is well-known,
any measure of entanglement can have arbitrarily large
values for a given purity. By restricting to a fixed energy
we can compare continuous and discrete level systems
on the same terms. First we define the quantities under
consideration in the case of two-mode Gaussian states.

The quantification of entanglement of Gaussian bipar-
tite states has been studied extensively in recent years.
One way has been to utilize the partially transposed
state (PPT) or Peres-Horodecki condition for continuous
variable systems [10]. The PPT criterion is necessary
and sufficient for the separability of two-mode Gaussian
states and is defined as the transposition operation per-
formed on only one of the subsystems. In a two-mode
CV system this amounts to a mirror reflection in one of
the momenta operators,

ρ→ ρ̃⇒ pi → −pi , (43)

for some i = 1, 2. In terms of local the symplectic invari-
ants this means that,

Det γ → −Det γ . (44)

And as this operation does not preserve commutation
relations, hence it is not symplectic, the global invariants
∆ and Detσ change to,

∆̃ = Det α+ Det β − 2Det γ

Detσ̃ = Detσ , (45)

for the new CM σ̃ corresponding to the transposed den-
sity matrix ρ̃. The PPT criterion thus means that the
smallest symplectic eigenvalue of σ̃,

ν̃− =

√

∆̃ −
√

∆̃2 − 4Detσ

2
, (46)

must satisfy,

ν̃− ≥ 1 . (47)

In fact, this eigenvalue completely quantifies the entan-
glement through its relation with the negativity,

N = max

[

0,
1 − ν̃−
2ν̃−

]

, (48)

introduced in Ref. [16] and applied to CV systems in
Ref. [17], and the logarithmic negativity,

EN (ρ) = max{0,− ln ν̃−} , (49)

which are both decreasing functions of ν̃−, thus quanti-
fying the violation of Eq. (47).

Recently, Wolf et al. [18] have defined the entangle-
ment of formation (EoF) for Gaussian states and, fur-
ther, have shown how to explicitly calculate this quantity
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for a given CM σ. It is an entanglement monotone un-
der local Gaussian operations and classical communica-
tion. This quantity has been further studied in Ref. [19]
and there it is shown that the entanglement of formation
leads to a different ordering of the states compared to
that induced by the negativity above. We could use the
entanglement of formation here but, apart from the sym-
metric two-mode Gaussian states, there is no analytical
expression for general Gaussian states. In fact for arbi-
trary two-mode Gaussian states, finding the EoF is quite
a non-trivial task. The solution has a nice geometric de-
scription which is discussed in Refs. [18, 19]. Ultimately,
though, it is determined via numerical minimisation so
we choose to deal with the logarithmic negativity due to
its more analytical nature.

To characterize the mixedness we use the purity again
which for two-mode pure states is simply given by,

P (σ) =
1√

Det σ
. (50)

For the energy we will use the sum of the average num-
ber of photons present in each mode,

E(ρ) = 〈a†1a1〉 + 〈a†2a2〉 = n̄1 + n̄2 . (51)

In terms of the CM, σ, corresponding to the state ρ,

E(ρ) =
1

4
Trσ − 1 +

∑

j

〈Xj〉2 . (52)

As we have mentioned, the mean values, 〈Xj〉, can be set
to zero by local operations which do not affect the en-
tanglement or purity. These operations obviously change
the energy though, so while we set them to zero in the
following, the energies calculated are the minimum val-
ues for a given σ in the standard form. As an example all
two-mode coherent states are represented by the vacuum,
with zero energy.

The local invariants a and b of a CM σ are related to
these expectation values of the number operators of the
two modes by

a = 2n̄1 + 1 , b = 2n̄2 + 1 . (53)

Also a and b are the inverses of the purities of the reduced
density matrices of the two modes, a = 1/µ1 = 1/Trρ2

1,
b = 1/µ2 = 1/Trρ2

2 with ρ1,2 = Tr2,1ρ. This fact has been
used to characterize the maximally and minimally entan-
gled two-mode mixed Gaussian states, for fixed global
and local purities [6], where the entanglement is quanti-
fied using the negativity.

We will now outline the EPE diagram for the two-
mode Gaussian states by first examining the extremal
states. These states have been studied in depth in Refs.
[6, 19]. In Ref. [6] the authors study the extremal en-
tanglement and mixedness of two-mode Gaussian states.
They introduce generalized maximally and minimally en-
tangled mixed states, denoted GMEMS and GLEMS re-
spectively, which are maximally and minimally entangled

states for fixed global and local purities. Given how the
local purities are defined, this would appear to be equiv-
alent to finding the maximally and minimally entangled
states for a fixed purity and average number of photons
in each mode. However, we will see that the minimally
entangled mixed states for fixed energy are simply the
separable states.

