
DOI: 10.1007/s11128-006-0028-z
Quantum Information Processing, Vol. 5, No. 5, October 2006 (© 2006)

Programmable Quantum Processors�

Vladimı́r Bužek,1,2,3,6 Mark Hillery,4 Mário Ziman,1,3,5 and
Marián Roško1,3

Received May 12, 2005; accepted December 21, 2005; Published online July 12, 2006

A quantum processor is a device with a data register and a program register.
The input to the program register determines the operation, which is a completely
positive linear map, that will be performed on the state in the data register. We
develop a mathematical description for these devices. We generalize the concept
of quantum programmable processors and we propose programmable measurement
devices.

KEY WORDS: Quantum program registers; programmable quantum processor;
positive operator-valued measurements.

PACS: 03.67.-a; 03.67.Lx; 03.65.Ta.

1. INTRODUCTION

The coherent control of individual quantum systems is one of the most
exciting achievements in physics in the last decade.(1) The possibility of
controlling quantum dynamics has far reaching consequences for quantum
technologies, in particular, for quantum computing.(2) One of the best-
known applications of coherent control in quantum physics is the state
preparation of an individual quantum system. For example, a particular
state of the vibrational motion of a trapped ion can be prepared by using

�We dedicate this paper to Anton Zeilinger on the occasion of his 60th birthday.
1Research Center for Quantum Information, Institute of Physics, Slovak Academy of Sci-

ences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia.
2Abteilung für Quantenphysik, Universität Ulm, 89069 Ulm, Germany.
3Quniverse, Lı́ščie údolie 116, 841 04 Bratislava, Slovakia.
4Department of Physics, Hunter College of CUNY, 695 Park Avenue, New York, NY 10021,
USA.

5Faculty of Informatics, Masaryk University, Botanická 68a, 602 00 Brno, Czech Republic.
6To whom correspondence should be addressed. E-mail: buzek@savba.sk

313

1570-0755/06/1000-0313/0 © 2006 Springer Science+Business Media, Inc.

314 Bužek, Hillery, Ziman, and Roško

a well-defined sequence of external laser pulses. Another possibility is to
focus on controlling the dynamics, that is, the unitary evolution opera-
tor. One way of doing this is to realize a particular evolution operator by
means of a sequence of “elementary” interactions, which are sequentially
turned on and off (for more details see Refs. 3–5 and for a specific appli-
cation to trapped-ions see Ref. 6 and references therein).

In the theory of quantum coherent control it is assumed that the con-
trol of the dynamics is realized via external classical parameters, such as
the intensity of a laser pulse or the duration of an interaction (see e.g.,
Refs. 3, 4). In this case, the information that controls the quantum sys-
tem is classical, and it is set by an experimentalist to achieve a single,
fixed outcome. This is analogous to programming a computer (processor)
to perform a single task by setting dials or switches to particular positions,
each task requiring different positions.

In the present paper we will review a different type of quantum con-
trol. We will assume that the information about the quantum dynamics
of the system under consideration is not represented by classical external
parameters, but rather is encoded in the state of another quantum system.
A typical example of such an arrangement is a controlled-NOT (C-NOT)
operation (or, in general, a controlled-U operation). In this case, the spe-
cific operation performed on the system, the target, depends on the state
of a second quantum system, the control. If the control qubit is in the
state |0〉 the target qubit is left unchanged, but if it is in the state |1〉,
then a NOT operation is applied to the target qubit. This means that this
device can perform at least two operations on the target qubit, the iden-
tity and NOT. There are, however, further possibilities. Let us suppose that
the control qubit is initially in a superposition of |0〉 and |1〉, and that
we are only interested in the target qubit at the output of the device, so
that we trace out the control qubit to obtain the reduced density matrix
of the target qubit. The action of the C-NOT gate on the target qubit can
then be described as a completely positive, linear map acting on the ini-
tial density matrix of the target qubit, with the actual map being deter-
mined by the state of the control qubit. We take this device to be a model
for a programmable quantum gate array, or quantum processor. Generally
speaking, a programmable quantum processor (see Fig. 1) is a device that
implements a completely positive linear map, which is determined by the
state of one quantum system, on a second quantum system. These pro-
cessors have two registers, the data register and the program register. The
data register contains the quantum system on which the map is going to
be applied, and the program register contains the quantum system whose
state determines the map. The third element of this device is a fixed array
of quantum gates that act on both the program and the data state. The

Programmable Quantum Processors 315

Fig. 1. A model of a general quantum pro-
cessor G that implements a unitary operation
U on the data register.

virtue of this arrangement is that we do not have to build a different pro-
cessor every time we want to realize a new map, we simply change the
program state. This allows us greater flexibility than a device in which the
map is determined by setting external parameters. For example, it could be
the case that we do not even know what the program state is. This would
occur when the state of the program register is the output of another
quantum device. We will refer to the selection of the program state to per-
form a desired operation as quantum programming.

Programmable quantum processors (gate arrays) were first considered
by Nielsen and Chuang.(7) They were only interested in the case in which
a unitary operation, rather than a more general completely positive linear
map, is performed on the state in the data register. If |ψ〉d is the state of
the data register, |ΞU 〉p a program state that implements the operator U
on the data state, and G the overall unitary operation implemented by the
fixed gate array, then their processor carries out the transformation (see
Fig. 1)

G(|ψ〉d ⊗|ΞU 〉p)=U |ψ〉d ⊗|Ξ′
U,ψ 〉p, (1.1)

where |Ξ′
U,ψ 〉p is the state of the program register after the transformation

G has been carried out. The subscripts U and ψ indicate that this state
can depend on both the operation U and the state |ψ〉d of the data regis-
ter d. Nielsen and Chuang were able to prove a number of results about
this device. First, they showed that the output of the program register does
not depend on the data register, a fact that follows from the unitarity of
G. Second, they proved that the number of possible programs is equal to
the dimension of the program register.

In order to become more familiar with the concept of programmable
processors let us assume the first of these results and show how to prove
the second. Consider two program states, |ΞU 〉p and |ΞV 〉p, that cause the

316 Bužek, Hillery, Ziman, and Roško

operators U and V , respectively, to act on the data register. This implies
that

G(|ψ〉d ⊗|ΞU 〉p) = U |ψ〉d ⊗|Ξ′
U 〉p ;

(1.2)
G(|ψ〉d ⊗|ΞV 〉p) = V |ψ〉d ⊗|Ξ′

V 〉p.

The unitarity of G implies that

p〈ΞV |ΞU 〉p = d〈ψ |V −1U |ψ〉d p〈Ξ′
V |Ξ′

U 〉p, (1.3)

and if p〈Ξ′
V |Ξ′

U 〉p �=0, then

d〈ψ |V −1U |ψ〉d = p〈ΞV |ΞU 〉p

p〈Ξ′
V |Ξ′

U 〉p
. (1.4)

The left-hand side of this equation depends on |ψ〉d while the right does
not. The only way this can be true is if

V −1U = eiφI , (1.5)

for some real φ. This means that the operators U and V are the same up
to a phase. If we want these operators to be different, we must have that
p〈Ξ′

V |Ξ′
U 〉p =0, which by Eq. (1.3) implies that p〈ΞV |ΞU 〉p =0. Therefore,

the program states corresponding to different unitary operators must be
orthogonal. This implies that the dimension of the program register must
be greater than or equal to the number of different unitary operators that
can be performed on the data register.

From the investigation of Nielsen and Chuang(7) it follows that a
deterministic universal quantum processor of finite size does not exist. The
problem is that a new dimension must be added to the program space for
each unitary operator U that one wants to be able to perform on the data
|ψ〉d . A similar situation holds if one studies quantum circuits that imple-
ment completely-positive, trace-preserving maps rather than just unitary
operators.(8,9) Some families of maps can be implemented with a finite
program space, for example, the phase damping channel, but others, such
as the amplitude damping channel, require an infinite program space. If
one drops the requirement that the processor is deterministic, then univer-
sal processors become possible.(7,10−12) These processors are probabilistic:
they sometimes fail, but we know when this happens.

In a probabilistic processor we demand that by a measurement of the
program register, we can tell whether the desired unitary operation has
been performed on the data state or whether some other unitary opera-
tion has been performed upon it, i.e., that the state of the program regis-
ter associated with the execution of U , |Ξ′

U 〉p, is orthogonal to the states

Programmable Quantum Processors 317

of the program register associated with other, undesired, outcomes on the
data state (the identity of these states of the program register will in gen-
eral be dependent on the nature of the processor itself). A model of this
is shown in Fig. 2 where the outcome of the measurement of the program
register, |k〉p indicates which unitary operation, Uk , has been performed on
the data state.

The simplest case of desired programmable operation on a qubit is
the execution of a U (1) transformation, U (θ)= eiθσz/2, upon a data qubit
|ψ〉d =α|0〉d +β|1〉d . Here the unknown phase of the rotation θ is encoded
in the programme state

|Ξθ 〉p = 1√
2

(
|0〉p + e−iθ |1〉p

)
, (1.6)

while the processor itself is represented by a C-NOT gate with data qubit
as control and program qubit as target, followed by a measurement of the
program qubit in the basis {|0〉p, |1〉p} (see Fig. 3).
The action of the C-NOT processor on the data and the program input
states is

|ψ〉d |Ξθ 〉p −→ 1√
2

U (θ)|ψ〉d |0〉p

+ 1√
2

U (−θ)|ψ〉d |1〉p . (1.7)

From this equation we see that when a projective measurement in the
computer basis {|0〉, |1〉} on the program qubit at the output of the C-NOT
is performed and the result |0〉 is registered then the data qubit that has
been prepared in an unknown state |ψ〉 is rotated by the unknown angle
θ as desired, i.e., with probability 1/2 we obtain the state U (θ)|ψ〉d (see
Fig. 4). On the other hand, when the program qubit is measured in the

Fig. 2. A model of a probabilistic gen-
eral quantum processor. On the output
of the program register a measurement is
performed.

318 Bužek, Hillery, Ziman, and Roško

Fig. 3. A model of a probabilistic C-NOT quantum
processor performing the U (1) rotation of the input
data state |ψ〉 by the angle θ that is encoded in the
program state |Ξθ 〉 given by Eq. (1.6). On the output
of the program register a measurement is performed.
A state space of the data register is represented by
the Bloch sphere.

state |1〉p then the data qubit is rotated in the opposite (“wrong”) direc-
tion, i.e., with probability 1/2 we obtain at the output of the probabilistic
processor the state U (−θ)|ψ〉d (see Fig. 5).

1.1. Applications of Programmable Quantum Processors

Before we proceed, we would like to justify the concept of a program-
mable quantum processor. One may consider several arguments why pro-
grammable quantum processors might be of interest. The most important

Fig. 4. A model of a probabilistic C-NOT quantum
processor performing the U (1) rotation of the input
data state |ψ〉 by the angle θ that is encoded in the
program state |Ξθ 〉. When the measurement per-
formed on the program qubit result in the state |0〉p
the desired rotation U (θ) is performed on the data
qubit. The probability of success is equal to 1/2.

Programmable Quantum Processors 319

Fig. 5. A model of a probabilistic C-NOT quan-
tum processor performing the U (1) rotation of the
input data state |ψ〉 by the angle θ that is encoded
in the program state |Ξθ 〉. When the measurement
performed on the program qubit results in the state
|1〉p the rotation U (−θ) in the wrong direction is
performed on the data qubit. The probability of this
result is equal to 1/2.

argument is as follows: Let us imagine a situation when a set of instruc-
tions that characterize an operation to be performed on the data is
encoded in a single copy of a quantum system. This may happen when
the set of instructions (a program) is obtained as an output of a quantum
computer (whatever this device is). This output state might be in general
unknown. In this situation one has two options: Firstly, one can measure
and estimate the program state(13−16) and with the obtained classical infor-
mation one can perform a classical control of the evolution of the data
register. The main obstacle in this approach is that the fidelity of estima-
tion of a state of quantum system based on a measurement of just a sin-
gle copy of the state is negligibls small (it is inversely proportional to a
dimension of the Hilbert space of the program register(13−18)). This is the
reason why the programmable quantum processor that takes as an input
the unknown quantum program register is a better alternative. The quan-
tum processor will perform operations that are specified by the program
register even though a (classical) user of the processor does not have an
information about the set of instructions. Another aspect of the encod-
ing of quantum operations in the states of program registers has been dis-
cussed by Huelga and coworkers.(19) In this paper the implementation of
an arbitrary unitary operation U upon a distant quantum system has been
considered. This so called teleportation of unitary operations has been for-
mally represented as a completely positive, linear, trace preserving map on
the set of density operators of the program and data registers:

T
[|ξ 〉ab ⊗|ΞU 〉p ⊗|ψ〉d

]=|ξ̃U 〉ap ⊗ (U |ψ〉d) (1.8)

320 Bužek, Hillery, Ziman, and Roško

Here |ξ 〉a represents a specific entangled state that is shared by two par-
ties, Alice and Bob, who want to teleport the unitary operation U from
Alice to Bob. Huelga et al.(19) have investigated protocols which achieve
the teleportation of U using local operations, classical communication and
shared entanglement.

1.2. Content of the Paper

In this paper we will present a concept of programmable quan-
tum processors. We will study and classify deterministic processors that
realize completely positive linear maps (Sec. 2). In Sec. 3 we introduce
probabilistic programmable processors and we analyze in detail what type
of operations can be realized with these processors. We will show that
the so-called quantum information distributor (QID) is particularly useful
realization of universal probabilistic programmable processor for qudits.
In Sec. 4 we will show how the probability of success of probabilistic
programmable processors can be increased by using more sophisticated
programs. We will continue this discussion in Sect. 5 where we will con-
sider an interesting case with N copies of the same program. Section 6
is devoted to a problem of processor design. Specifically, we will analyze
how to design (“construct”) a processor that is supposed to implement a
given set of operations. In this section we will also discuss briefly a prob-
lem of quantum simulations. In Sec. 7 we will show that programmable
processors can be used to implement generalized Positive operator val-
ued measures (POVM) measurements. It is not always necessary to per-
form a desired operation on the data register perfectly. Therefore in Sec. 8
we address the problem of approximate processors. Finally, in Sec. 9 we
briefly summarize our results.

2. DETERMINISTIC QUANTUM PROCESSORS: PROPERTIES
AND CLASSIFICATIONS

As we have already mentioned in the Introduction a general pro-
grammable quantum processor consists of two registers, a data register
and a program register, and a fixed array of quantum gates. The input
state that goes into the program register encodes an operation we want
to perform on the data register. We would first like to show that the
action of the processor can be fully described by a specific set of linear
operators.

Programmable Quantum Processors 321

2.1. Quantum States of Program Register

First we discuss the role of the program states in the concept of
programmable quantum processors. In particular, we will investigate how
the transformations that are supposed to be executed on the data can be
encoded in quantum states of program registers.

2.1.1. Pure States

Let |ψ〉d be the input state of the data register, |Ξ〉p be the input
program state and G be the unitary operator that describes the action of
the array of quantum gates. If {| j〉p| j =1, . . . N } is a basis for the space of
program states, then we have that

G(|ψ〉d ⊗|Ξ〉p)=
N∑

j=1

| j〉p p〈 j |G(|ψ〉d ⊗|Ξ〉p). (2.1)

If we define the operator A j (Ξ), which acts on the data register, by

A j (Ξ)|ψ〉d = p〈 j |G(|ψ〉d ⊗|Ξ〉p), (2.2)

then we have that

G(|ψ〉d ⊗|Ξ〉p)=
N∑

j=1

A j (Ξ)|ψ〉d ⊗| j〉p. (2.3)

This means that the output density matrix of the data register is given by

ρout
d =

N∑
j=1

A j (Ξ)|ψ〉d d〈ψ |A†
j (Ξ). (2.4)

The operator A j (Ξ) depends on the program state, but it can be expressed
in terms of operators that do not. Define the operators

A jk = A j (|k〉)= p〈 j |G|k〉p, (2.5)

where |k〉 is one of the basis states we have chosen for the space of pro-
gram states. We have that for any program state |Ξ〉

A j (Ξ)=
N∑

k=1

p〈k|Ξ〉p A jk . (2.6)

322 Bužek, Hillery, Ziman, and Roško

This means that the operators Ajk completely characterize the processor.
We shall call these operators the basis operators for the processor. These
operators have the following property,

N∑
j=1

A†
jk1

A jk2 =
N∑

j=1

〈k1|G†| j〉〈 j |G|k2〉= Idδk1k2 , (2.7)

where we have used the decomposition
∑

j | j〉〈 j |= Ip.
An obvious question to ask at this point is whether any set of opera-

tors satisfying Eq. (2.7) corresponds to a quantum processor. The follow-
ing construction allows us to show that this is the case.(20) Given a set
of N 2 operators acting on Hd , we can construct an operator, G, acting
on the product space Hd ⊗Hp, where Hp is an N -dimensional space with
basis {|k〉p|k =1, . . . N }. We set

G =
N∑

j,k=1

A jk ⊗| j〉p p〈k|. (2.8)

It is now necessary to verify that G constructed in this way is unitary.
Noting that

G† =
N∑

j,k=1

A†
jk ⊗|k〉p p〈 j |, (2.9)

we see that Eq. (2.7) implies that G†G = GG† = I , so that G preserves the
length of vectors and is unitary.

It is possible to express the basis operators for closely related pro-
cessors in terms of each other. For example, if {B jk | j, k = 1, . . . N } are
the basis operators for G†, then from Eq. (2.9) we see that B jk = A†

k j . If
G1 and G2 are two processors (unitary operators) with basis operators
{A(1)jk | j, k = 1, . . . N } and {A(2)jk | j, k = 1, . . . N }, respectively, then the basis
operators, C jk , for the processor corresponding to the operator G1G2 are

C jk =
N∑

n=1

A(1)jn A(2)nk . (2.10)

This follows immediately if both G1 and G2 are expressed in the form
given in Eq. (2.8) and then multiplied together. If we apply this equation
to the case G1 = G and G2 = G†, and note that GG† = I , we have that

N∑
j=1

Ak1 j A†
k2 j = Idδk1k2 . (2.11)

Programmable Quantum Processors 323

It is clearly possible to generalize Eq. (2.10) to the case when there is a
product of more than two operators.

2.1.2. General Program States

Let us suppose the program is represented by a mixed state �p =∑
kl Rkl |k〉〈l|. Then for the induced mapping we have

�out
d =

∑
klmn

Rkl Amk�
in
d A†

nlTrp(|m〉p〈n|)

=
∑
klm

Rkl Amk�d A†
ml . (2.12)

We shall denote by CG the set of completely positive linear maps realizable
by using the fixed processor G and any mixed state in the program space
as a program.