In the following we will restrict ourselves to the range
of energies, 0 ≤ E ≤ 2, where the energy is measured in
dimensionless units (number of excitations), in order to
draw parallels with the two-qubit case.

A. Pure States

A pure, P = 1, two-mode Gaussian state has a sym-
metric CM, corresponding to a two-mode squeezed vac-
uum, with a = b and satisfies c+ = −c− =

√
a2 − 1. The

minimum energy is simply,

Emin(ρ) = a− 1 . (54)

There is thus a simple form for the symplectic eigenvalue
of the partially transposed density matrix,

ν̃− = a−
√

a2 − 1 . (55)

The dependence of the logarithmic negativity for pure
states on the energy is shown in Fig. 5 up to a maximum
energy of 2. Any point on the curve in Fig. 5 represents a
pure state with CM given by the above values. However
by applying a local squeezing operator of the form,

Ssq =







er 0 0 0
0 e−r 0 0
0 0 e−r 0
0 0 0 er






, (56)

we can change the energy of the state to,

E(U(Ssq)
†ρU(Ssq)) = a cosh 2r − 1 , (57)

so that the curve shown indicates the maximally entan-
gled pure two-mode states for the given energy, i.e. the
two-mode squeezed vacua, and all pure states above the
curve are physically allowed.

B. Separable States

The separable states are all those for which the small-
est symplectic eigenvalue of the partially transposed CM
satisfies,

ν̃− ≥ 1 , (58)

or in other words the partially transposed covariance ma-
trix is still a valid one. The separable two-mode Gaussian



7

states are determined by the value of the energy through
the condition,

P ≥ 1

ab
, (59)

which is a direct consequence of keeping σ ≥ 0, and im-
plies that

P ≥ 1

(E + 1)2
, (60)

for separable states. The inequality (60) comes from con-
sidering all the combinations of “local” energies in each
mode which added together give E. The minimum occurs
when both modes contribute equally i.e. for symmetric
states. These states are the tensor product of two ther-
mal states in Eq. (38) with equal average photon number
in both modes. The curve shown in Fig. 6 shows the
minimum energy a separable two-mode Gaussian state
can have for a given purity and thus, as above, all the
physical states lie above this curve.

C. GMEMS & GLEMS

The Gaussian maximally and minimally entangled
states for fixed global and local purities were introduced
by G. Adesso et al. in Refs. [5, 6] through a parametriza-
tion of two-mode Gaussian states in terms of the local
purities,

µ1 =
1

a
, µ2 =

1

b
, (61)

and the global symplectic invariants, the purity and ser-
alian. By writing the parameters a, b and c± in terms of
the above parameters, the seralian must satisfy,

∆min ≤ ∆ ≤ ∆max , (62)

where ∆min and ∆max are easily calculated. From Eq.
(46) it is seen that,

∂ν̃2
−

∂∆

∣

∣

∣

∣

µ1,µ2,P

> 0 , (63)

so that the entanglement of a state as measured by the
negativity or logarithmic negativity is a monotonically
decreasing function of the seralian. Thus the limits im-
posed by Eq. (62) imply that there exist maximally
and, surprisingly, minimally entangled two-mode Gaus-
sian states for fixed values of the global and local purities.

Here we are looking for the maximally entangled mixed
Gaussian two-mode states for fixed energy. They are
found by again considering a state, ρ, with CM σ in the
standard form (29). We now fix the energy of the state,

E =
1

2
(a+ b) − 1 , (64)

and the purity,

P =
1

√

(ab− c2+)(ab− c2−)
. (65)

It is easily seen from Eq. (46), and pointed out in Ref.
[5], that the smallest symplectic eigenvalue of the CM of
the partially transposed state, ν̃−, satisfies,

∂ν̃2
−

∂∆̃

∣

∣

∣

∣

E,P

< 0 , (66)

so that the entanglement of a given state is monotonically
increasing with the seralian of the CM corresponding to
the partially transposed state. Thus, in order to find
the states with maximum entanglement for a given pu-
rity and energy, we must find where ∆̃ has a maximum.
Manipulating Eqs. (64) and (65) gives,

∆̃ = 4(E + 1)2 − 2

√

1

P 2
+ ab(c+ + c−)2 , (67)

which is maximised when c+ = −c− and thus the maxi-
mally entangled mixed Gaussian states satisfy,

∆̃ = 4(E + 1)2 − 2

P
. (68)

These are shown in Fig. 7 for energy 2 (in dimensionless
units).