Let us now address the question of whether it is possible to find a
second processor, G ′, that can realize any map in the set CG using only
pure state programs. Any mixed state in Hp can be purified, but the purifi-
cation is not unique.(2,21) We begin by defining a new program space, Hp′
and choosing the purification of the density operator represented in terms
of its spectral decomposition as �p =∑

k λk |χk〉〈χk | in the following way

�p −→ |Φ〉p′ =
∑

k

√
λk |χk〉p ⊗|k〉 . (2.13)

We define the unitary operator corresponding to the new processor, which
acts on the space Hd ⊗Hp′ , by

G ′ := G ⊗ I . (2.14)

The conjecture is that processor G ′ with the pure program state |Φ〉p′ will
produce the same mapping as the processor G with the mixed program
state �p. If this is true, then we will have shown that by using only pure
program states with the processor G ′, we can implement the entire class
of superoperators CG .

In order to prove this we have to show that

TrpG�d ⊗�pG† =Trp′ G ′�d ⊗�p′ G ′† (2.15)

324 Bužek, Hillery, Ziman, and Roško

for all �d . The right-hand side of this equation can be rewritten as

Tp′ G ′�d ⊗�p′ G ′†

=Trp′

[∑
kl

√
λkλl

(
G�d ⊗|χk〉〈χl |G†

)
⊗|k〉〈l|

]

=
∑

kl

√
λkλlTrp

[(
G�d ⊗|χk〉〈χl |G†

)
δkl

]

=Trp

[
G�d ⊗

(∑
k

λk |χk〉〈χk |
)

G†

]

=TrpG�d ⊗�pG† , (2.16)

which proves Eq. (2.15). Therefore, we can conclude that it is possible
to “mimic” mixed program states for a given processor by introducing a
larger program space Hp′ and a new processor mapping G ′ = G ⊗ I .

2.1.3. Correspondence Between Programs and Mappings

We have just seen that two different programs on two different
processors can lead to the same mapping, and now we would like to exam-
ine whether different programs on the same processor can produce iden-
tical mappings. We shall illustrate this possibility by means of a simple
example. Let Q p be a projection operator on the program space whose
range has dimension D, where 1<D<N , and let U1 and U2 be two differ-
ent unitary operators on the data space. Consider the processor given by

G =U1 ⊗ Q p +U2 ⊗ (Ip − Q p). (2.17)

Any program state in the range of Q p produces the mapping U1 on the
data state, and there are clearly an infinite number of these. Therefore, we
can conclude that there are processors for which many program states pro-
duce the same operation on the data state.

We shall now show that the opposite can also occur, i.e., that there
exists a processor, for which every program state (mixed or pure) encodes
a different superoperator. To do so, we utilize results of Refs. 22 and 23
where the unitary transformation

G = cosφI + i sinφS (2.18)

was introduced. The swap operator S = ∑
kl |kl〉〈lk| is defined in any

dimension. The so-called partial swap transformation G acts on two qudits

Programmable Quantum Processors 325

(d dimensional systems). Let us restrict our attention to qubits, and iden-
tify one of the qubits with the data register and other with the program
system. In Ref. 23 it was shown that if the program system is prepared in
the state �p ≡ ξ , then the induced map (superoperator) Tξ is contractive
with its fixed point equal to ξ . Since each contractive superoperator has
only a single fixed point, we can conclude that different program states
ξ �= ξ ′ induce different superoperators, i.e., Tξ �= Tξ ′ . As a result we can
conclude that in the processor given by Eq. (2.18), for any value of the
parameter φ, the correspondence between programs and induced mappings
is one-to-one. Finally, we note that the results presented in this paragraph
also hold for qudits.

2.1.4. Equivalent Processors

We shall regard two processors G1 and G2 as equivalent if one can be
converted into the other by inserting fixed unitary gate arrays at the input
and output of the program register, that is if

G2 = (Id ⊗Up1)G1(Id ⊗Up2), (2.19)

where Up1 and Up2 are unitary transformations on the program space.
If this equation is satisfied, then the processors defined by the two gate
arrays will perform the same set of operations on data states, but the pro-
gram states required to perform a given operation are different, and the
outputs of the program registers will be different as well. If Eq. (2.19)
holds, then for the basis operators A(i)jk (i = 1,2) associated with the two
processors we have

A(2)jk =
N∑

m,n=1

(Up1) jm(Up2)nk A(1)mn . (2.20)

Therefore, we can regard two processors whose set of operators A(i)jk are
related by the above equation as equivalent.

If the processors 1 and 2 are equivalent, then they will implement the
same set of superoperators, i.e., CG1 = CG2 . In order to see this, suppose
that when the state |Ξ1〉p is sent into the program register of the proces-
sor 1, the map TΞ1

, with program operators {A(1)j (Ξ1)}, is performed on
the data state. Now let us consider what happens when we send the state
|Ξ2〉p =U−1

p2 |Ξ1〉p into the input of the program register of the processor
2. This will produce the mapping TΞ2

on the data state of the processor

2. The relation between the program operators A(1)j (Ξ1) and A(2)j (Ξ2) is

326 Bužek, Hillery, Ziman, and Roško

A(2)j (Ξ2)=
N∑

k=1

(Up1) jk A(1)1 (Ξ1) . (2.21)

The operators A(1)j (Ξ1) are Kraus operators for the mapping TΞ1
and the

operators A(2)j (Ξ2) are Kraus operators for the mapping TΞ2
. The above

equation implies that the mappings are identical, TΞ1
= TΞ2

.(10) There-
fore, any superoperator that can be realized by the processor 1 can also be
realized by the processor 2. Similarly, it can be shown that any superoper-
ator that can be realized by the processor 2 can also be realized by proces-
sor the 1. This shows that the two processors implement the same set of
superoperators.

Here we summarize some of our results so far:

• For a given processor, G, any member of the class of all possi-
ble completely positive linear maps realizable by G, CG , can be
expressed in terms of the operators A jk .

• We can mimic the action induced by any mixed program state by
a pure program state in a larger program space.

• For any two mappings realized by the processor G and the pure
state programs |Ξ1〉p and |Ξ2〉p the identity

∑
k

A†
k(Ξ1)Ak(Ξ2)=〈Ξ1|Ξ2〉Id , (2.22)

holds. This follows directly from Eqs. (2.6) and (2.7).

2.2. Classes of Processors

In what follows we will examine several different kinds of determinis-
tic quantum processors. These will serve to illustrate some of the general
considerations in the previous sections.

2.2.1. U Processors

Let us suppose that the eigenvectors of the unitary operator, G, that
describes the fixed array of gates are tensor products. In particular, sup-
pose that we have a single orthonormal basis for Hp, {|k〉p|k = 1, . . . N }
and a collection of orthonormal bases for Hd , {|φmk〉d |k = 1, . . . N ,m =
1, . . .M}, where M is the dimension of Hd . For each value of k, the vec-
tors {|φmk〉d |m = 1, . . .M} form an orthonormal basis for Hd . We call a
processor a U processor if the eigenvectors of G, |Φmk〉dp, are of the form

|Φmk〉dp =|φmk〉d ⊗|k〉p. (2.23)

Programmable Quantum Processors 327

In this case the operators A jk are given by A jk = δ jkU j where U j is uni-
tary (its eigenstates are just {|φmj 〉d |m =1, . . .M}) . This is the type of pro-
cessor that was studied by Chuang and Nielsen,(7) and we recall that the
dimension of Hp is equal to the number of unitary operators that this
type of processor can perform. The processor acts on the state |ψ〉d ⊗| j〉p

as

G(|ψ〉d ⊗| j〉p)= (U j |ψ〉d)⊗| j〉p, (2.24)

where |ψ〉d is an arbitrary data state.
For a general pure program state |Ξ〉p =∑

j α j | j〉p the encoded map-
ping, or the superoperator, TΞ, is given by the expression TΞ[�d] =∑

j |α j |2U j�dU †
j . In the case of a mixed program state �p =∑

jk R jk | j〉〈k|
the data state is transformed as T�p [�d] = ∑

j R j jU j�dU †
j . Comparing

these two cases we conclude that we can always mimic a mixed program
state by a pure one, in particular, it is enough to set α j =√

R j j . Hence,
for this type of processor we can consider only pure program states with-
out any loss of generality.

Finally, we note that for all program states |Ξ〉p

TΞ

[
1
d

Id

]
=

∑
j

|α j |2U j
1
d

IdU †
j = 1

d
Id . (2.25)

This implies that each element of CG is unital, i.e., it maps the identity
operator into itself.

2.2.2. Y Processors

A second possibility is to consider a situation that is in some way
the reverse of the one we just examined. We have a single orthonormal
basis for Hd , {|m〉d |m =1, . . .M}, and a set of orthonormal bases for Hp,
{|χmk〉p|k =1, . . . N }, where the index m =1, . . .M labels the bases and the
index k labels the individual basis elements. We again assume that the
eigenvectors of G, |Φmk〉dp are tensor products, but now they are given by

|Φmk〉dp =|m〉d ⊗|χmk〉p. (2.26)

In this case the processor can be expressed as G = ∑
m |m〉d〈m| ⊗ Um ,

where Um is unitary and has eigenvectors {|χmk〉p|k =1, . . . N }. We find the
operators Ajk by first choosing a single orthonormal basis in Hp, {|k〉p},
and computing

328 Bužek, Hillery, Ziman, and Roško

A jk = p〈 j |G|k〉p =
∑

m

|m〉〈m|〈 j |Um |k〉

=
∑

m

(Um) jk |m〉〈m|. (2.27)

The maps produced by Y processors are unital, as can be seen from
∑

j

A jk1 A†
jk2

=
∑

j

∑
ab

(Um) jk1(U
†
n) jk2 |m〉〈m|n〉〈n|

=
∑

ja

(Um) jk1(U
†
m) jk2 |m〉〈m|

= δk1k2

∑
m

|m〉〈m|= δk1k2 I (2.28)

The action of a Y processor is particularly simple if all of the oper-
ators Um have some common eigenstates, and the program state is one of
them. Suppose that Um |Ξ〉p = eiφm |Ξ〉p, then

G

(∑
m

cm |m〉d ⊗|Ξ〉p

)
=

(∑
m

cmeiφm |m〉d

)
⊗|Ξ〉p. (2.29)

In summary, we can say that both the U and Y processors are controlled-
U gates; in the U processor, the control system is the program and the tar-
get is the data, and in the Y processor, it is the target that is the program
and the control that is the data.

2.2.3. U′ Processors

Let us consider a simple modification of the U processor, which we
shall call the U ′ processor. Suppose we have two different orthonormal
bases of Hp, {|k〉p} and {|χk〉p}. We define a U ′ processor to have a uni-
tary operator, G, of the form

G =
∑

k

Uk ⊗|k〉p〈χk |. (2.30)

This looks like a new kind of processor, but it is actually equivalent to a
U processor. This can be seen immediately if we realize that there exists
a unitary operator, Up, acting on Hp such that |χk〉p =Up|k〉p. Therefore,
we have that

G =
(∑

k

Uk ⊗|k〉p〈k|
)
(Id ⊗U †

p), (2.31)

so that G is, in fact, equivalent to a U processor.

Programmable Quantum Processors 329

2.2.4. Y′ Processors

Now let us try a modification of the Y processor in the same spirit as
the one we just made to the U processor. Suppose we have two different
orthonormal bases of Hd , {|m〉p} and {|φm〉d}. We define a Y ′ processor to
have a unitary operator, G, of the form

G =
∑

m

|m〉d〈φm |⊗Um . (2.32)

For the operators A jk we obtain

A jk = p〈 j |G|k〉p =
∑

m

|m〉〈φm |(Um) jk . (2.33)

This type of processor is not equivalent to a Y processor. It does, however,
share the property of producing unital maps as can be seen from

∑
j

A jk1 A†
jk2

=
∑
j,m,n

|m〉〈φm |φn〉〈n|(Um) jk1(U
†
n)k2 j

=
∑
j,m

|m〉〈m|(U †
m)k2 j (Um) jk1

= δk1k2

∑
m

|m〉〈m|
= δk1k2 Id , (2.34)

which implies that for any program state, the identity on Hd is mapped
into itself.

2.2.5. Covariant Processors

Another class of processors that may be of interest are covariant pro-
cessors. Covariance has proven to be an important property in the study
of quantum machines. Covariant processors have the property that if the
processor maps the input data state �in =|ψ〉d d〈ψ |, which we shall assume
is a qudit, onto the output density matrix ρout, then it maps the input
state U |ψ〉d onto the output density matrix UρoutU−1, for all U ∈G, where
G is a subgroup of SU (D), for some subset S of all possible program
states.7 This relation implies that if |Ξ〉 ∈ S, then the operators A j (Ξ)

satisfy the relation

7Whether there are any non-trivial covariant processors in the case that S = Hp is an open
question.

330 Bužek, Hillery, Ziman, and Roško

N∑
j=1

U A j (Ξ)�in A†
j (Ξ)U

−1 =
N∑

j=1

A j (Ξ)U�inU−1 A†
j (Ξ), (2.35)

for all U ∈G. Let us now consider the case G = SU (D). If we take ρin to
be Id/d, we find

N∑
j=1

U A j (Ξ)A
†
j (Ξ)U

−1 =
N∑

j=1

A j (Ξ)A
†
j (Ξ). (2.36)

Because this holds for all U ∈ SU (D), Schur’s Lemma implies that

N∑
j=1

A j (Ξ)A
†
j (Ξ)= c I , (2.37)

where c is a constant. Taking the trace of both sides of Eq. (2.37) we find

Tr

N∑
j=1

A j (Ξ)A
†
j (Ξ)

 N = c Tr(I)= c N , (2.38)

so that c = 1. Because this relation holds for any program state, we have
that

N∑
j=1

A jk1 A†
jk2

= δk1k2 Id , (2.39)

which implies that the maps produced by a processor that is covariant
with respect to SU (D) are unital. As an example of covariant program-
mable quantum processor one can consider the so called quantum infor-
mation distributor as described in Sec. 3.3.

3. PROBABILISTIC PROGRAMMABLE PROCESSORS

As shown by Nielsen and Chuang(7) universal deterministic program-
mable processors of finite extent do not exist. On the other hand, universal
probabilistic programmable processors can be designed. In this section we
will address a probabilistic implementation of an operation U , encoded in
the state of a program register |ΞU 〉p, on the data state |ψ〉d . The proba-
bilistic character of the implementation of the processor is related to the

Programmable Quantum Processors 331

fact that the program register is measured at the output of the processor—
see Fig. 2. We will present a simple example of how to apply an arbi-
trary operation to a single qubit initially prepared in a state |ψ〉. The gate
array consists of four C-NOT gates, and can implement four programs per-
fectly. These programs cause the one of the operations I , σx , −iσy , or σz

to be performed on the data qubit. Here I is the identity and σ j , where
j = x, y, z is a Pauli matrix. By choosing programs that are linear combi-
nations of the four basic ones, it is possible to probabilistically perform
any linear operation on the data qubit. We generalize the idea to an arbi-
trary dimensional quantum system, a qudit.

3.1. Operations on Qubits

We would like to construct a device that will do the following: The
input consists of a qubit, |ψ〉d , and a second state, |ΞU 〉p, which may be
a multiqubit state, that acts as a program. The output of the device will
be a state U |ψ〉d , where U is an operation that is specified by |ΞU 〉p. In
order to make this a little less abstract, we first consider an example: Let
|φ〉 and |φ⊥〉 be two orthogonal qubit states, and suppose that we want to
perform the operation

Az =|φ⊥〉〈φ⊥|− |φ〉〈φ|= I −2|φ〉〈φ|, (3.1)

on |ψ〉d . The action of this operator is analogous to that of σz in the basis
{|0〉, |1〉}, except that it acts in the basis {|φ⊥〉, |φ〉}. That is, σz does noth-
ing to |0〉 and multiplies |1〉 by −1, while Az does nothing to |φ⊥〉 and
multiplies |φ〉 by −1. Can we find a network and a program vector to
implement this operation on |ψ〉d?

We can, in fact, do this by using the network for a QID as intro-
duced in Ref. 24 (this is a modification of the quantum cloning transfor-
mation(25,26) see more details in Sec. 3.3). In this network the program
register is represented by a two qubit state |ΞA〉p. Before we present the
network for the programmable gate array, we shall introduce notation for
its components. A C-NOT gate D jk acting on qubits j and k performs the
transformation,

D jk |m〉 j |n〉k =|m〉 j |m ⊕n〉k, (3.2)

where j is the control bit, k is the target bit, and m and n are either 0
or 1. The addition is modulo 2. The QID network consists of four C-NOT
gates, and acts on three qubits (a single data qubit denoted by a subscript
1 and two program qubits denoted by subscripts 2 and 3, respectively). Its
action is given by the operator P123 = D31 D21 D13 D12 (for more details see

332 Bužek, Hillery, Ziman, and Roško

Sec. 3.3). As our first task, we shall determine how this network acts on
input states where qubit 1 is in the state |ψ〉, and qubits 2 and 3 are in
Bell basis states. The Bell basis states are defined by

|Φ+〉 = 1√
2
(|01〉+ |10〉)≡|Ξ01〉 ,

|Φ−〉 = 1√
2
(|01〉− |10〉)≡|Ξ11〉 ;

(3.3)
|Ψ+〉 = 1√

2
(|00〉+ |11〉)≡|Ξ00〉 ;

|Ψ−〉 = 1√
2
(|00〉− |11〉)≡|Ξ10〉.

We find that

P123|ψ〉1|Φ+〉23 = (σx |ψ〉1)|Φ+〉;
P123|ψ〉1|Φ−〉23 = (−iσy |ψ〉1)|Φ−〉;

(3.4)
P123|ψ〉1|Ψ+〉23 = |ψ〉1|Ψ+〉 ;
P123|ψ〉1|Ψ−〉23 = (σz |ψ〉1)|Ψ−〉.

Any operation on qubits can be expanded in terms of Pauli matrixes
and the identity. The above equations mean that the Bell basis vectors are
“programs” for a complete set of operations. In order to see how to make
use of this, let us expand our proposed operation in terms of this complete
set. Expressing |φ〉 as |φ〉=µ|0〉+ν|1〉, we have that

Az = I −2|φ〉〈φ|=
(|ν|2 −|µ|2 −2µν∗

−2µ∗ν |µ|2 −|ν|2
)
,

= −(µν∗ +µ∗ν)σx + (µν∗ −µ∗ν)(−iσy)

+(|ν|2 −|µ|2)σz . (3.5)

We can now apply the operation A to |ψ〉 by sending in the “program”
vector

|ΞA〉23 = − (µν∗ +µ∗ν)|Φ+〉23 + (µν∗ −µ∗ν)|Φ−〉23

+ (|ν|2 −|µ|2)|Ψ−〉23, (3.6)

and measuring the program outputs in order to determine if they are in
the state (|Φ+〉 + |Φ−〉 + |Ψ−〉)/√3. If they are, our operation has been
accomplished. Note that the measurement is independent of the vector |φ〉
so that no knowledge of this vector is necessary to make the measurement

Programmable Quantum Processors 333

and to determine whether the procedure has been successful. As we see,
the probability of success is 1/3 for the implementation of the operation
Az which is parameterized in general by two continuous parameters (i.e.,
the state |φ〉).

Let us examine the program vector more carefully. If we define the
unitary operation, Uinit, by

Uinit|00〉 = −|10〉;
Uinit|10〉 = −|11〉;

(3.7)
Uinit|11〉 = |01〉;
Uinit|01〉 = |00〉;

we have that

|ΞA〉12 =Uinit
1√
2
(|φ〉|φ⊥〉+ |φ⊥〉|φ〉). (3.8)

Finally, we can summarize our procedure. The steps are

1. Start with the state 1√
2
(|φ〉|φ⊥〉+ |φ⊥〉|φ〉) .

2. Apply Uinit.
3. Send the resulting state into the control ports (inputs 2 and 3) and

|ψ〉 into port 1.
4. Measure (|Φ+〉 + |Φ−〉 + |Ψ−〉)/√3 at the output of the control

ports.
5. If the result is yes, then the output of port 1 is (I −2|φ〉〈φ|)|ψ〉.

Before proceeding to a more general consideration of this network, let
us make an observation. Suppose that we carry out the same procedure,
but instead of starting with the program vector (|φ〉|φ⊥〉+|φ⊥〉|φ〉)/√2, we
start instead with the program vector (|φ〉|φ〉− |φ⊥〉|φ⊥〉)/√2. At the end
of the procedure the output of the data register is Ax |ψ〉, where

Ax =|φ〉〈φ⊥|+ |φ⊥〉〈φ|. (3.9)

The operation Ax interchanges |φ〉 and |φ⊥〉. Its action is analogous to
that of σx , which interchanges the vectors |0〉 and |1〉. The probability of
success for this procedure is also 1/3.

We now need to determine whether there is a program for any oper-
ator that could act on |ψ〉. The operator need not be unitary; it could be
a result of coupling |ψ〉 to an ancilla, evolving the coupled system (a uni-
tary process), and then measuring the ancilla. Therefore, if A is now any

334 Bužek, Hillery, Ziman, and Roško

linear operator acting on a two-dimensional quantum system, the trans-
formations in which we are interested are given by

|ψ〉→ 1
‖Aψ‖ A|ψ〉. (3.10)

Let us denote the operators, which can be implemented by Bell state
programs, by S00 = I , S01 =σx , S10 =σz , and S11 =−iσy . Any 2×2 matrix
can be expanded in terms of these operators, so that we have

A =
1∑

j,k=0

ã jk S jk . (3.11)

We now define a jk = ã jk/
√
η, where

η=
1∑

j,k=0

|ã jk |2, (3.12)

so that

1=
1∑

j,k=0

|a jk |2. (3.13)

Now let us go back to our network and consider the program vector
given by

|ΞA〉=
1∑

j,k=0

a jk |Ξ jk〉, (3.14)

and at the output of the program register we shall measure the projection
operator corresponding to the vector (1/2)

∑1
j,k=0 |Ξ jk〉. If the measure-

ment is successful, the state of the data register is, up to normalization,
given by

|ψ〉→

1∑
j,k=0

a jk S jk

 |ψ〉 . (3.15)

After this state is normalized, it is just (1/‖Aψ‖)|ψ〉. This means that for
any transformation of the type given in Eq. (3.10) satisfying the normali-
zation ||A||= (1/N)TrA† A=1, we can find a program for our network that
will carry it out.

Programmable Quantum Processors 335

3.2. Generalization to Qudits

In order to extend the network presented above to higher dimensions,
we must first introduce a generalization of the two-qubit C-NOT gate(24)

(see also Ref. 27). To make our discussion self-contained we first pres-
ent a brief review of the formalism describing quantum states in a finite-
dimensional Hilbert space. Here we follow the notation introduced in Ref.
28. Let the N -dimensional Hilbert space be spanned by N orthogonal nor-
malized vectors |xk〉 or, equivalently, by N vectors |pl〉, k, l =0, . . . , N −1,
where these bases are related by the discrete Fourier transform

|xk〉 = 1√
N

N−1∑
l=0

exp
(
−i

2π
N

kl
)
|pl〉 ;

(3.16)

|pl〉 = 1√
N

N−1∑
k=0

exp
(

i
2π
N

kl
)
|xk〉.

Without loss of generality, it can be assumed that these bases consist of
sets of eigenvectors of non-commuting operators X and P :

X |xk〉= k|xk〉 , P|pl〉= l|pl〉 , (3.17)

that is,

X =
N−1∑
k=0

k|xk〉〈xk | ; P =
N−1∑
l=0

l|pl〉〈pl | . (3.18)

For instance, we can assume that the operators X and P are related
to a discrete “position” and “momentum” of a particle on a ring with
a finite number of equidistant sites.(29) Specifically, we can introduce a
length scale, L, and two operators, the position x and the momentum p,
such that

x |xk〉= xk |xk〉 , p|pl〉= pl |pl〉 , (3.19)

where

xk = L

√
2π
N

k; pl = 1
L

√
2π
N

l , (3.20)

where we have used units such that �=1. The length, L can, for example,
be taken equal to

√
1/ωm, where m is the mass and ω the frequency of a

quantum “harmonic”oscillator within a finite dimensional Fock space.

336 Bužek, Hillery, Ziman, and Roško

The squared absolute values of the scalar product of eigenkets (3.17)
do not depend on the indices k, l:

|〈xk |pl〉|2 =1/N , (3.21)

which means that pairs (k, l) form a discrete phase space (i.e., pairs (k, l)
represent “points” of the discrete phase space) on which (quasi)-proba-
bility density distributions associated with a given quantum state can be
defined.(30−34) Next we introduce operators which shift (cyclicly permute)
the basis vectors(35):

Rx (n)|xk〉 = |x(k+n)mod N 〉;
(3.22)

Rp(m)|pl〉 = |p(l+m)mod N 〉,

where the sums of indices are taken modulo N (this summation rule is
considered throughout this paper, where it is clear we will not explic-
itly write the symbol mod N). For more about the properties of these
operators and the role they play in the discrete phase space (k, l) see Ref.
36.

A general single-particle state in the x-basis can be expressed as

|Ψ〉1 =
N−1∑
k=0

ck |xk〉1 ;
N−1∑
k=0

|ck |2 =1 . (3.23)

The basis of maximally entangled two-particle states (the analogue of the
Bell basis for spin- 1

2 particles) can be written as

|Ξmn〉= 1√
N

N−1∑
k=0

exp
(

i
2π
N

mk
)
|xk〉|x(k−n)mod N 〉 , (3.24)

where m,n = 0, . . . , N − 1. We can also rewrite these maximally entangled
states in the p-basis:

|Ξmn〉= 1√
N

N−1∑
l=0

exp
(
−i

2π
N

nl
)
|p(m−l)mod N 〉|pl〉 . (3.25)

The states |Ξmn〉 form an orthonormal basis

〈Ξkl |Ξmn〉= δk,mδl,n , (3.26)

Programmable Quantum Processors 337

with

N−1∑
m,n=0

|Ξmn〉〈Ξmn|= I ⊗ I . (3.27)

In order to prove the above relations we have used the standard relation∑N−1
n=0 exp[2π i(k − k′)n/N]= Nδk,k′ .

It is interesting to note that the whole set of N 2 maximally entangled
states |Ξmn〉 can be generated from the state |Ξ00〉23 by the action of local
unitary operations (shifts), e.g.,

|Ξmn〉23 = I2 ⊗ R†
x (n)Rp(m)|Ξ00〉23 , (3.28)

acting just on system 3 in this particular case.
From the definition of the states |Ξmn〉23 it follows that they are

simultaneously eigenstates of the operators X2 − X3 and P2 + P3:

(X2 − X3)|Ξmn〉23 = n|Ξmn〉23;
(3.29)

(P2 + P3)|Ξmn〉23 = m|Ξmn〉23.

We easily see that for N = 2 the above formalism reduces to the well-
known spin- 1

2 particle (qubit) case.
Now we introduce generalizations of the two-qubit C-NOT gate (see

also Ref. 37). In the case of qubits the C-NOT gate is represented by a
two-particle operator such that if the first (control) particle labeled a is in
the state |0〉 nothing “happens” to the state of the second (target) parti-
cle labeled b. If, however, the control particle is in the state |1〉 then the
state of the target is “flipped”, i.e., the state |0〉 is changed into the state
|1〉 and vice versa. Formally we can express the action of this C-NOT gate
as a two-qubit operator of the form

Dab =
1∑

k,m=0

|k〉a〈k|⊗ |(m + k)mod 2〉b〈m| . (3.30)

We note that in principle one can introduce an operator D†
ab defined as

D†
ab =

1∑
k,m=0

|k〉a〈k|⊗ |(m − k)mod 2〉b〈m| . (3.31)

In the case of qubits these two operators are equal. This is not the case
when the dimension of the Hilbert space is larger than 2.(37) Let us gener-
alize the above definition of the operator D for N >2. Before doing so, we

338 Bužek, Hillery, Ziman, and Roško

shall simplify our notation. Because we will work mostly in the x-basis we
shall use the notation |xk〉≡ |k〉 where it may be done so unambiguously.
With this in mind we now write

Dab =
N−1∑

k,m=0

|k〉a〈k|⊗ |(m + k)mod N 〉b〈m| . (3.32)

From the definition (3.32) it follows that the operator Dab acts on the
basis vectors as (see Fig. 6)

Dab|k〉|m〉= |k〉|(k +m)mod N 〉 , (3.33)

which means that this operator is equal to the conditional adder(38,39) and
can be performed with the help of a simple quantum network as discussed
in Ref. 38.

If we take into account the definition of the shift operator Rx (n)
given by Eq. (3.22) and the definition of the position and momentum
operators x and p given by Eq. (3.19) we can rewrite the operator Dab

as:

Dab =
N−1∑

k,m=0

|k〉a〈k|⊗ R(b)x (k)|m〉b〈m|

≡
N−1∑
k=0

|k〉a〈k|⊗ R(b)x (k) , (3.34)

Fig. 6. A schematic description of the two-qudit
conditional-shift gate. The arrow between two qudit
lines indicates the action of the control: The control
qudit that is prepared in the state |k〉 acts on the
target qudit that is prepared in the state |t〉.

Programmable Quantum Processors 339

and analogously

D†
ab =

N−1∑
k,m=0

|k〉a〈k|⊗ |(m − k)mod N 〉b〈m|

≡
N−1∑
k=0

|k〉a〈k|⊗ R(b)x (−k) , (3.35)

where the subscripts a and b indicate on which Hilbert space the given
operator acts. Now we see that for N >2 the two operators D and D† do
differ; they describe conditional shifts in opposite directions. We see that
the generalization of the C-NOT operator are the conditional shifts. The
amount by which the target (in our case particle b) is shifted depends on
the state of the control particle (a) [for a pictorial representation of this
gate see Fig. 6].

3.3. Quantum Information Distributor

As shown in Ref. 24 quantum control over the quantum information
can be achieved with the help of a quantum “machine,” the so-called QID.
The machine takes as an input a system qudit prepared in an unknown
state |Ψ〉1 and two ancilla qudits prepared in the state |Θ〉23 that plays the
role of quantum program (i.e., the CP map that has to be performed on
the system qubit is encoded in this state). The action of the QID itself is
described by a unitary operator P123 acting on the Hilbert space that is a
tensor product of the three qudits under consideration. This unitary oper-
ator can be expressed as a sequence of four controlled shifts Dkl , i.e.,

P123 = D31 D†
21 D13 D12 . (3.36)

The flow of information in the quantum distributor, as described by the
unitary operator (3.36), is governed by the preparation of the distributor
itself, i.e., by the choice of the program state |Θ〉23. In other words, we
imagine the transformation (3.36) as a universal “processor” or distribu-
tor and the state |Θ〉23 as “program” through which the information flow
is controlled.

We present the logical network for the QID in Fig. 7. The output state
of the three particle system after the four controlled shifts are applied is

|Ω(out)〉123 = D31 D†
21 D13 D12|Ψ〉1|Θ〉23 . (3.37)

Note that the QID is covariant with respect to any choice of the state |Ψ〉1
of data register (for more details see Ref. 24).

340 Bužek, Hillery, Ziman, and Roško

Fig. 7. A logic network for the universal quantum proces-
sor as given by the unitary transformation (3.36). The action
of the controlled shift operator Djk is represented in Fig. 6.

3.3.1. Factorized Program States

Let us first assume that the two program qudits are in a pure state

|Θ〉23 =|xm〉2|pn〉3 . (3.38)

After the action of the QID the state |Ω〉123 =|Ψ〉1 ⊗|Θ〉23 transforms as

|Ω(out)〉123 = P123|Ψ〉1|xm〉2|pn〉3

=
[

Rx (m)R
†
p(n)|Ψ〉2

]
⊗|Ξnm〉31. (3.39)

So we can observe two actions of the QID on the input state: Firstly,
the state of the original qudit has been totally copied on the state of the
second qudit (this might be considered as the swap operation). Simulta-
neously, the second qudit undergoes two rotations described by the opera-
tor Rx (m)R

†
p(n), where the values of the rotations are uniquely determined

by the program state. Finally, the two remaining qudits (labeled as 1 and
3) became maximally entangled as the result of the action of the QID.

3.3.2. Maximally Entangled Program States

Let us assume that the QID state |Θ〉23 is initially prepared in the
maximally entangled state |Ξmn〉23 given by Eq. (3.24) Taking the original
system to be prepared in the state |Ψ〉1, i.e., the three qudits at the input
are in the state

|Ω〉123 =|Ψ〉1 ⊗|Ξmn〉23 (3.40)

we find after the QID transformation the expression for the state vector of
the three qudits

|Ω(out)〉123 =
[

R†
x (n)R

†
p(m)|Ψ〉1

]
⊗|Ξmn〉23 . (3.41)

Programmable Quantum Processors 341

We see that if the program register is initially prepared in the maximally
entangled state then the information encoded in the input state of the first
(system) qudit will remain in this qudit, but the QID will induce a specific
rotation on this qudit that is uniquely determined by the maximally entan-
gled state of the program qudits. Interestingly enough, the program state
is not changed at all in this case.

3.4. QID as Universal Processor

We assume the network for the probabilistic universal quantum
processor to be the QID as described by Eq. (3.36) as a sequence of four
conditional shifts gates D. The sequence of four operators acting on the
basis vectors gives |n〉1|m〉2|k〉3 as

D31 D†
21 D13 D12|n〉1|m〉2|k〉3

=|(n −m + k)mod N 〉1 |(m +n)mod N 〉2 |(k +n)mod N 〉3 . (3.42)

We now turn to the fundamental program states. A basis consisting of
maximally entangled two-particle states (the analogue of the Bell basis for
spin- 1

2 particles) is given by(40)

|Ξmn〉= 1√
N

N−1∑
k=0

exp
(

i
2π
N

mk
)
|k〉|(k −n)mod N 〉, (3.43)

where m,n =0, . . . , N −1. If |Ξmn〉p is the initial state of the program reg-
ister, and |Ψ〉=∑

j α j | j〉d (here, as usual,
∑

j |α j |2 = 1) is the initial state
of the data register, it then follows that

P123|Ψ〉1|Ξmn〉23

=
∑

jk

α j√
N

exp
2π ikm

N
P123| j〉|k〉|k −n〉

=
∑

jk

α j√
N

exp
2π ikm

N
| j −n〉|k + j〉|k + j −n〉

=
∑

jk

α j exp
−2π i jm

N
| j −n〉|Ξmn〉

= (U (mn)|Ψ〉)|Ξmn〉, (3.44)

where we have introduced the notation

U (mn)=
N−1∑
s=0

exp
−2iπsm

N
|s −n〉〈s|. (3.45)

342 Bužek, Hillery, Ziman, and Roško

This result is similar to the one we found in the case of a single qubit (see
Sec. 3.1). We would now like to examine which transformations we can
perform on the state in the data register by using a program consisting of
a linear combination of the vectors |Ξmn〉 followed by the action of the
processor P123 and a subsequent measurement of the program register.

The operators U (mn) satisfy the orthogonality relation

Tr
[
(U (m′n′))†U (mn)

]
= Nδmm′δnn′ . (3.46)

The space of linear operators T (H) defined on some Hilbert space H
with the scalar product given by (3.46) we know as Hilbert–Schmidt space.
Thus the unitary operators U (mn) form an orthogonal basis in it and any
operator A ∈T (H) can be expressed in terms of them

A =
N−1∑

m,n=0

qmnU (mn). (3.47)

The orthogonality relation allows us to find the expansion coefficients in
terms of the operators

qmn = 1
N

Tr
[(

U (mn)
)†

A

]
. (3.48)

Equations (3.46) and (3.47) imply that

N−1∑
m,n=0

|qmn|2 = 1
N

Tr(A† A). (3.49)

Therefore, the program vector that implements the operator A is given by

|vA〉23 =
[

N

Tr(A† A)

]1/2 N−1∑
m,n=0

qmn|Ξmn〉23. (3.50)

Application of the processor to the input state |Ψ〉1|vA〉23 yields the output
state

|Ω〉123 =
∑
mn

qmnU (mn)|Ψ〉1 ⊗|Ξmn〉23. (3.51)

To obtain the final result we perform a projective measurement of the pro-
gram register onto vector |M〉23

|M〉= 1
N

N−1∑
m,n=0

|Ξmn〉 (3.52)

Programmable Quantum Processors 343

If the outcome of the measurement is positive, then we get the required
transformation A acting on an unknown, arbitrary input state |Ψ〉1.