The Gaussian maximally entangled mixed states for
fixed global and local purities, or GMEMS, as defined
in Refs. [5, 6] have a simple expression for states with
a standard form CM. These states saturate the lower
bound in (62) and this means that,

c± = ±
√

ab− 1

P
, (69)

and importantly for the definition of entanglement,

∆̃ = 4(E + 1)2 − 2

P
, (70)

in agreement with Eq. (68). Thus, not unexpectedly, the
maximally entangled states for a given purity and energy
coincide with the GMEMS.

In Fig. 7 one notices the fact that there is no entan-
glement below a certain purity value. This arises from
the condition that ν̃− ≥ 1 which, together with Eq. (68),
means that,

P ≥ 1

2E + 1
, (71)

in order to be able to unitarily generate entangled states.
This bound and the condition in Eq. (60) defines a range
of values of the purity of two-mode Gaussian states,

1

(E + 1)2
≤ P <

1

2E + 1
, (72)
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such that, for a given energy E, there can be no entan-
glement in these states. This is similar to the case of two
qubits where if the purity is lower than one third, only
separable states exist independent of the energy. Phys-
ically, it means that in this range for a given value of
energy, the states are simply too classically mixed to ac-
commodate quantum correlations. The range of values
for the purity increases from zero, at E = 0, reaches a
maximum when the energy attains the golden ratio,

E =
1 +

√
5

2
, (73)

and then falls to zero again as the energy increases to
infinity.

It is an interesting coincidence that for the case of E =
1 both the 2-mode and 2-qubit upper and lower bounds
agree, 1

4 ≤ P ≤ 1
3 . This suggests the maximally mixed

two-mode Gaussian state, of a given energy E, is that
state which saturates the lower bound in Eq. (72). Such
a state would have a CM,

σmixed = (E + 1)I4 , (74)

where I4 is the 4 × 4 identity matrix, in analogy with
the two-qubit case, and corresponds to a state which is a
tensor product of two thermal states with equal average
number of photons in each mode as we have seen before
in Eq. (38).

The continuous variable version of the Werner states
of two qubits in Eq. (7) were introduced in Ref. [20] and
have the form,

ρGW = rρME + (1 − r)ρI , (75)

where ρME is the pure two-mode Gaussian state with en-
ergy E and ρI is the completely mixed state specified by
the CM in Eq. (74), i.e. the density operator ρI is equal
to a tensor product of two thermal density operators each
corresponding to a state with the average photon number
equal to n̄ = E/2 (we remind us that that we consider
units such that ~ = ω = 1), i.e.,

ρGW = rρME + (1 − r)ρth ⊗ ρth , (76)

where ρth is given by Eq. (39) in terms of symplectic
eigenvalues, or in terms of the mean excitation number
n̄ we have

ρth =
1

(n̄+ 1)

∞
∑

j=0

(

n̄

n̄+ 1

)j

|j〉〈j| . (77)

These states are not Gaussian however and thus do not
appear on our EPE phase diagram.

The GLEMS are states which by definition saturate the
upper bound in Eq. (62). From Refs. [5, 6] states satisfy
this condition if and only if the symplectic spectrum is
ν− = 1, ν+ = 1/P and this leads to,

Detγ =
1

ab

[

(

∆ − (a− b)2
)2 −

(

∆ − (a+ b)2
)2

]

, (78)

for these states described by a standard form CM and
thus,

∆̃ = 4(E + 1)2 −
(

1 +
1

P 2

)

. (79)

The first term arises out of the fact that the minimum
value of ∆̃ occurs when the states are described by a
symmetric CM. The GLEMS actually describe a range
of states of which those with the minimum entanglement
are shown in Fig. 8 for energy 2 and they exist in the
darker shaded region between the two curves shown. The
GLEMS and GMEMS coincide when the global purity
can be written in terms of the two local purities and
these states are called GMEMMS or Gaussian maximally
entangled mixed states for fixed marginals. As noted in
Refs. [5, 6], the GLEMS contain separable states which
are readily seen in Fig. 8. The range of purities for which
these states can tolerate separable states is, for a given
energy E,

1

2E + 1
≤ P ≤ 1√

2E2 + 4E + 1
. (80)

We can now put together the pieces of the EPE dia-
gram for 2-mode Gaussian states. The resulting graph,
shown in Fig. 9, follows the outline of a quarter of a
fruit bowl. Now in this picture the idea of minimally en-
tangled mixed states for a fixed energy has no meaning,
unless you consider the separable states as such. Thus
the GLEMS do not arise naturally in our picture. This
is understandable as we are using only three parameters
to describe the set of states instead of four and thereby
lose some information.