Let us consider an example. Suppose we choose for A the unitary
operator I −2|φ〉〈φ|, where the normalized state |φ〉 can be expressed as

|φ〉=
N−1∑
k=0

βk |k〉. (3.53)

The expansion coefficients for this operation are given by

qmn = δm0δn0 − 2
N

N−1∑
k=0

e2π ikm/Nβ∗
k βk−n, (3.54)

and the program vector for this operation is

|Φ〉23 =|Ξ00〉23 − 2√
N

N−1∑
k,n=0

β∗−kβ−(k+n)|k〉2|k −n〉3. (3.55)

The program vector can be obtained from a state more closely related to
|φ〉 if we introduce a new unitary operator and a “complex conjugate”
vector. Define the operator W by

W |k〉= |− k〉, (3.56)

and the vector |φ∗〉 by

|φ∗〉=
N−1∑
k=0

β∗
k |k〉. (3.57)

We then have that

|Φ〉23 = (W2 ⊗ I3)
(

D†
23

)2
(

|Ξ00〉23 − 2√
N

|φ∗〉2|φ〉3

)
. (3.58)

A network that performs the operation (W2 ⊗ I3)
(

D†
23

)2
could be added

to the input of the program register so that the simpler state that appears
on the right-hand side of Eq. (3.58) could be used as the program. At the
output of the processor we have to perform the projective measurement
discussed in the previous paragraph, and the probability of achieving the
desired result is the same as the probability of successfully implementing
the transformation, A. In this case the probability is 1/N 2.

344 Bužek, Hillery, Ziman, and Roško

3.5. Success Probability

The probability, p, of successfully applying the operator A to the
state |Ψ〉1 in our example is rather small. This is because the operator we
chose was a linear combination of all of the operators U (mn). This means
that if the data register consists of l qubits, i.e., N =2l , then the probabil-
ity of a successful implementation of a general transformation A decreases
exponentially with the size of the data register. However, if we were to
choose an operator, or set of operators, that was a linear combination of
only a few of the U (mn), then the success probability can be significantly
improved. This would entail making a different measurement at the output
of the program register. Instead of making a projective measurement onto
the vector |M〉, one would instead make a measurement onto the vector

|M ′〉= 1
N 1/2

∑
m,n:qmn �=0

|Ξmn〉 (3.59)

where N is the total number of nonzero coefficients qmn , in the decompo-
sition in Eq. (3.47). If the operation being implemented is unitary, then,
in this case, the probability of implementing it is

p = 1
N , (3.60)

where N is the total number of nonzero coefficients qmn , in the decom-
position (3.47). There are, in fact, large classes of operations that can be
expressed in terms of a small number of operators U (mn).8 For these oper-
ators, the probability of success can be relatively large and, in principle,
independent of the size of the Hilbert space of the data register.

Example 1.

Let us consider the one-parameter set of unitary transformations Uϕ

Uϕ = cosϕ I + i sinϕ
[

1+ i

2
U (01)+ 1− i

2
U (03)

]
, (3.61)

where the unitaries U (mn) are given by Eq. (3.45). These unitaries for N =4
can be explicitly written as

U (01)=
3∑

s=0

(−i)s Ps ; U (03)=
3∑

s=0

(i)s Ps , (3.62)

8We note that an arbitrary sum of unitary operators U (mn) is not necessarily a unitary
operator.

Programmable Quantum Processors 345

where Ps =|s〉〈s|. From here we find the expression for the operator (3.61)
in the form:

Uϕ = cosϕ I + i sinϕ [P0 + P1 − P2 − P3] , (3.63)

We note that if we rewrite the parameters s as binary numbers, s = j12 +
j0, where jk is either 0 or 1, and express the states |s〉 as tensor products
of qubits, i.e., |s〉=| j1〉⊗| j0〉, we find that the operator in brackets on the
right-hand side of Eq. (3.61) can be expressed as

[
1+ i

2
U (01)+ 1− i

2
U (03)

]
=σ3 ⊗ I . (3.64)

From Eq. (3.63) it is clear that Uϕ has eigenvalues of magnitude 1, which
implies that Uϕ is unitary. It can be realized by the universal quantum pro-
cessor (3.39) with a probability of successful implementation equal to 1/3.
This example illustrates that it is possible to realize large classes of uni-
tary operations with a probability that is greater than the reciprocal of the
dimension of the program register.

This example can be easily generalized. Consider a one-parameter set
of unitary operators acting on a Hilbert space consisting of l qubits, which
is given by

Uϕ = cosϕ I⊗l + i sinϕ σ3 ⊗ I⊗(l−1). (3.65)

The operator σ3 ⊗ I⊗(l−1) is diagonal and therefore only the diagonal uni-
taries from our set U (mn), i.e., U (m0), appear in its expansion, Eq. (3.47).
Moreover, the coefficients qm0 in the expansion are non-vanishing only for
odd m. It follows that

Uϕ = cosϕ I⊗l + i sinϕ
∑

odd m

qm0U (m0), (3.66)

and the probability of a successful implementation of this unitary trans-
formation is p =2/(2l +2).

Example 2.

For some sets of operators it is possible to do even better than we were
able to do in the previous example. Consider the one-parameter set of uni-
tary operators given by

Uϑ = cosϑ I + i sinϑ U (0,N/2), (3.67)

346 Bužek, Hillery, Ziman, and Roško

where N is assumed to be even. That this operator is unitary follows from
the fact that U (0,N/2) is self-adjoint. A program vector that would imple-
ment this operator is

|Φ〉23 = cosϑ |Ξ00〉23 + i sinϑ |Ξ0,N/2〉23, (3.68)

and at the output of the program register we make a projective measure-
ment corresponding to the vector

|M〉23 = 1√
2
(|Ξ00〉23 +|Ξ0,N/2〉23. (3.69)

The probability for successfully achieving the desired result, i.e., the vec-
tor Uϑ |Ψ〉1 in the data register, is 1/2 irrespective of the value N , i.e., the
number of qubits.

Comments
Above we have presented a programmable quantum processor that

exactly implements a set of operators that form a basis for the space
of operators on qudits. This processor has a particularly simple repre-
sentation in terms of elementary quantum gates. It is, however, by no
means unique. It is possible, in principle, to build a processor that exactly
implements any set of unitary operators that form a basis for the set of
operators on qudits of dimension N , and uses any orthonormal set of N 2

vectors as programs. Explicitly, if the set of operators is {Vn|n =1, . . . N 2}
and the program vectors are {|yn〉|n =1, . . . N 2}, the processor transforma-
tion is given by

Pdp =
N 2∑

n=1

V (d)
n ⊗|yn〉p p〈yn|, (3.70)

where the superscript (d) on the operator Vn indicates that it acts on the
data register.

As an example, consider a data register consisting of l qubits. We
could use the processor discussed in Sec. 3 to perform operations on
states in this register, but we can also do something else; we can use l
single-qubit processors, one for each qubit of the data register. Specifically,
our unitary basis for the set operations on the data register would be

UJ K =U j1k1,..., jl kl =
l⊗

m=1

S jm km (3.71)

where J = (j1, . . . , jl) and K = (k1 . . . , kl) are sequences of zeros and ones,
and the operators S jm km are the defined immediately after Eq. (3.10). The

Programmable Quantum Processors 347

program register would consist of l pairs of qubits, 2l qubits in all, with
each pair controlling the operation on one of the qubits in the data reg-
ister. Each of the operators in our basis can be implemented perfectly
by a program consisting of the tensor product state,

∏l
m=0 |Ξ(m)

jm km
〉, where

|Ξ(m)
jm km

〉 is a two-qubit state that implements the operation S jm km on the
mth qubit of the data register.

We are then faced with the problem of which processor to use. This
very much depends on the set of operations we want to apply to the data.
How to choose the processor so that a given set of operations can be
implemented with the greatest probability, for a fixed size of the program
register is an open problem. A second issue is simplicity. One would like
the processor itself and the program states it uses to be as simple as pos-
sible. The simplicity of the processor is related to the number of quan-
tum gates it takes to construct it. We would maintain that the processors
we have presented here are simple, though whether there are simpler ones
we do not know. Judging the simplicity of the program states is some-
what more difficult, but they should be related in a relatively straightfor-
ward way to the operation that they encode. In many cases these states
will have been produced by a previous part of a quantum algorithm, and
complicated program states will mean more complexity for the algorithm
that produces them. The program states proposed by Vidal, Masanes and
Cirac (VMC) and the ones proposed by us in Sec. 2 are, in our opinion,
simple.

In the following section we will analyze how one can improve a the
probability of successfully carrying out a set of operations by increasing
the dimensionality of the space of program vectors. VMC showed how
to do this in a particular case, but more general constructions would be
desirable.(11) Doing so we introduce a method of designing programs for
a quantum computer.

4. IMPROVING THE PERFORMANCE OF PROBABILISTIC
PROGRAMMABLE PROCESSORS

In a probabilistic processor, one measures the output program state. If
the proper result is obtained, the desired operation has been performed on
the data state, and if not, then the output of the data register is discarded.
In this kind of a scenario, one wants the probability of successfully per-
forming the operation to be as close to one as possible. In fact, what one
would like, is, given a set of operations that one wishes to perform, a
procedure for systematically increasing the probability of successfully per-
forming these operations.

348 Bužek, Hillery, Ziman, and Roško

As we have already discussed, in the case of one-parameter unitary
groups acting qubits this was done Preskill(10) and VMC.(11) considered
the one-parameter group of operations given by U (θ)= exp(iθσz), for 0≤
θ < 2π , and discussed two equivalent methods of making the probability
of performing U (θ) arbitrarily close to one. A circuit consisting of a sin-
gle C-NOT gate, with the control qubit as the data and the target qubit as
the program, can successfully perform U (θ) with a probability of 1/2. If
the procedure fails, however, the data qubit, which was initially in the state
|ψ〉, is left in the state U (−θ)|ψ〉. What we can now do, is to send this
qubit back into the same circuit, but with the program state that encodes
the operation U (2θ). This also has a probability of 1/2 of succeeding, and
increases the total success probability for the two-step procedure to 3/4.
Note that our program state has increased to two qubits, one for the first
step and one for the second. We can continue in this way simultaneously
increasing the success probability and the size of the program state. It is
also possible to design more complicated circuits that perform the entire
procedure at once, i.e., they have a one-qubit data state, an N -qubit pro-
gram state, and a success probability of 1− (1/2)N .(11)

In this section we would like to extend these ideas in a number of
different directions. First, we shall show that it is possible to boost the
probability of sets of nonunitary operations. It will then be shown how
to increase the success probability of operations on qudits. Finally, more
complicated groups of operations will be considered.

4.1. Improving Operations on Qubits

We shall begin by describing the methods developed in Refs. 10 and
11 in terms of the formalism presented in Ref. 12. There, the input data
state is in the Hilbert space Hd , the program state in the space Hp, and
G is the unitary operator, acting on the space Hd ⊗Hp, that describes the
action of the circuit. This operator can be expressed as

G =
N∑

j,k=0

A jk ⊗| j〉p p〈k|, (4.1)

where N is the dimension of Hp, A jk is an operator on Hd , and {| j〉| j =
1, . . . N } is an orthonormal basis for the program space. The operators A jk

satisfy (12)

N∑
j=1

A†
jk1

A jk2 =
N∑

j=1

Ak1 j A†
k2 j = Idδk1k2 , (4.2)

Programmable Quantum Processors 349

where Id is the identity operator on Hd . If the circuit acts on the input
state |ψ〉d ⊗|Ξ〉p, we find that

G(|ψ〉d ⊗|Ξ〉p)=
N∑

j=1

A j (Ξ)|ψ〉d ⊗| j〉p, (4.3)

where

A j (Ξ)=
N∑

k=1

p〈k|Ξ〉p A jk . (4.4)

Let us begin by using this formalism, let us look at a C-NOT gate and
the simplest of the circuits discussed in Ref. 11. Both the data and pro-
gram space are two-dimensional, and the data space is the control qubit
and the program space is the target qubit. Expressing the operator for the
C-NOT gate in the form given in Eq. (4.1), and choosing the basis {|0〉, |1〉}
for the program space, we find that

A00 =|0〉〈0|; A01 =|1〉〈1|;
A10 =|1〉〈1|; A11 =|0〉〈0|. (4.5)

We want to use this circuit to perform the operation U (θ) and this can be
done with the program state

|Ξ(θ)〉= 1√
2
(eiθ |0〉+ e−iθ |1〉). (4.6)

This gives us the output state

G(|ψ〉d ⊗|Ξ(θ)〉p)=
1∑

j=0

A j (θ)|ψ〉d ⊗| j〉p (4.7)

where the program operators are

A0(θ) = eiθ

√
2
|0〉〈0|+ e−iθ

√
2

|1〉〈1|= 1√
2

U (θ)
(4.8)

A1(θ) = eiθ

√
2
|1〉〈1|+ e−iθ

√
2

|0〉〈0|= 1√
2

U (−θ).

Therefore, if we measure the output of the program register in the compu-
tational basis and obtain |0〉, then U (θ) has been carried out on the data
state. This occurs with a probability of 1/2.

350 Bužek, Hillery, Ziman, and Roško

If we obtain |1〉 instead of |0〉 when we measure the program register
output, then the operation U (−θ) has been performed on the data state.
We can try to correct this by sending the state U (−θ)|ψ〉d back into
the same circuit, but with the program state |Ξ(2θ)〉p. If we measure the
program output and obtain |0〉, then the output of the data register is

U (2θ)U (−θ)|ψ〉d =U (θ)|ψ〉d , (4.9)

and this happens with a probability of 1/2. This will correct the previous
error.

A circuit that does this all at once can be constructed from three
qubits and two quantum gates.(11) Qubit 1 is the data qubit, and qubits
2 and 3 are the program qubits. The first gate is a C-NOT gate with qubit
1 as the control and qubit 2 as the target. The second gate is a Toffoli
gate with qubits 1 and 2 as controls and qubit 3 as the target. A Toffoli
gate does nothing to the control bits, and does nothing to the target bit
unless both control bits are 1, in which case it flips the target bit. If we
denote the orthonormal program space basis by

|0〉p =|0〉2|0〉3; |2〉p =|1〉2|0〉3 ;
(4.10)|1〉p =|0〉2|1〉3; |3〉p =|1〉2|1〉3,

then this circuit can be described by the operators

A00 =|0〉〈0|; A01 =0; A02 =|1〉〈1|; A03 =0;
A10 =0; A11 =|0〉〈0|; A12 =0; A13 =|1〉〈1|;
A20 =0; A21 =|1〉〈1|; A22 =|0〉〈0|; A23 =0;
A30 =|1〉〈1|; A31 =0; A32 =0; A33 =|0〉〈0|.

(4.11)

The program state is now

|Ξ(θ)〉= 1
2

3∑
j=0

ei(3−2 j)θ | j〉p. (4.12)

At the output of the processor the program register is measured in the
computational basis, and only if both qubits are found to be in the state
|1〉 does the procedure fail. The overall probability of succeeding is 3/4.

Now let us go back to the C-NOT gate with a single qubit program
and consider a more general program state

|Ξ〉= c0|0〉+ c1|1〉, (4.13)

Programmable Quantum Processors 351

the operators A0(Ξ) and A1(Ξ) are

A0(Ξ) = c0|0〉〈0|+ c1|1〉〈1| ;
(4.14)

A1(Ξ) = c1|0〉〈0|+ c0|1〉〈1|.
These operators are not unitary, but they do have the property that
A0(Ξ)A1(Ξ)= A1(Ξ)A0(Ξ)=c0c1 I . The output state of this circuit is given
by Eq. (4.7), so that it can be used to realize, probabilistically, either of the
nonunitary operators, A0(Ξ) or A1(Ξ). It also suggests that we should be
able to apply something like the Preskill–Vidal–Masanes–Cirac scheme. In
particular, suppose we are trying to perform the operation

B(z)=|0〉〈0|+ z|1〉〈1|. (4.15)

If c1 = zc0, then A0(Ξ) is proportional to B(z). We send the data state into
the processor and then measure the program state in the {|0〉, |1〉} basis. If
we get 0 we have succeeded, but if we get 1 we have instead applied A1(Ξ)

to the state. If we fail, however, we can try again. We now take the output
from our first attempt, which is A1(Ξ)|ψ〉d , and send it into the processor
again, but this time with the program state

|Ξ′〉=
(

1
1+|z|4

)1/2

(|0〉+ z2|1〉) . (4.16)

We again measure the program state, and if we find 0, the output of the
data register is the desired state, A0(Ξ)|ψ〉d . If we failed, that is we found
1, we can try yet again, but we need to modify the program state every
time we repeat the process.

Rather than performing this procedure sequentially, i.e., sending in
the input state, seeing if we succeed, and if not trying the procedure again
with a modified program state, we can again do everything at once by
enlarging the size of the program space. We shall use a slightly different
processor than the one used by Vidal and Cirac. It has the same four-
dimensional program space, but the operators A jk are now given by

A00 =|0〉〈0|; A01 =|1〉〈1|; A02 =0; A03 =0;
A10 =0; A11 =|0〉〈0|; A12 =|1〉〈1|; A13 =0;
A20 =0; A21 =0; A22 =|0〉〈0|; A23 =|1〉〈1|;
A30 =|1〉〈1|; A31 =0; A32 =0; A33 =|0〉〈0|.

(4.17)

The program state is now

|Ξ〉p =
3∑

k=0

ck |k〉p , (4.18)

352 Bužek, Hillery, Ziman, and Roško

where ck+1 = zck for k =0,1,2, and normalization then requires that

|c0|2 = 1−|z|2
1−|z|8 . (4.19)

The operation of the processor is given by

G(|ψ〉d ⊗|Ξ〉p)=
3∑

j=0

A j (Ξ)|ψ〉d ⊗| j〉p, (4.20)

where

A j (Ξ)=
3∑

k=0

ck A jk, (4.21)

and the operators A jk are given in Eq. (4.17). This processor will perform
the operation B(z) with a reasonably high probability. In order to see this,
we first note that A j (Ξ)= z j A0(Ξ) for j =0,1,2,. This implies that

G(|ψ〉d ⊗|Ξ〉p) = A0(Ξ)|ψ〉d ⊗

2∑
j=0

z j | j〉p

+A3(Ξ)|ψ〉d ⊗|3〉p, (4.22)

and A0(Ξ)= c0 B(z). At the output of the processor we measure the pro-
gram state in the {| j〉| j = 0, . . .3} basis, and if we get 0,1 or 2, we have
carried out the desired operation. If |ψ〉d =α|0〉+β|1〉, then the probabil-
ity of success depends on the input state and is given by

Psuc =
(

1−|z|6
1−|z|8

)
(|α|2 +|z|2|β|2). (4.23)

If we average this probability over all input states we find that

Psuc = 1
2

(
1−|z|6
1−|z|8

)
(1+|z|2). (4.24)

As an example, we can consider the case |z|2 =1/2, which gives us Psuc =0.7.
This can easily be generalized to an N -dimensional program. The

operators A jk are now given by

A jk = δ j,k |0〉〈0|+ δ j+1,k |1〉〈1|, (4.25)

Programmable Quantum Processors 353

where the addition in the second Kronecker delta is done modulo N .
These operators satisfy Eq. (4.2), so that they define a unitary operator.
The program state is now

|Ξ〉= c0

N−1∑
j=0

z j | j〉p, (4.26)

where

|c0|2 = 1−|z|2
1−|z|2N

. (4.27)

This yields the following output state

G(|ψ〉d ⊗|Ξ〉p) = c0 B(z)|ψ〉d ⊗
N−2∑
j=0

z j | j〉p

+AN−1(Ξ)|ψd〉⊗ |N −1〉p, (4.28)

where

AN−1(Ξ)= c0(z
N−1|0〉〈0|+ |1〉〈1|). (4.29)

The probability of successfully performing B(z) on |ψ〉d is given by

Psuc = 1−‖AN−1(Ξ)ψ‖2

= 1− (1−|z|2)(|α|2|z|2(N−1)+|β|2)
|z|2N −1

. (4.30)

When |z| = 1, this is equal to 1 − (1/N). An examination of Psuc shows
that it is an increasing function of N . In the case that |z|=1 it approaches
1 as N →∞. This is no longer true if |z| �= 1; if |z|< 1, we find that the
limit is

Psuc →1− (1−|z|2)|β|2 =‖B(z)ψ‖2, (4.31)

and if |z|>1, the limit is

Psuc →1−
(

1− 1
|z|2

)
|α|2 = 1

|z|2 ‖B(z)ψ‖2. (4.32)

Therefore, only in the case that we are implementing a unitary operation
can this sequence of processors achieve a success probability arbitrarily
close to 1.

354 Bužek, Hillery, Ziman, and Roško

4.2. Improving Performance of Qudit Processors

We now want to see how these arguments can be generalized to
higher dimensional systems, and, for the sake of simplicity, let us start
by examining qutrits. The data space is now three-dimensional, and let us
take for the operators A jk

A00 =|0〉〈0|; A01 =|1〉〈1|; A02 =|2〉〈2|;
A10 =|2〉〈2|; A11 =|0〉〈0|; A12 =|1〉〈1|; (4.33)

A20 =|1〉〈1|; A21 =|2〉〈2|; A22 =|0〉〈0|.
The general program state is

|Ξ〉= c0|0〉+ c1|1〉+ c2|2〉, (4.34)

which gives the program operators

A0(Ξ) = c0|0〉〈0|+ c1|1〉〈1|+ c2|2〉〈2|;
A1(Ξ) = c0|2〉〈2|+ c1|0〉〈0|+ c2|1〉〈1|; (4.35)

A2(Ξ) = c0|1〉〈1|+ c1|2〉〈2|+ c2|0〉〈0|.
The output state is

|Ψout〉=
2∑

j=0

A j |ψ〉d ⊗| j〉p, (4.36)

so that if we measure in the program space and get j , the output state of
the data register is A j (Ξ)|ψ〉d .

Suppose we are trying to apply the operator A0(Ξ) to the input data
state. The probability of succeeding is 〈ψ |A†

0(Ξ)A0(Ξ)|ψ〉. If we fail, how-
ever, we can try again, and this will increase the total probability of suc-
cess. To see how this works, let us consider an example. Suppose that we
measured the program register and got 1 instead of 0. That means we now
have the state A1(Ξ)|ψ〉d . We take this state and put it through the pro-
cessor again, but with a modified program state

|Ξ′〉= c′
0|0〉+ c′

1|1〉+ c′
2|2〉. (4.37)

Suppose we now measure the output in the program space and get 0. If
A0(Ξ

′)A1(Ξ)∝ A0(Ξ), then we have succeeded on our second try. Noting
that

A0(Ξ
′)= c′

0|0〉〈0|+ c′
1|1〉〈1|+ c′

2|2〉〈2|, (4.38)

Programmable Quantum Processors 355

we see that this condition is satisfied if

c′
0 = αc0

c1
; c′

1 = αc1

c2
; c′

2 = αc2

c0
. (4.39)

The constant α is chosen so that |Ξ′〉 is normalized.
What we can conclude from this is that we can, by trial and correc-

tion, boost the probabilities of implementing operators that are diagonal in
the basis {|0〉, |1〉, |2〉}. In the case that the operator we are trying to imple-
ment is unitary, i.e., |c j | = 1/

√
3, then our probability of success at each

trial is 1/3, so that our probability of success after N trials is 1− (2/3)N .
This probability goes to 1 as N goes to infinity. These conclusions gener-
alize in a straightforward way to qudits.

We now want to explore increasing the probability of successfully per-
forming an operation on qudits by increasing the size of the program
space. The data space is now of dimension D, and the orthonormal basis
spanning it is {|0〉d , . . . |D − 1〉d}. We shall consider a particular kind of
operation, one that changes the amplitude of one of the basis states,
and leaves the rest alone (up to overall normalization). Suppose the state
whose amplitude we want to change is |0〉d . The operator we want to
implement is

B0(z)= z|0〉p p〈0|+ X, (4.40)

where

X =
D−1∑
k=1

|k〉p p〈k|. (4.41)

For our processor, we shall choose the operators A jk , where j and k
run from 0 to D −1 to be

A jk = δ jk X + δk, j+1|0〉p p〈0|, (4.42)

were all additions are modulo D. The program state

|Ξ〉p = c0

N−1∑
k=0

zk |k〉p, (4.43)

where |c0|2 is given by Eq. (4.27), gives us, for 0≤ j ≤ N −2

A j (Ξ)= c0z j B0(z). (4.44)

356 Bužek, Hillery, Ziman, and Roško

The probability of successfully performing B0(z) on the data state |ψ〉d ,
Psuc, is

Psuc = |z|2(N−1)−1
|z|2N −1

‖B0ψ‖2, (4.45)

when |z| �=1, and it is (N −1)/N when |z|=1. In the limit that N goes to
infinity, Psuc goes to one if |z|=1. If |z|>1 we have that

Psuc → 1
|z|2 ‖B0ψ‖2, (4.46)

and if |z|<1, then

Psuc →‖B0ψ‖2. (4.47)

As before, we see that it is only in the case that the operation is unitary
that the probability goes to one.

If we want to modify more than one basis vector amplitude, we
can apply these processors successively, each designed to modify a sin-
gle amplitude. In the case that all of the operations are unitary, this is a
D-dimensional, programmable phase gate, whose probability of succeeding
can be made arbitrarily close to one.

4.3. Realization of SU(2) Rotations

In the VMC model the angle of the U(1) rotation that is supposed to
be performed on a qubit is encoded in a quantum state of the program.
The rotation itself is then applied on the data qubit via the C-NOT gate
that plays the role of a programmable processor. As we have discussed
above the probability of success of the rotation can be enhanced, provid-
ing the data qubit is processed conditionally in loops. The dynamics of
each “run” of the processor is conditioned by the result of the measure-
ment performed on the program register.

In what follows we will show that an analogous strategy can be
applied in the case of the SU(2) rotations of a qubit, when the parameters
(angles) of the SU(2) rotations are encoded in the state of the program.
In Sec. 3.2 we have shown an arbitrary single-qubit unitary transforma-
tion can be implemented with the probability p = 1/4 by using a quan-
tum information distributor machine (QID) as the processor. As shown
earlier the QID is a quantum processor with a single data qubit and two
program qubits. The quantum information distribution is realized via a
sequence of four C-NOT gates, such that firstly the data qubit controls

Programmable Quantum Processors 357

the NOT operation on the first and the second program qubits and then
the first and the second program qubits act as the control with the data
qubit as the target. At the end of this process a projective measurement on
the two program qubits is performed. The measurement is performed in
the basis: {|0〉|+〉; |0〉|−〉; |1〉|+〉; |1〉|−〉} (where |±〉 = (|0〉 ± |1〉)/√2). The
realization of the desired transformation is associated with the projection
onto the vector |0〉|+〉. In what follows we will explicitly show how to cor-
rect the cases of wrong results, i.e., of projections onto one of the vectors
|0〉|−〉, |1〉|+〉, |1〉|−〉.

Let us note that the action of the QID processor(12,24) can be
expressed in the form

P =
3∑

j=0

σ j ⊗|Ξ j 〉〈Ξ j | , (4.48)

where σ j are standard σ -matrices with σ0 = I . The basis program vectors
|Ξ j 〉 form the standard Bell basis, i.e.,

|Ξ0〉= 1√
2
(|00〉+ |11〉); |Ξx 〉= 1√

2
(|01〉+ |10〉);

|Ξz〉= 1√
2
(|00〉− |11〉); |Ξy〉= 1√

2
(|01〉− |10〉).

The general program state |Ξ(�µ)〉p encoding the unitary transformation
U �µ= exp(i �µ.�σ)= cosµI + i sinµ �µ

µ
.�σ (µ=|�µ|) is given by the expression

|Ξ(�µ)〉p = cosµ|Ξ0〉+ i
sinµ
µ

(µx |Ξx 〉+µy |Ξy〉+µz |Ξz〉). (4.49)

Performing the previously mentioned measurement in the program basis
|0+〉, |0−〉, |1+〉, |1−〉 we obtain the following unitary transformations

|0〉⊗ |+〉 : |ψ〉d →U �µ|ψ〉d ;
|0〉⊗ |−〉 : |ψ〉d →σzU �µσz |ψ〉d ;
|1〉⊗ |+〉 : |ψ〉d →σxU �µσx |ψ〉d ;
|1〉⊗ |−〉 : |ψ〉d →σyU �µσy |ψ〉d ,

where

U �µ= cosµI + i sinµ
µ

(µxσx +µyσy +µzσz) . (4.50)

358 Bužek, Hillery, Ziman, and Roško

To obtain this simple expression we have used the identity σ jσkσ j = −σk

if k �= j . All observed outcomes occur with the same probability, p = 1/4.
Using the above notation the action of the QID can be expressed in the
form

|ψ〉d ⊗|Ξ(�µ)〉p → 1
2

3∑
j=0

σ jU �µσ j |ψ〉d ⊗| j̃〉p

 (4.51)

where vectors {| j̃〉p} form the basis of Hp associated with the realized
measurement. The explicit form of the vectors is presented in following
paragraph where we discuss a general solution of SU(N) rotations of
qudits.

We see that each outcome of the measurement indicates a different
unitary transformation that has been applied to the data. Once we have
obtained a specific result we can use the same processor again to correct
an incorrectly transformed data register and consequently improve the suc-
cess probability. In particular, in the case of the result j , the new program
register needs to encode the correcting transformation U (1)

j = U �µσ jU
†
�µσ j .

The probability of implementing the unitary transformation using one
conditioned loop is given as p(1)= 1

4 + 3 1
16 = 7

16 . Using more and more
conditioned loops the success probability is given by p(n)=∑n

j=1
1
4 j 3 j−1 =

1/4
∑

j (3/4)
j = 1

4
1−(3/4)n

1/4 = 1 − (3/4)n converges to unity, i.e., p(n)→ 1 as
the number of conditioned loops n goes to infinity. For instance, 30 con-
ditioned loops result in the negligible probability of failure, p f �10−4.

4.4. SU (N) Rotations of Qudits

Now we will show that one can utilize the QID for a probabilistic
implementation of SU(N) rotations of qudits. Following the action of the
QID as the probabilistic processor (see Sec. 3.3) we perform a measure-
ment on the program register in the basis

|Φrs〉= 1
N

N−1∑
m,n=0

exp
[

2π i
(mr −ns)

N

]
|Ξmn〉 . (4.52)

The orthogonality of this measurement basis directly follows from the
orthogonality of the entangled basis |Ξmn〉. We should also note, that the
vectors |Φrs〉 itself can be rewritten in a factorized form, i.e.,

|Φrs〉= |− r〉⊗ 1√
N

N∑
n=0

exp
[
2π i

ns

N

]
|n − r〉 , (4.53)

Programmable Quantum Processors 359

which means that the measurement can be performed independently on
two program qudits.

In order to clarify the role of the measurement we will rewrite the
output state of the QID using the basis |Φrs〉 for program qudits:

P123|Ψ〉1|ΞV 〉23 =
N−1∑

m,n=0

dm,nU (m,n)|Ψ〉1|Ξmn〉23

=
N−1∑

m,n=0

dm,nU (m,n)|Ψ〉1

 1

N

N−1∑

r,s=0

exp
[
−2π i

(mr −ns)

N

]
|Φrs〉23

= 1
N

N−1∑

r,s=0

N−1∑

m,n=0

{
exp

[
−2π i

(mr −ns)

N

]
dm,nU (m,n)

}
|Ψ〉1|Φrs〉23.

(4.54)

Taking into account that

[
U (p,q)

]†
U (m,n)U (p,q)= exp

[
2π i

(mq −np)

N

]
U (m,n) (4.55)

and choosing p = s and q = r we find

1
N

Tr
[(

U (s,r)
)† (

U (m,n)
)†

U (s,r)V

]
= exp

[
−2π i

(mr −ns)

N

]
dm,n . (4.56)

Finally, the output of the QID can be rewritten in the form

P123|Ψ〉1|ΞV 〉23 = 1
N

N−1∑
r,s=0

[
U (s,r)V

(
U (s,r)

)†
]

|Ψ〉1|Φrs〉23 , (4.57)

from which it is clear that if the result of the measurement of the two
program qudits is |Φrs〉23, then the system (data) is left in the state[
U (s,r)V

(
U (s,r)

)†]|Ψ〉1. Obviously, if s = r = 0, then the operator V is
applied on the data qudit. The probability of this outcome is 1/N 2. For
all other results of the measurement the data qudit is left in the state given
above. One can use these output states with a modified program state to
improve the performance of the programmable processor. Specifically, we
have to use the new program state |Ξ(r,s)

V 〉 that is chosen after taking into
account the result of the previous measurement. This program state has
first to “correct” the wrong realization of the operation V during the pre-
vious “run” of the processor and then apply (probabilistically), the origi-
nal operation V . For this reason, the new program state has to perform
the operation

360 Bužek, Hillery, Ziman, and Roško

V (r,s)= V

[
U (s,r)V

(
U (s,r)

)†
]−1

. (4.58)

This process of error correction (conditional loops) can be used K
times and the technique of conditioned loops can be exploited in order
to amplify the probability of success. Applying the processor K times the
probability of a successful application of the desired SU(N) operation V
reads p(K)=1− (1−1/N 2)K .

Comments
Till now we have shown how to encode information about the quan-

tum dynamics V to be performed on a quantum system (data register)
in the state of another quantum system (program register). This informa-
tion is stored in such a way that the program can be used to probabi-
listically perform the stored transformation on the data. Above we have
analyzed systematically how to perform U(1) rotations of qubits and
qudits and one-parameter families of nonunitary operations when the
angle of rotation is encoded in states of quantum programs. In addition,
we have shown how to increase the probability of success when the quan-
tum processor is used in loops with updated program states. We have gen-
eralized the whole problem and we have shown that one can use a very
simple quantum processor, the so called quantum information distribu-
tor, to perform arbitrary SU(2) rotations of qubits as well as SU(N) rota-
tions of qudits using the probabilistic programmable processor with the
quantum program register initially prepared in states that carry the infor-
mation about the operation to be performed on the data. It is also
possible to use enlarged programs to increase the probability of success
without the use of loops. In this case the measurement performed on the
program register has to be modified accordingly. We have shown that if
the processor is used in loops with properly chosen program states one can
improve the performance of the quantum programmable processor so that
the probability of failure decreases exponentially with the number of pro-
gram qudits that store the information about transformation on the data
qudit.

In what follows we will analyze a simple model of a programma-
ble processor with N identical copies of the program register. We will
study how one can optimally use the information encoded in N copies of
the program in order to optimally perform the desired operation on the
data register. In order to make our investigation as transparent as pos-
sible we will study a simple U (1) rotation of a single qubit around the
axis z.

Programmable Quantum Processors 361

5. INCREASING THE PROBABILITY OF SUCCESS
WITH MULTIPLE COPIES OF PROGRAM STATES

We have already shown that the probability of successfully carry-
ing out the U (1) operation on the data qubit can be increased through
the enlargement of the program space. Specifically, in the VMC scheme,
if the first operation failed, that is, we performed U (−θ) on the data
state, we could attempt to correct this by performing the rotation U (2θ)
on the wrongly transformed data state U (−θ)|Ψ〉d and if that failed
we could attempt to perform the transformation U (4θ) on the data
state U (−3θ)|Ψ〉d , etc. The N -qubit program state |Ξ(N)

θ 〉 �p used for this
iterative operation can be written as

|Ξ(N)
θ 〉 �p = |Ξ2N θ 〉p1 ⊗|Ξ2N−1θ 〉p2 ⊗· · ·⊗ |Ξθ 〉pN

= 1√
2N

2N −1∑
j=0

e−i jθ | j〉 �p, (5.1)

with | j〉 �p = | jN 〉pN ⊗ | jN−1〉pN−1 · · · ⊗ | j1〉p1 , where jl is the lth bit in the
binary representation of j .

As discussed in Sec. 4 instead of using iteratively the C-NOT proces-
sor one can design a general quantum processor

Gdp =
2N −1∑
j,k=1

A jk ⊗| j〉p p〈k|, (5.2)

where { j〉p| j = 0, . . . ,2N − 1} is an orthonormal basis for the program
space and the A jk are operators acting on the data space such that:

2N −1∑
j=0

A†
x j A jy =

2N −1∑
j=0

Ax j A†
j y = Idδxy . (5.3)

The result of the circuit on the combined data and program states input
|Ψ〉d ⊗|Ξ〉p ∈Hd ⊗Hp can be expressed as:

G(|Ψ〉d ⊗|Ξ〉p)=
2N −1∑

j=0

A j (Ξ)|Ψ〉d ⊗| j〉p, (5.4)

where the program operators A j (Ξ) are given by:

A j (Ξ)=
2N −1∑
k=0

p〈k|Ξ〉p A jk . (5.5)

362 Bužek, Hillery, Ziman, and Roško

If the measurement of the program state returns |n〉p, then Eq. (5.4) tells
us that the operation An(Ξ) has been carried out on the data state.