Some points on this diagram worth highlighting are
the following,

• {C,P,E} = {0, 1
(E+1)2 , E} represents all the com-

pletely mixed two-mode Gaussian state.

• {0, 1, 0} represents all tensor product of the vacuum
state of two modes

• {0, 1
(E+1)2 ≤ P ≤ 1

2E+1 , E} represents all the sepa-

rable states, including the completely mixed state,
which cannot be entangled by arbitrary unitary op-
erations.

IV. ENTANGLEMENT TRANSFER: 2 MODES

TO 2 QUBITS

Now we complete our study of the two sets of states,
those of two qubits compared to the two-mode Gaussian
states, by considering how efficiently one may transfer
entanglement and energy from a two-mode field to two
qubits. In Refs. [21, 22, 23, 24] entanglement swapping
between qubits and continuous variables has been investi-
gated in detail. Here we are particularily interested in the
role of energy in the entanglement transfer process. We
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will employ the basic resonant Jaynes-Cummings Hamil-
tonian [25],

HJC =
∑

j

λj(ajσ
(j)
+ + a†jσ

(j)
− ) , (81)

where a†j and aj are the creation and annihilation opera-

tors for the jth mode and σ
(j)
± are the raising and lowering

operators for the jth atom, to describe the interaction of
the two modes with the two two-level atoms. The situ-
ation envisaged is that the first mode interacts with the
first atom only and similarily for the second mode and
the second atom with both atom-field couplings equal,
λ1 = λ2 = λ. We will analyse three different initial
states of the field while the state of the two atoms will
always be in the ground state (| g〉1| g〉2) initially.

First we consider when the field is in a superposition
of one photon in the first mode and zero photons in the
second and vice versa,

|ψf (t = 0)〉 =
1√
2
(| 0〉1| 1〉2 + | 1〉1| 0〉2 . (82)

There has been some recent discussion [26, 27] related
to this state. Intuitively this state is an entangled state
of two modes and should generate entanglement between
the two qubits. Indeed, as the input state is pure, in this
case and all the following cases, we can use the von Neu-
mann entropy of the reduced state of one of the modes
as a measure of the entanglement of this state,

S(|ψf (0)〉) = −Trρj ln ρj, j = 1, 2 , (83)

where ρj is the reduced density matrix of the first or
second mode.

The initial energy in the two-mode field is one exci-
tation and the entropy is S(|ψf (0)〉) = ln 2. When we
allow the field and atoms interact for a time, t, under the
Hamiltonian in Eq. (81), the combined output state for
the two-mode field and the two qubits is,

|ψf,at(t)〉 = cos(λt)|ψf (0)〉| gg〉

−i sin(λt)| 0〉1| 0〉2
(| ge〉 + | eg〉)√

2
, (84)

where | 0〉j represents the vacuum state of the jth mode.
Thus at any time t such that gt = nπ

2 the two qubits
are in a maximally entangled Bell state. At these times
the initial energy in the field is completely transferred to
the state of the atoms and the joint state of the atoms
and two-mode field is separable and pure. What about a
similar but more general input field state of the form,

|ψf (0)〉 =
1√
2
(| 0〉1|n〉2 + |n〉1| 0〉2? (85)

The initial entanglement is ln 2 as previously but there
are now n excitations present. It turns out that, after

the same evolution under Hamiltonian in Eq. (81), the
resulting two-qubit density matrix is given by,

ρ(t) =
1

2









2 cos2 λt
√
n 0 0 0

0 sin2 λt
√
n δn,1 sin2 λt

√
n 0

0 δn,1 sin2 λt
√
n sin2 λt

√
n 0

0 0 0 0









,

(86)
so that for n > 1 no entanglement is transferred from
the two-mode field to the pair of atoms and their state
remains separable even though energy is continuously
swapped between the field and the atoms.