To perform the U (1) operation with only one iteration of the proces-
sor in the HZB scheme (described in Section 4), we use the same program
state as for the VMC scheme given by Eq. (5.1). The circuit (processor) is
then determined by the operators

A jk = δ j,k |0〉d d〈0|+ δ j⊕1,k |1〉d d〈1| (5.6)

with ⊕ indicating addition modulo 2N . The program state is then mea-
sured and any result other than |2N − 1〉p indicates success. The success
probability for this circuit is the same as that for the VMC circuit and it
reads:

p =1− 1
2N

. (5.7)

This is the highest possible success probability achievable from the starting
state |Ξ(N)

θ 〉p for a general probabilistic quantum processor.(11)

5.1. Using Multiple Copies of the Basic Program State

5.1.1. Iterative Process with Multiple Copies of the Program State |Ξθ 〉
Given that θ is not known, it is not clear how the program states for

the improved schemes above might in general be produced deterministi-
cally given no prior knowledge of θ . General execution of U (1) on a data
qubit using a single program qubit and a C-NOT gate is known to be opti-
mally achieved using the program state |Ξθ 〉 given by Eq. (1.6) (see Refs.
41 and 42), so assuming the availability of this state seems a reasonable
minimal assumption. To increase the probability of success above 1/2 using
just a C-NOT, we require more copies of this basic program state and,
if the operation U (−θ) has been carried out, we can reprocess the data
state with a new copy of |Ξθ 〉 and continue this process until the desired
transformation has been executed or until the available program states are
exhausted.9 If N , the number of available copies of |Ξθ 〉, is an odd num-
ber (there is no benefit to using an even number of program states), the
probability p of succeeding before running out of copies of |Ξθ 〉 is given
by the expression

p =1− 1
2N

(
N

(N −1)/2

)
, (5.8)

9This is analogous to the Markov process “Gambler’s ruin,” where the game is fair and the
gambler has unlimited credit.

Programmable Quantum Processors 363

and, in the limit of large N :

pN→∞ =1−
√

2
πN

. (5.9)

5.1.2. Single-shot Process with Multiple Copies of the Program State |Ξθ 〉
The process can be carried out with one iteration of a larger gate

array where we use an odd number of program qubits N so that our com-
bined program and data state is:

|ψ〉d ⊗|Ξθ 〉⊗N
p = |ψ〉d√

2N
⊗

2N −1∑
j=0

e−i | j |θ | j〉 �p, (5.10)

where | j | is the Hamming weight of the binary representation of j and
we use the same basis for the program space as previously. Putting Akk =
|0〉d d〈0| as before, we select the position of the terms A jk = |1〉d d〈1|
according to the Hamming weight of the j and k such that

|k|= | j |+1 (5.11)

to the largest extent possible so that Eq. (5.3) is obeyed and we can posi-
tion the other terms arbitrarily so as to respect Eq. (5.3). Where we can
give the A jk values according to Eq. (5.11), measurement in the program
basis will, up to global phase, ensure that the data qubit has been trans-
formed by U (θ). The rows (values of j) where A jk =|1〉d d〈1| are not posi-
tioned according to |k|= | j |+1 indicate measurement outcomes where the
desired transformation has not been carried out but instead a rotation
through some negative multiple of θ has occurred. The number R of rows
that cannot be created so that Eq. (5.11) is obeyed is given by:

R =
(

N
(N −1)/2

)
. (5.12)

Each (incorrect) program operator corresponding to one of these rows has
probability 2−N so again the success probability is given by Eq. (5.8).10

10In this case, unlike the VMC and HZB schemes, the distribution of particular incorrect
results can differ according to how the A jk are selected, although the overall probability of
success is unchanged.

364 Bužek, Hillery, Ziman, and Roško

5.1.3. Preprocessing

If we wish to use, from a starting state of multiple copies of |Ξθ 〉,
the VMC or HZB schemes, we can process these copies to produce a
state of the form given in Eq. (5.1) that can then be used as the program
state for the VMC or HZB processors. The X -qubit program state |Ξ(X)

θ 〉p

can be probabilistically constructed from a minimum of N = 2X − 1 cop-
ies of |Ξθ 〉, and so it is possible, by preprocessing these copies of |Ξθ 〉, to
construct, with some probability, a state |Ξ(θ)s〉p where s ≤ X . A prepro-
cessing scheme that produces the same overall probability of success, in
executing U (θ) on a data qubit, as the schemes presented above can be
constructed by permuting the phases in |Ξθ 〉⊗2X −1 and making a measure-
ment in the computational basis, initially on 2X −1− X = M of the qubits.

We give two specific examples, of preprocessing. Firstly, we will
assume to have three identical program states |Ξθ 〉⊗3. Then we will con-
sider the case with seven identical program states, i.e., |Ξθ 〉⊗7. Using 3 and
7 program state we can probabilistically prepare the program states |Ξ(2)

θ 〉p

and |Ξ(3)
θ 〉p, respectively. In the Appendix we will quote the result for gen-

eral N .

Preprocessing with |Ξθ 〉⊗3

We have that:

|Ξθ 〉⊗3 = 1

2
√

2
(|000〉+ e−iθ |001〉+ e−iθ |010〉

+e−2iθ |011〉+ e−iθ |100〉+ e−2iθ |101〉
+e−2iθ |110〉+ e−3iθ |111〉), (5.13)

in the computational basis. The states that can be constructed from this
are |Ξ(1)

θ 〉 and |Ξ(2)
θ 〉 which are, up to global phase and in the computa-

tional basis:

|Ξ(1)
θ 〉= 1√

2
(|0〉)+ e−iθ |1〉) (5.14)

and

|Ξ(2)
θ 〉 = |Ξ2θ 〉⊗ |Ξθ 〉

= 1
2
(|00〉)+ e−iθ |01〉+ e−i2θ |10〉+ e−3iθ |11〉). (5.15)

The state is permuted, which has the effect of reassigning the phases:

Programmable Quantum Processors 365

|Ξθ 〉⊗3 �→ 1

2
√

2
(|000〉+ e−iθ |001〉+ e−2iθ |010〉

+e−3iθ |011〉+ e−iθ |100〉+ e−2iθ |101〉
+e−iθ |110〉+ e−2iθ |111〉) (5.16)

=
(|0〉√

2
⊗|Ξ(2)

θ 〉
)

+
(

e−iθ |1〉√
2

⊗
(|0〉√

2
⊗|Ξ(1)

θ 〉+ |1〉√
2

⊗|Ξ(1)
θ 〉

))
. (5.17)

Equation (5.17) shows that a measurement on the first (leftmost in the
right-hand-side of the previous equation) qubit would either give |Ξ(2)

θ 〉
upon measurement outcome |0〉, or a state, on measurement outcome |1〉
which can be reduced to |Ξ(1)

θ 〉, up to global phase, by measurement of the
remaining leftmost qubit. Each of these final results occurs with probabil-
ity 1/2 and so, using Eq. (5.7), we find that the overall probability of suc-
cessfully executing the operation U (θ) following preprocessing of the state
and then input of the outcome, as a program state, into a HZB or VMC
process is 5/8, which is in fact the same as that for iterative or single-shot
processing of the state |Ξθ 〉⊗3 discussed above.

The preprocessing transformation (5.17) can be easily realized using a
single C-NOT gate with the second qubit in Eq. (5.13) playing the role of
a control with the first qubit acting as a target.

Preprocessing with |Ξθ 〉⊗7

In considering the preprocessing of |Ξθ 〉⊗7 we introduce a technique
for permutation design that is helpful in describing the derivation of the
general preprocessing procedure for |Ξθ 〉⊗N .

The starting point is the state:

|Ξθ 〉⊗7 = 1√
128

127∑
j=0

e−i | j || j〉

= 1√
128

15∑
p=0

|p〉⊗
7∑

q=0

e−i(|q|+|p|)θ |q〉 (5.18)

and the procedure is to perform a permutation of the state so that mea-
surement of the first four qubits in the computational basis will yield
either |Ξ(3)

θ 〉 or a state from which measurement of the one or two remain-
ing leftmost qubits will yield |Ξ(2)

θ 〉 or |Ξ(1)
θ 〉, respectively, up to a global

phase. The numbers of terms with each phase are given by

366 Bužek, Hillery, Ziman, and Roško

−ikθ 0 −iθ −2iθ −3iθ −4iθ −5iθ −6iθ −7iθ

m 1 7 21 35 35 21 7 1

and the aim is to allocate those phases to terms so that, upon measure-
ment of the leftmost four qubits, the state is either projected into |Ξ(3)

θ 〉
or else a state from which further measurement will project into |Ξ(2)

θ 〉 or
|Ξ(1)
θ 〉 up to global phase. Noting that one set of the phases 0, −iθ , −2iθ ,

−3iθ , −4iθ , −5iθ , −6iθ , −7iθ are available, the permutation can be con-
structed so that the 4-qubit measurement outcome |0〉 in Eq. (5.18) is:

1
4
|0〉⊗ 1√

8

(
|0〉+ e−iθ |1〉+ e−2iθ |2〉+ e−3iθ |3〉

+ e−4iθ |4〉+ e−5iθ |5〉+ e−6iθ |6〉e−7iθ |7〉
)

= 1
4
|0〉⊗ |Ξ(3)

θ 〉. (5.19)

The following phases

−ikθ 0 −iθ −2iθ −3iθ −4iθ −5iθ −6iθ −7iθ

m 0 6 20 34 34 20 6 0

remain unassigned in the permutation. It can be seen that the terms asso-
ciated with the 4-qubit measurement outcome |1〉 cannot constitute |Ξ(3)

θ 〉,
as the requisite phases have already been allocated to the terms associ-
ated with the measurement outcome |0〉. However, allocation of the phases
−iθ , −2iθ , −3iθ and −4iθ and also −3iθ , −4iθ , −5iθ and −6iθ allows
that the permutation can be designed such that the 4-qubit measurement
outcome |1〉 is

1
4
|1〉 ⊗ 1√

8

(
e−iθ |0〉+ e−2iθ |1〉+ e−3iθ |2〉+ e−4iθ |3〉

+ e−3iθ |4〉+ e−4iθ |5〉+ e−5iθ |6〉+ e−6iθ |7〉
)

= 1
4
|1〉⊗ 1√

2

(
|0〉⊗ e−iθ |Ξ(2)

θ 〉+ |1〉⊗ e−3iθ |Ξ(2)
θ 〉

)
. (5.20)

Programmable Quantum Processors 367

A further measurement of the leftmost remaining qubit will project the
state of remaining qubits into |Ξ(2)

θ 〉 up to a global phase of e−iθ or e−3iθ .
The remaining phases are

−ikθ 0 −iθ −2iθ −3iθ −4iθ −5iθ −6iθ −7iθ

m 0 5 19 32 32 19 5 0
.

The same allocation can be performed for the 4-qubit measurement out-
comes |2〉 to |6〉. The remaining unallocated phases are

−ikθ 0 −iθ −2iθ −3iθ −4iθ −5iθ −6iθ −7iθ

m 0 0 14 22 22 14 0 0

and it is therefore possible to construct the permutation so that the mea-
surement outcomes |7〉 to |13〉 are

1
4
| j〉⊗ 1√

8

(
e−2iθ |0〉+ e−3iθ |1〉+ e−4iθ |2〉+ e−5iθ |3〉

+ e−2iθ |4〉+ e−3iθ |5〉+ e−4iθ |6〉+ e−5iθ |7〉
)

= 1
4
| j〉⊗

(|0〉+ |1〉√
2

)
⊗ e−2iθ |Ξ(2)

θ 〉; j =7 . . .13. (5.21)

Any measurement on the leftmost remaining qubit projects into the state
e−2iθ |Ξ(2)

θ 〉. Finally, the remaining phases,

−ikθ 0 −iθ −2iθ −3iθ −4iθ −5iθ −6iθ −7iθ

m 0 0 0 8 8 0 0 0

are allocated to the 4-qubit measurement outcomes |14〉 and |15〉 like so

1
4
|l〉⊗ 1√

8

(
e−3iθ |0〉+ e−4iθ |1〉+ e−3iθ |2〉+ e−4iθ |3〉

+ e−3iθ |4〉+ e−4iθ |5〉+ e−3iθ |6〉+ e−4iθ |7〉
)

= 1
2
|14〉⊗

(|0〉+ |1〉+ |2〉+ |3〉
2

)
⊗ e−3iθ |Ξ(1)

θ 〉. (5.22)

368 Bužek, Hillery, Ziman, and Roško

with l = 14,15. A measurement of the two leftmost remaining qubits will
project the remaining qubits into the state e−3iθ |Ξ(1)

θ 〉. Thus, the permu-
tation construction is complete and the overall, permuted state, |Ξ̃θ 〉7 is
given by:

|Ξ̃θ 〉7 = 1
4
|0〉⊗ |Ξ(3)

θ 〉

+1
4

7∑
k=1

|k〉⊗ 1√
2

(
|0〉⊗ e−iθ |Ξ(2)

θ 〉+ |1〉⊗ e−3iθ |Ξ(2)
θ 〉

)

+1
4

13∑
k=8

|k〉⊗
(|0〉+ |1〉√

2

)
⊗ e−2iθ |Ξ(2)

θ 〉

+1
2

15∑
k=14

|k〉⊗
(|0〉+ |1〉+ |2〉+ |3〉

2

)
⊗ e−3iθ |Ξ(1)

θ 〉. (5.23)

The probability of the preprocessing procedure, following the 4-qubit mea-
surement in the computational basis, producing the outcome |Ξ(3)

θ 〉 is
1/16, that of producing outcome |Ξ(2)

θ 〉 is 13/16 and that of producing
outcome |Ξ(1)

θ 〉 is 1/8. The overall probability, p, then, of achieving the
rotation U (θ) from the starting state |Ξθ 〉⊗7 by preprocessing and then
input of the preprocessed state into the VMC or HZB processors, is

p =
(

7
8

× 1
16

)
+

(
3
4

× 13
16

)
+

(
1
2

× 1
8

)
= 93

128
, (5.24)

which is the same as the iterative or single-shot procedures outlined above,
as can be confirmed with use of Eq. (5.8). It should be noted that the per-
mutation outlined above is not unique and that other permutations could
be devised to achieve the same overall success probability.

Preprocessing with |Ξθ 〉⊗N

The equivalence of the iterative, single-shot and preprocessing schemes
can be shown to be true in general for states of N = 2X − 1, X = 1,2, . . .
copies of |Ξθ 〉, as described in Appendix, so that the overall success prob-
ability from a preprocessing of the state |Ξθ 〉⊗N as described above, fol-
lowed by input of the result of the preprocessing into a VMC or HZB
processor, is the same as that in Eq. (5.8), i.e.,

p =1− 1
2N

(
N

(N −1)/2

)
, (5.25)

Programmable Quantum Processors 369

and thus we see that the use of the VMC or HZB schemes holds no
advantage in terms of overall success probability when we are constrained
to start with |Ξθ 〉⊗N .

Comments
If we have no reason to assume that previous operations have pro-

duced a program state |Ξ(N)
θ 〉 �p, then it is reasonable to assume that we

only have access to copies of the basic program state |Ξθ 〉; in this case
there is no advantage, in terms of probability of success, in using the more
sophisticated VMC and HZB schemes to execute the desired U (1) opera-
tion because what we gain from those schemes we lose in producing the
correct input program state. It appears that all strategies, in practice, give
the same probability of success in executing the desired U (1) rotation on a
qubit. There may, however, be contextual advantages to the preprocessing
scheme, for example, if the program state is to be teleported to a remote
location before execution of the program; in this case, preprocessing means
that the number of qubits to be transported is significantly lessened, which
would be helpful if teleportation resources are scarce. On the other hand,
if teleportation is unreliable but teleportation resources are not scarce, it
might be better to teleport the copies of the basic program state as is,
because the effect of losing a program qubit is not so great as in the case
of sending the preprocessed states.

It is an open question as to whether a similar situation holds for the
execution of the most general unitary operations on a qubit, the SU(2)
operations.

6. QUANTUM SIMULATIONS AND PROCESSOR DESIGN

In the previous sections we have studied sets of superoperators that
a given processor can perform. We would now like to turn the problem
around and suppose that we have a given set of superoperators, and our
aim is to construct a processor that will be able to execute them. We
already know that it is impossible to find a processor that will perform all
superoperators. In particular, if the set of superoperators we are trying to
implement contains an uncountable set of unitary superoperators, then the
set of superoperators cannot be performed by a single processor.

Here we will ask more modest question: Under what circumstances
we are able to find a processor that will perform some one-parameter set
of superoperators? In particular, suppose that we have the superoperators
Tθ , where the parameter θ varies over some range, and that these opera-
tors have a Kraus representation {B j (θ)| j =1, . . . ,M} such that

370 Bužek, Hillery, Ziman, and Roško

Tθ [ρ]=
M∑

j=1

B j (θ)ρB†
j (θ). (6.1)

Our aim is to find a unitary operator, G, and a set of program states
|Ξ(θ)〉p so that

Tθ [ρd]= G(ρd ⊗|Ξ(θ)〉p p〈Ξ(θ)|)G†. (6.2)

The operators A j (Ξ) that represent the action of the processor on the
data states when the program state is |Ξ〉, are now functions of θ and we
shall denote them as A j (θ). Our processor then transforms the input data
state ρd into the output state, ρ(out)

d

ρ
(out)
d =

N∑
j=1

A j (θ)ρd A†
j (θ). (6.3)

We note that the operators {A j (θ)| j = 1, . . . , N } also constitute a Kraus
representation of the superoperator Tθ . The Kraus representation of a
superoperator is not unique; any two different Kraus representations of
the same superoperator, {B j | j = 1, . . . ,M} and {C j | j = 1, . . . , N }, where
N ≥ M , are related as follows,(10)

C j =
N∑

k=1

Ukj Bk, (6.4)

where Ukj is a unitary matrix. It is understood that if N >M , then zero
operators are added to the set {B j | j = 1, . . . ,M} so that the two sets of
operators have the same cardinality.

In what follows we will study two single-qubit quantum channels, the
phase-damping channel and the amplitude-damping channel. We will show
that the former can be realized by a finite quantum processor, while the
second cannot.

6.1. Examples

6.1.1. Phase-Damping Channel

The phase-damping channel is described by the map Tθ that is deter-
mined by the Kraus operators B1(θ)=

√
θI and B2(θ)=

√
1− θσz , where

both σz and I are unitary operators, and 0≤ θ ≤ 1. (2,13,14) Hence for the
phase-damping map we find

Tθ [�d]= θI�dI + (1− θ)σz�dσ
†
z , (6.5)

Programmable Quantum Processors 371

where �d is the input qubit state. We can design the corresponding proces-
sor using Eq. (2.24), that is

Gphase|φ〉d ⊗|k〉p = (Uk |φ〉d)⊗|k〉p , (6.6)

where k =1,2 and U1 =I ,U2 =σz . The program state in which the required
transformation Tθ is encoded is given by |Ξ(θ)〉p = √

θ |0〉p + √
1− θ |1〉p.

Note that in this case the program operators, A j (θ), for j =1,2, are equal
to the corresponding Kraus operators, i.e., A j (θ)= B j (θ). Therefore, we
can execute the entire one parameter set of superoperators Tθ merely by
changing the program state we send into the processor, and the dimension
of the program space is two.

6.1.2. Amplitude-Damping Channel

The amplitude-damping map Sθ is given by the Kraus operators
B1(θ)= |0〉〈0| +√

1− θ |1〉〈1| and B2(θ)=
√
θ |0〉〈1|, where again, 0 ≤ θ ≤ 1.

In designing a processor to realize this channel, we would again like to
assume that the program operators are the same as the Kraus operators,
B1(θ) and B2(θ). In this case, however, we have a problem. The program
operators must satisfy Eq. (2.22), but

2∑
j=1

B†
j (θ1)B j (θ2)

=|0〉〈0|+ (√θ1θ2 +√
(1− θ1)(1− θ2))|1〉〈1|, (6.7)

and the right-hand side of this equation is not, in general, proportional to
the identity.

What we now must do is try to find a Kraus representation for this
channel that does satisfy Eq. (2.22). In particular, we assume that

Ck(θ)=
N∑

k=1

Ukj (θ)B j (θ), (6.8)

where U (θ) is an N × N unitary matrix, and B j (θ)=0 for j >2. In addi-
tion, we want

N∑
j=1

C†
j (θ1)C j (θ2)= f (θ1, θ2)I , (6.9)

where f (θ1, θ2) is a function whose magnitude is less that or equal to one.
The operators C j (θ) would then be candidates for the program operators,

372 Bužek, Hillery, Ziman, and Roško

A j (θ). What we will show is that there is no Kraus representation with N
finite that satisfies these conditions. Because the number of program oper-
ators is equal to the dimension of the program space, this will show that
there is no finite quantum processor that can realize the family of super-
operators that describes the amplitude-damping channel.

If Eq. (6.9) is to hold, then the coefficients of |0〉〈0| and |1〉〈1| must
be the same. Inserting the explicit expressions for C j (θ) in terms of B1(θ)

and B2(θ), this condition becomes

(
1−√

(1− θ1)(1− θ2)
) N∑

j=1

U∗
1 j (θ1)U1 j (θ2)

=√
θ1θ2

N∑
j=1

U∗
2 j (θ1)U2 j (θ2). (6.10)

We can now make use of the fact that the rows of a unitary matrix con-
stitute orthonormal vectors and the Schwarz inequality to show that the
magnitude of the sum on the right-hand side of this equation is less than
or equal to one. This give us that

∣∣∣∣∣∣
N∑

j=1

U∗
1 j (θ1)U1 j (θ2)

∣∣∣∣∣∣
≤

√
θ1θ2

1−√
(1− θ1)(1− θ2)

. (6.11)

We now need the result that if {v j | j =1, . . . , N } are vectors of length
1, and |〈v j |vk〉|< 1/(N − 1), then {v j | j = 1, . . . , N } are linearly indepen-
dent.(11) The proof is quite short, so we give it here. If the vectors are line-
arly dependent, then there are constants c j , at least some of which are not
zero, such that

N∑
j=1

c j |v j 〉=0. (6.12)

Taking the inner product of both sides with |vk〉 we find that

|ck | =
∣∣∣∣∣∣
∑
j �=k

c j 〈vk |v j 〉
∣∣∣∣∣∣

<
1

N −1

∑
j �=k

|c j |. (6.13)

Programmable Quantum Processors 373

Summing both sides of the above inequality over k gives us that

N∑
k=1

|ck |< 1
N −1

N∑
k=1

∑
j �=k

|c j |=
N∑

k=1

|ck |, (6.14)

which is clearly impossible. Therefore, the vectors must be linearly inde-
pendent.

This can now be applied to the first row of the unitary matrix U (θ),
which we can think of as an N -component normalized vector, which we
shall call u0(θ). What we will show is that we can find arbitrarily many
of these vectors whose inner products can be made arbitrarily small. The
result in the previous paragraph then implies that these vectors are line-
arly independent, but this contradicts the fact that they lie in an N -dimen-
sional space. Hence, there must be an infinite number of Kraus operators,
and the program space must be infinite dimensional.

In order to study the inner products of the vectors u0(θ) for different
values of θ , we need to examine the function appearing on the right-hand
side of Eq. (6.11)

g(θ1, θ2)=
√
θ1θ2

1−√
(1− θ1)(1− θ2)

. (6.15)

Using the fact that if 0 ≤ θ ≤ 1, then
√

1− θ ≤ 1 − (θ/2), we have that for
0≤ θ j ≤1, j =1,2

g(θ1, θ2)≤ 2
√
θ1θ2

θ1 + θ2 − (θ1θ2/2)
. (6.16)

Finally, noting that for θ1 and θ2 between 0 and 1,

θ1 + θ2

θ1 + θ2 − (θ1θ2/2)
≤ 4

3
, (6.17)

we see that

g(θ1, θ2)≤ 8
√
θ1θ2

3(θ1 + θ2)
. (6.18)

We can make use of this bound, if we choose, for any positive integer
M , the sequence ζn =[1/(16M2)]n , where n = 1, If θ1 = ζn and θ2 = ζm

where m>n, then

g(θ1, θ2)≤ 8
3

1
(4M)m−n

. (6.19)

374 Bužek, Hillery, Ziman, and Roško

The vectors {u0(ζm)|m = 1, . . . ,M} have pairwise inner products whose
magnitudes are less than 1/M , and, therefore, they are linearly indepen-
dent. As these vectors have N components, if we choose M>N we have a
contradiction. This, as we stated before, implies that the number of Kraus
operators is infinite, and that the amplitude-damping channel cannot be
realized by a finite quantum processor.

Note: More on simulation of generators of Markovian processes with
the help of programmable quantum processors can be found in a recent
paper by Koniorczyk et al.(43)

7. QUANTUM MEASUREMENTS VIA PROGRAMMABLE
MEASUREMENTS

In this section we will study how programmable processors can be
utilized for implementation of generalized POVM measurements. We will
study three particular problems. Firstly, we will study possible realizations
of generalized quantum measurements on measurement-assisted program-
mable quantum processors. We focus our attention on the realization of
von-Neumann measurements and informationally complete POVMs.

Secondly, we will show that it is possible to control the trade-off
between information gain and disturbance in generalized measurements of
qudits by utilizing the programmable quantum processor. We will show
how one can perform a specific POVM that would allow to measure
(reconstruct) a Husimi function of the input state of a qudit that is mea-
sured. The trade-off between the gain and the disturbance of the qudit is
controlled by the initial state of ancillary system that acts as a program
register for the quantum information distributor. We will show that trade-
off fidelity does not depend on the initial state of the qudit.

Thirdly, we will describe a “programmable” quantum device that is
able to perform a specific generalized measurement from a certain set of
measurements depending on a quantum state of a “program register.” The
state of the program register sets the measurement device to perform a
specific measurement. In particular, we study a situation when the pro-
grammable measurement device serves for the unambiguous discrimination
between non-orthogonal states. The particular pair of states that can be
unambiguously discriminated is specified by the state of a program qubit.
The probability of successful discrimination is not optimal for all admis-
sible pairs. However, for some subsets it can be very close to the optimal
value.

Programmable Quantum Processors 375

7.1. Realization of POVMs Using Measurement-assisted Programmable
Quantum Processors

General quantum measurements are formalized as POVM, i.e., sets of
positive operators {Fk} that fulfil the resolution to the identity,

∑
k Fk = I

(see, for instance, Refs. 2, 10, 15 and 16). From the general structure of
quantum theory(15) it follows that each collection of such operators corre-
sponds to a specific quantum measurement. However, the theory does not
directly specify a particular physical realization of a given POVM. In what
follows we will exploit the measurement-assisted quantum processors to per-
form POVMs.

The Stinespring–Kraus theorem(44) relates quantum operations (linear
completely positive trace-preserving maps) with unitary transformations. In
particular, any quantum operation E realized on the system A corresponds
to a unitary transformation G performed on a larger system A + B, i.e.,

E[�]=TrB[G�⊗ ξG†] , (7.1)

where ξ is a suitably chosen state of the ancillary system B and TrB

denotes a partial trace over the ancilla B. The assignment E �→ (G, ξ) is
one-to-many, because the dilation of the Hilbert space of a system A can
be performed in many different ways. However, if we fix the transforma-
tion G, the states ξ of the ancillary system B control and determine quan-
tum operations that are going to be performed on the system A. In this
way one obtains a concept of a programmable quantum processor, i.e., a
“piece of hardware” that take as an input a data register (system A) and
a program register (system B). Here the state of the program register ξ
encodes the operation �→�′ =Eξ [�] that is going to be performed on the
data register.

In a similar way, any quantum generalized measurement (POVM),
that is represented by a set of positive operators {Fj }, can be under-
stood as a von-Neumann measurement performed on the larger system.(16)

The von-Neumann measurements are those for which Fj ≡ E j are mutu-
ally orthogonal projectors, i.e., E j Ek = δ jk Ek . The Neumark theorem (see,
e.g., Ref. 14) states that for each POVM {Fj } there exists a von-Neumann
measurement {E j } on a larger Hilbert space HAB and Tr�Fj = Tr[(� ⊗
ξ)E j] for all �, where ξ is some state of the system B. Moreover, it is
always possible to choose a von-Neumann measurement such that E j =
G†(I ⊗ Q j)G where G is a unitary transformation and Q j are projectors
defined on the system B. Using the cyclic property of a trace operation,
i.e., Tr[(�⊗ξ)G†(I ⊗ Q j)G]=Tr[G(�⊗ξ)G†(I ⊗ Q j)], we see that the von-
Neumann measurement can be understood as a unitary transformation G

376 Bužek, Hillery, Ziman, and Roško

Fig. 8. With the help of a measurement-assisted quantum
processor (the right part of the figure) one can realize an
arbitrary POVM F (the left part of the figure) as a non-
demolition measurement. After measuring the outcome j on
the program register the system (i.e., the data register) is in
the state � j . The correspondence between both schemes is
given by the probability rule p j = Tr�Fj = Tr[(I ⊗ Q j)G(�⊗
ξ)G†].

followed by a von-Neumann measurement M ↔ {Q j } performed on the
ancillary system only (see Fig. 8).

As a result we obtain the couple (G,M) that determines a pro-
grammable quantum processor assisted by a measurement of the program
register, i.e., measurement-assisted programmable quantum processor. Such
device can be used to perform both generalized measurements as well as
quantum operations.

In this sub-section we will exploit measurement-assisted quantum
processors to perform POVMs. In the next sub-section we will address
problem of the implementation of a von-Neumann measurement by using
programmable “quantum multimeters” for a discrimination of quantum
state that has been first formulated in Ref. 45 and subsequently it has been
studied in Refs. 46–48. An analogous setting of a unitary transformation
followed by a measurement has been used in Ref. 49 to evaluate/measure
the expectation value of any operator. The quantum network based on
a controlled-SWAP gate can be used to estimate non-linear functionals of
quantum states(50) without any recourse to quantum tomography. Recently
D‘Ariano and co-wrokers(51−53) have studied how programmable quantum
measurements can be efficiently realized with finite-dimensional ancillary
systems. In what follows we will study how von-Neumann measurements
and informationally complete POVMs can be realized via programmable
quantum measurement devices. In particular, we will show that this goal
can be achieved using the quantum information distributor.(24,54)

Programmable Quantum Processors 377

7.1.1. General Consideration

Let us start our investigation with an assumption that the program
register is always prepared in a pure state, i.e., ξ =|Ξ〉〈Ξ|. In this case the
action of the processor can be written as before, i.e.,

G|ψ〉⊗ |Ξ〉=
∑

k

Ak(Ξ)|ψ〉⊗ |k〉 , (7.2)

where |k〉 is some basis in the Hilbert space of the program register and
the operator Ak(Ξ)= 〈k|G|Ξ〉 act on the data register. In particular, we
can use the basis in which the measurement M is performed, i.e., Qa =∑

k∈Ja
|k〉〈k|, where Ja is a subset of indices {k}. Note that Ja ∩ Ja′ = ∅,

because
∑

a Qa = I .
Measuring the outcome a the data evolve according to the following

rule (the projection postulate)

�→�′
a = 1

pa
Trp[(I ⊗ Qa)G(�⊗|Ξ〉〈Ξ|)G†]

= 1
pa

∑
k∈Ja

Ak(Ξ)�A†
k(Ξ) , (7.3)

with the probability pa = Tr[(I ⊗ Qa)G(� ⊗ |Ξ〉〈Ξ|)G†] =
Tr[�∑

k∈Ja
A†

k(Ξ)Ak(Ξ)] = Tr[�Fa]. Consequently for the elements of the
POVM we obtain

Fa =
∑
k∈Ja

A†
k(Ξ)Ak(Ξ) . (7.4)

If we consider a general program state with its spectral decomposition
in the form ξ =∑

n πn|Ξn〉〈Ξn|, then the transformation reads

�→�′
a = 1

pa

∑
n,k∈Ja

πn Akn�A†
kn , (7.5)

with Akn =〈k|G|Ξn〉 and pa =∑
n,k∈Ja

πnTr[�A†
kn Akn]. Therefore the oper-

ators

Fa =
∑

n,k∈Ja

πn A†
kn Akn (7.6)

constitute the realized POVM.
Given a processor G and some measurement M one can easily deter-

mine which POVM can be performed. Note that the same POVM can be
realized in many physically different ways. Two generalized measurements

378 Bužek, Hillery, Ziman, and Roško

M1,M2 are equivalent, if the resulting functionals f (x)k (�)= Tr�F (x)k (x =
1,2) coincide for all k, i.e., they result in the same probability distribu-
tions. For the purpose of the realization of POVMs, the state transforma-
tion during the process is irrelevant. However, two equivalent realizations
of POVM can be distinguished by the induced state transformations (for
more on quantum measurement see Ref. 16).

Let us consider, for instance, the trivial POVM, which consists of
operators Fk =ckI (ck ≥0,

∑
k ck =1). In this case the observed probability

distribution is data-independent and some quantum operation is realized.
In all other cases, the state transformation depends on the initial state of
the data register, and is not linear.(41,42). In these cases the resulting dis-
tribution is nontrivial and contains some information about the state �.
In the specific case when the state � can be determined (reconstructed)
perfectly, the measurement is informationally complete. In this case we can
perform the complete state reconstruction (see Fig. 9). Any collection of
d2 linearly independent positive operators Fk determine such information-
ally complete POVM. In particular, they form an operator basis, i.e., any
state � can be written as a linear combination �= ∑

j � j Fj . Using this
expression the probabilities read

p j =Tr[�Fk]=
∑

k

�kTr[Fj Fk]=
∑

k

�k L jk , (7.7)

where the coefficients L jk =Tr[Fj Fk] define a matrix L. In this setting the
(inverse) problem of the state reconstruction reduces to a solution of a sys-
tem of linear equations p j =∑

k L jk�k , where �k are unknown. The solu-
tion exists only if the matrix L is invertible and then �k =∑

j L−1
k j p j .

The purpose of any measurement is to provide us with an
information about the state of the physical system based on results of a
measurement. Our scheme of the measurement-assisted quantum processor
represents a general model of a physical realization of any POVM.

Fig. 9. Measurement-assisted quantum processors can be
exploited to perform state tomography. Based on the mea-
sured probability distribution p j one can infer the original
state �.

Programmable Quantum Processors 379

7.1.2. QID: Complete State Tomography

In what follows we shall extend the list of applications of the QID
processor (see Sec. 3.3) and show how to realize a complete POVM,
i.e., a complete state reconstruction. For a general program state |Ξ〉 =∑

k αk |Ξk〉 with |Ξk〉= (σk ⊗ I)|Ξ0〉 (here |Ξ0〉= 1√
2
(|00〉+|11〉)) the POVM

consists of the following four operators

Fk = σk F0+σk =σk A(Ξ)† A(Ξ)σk , (7.8)

with F0+ = 1
4 I + 1

4 [α0 �α∗ + α∗
0 �α + i �α∗ × �α] · �σ and �α∗ = (α∗

1 , α
∗
2 , α

∗
3), �α =

(α1, α2, α3).
Note that for the initial program state |Ξ〉 with α0 = cosµ, �α =

i sinµ �µ
µ

(µ=|| �µ||) the probabilities p0+ =TrF0+�=1/4 are �-independent,
and a unitary operation Uµ= exp(i �µ · �σ) is realized. (12) The question of
interest is whether an informationally complete POVM can be encoded
into a program state. In fact, the problem reduces to the question of a
linear independence of operators Fk for some |Ξ〉. Using the vector rep-
resentation of operators, Fk = 1/4(I + �rk · �σ), one can show that the oper-
ators Fk are linearly independent only if none of the coefficients of �r0+ =
α0 �α∗ +α∗

0 �α+ i �α∗ × �α vanishes.
The elements of a POVM can be represented in the Bloch-sphere pic-

ture. This is due to the fact that operators Fk = 1
2�k , and �k represent

quantum states. Choosing the program state

|ΞPOVM〉= 1√
2
|Ξ0〉+ 1√

6
(|Ξ1〉+ |Ξ2〉+ |Ξ3〉) (7.9)

we obtain the informationally complete POVM with a very symmet-
ric structure. In particular, the operators Fk are proportional to pure states
associated with vertices of a tetrahedron drawn inside the Bloch sphere
(see Fig. 10). These operators read

F0+ = 1
4

(
I + 1√

3
[σx +σy +σz]

)
; (7.10)

F0− = 1
4

(
I + 1√

3
[−σx −σy +σz]

)
; (7.11)

F1+ = 1
4

(
I + 1√

3
[σx −σy −σz]

)
; (7.12)

F1− = 1
4

(
I + 1√

3
[−σx −σy +σz]

)
. (7.13)

It is obvious that these operators are not mutually orthogonal, but
TrF†

j Fk = 1
12δ jk + 1

4 (1−δ jk). Using this identity one can easily compute the

380 Bužek, Hillery, Ziman, and Roško

Fig. 10. The Bloch sphere can be used to illustrate
any POVM that can be realized on the QID processor.
Each POVM is given by four operators that determine
four points in the Bloch sphere. Using this picture one
can see the structure and some properties of the real-
ized POVM. The vertices of a tetrahedron correspond
to POVM elements of the symmetric informationally
complete POVM associated with the program state
|Ξ〉= 1√

2
|Ξ0〉+ 1√

6
(|Ξ1〉+ |Ξ2〉+Ξ3〉).

relation (7.7) between the observed probability distribution and the initial
data state �

�=
∑

k

−21

5
pk + 9

5

∑
j �=k

p j

 |Qk〉〈Qk | , (7.14)

where we used the notation Fk = 1
2 |Qk〉〈Qk |. The last equation completes

the task of the state reconstruction. Because of the identity TrFj Fk =const
for j �= k the realized POVM {Fk} is of a special form. It belongs to a
family of the so-called symmetric informationally complete measurements
(SIC POVM).(55) These measurements are of interest in several tasks of
quantum information processing and possess many interesting properties.
It is known (see, e.g., Ref. 55) that for qubits there essentially exist only
two (up to unitaries) such measurements. Above we have shown how one
of them can be performed using the QID processor.