The next case we consider is the input field,

|ψf (0)〉 =
1√

2
√

1 + e−|α|2
(| 0〉1|α〉2 + |α〉1| 0〉2) , (87)

where |α〉 is a coherent state. The initial energy in this
state, N̄ = 〈N1 +N2〉, is,

N̄ =
|α|2

1 + e−|α|2 , (88)

and the initial entanglement ranges from 0 to ln 2 depend-
ing on the value of α. After evolution under Eq. (81) for
a time t, the state of the two qubits is well-described by
a density matrix of the form,

ρ(t) =







a x y 0
x∗ b z 0
y∗ z b 0
0 0 0 0






(89)

with

z =
|α|2e−|α|2

2(1 + e−|α|2)
sin2(λt) . (90)

The concurrence of this state is C = 2z which is max-
imised when there is on average one excitation initially
in the field modes, i.e. N̄ = 1. This is shown in Fig.
10 where the maximum entanglement generated between
the two atoms is plotted as a function of the initial energy
in the field. We have also plotted in Fig. 11 the depen-
dence of the maximum entanglement generated between
the two atoms on the initial entanglement present be-
tween the two modes. It is interesting that for the initial
state of the two modes in Eq. (87) the degree of entangle-
ment of this state need not be the maximum allowed in
order to achieve the maximum amount of entanglement
possible between the two atoms. The fact that the entan-
glement between the two atoms is maximised when there
is on average one excitation initially in the field is not so
surprising given the previous input states considered. In
any case, the amount of entanglement generated between
the two atoms is very small.

Finally we consider the case when the input state of
the field is a pure two-mode Gaussian state,

|ψf (0)〉 =
√

1 − γ2
∑

n

γn|n〉1|n〉2 , (91)
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with γ = tanh r where the above state can be gen-
erated by applying the two-mode squeezing operator,

S(r) = exp[−r(a†1a†2 − a1a2)], to the two-mode vacuum
state. The initial energy in the field is given by,

Ein =
2γ2

1 − γ2
, (92)

and the initial entanglement is,

Sin = ln(1 − γ2) + Ein ln γ . (93)

The state of the two qubits after a time evolution is given
by,

ρ(t) =







a 0 0 x
0 b 0 0
0 0 b 0
x 0 0 d






, (94)

where,

a =
1

4
A

∑

n

γ2n(cos 2
√
nλt+ 1)2 ,

b =
1

4
A

∑

n

γ2n sin2 2
√
nλt ,

d =
1

4
A

∑

n

γ2n(cos 2
√
nλt− 1)2 ,

x =
1

4
A

∑

n

γ2n+1(cos 2
√
n+ 1λt− 1)

×(cos 2
√
nλt+ 1) , (95)

and A = (1−γ2). In Fig. 12 the maximum entanglement,
Cout, generated between the pair of atoms and the purity,
P , of the state of the two atoms at this time is plotted
as a function of the initial energy in the field, Ein. The
maximum entanglement generated between the atoms is
quite high, Cmax

out ∼ 0.9, in this case but it does not oc-
cur when there is initially one excitation in the field as
was the case for the previous input states. In Fig. 13 we
plot the dependence of the maximum entanglement gen-
erated on the initial entanglement in the field. Again we
see that it is not necessary to initially have the most en-
tangled two-mode state possible in order to generate the
most maximally entangled two-qubit state possible by
evolution under the resonant Jaynes-Cummings Hamil-
tonian.

V. CONCLUSION

We have set out to show that the energy of a state is an
important consideration when specifying the maximally

entangled mixed states of either two qubits or a two-mode
continuous variable system.

For two qubits there is a continuous range of MEMS
lines on the entanglement-purity-energy (EPE) diagram,
each depending on the average number of excitations in
the two-qubit system. These states, together with the
separable and pure states, form the surface of the volume
containing all physically allowed quantum states. The
states in (18) are those which maximise the concurrence
for a given purity and have exactly one excitation. They
include the Bell states (24). If a state has E 6= 1 then
it can still be considered a maximally entangled state
albeit one less entangled than the states (18) for the same
purity.

For the case of two-mode states it is natural that the
energy be fixed in order to specify the maxmally entan-
gled mixed states. Through this parametrization we have
provided a nice way view the set of two-mode Gaussian
states. From this EPE diagram the set of physically al-
lowed states of these two fundamentally different systems
can be compared. There are some interesting similarities
we have pointed out which go beyond the fact that both
systems are completely specified by a 4 × 4 matrix. The
EPE diagrams are also an aide to view the allowed dy-
namical evolution of these states.

Finally we have looked at how entanglement can be
swapped between these two systems using a simple reso-
nant Jaynes-Cummings model. We have shown that the
initial energy and the initial entanglement present in the
two-mode field are important factors as to how efficiently
the entanglement is transferred from one system to the
other. Physically this is a method of distributing entan-
glement between two distant atomic systems and what is
interesting is that the two-mode Gaussian states are very
effective at entangling the two qubits. Given that these
states are experimentally less demanding to produce, this
is a nice result. The natural extension of this idea to a
two-mode field interacting with N atoms may serve as a
quantum memory [28] and this will be studied later [29].
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FIG. 1: The concurrence vs purity phase diagram of two qubits. The lower curve, CW , indicates the Werner states, while the
upper curve corresponds to the MEMS. All quantities are dimensionless.

FIG. 2: (Color online) Numerically determined entanglement-purity-energy (EPE) phase diagram for 100000 randomly chosen
two-qubit states where the entanglement is measured in terms of the concurrence. All quantities are dimensionless.

FIG. 3: (Color online) The boundaries of the entanglement-purity-energy (EPE) diagram for two-qubit states when the log-
arithmic negativity is used as the measure of entanglement. The MEMS are the Werner states from Eq. (7) in this case
and form a line rather than a plane as in the case when concurrence is used to measure the entanglement. All quantities are
dimensionless.



(a) Boundaries of the set of
physically allowed two-qubit

states.

(b) View of Fig. 4(a) looking
along the Energy axis.

(c) View of Fig. 4(a) looking
along the Purity axis.

(d) View of Fig. 4(a) looking
along the Concurrence axis.

FIG. 4: (Color online) The entanglement-purity-energy (EPE) phase diagram of the (i) Pure (blue curve) (ii) Separable (green
curve) and (iii) maximally entangled mixed states (red curves) of two qubits. All quantities are dimensionless.

FIG. 5: Graph depicting how the energy, E, of pure two-mode Gaussian states depends on the amount entanglement, E ,
between the two modes. The physical region lies in the shaded region above the curve. All quantities are dimensionless.



FIG. 6: Graph showing how the energy, E, of the separable two-mode Gaussian states depends on the purity, P , for energy
values up to 2. The physical region lies in the shaded region above the curve. All quantities are dimensionless.

FIG. 7: Graph showing how the entanglement, E , of two-mode Gaussian states depends on the purity, P , for a fixed energy
value of 2. The upper curve indicates the maximally entangled mixed states for fixed energy and the physical region is the
shaded area below this curve. All quantities are dimensionless.

FIG. 8: Graph showing the GMEMS and GLEMS of two-mode Gaussian states for fixed energy value of 2. The GMEMS are
those states lying on the upper curve while the GLEMS are those states which lie in the darker shaded region between the two
curves. All quantities are dimensionless.



FIG. 9: (Color online) The entanglement-purity-energy (EPE) phase diagram boundaries showing the (i) pure (blue curve
satisfying P = 1) (ii) separable (green curve satisfying E = 0) and (iii) maximally entangled mixed (red curves starting on the
pure curve) Gaussian states of a two-mode continuous variable system for energies, E, in the range 0 ≤ E ≤ 2. All quantities
are dimensionless.

FIG. 10: The dependence of the maximum concurrence, Cout, generated between two two-level atoms by evolution under the
Jaynes-Cummings Hamiltonian (81), on the initial energy, Ein, in the two mode field. The field is initially in the entangled
superposition state of Eq. (87) characterised by the coherent state amplitude α. All quantities are dimensionless.



FIG. 11: The dependence of the maximum concurrence, Cmax, generated between two two-level atoms by evolution under the
Jaynes-Cummings Hamiltonian (81), on the initial entanglement in the two mode field. The field is initially in the entangled
superposition state of eqn. (87) characterised by the coherent state amplitude α. All quantities are dimensionless.

FIG. 12: (Color online) The dependence of the maximum concurrence, Cout (lower curve), generated in a pair of two-level
atoms by evolution under the Jaynes-Cummings Hamiltonian (81), and the purity, P (upper curve), of the state of the two
atoms at this time on the initial energy, Ein, of the two-mode field when the field is initially in a pure two-mode Gaussian
state. All quantities are dimensionless.



FIG. 13: The dependence of the maximum concurrence, Cout, generated in a two-qubit pair by evolution under the Jaynes-
Cummings Hamiltonian (81), on the initial entanglement in the two-mode field, Sin, when the field is initially in a pure
two-mode Gaussian state. All quantities are dimensionless.