Programmable Quantum Processors 381

7.1.3. von-Neumann Measurements

An important class of measurements is described by the projector val-
ued measures (PVM), which under specific circumstances enable us to dis-
tinguish between orthogonal states in a single shot, i.e., no measurement
statistics is required. A set of operators {Ek} form a PVM, if E j = E†

j and
E j Ek = E jδ jk , i.e., it contains mutually orthogonal projectors. The total
number of (nonzero) operators {Ek} cannot be larger than the dimension
of the Hilbert space d.

Usually the von-Neumann measurements are understood as those that
are compatible with the projection postulate, i.e., the result j associated
with the operator E j =|e j 〉〈e j | induces the state transformation

�→�′
j = E j�E j

Tr�E j
= |e j 〉〈e j |�|e j 〉〈e j |

〈e j |�|e j 〉 = |e j 〉〈e j |= E j . (7.15)

That is, the state after the measurement is described by the corresponding
projector E j .

However, each PVM can be realized in many different ways and a
particular von-Neumann measurement is only a specific case. In our set-
tings the realized POVM {Fk} is related to the state transformation via
the identity Fk = A†

k Ak , where �→�′
k = Ak�A†

k . The set of operators Ak =
Uk Ek , where Ek are projectors and Uk are unitary transformations, define
the same PVM given by {Ek}. In particular, A†

k Ak = EkU †
k Uk Ek = Ek Ek =

Ek , but the state transformation results in

�→�′
k =Uk EkU †

k �= Ek . (7.16)

Thus the final state is described by a projector, but not in accordance with
the projection postulate. We refer to the PVMs that are compatible with
the projection postulate as the von-Neumann measurements. Moreover, for
simplicity we shall assume that the projectors are always one-dimensional,
i.e., the PVM is associated with non-degenerate hermitian operators.

The action of the processor G implementing two von-Neumann mea-
surements {E j } and {G j } can be written as

G|ψ〉⊗ |ΞE 〉 =
∑

j

E j |ψ〉⊗ | j〉; (7.17)

G|ψ〉⊗ |ΞG〉 =
∑

j

G j |ψ〉⊗ | j〉. (7.18)

It is well known(9) that when two sets of Kraus operators are realiz-
able by the same processor G, then the following necessary relation holds

382 Bužek, Hillery, Ziman, and Roško

∑
j E j G j =〈ΞE |ΞG〉I . Using this relation for the projections E j =|e j 〉〈e j |,

G j =|g j 〉〈g j | we obtain the identity

∑
j

u j j |e j 〉〈g j |= kI , (7.19)

where u j j = 〈g j |e j 〉. For general measurements, the operator on the left-
hand side of the previous equation contains off-diagonal elements. In this
case the corresponding program states must be orthogonal, i.e., k =0. This
result is similar to the one obtained by Nielsen and Chuang (7) who have
studied the possibility of the realization of unitary transformations via
programmable gate arrays. Nielsen and Chuang have shown that in order
to perform (with certainty) two unitary transformations on a given quan-
tum processor one needs two orthogonal program states. However, in our
case we cannot be sure that given the same resources the measurement-
assisted processor realizing two von-Neumann measurements does exist.
Moreover, we also have to consider an option that the condition holds
also for non-orthogonal program states (see the case study below). From
above it follows that the realization of von-Neumann measurements on
programmable processors is different from implementation unitary opera-
tions on programmable processors. The reason is that for implementation
of von-Neumann measurements program states might not satisfy the cri-
terion in Eq. (7.19).

Orthogonal program states
In order to realize a measurement described by PVM (either a von-

Neumann measurement or a general PVM measurement) on a d-dimen-
sional data register the program space must be at least d dimensional. Let
us start with the assumption that the Hilbert space of the program reg-
ister is d dimensional and the program states are orthogonal. Our task
is to analyze the possibility to perform d different (non-degenerate) von-
Neumann measurements Mα determined by a set of operators Eαk =
|αk〉〈αk | (Eαk Eαj =δk j Eαk and

∑
k Eαk = I for all α). Let |α〉 denote the asso-

ciated program states and 〈α|β〉 = δαβ . It is easy to see that for general
measurements the resulting operator

G =
∑
k,α

Eαk ⊗|k〉〈α| (7.20)

is not unitary. In particular, G†G = ∑
Eβk Eαk ⊗ |β〉〈α| �= I . The equality

would require that the identity
∑

k Eαk Eβk = δαβId holds. Therefore, we
conclude that neither orthogonal states do guarantee the existence of a

Programmable Quantum Processors 383

programmable processor that performs desired set of von-Neumann mea-
surements. This result makes the programming of unitaries and program-
ming of von-Neumann measurements different.

For instance, let us consider a two-dimensional program register and
let us denote E0

0,1 = E0,1 and E1
0,1 = G0,1. Then the above condition reads

E0G0 = E1G1 = 0. Using the definition Ek = |ek〉〈ek | and Gk = |gk〉〈gk |
we obtain the orthogonality conditions 〈e0|g0〉=〈e1|g1〉=0. Consequently,
because in the two-dimensional case the orthogonal state is unique, we
obtain |g0〉 = |e1〉 and |g1〉 = |e0〉, i.e., the measurements are the same.
Similarly one can show that even for qutrit (dp = d = 3) one can per-
form only one von-Neumann measurement, too. In particular, 〈e0|g0〉 =
0 implies |g0〉 = a0|e1〉 + b0|e2〉, |g1〉 = a1|e0〉 + b1|e2〉 and |g2〉 = a2|e0〉 +
b2|e1〉. Orthogonality of |g j 〉 results in a set of equations a0b2 =0, b0b1 =0,
a1a2 =0 with the solution that set of vectors {|g j 〉} is just a permutation of
the set {|e j 〉}. However, this solution does not correspond to a realization
of two non-commutative measurements. To perform two such measure-
ments one need an extra dimension, i.e., for dp =d =4 we can realize two
von-Neumann measurements. An addition of new dimension enables us to
perform one more non-commuting measurement, (56) i.e., with d orthogo-
nal states one can implement at most N =d −2 non-commuting von-Neu-
mann measurements. See Table 1. for the properties that the corresponding
eigenvectors have to satisfy.

In order to implement a set of von-Neumann measurements on a
qudit (with d-dimensional Hilbert space) one has to utilize a program reg-
ister with the dimension of the Hilbert space such that dim Hp =dp>d. In
general, in this case we work with dp outcomes and dp projective opera-
tors Qk that define the realized measurement. However, each PVM con-
sists of maximally d projectors. Therefore, dp −d of the induced operators
Ek should represent the zero operator. It means that we are realizing the

Table 1. The measurements M1,M2, . . . ,MN are realizable by a d dimensional program reg-
ister only if all vectors in the rows are mutually orthogonal. Moreover, no two columns can
be related by a permutation. The orthogonality of the vectors in columns is ensured by the
fact that they form a PVM. It turns out that the number of realizable measurements equals
to at most N −2, i.e., even with qutrit one cannot encode more than a single von-Neumann
measurement. Moreover, the measurements that can be performed are not arbitrary.

Measurement M1 M2 . . . MN

Result 1 |α1〉 |β1〉 . . . |ω1〉
Result 2 |α2〉 |β2〉 . . . |ω2〉
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Result d |αd 〉 |βd 〉 . . . |ωd 〉

384 Bužek, Hillery, Ziman, and Roško

von-Neumann measurement such that some of the outcomes do not occur,
i.e., the probability of these outcomes is equal to zero for all data states.
However, there is one more option that the set of operators {Ek} (cor-
responding to the outcomes k = 1, . . . ,dp) contains exactly only d differ-
ent operators (projectors). This means that more outcomes specify the
same projection and define a single result of the realized von-Neumann
measurement.

We can utilize the so-called “zero” operators to formulate a general
approach how to implement any set of arbitrary von-Neumann measure-
ments. Let us consider N von-Neumann measurements Mα (α = 1 . . . N)
given by non-zero operators {Eαk } (number of k equals to d). We can
define new sets of dp operators {Ẽαk } by adding to {Eαk } zero operators
so that the condition

∑
k Ẽαk Ẽβk = δαβI holds. Using this approach we find

that any collection of N von-Neumann measurements can be realized on
a single quantum processor given by Eq. (7.20) with (maximally) N · d
dimensional program space.

Let us summarize our results in the following propositions:

Proposition 1. Using dp =d dimensional program space and orthog-
onal program states allows us to encode maximally N =d −2 specific (non-
commuting) von-Neumann measurements on a qudit (see Table 1).

Proposition 2. Let M1, . . . ,MN be N (non-commuting) von-
Neumann measurements on a qudit. Then it is sufficient to use N · d-
dimensional program space to encode these measurements into orthogonal
program states.

Case Study: Projective Measurements on a Qubit
Let us consider two von-Neumann measurements M = {E0, E1} and

N ={G0,G1} on a qubit. Firstly, we will assume a three-dimensional Hil-
bert space of a program register. We define measurements M1 ={E0, E1,0}
and M2 = {0,G1,G2}, respectively. It is easy to see that neither of these
two sets of operators do satisfy the condition 0 = ∑

k Ek Gk = 0E0 +
E1G1 + 0G2 = E1G1. The equality holds only if E1G1 = 0, i.e., E1 =
|ψ〉〈ψ | and G2 = |ψ⊥〉〈ψ⊥|, but this implies that the two measurements
are the same. Consequently, the dimension of the program space has
to be increased in order to encode into a program register two projec-
tive measurements on a qubit. Therefore, let us consider a four-dimen-
sional Hilbert space of the program register. In this case we have M1 =
{E0, E1,0,0}, M2 = {0,0,G0,G1} and the condition holds for all possible
measurements M1,M2. We conclude that in order to implement N von-
Neumann measurements (by encoding into orthogonal states) on a qubit

Programmable Quantum Processors 385

a 2N -dimensional program space is required. Let us note that for qudits
this is only the sufficient condition and for specific collections of measure-
ments we can do better.

In what follows we shall show a way how to realize three different
von-Neumann measurements on a qubit by using only four-dimensional
program space. To achieve this goal we will use non-orthogonal program
states. We will show that in special cases the condition of orthogonal-
ity [given by Eq. (7.19)] can be relaxed. The program space of the QID
processor given by Eq. (3.36) consists of two qubits. Using the conclu-
sion of the previous paragraph we see that QID allows us to perform two
von-Neumann measurements. It is easy to see that the operators Ak =
σk A(Ξ)σk with A(Ξ) = 1

2

∑
j α jσ j are not projectors. Consequently, the

projective measurement cannot be realized in the same way as described
above. However, the QID-processor can still be exploited to perform a von-
Neumann measurement.

Using the program state |Ξ〉 = 1√
2
(|Ξ0〉 + |Ξ1〉) the operator A =

1
2
√

2
[I + σx] (i.e., F0 = A† A = 1

2 P+, where P+ = 1
2 [I + σx]) is a projection

onto the vector |+〉= 1√
2
|0〉+ |1〉. It is obvious that F1 =σx F0σx = F0 and

F2 = F3 = 1
2 P−, where P− = 1

2 [I −σx]. It turns out that we have realized the
PVM described by P±, i.e., the eigenvectors of the σx measurement. The
state transformation reads �→�′

k = P± (if pk �= 0), respectively. It follows
that the realization of the measurement of σx is in accordance with the
projection postulate. In the same way we can realize σy and σz measure-
ment (in these cases different results must be paired). Basically, this corre-
sponds to a choice of different two-valued measurements, but in reality we
perform only a single four-valued measurement. As a result we find that
on the QID we can realize three different von-Neumann measurements.
Note that we have used only two qubits as the program register. Moreover,
the associated program states |Ξσ j 〉 = 1√

2
[|Ξ0〉 + |Ξ j 〉] are not mutually

orthogonal, but 〈Ξσ j |Ξσk 〉 = 1
2 (for j �= k) and Eq. (7.19) holds. Namely,

for the measurements of σx ↔ {P±} and σz ↔ {P0 = |0〉〈0|, P1 = |1〉〈1|} the
condition (7.19) reads 1

2 [P+ P0 + P+ P1 + P− P1 + P− P0]= 1
2 I .

7.1.4. Projection Valued Measures

If we relax the projection postulate more PVMs can be realized on a
single processor. Let us consider that the dimension of the program space
equals d and |α〉 is the state that encodes the PVM given by a set {Eαk }.
The action of G can be written as

386 Bužek, Hillery, Ziman, and Roško

G|ψ〉⊗ |α〉=
∑

k

Uα
k Eαk |ψ〉⊗ |k〉 (7.21)

and the condition
∑

k Eαk Uα†
k Uβ

k Eβk = δαβI must hold. Let us consider
two PVMs on a qubit {E0 = |0〉〈0|, E1 = |1〉〈1|} and {G0 = |φ〉〈φ|,G1 =
|φ⊥〉〈φ⊥|}. Define a unitary map U such that |φ〉 → |1〉 and |φ⊥〉 → |0〉.
Using this map we can define a processor by following equations

G|ψ〉⊗ |ΞE 〉 = E0|ψ〉⊗ |0〉+ E1|ψ〉⊗ |1〉;
(7.22)

G|ψ〉⊗ |ΞG〉 = G̃0|ψ〉⊗ |0〉+ G̃1|ψ〉⊗ |1〉,

where G̃0 =U G0 =|1〉〈φ|, G̃1 =U G1 =|0〉〈φ⊥| and 〈ΞE |ΞG〉=0. Direct cal-
culation shows that E0G̃0 + E1G̃1 =|0〉〈0|1〉〈φ|+ |1〉〈1|0〉〈φ⊥|=0, i.e., G is
unitary. From here it follows that if one does not require the validity of
the projection postulate, then any two PVMs can be performed on a pro-
cessor with two-dimensional program space.

This result holds in general. Let us consider a set of d PVMs {Eαk }
on a qudit. There always exist unitary transformations Uα such that oper-
ators Ẽαk =UαEαk satisfy the condition

∑
k Ẽα†

k Ẽβk =δαβI . Without the loss
of generality we can consider that the measurement M0 is given by pro-
jectors |0〉〈0|, . . . , |d − 1〉〈d − 1| and Mα by |φα0 〉〈φα0 |, . . . , |φαd−1〉〈φαd−1| (see
Table 2).

Proposition 3. A collection of arbitrary (non-commuting) N projec-
tion-valued measures can be realized on quantum processor with
N -dimensional program space.

Table 2. The realization of an arbitrary collection of d PVMs M1, . . . ,Md on a qudit. The
operators Ẽαk correspond to an example of the choice of unitary transformations Uα . In par-
ticular, each Uα transforms the basis {|φαj 〉} into some permutation of the basis {| j〉}. The
permutation is different for each α.

M1 ↔ Ẽ1
k M2 ↔ Ẽ2

k . . . Md ↔ Ẽd
k

|0〉〈0| |1〉〈φ2
0 | . . . |d −1〉〈φd

0 |
|1〉〈1| |2〉〈φ2

1 | . . . |0〉〈φd
1 |

.

.

.
.
.
.

.

.

.
.
.
.

|d −1〉〈d −1| |0〉〈φ2
d−1|Z . . . |d −2〉〈φd

d−1|

Programmable Quantum Processors 387

7.1.5. Programming Unitaries vs PVMs

As an alternative to the scenario presented in the previous section one
can consider the following strategy how to realize a measurement on the
programmable quantum processor. Programmable processors are designed
to perform unitary operations. Since different projection valued measures
are always related by some fixed unitary transformation, it is possible to
exploit the existing processor to rotate the input data state by a suitable
transformation. After this transformation is implemented the fixed von-
Neumann measurement of the data register is performed. In particular,
let us consider that the processor G implements the transformation |ψ〉→
U |ψ〉 and the fixed measurement of the data register is described by set
of projectors {Ek}. Using such a processor the measured probabilities read
pk =〈ψ |U † EkU |ψ〉= 〈ψ |Fk |ψ〉, where operators Fk =U † EkU describe the
realized PVM. However, the output state |ψ ′

k〉 is described by the cor-
responding projection Ek . To obtain the state transformation that is in
accordance with the projection postulate one has to apply the same uni-
tary transformation U once more, i.e., we use the same processor twice.

From here it follows that the implementation of a von-Neumann mea-
surement is related to a repeated usage of the processor realizing the given
unitary operation. In particular, to realize N von-Neuman measurements we
have to use twice the processor realizing N unitary transformations, i.e., the
program space is composed of two N -dimensional systems (unitary opera-
tors are encoded in orthogonal states). As a result we find that the dimension
of the program space equals to N 2. In the limit of large number of measure-
ments this N 2 is larger than Nd that quantifies the number of orthogonal
program states from the Proposition 2. In fact, whenever the number of
measurements is larger than the dimension of the object, the usage of a
quantum processor realizing unitary transformations is less efficient.

Let us note that with this realization of measurements we do not
have to consider the compatibility with the projection postulate, providing
that the measurement is not performed in a non-demolition way. However,
non-demolition measurements require additional systems and therefore the
model would correspond again to some measurement-assisted quantum
processor. If one does not care about a particular realization of the PVM,
then the number of realizable PVMs N equals to the dimension of the
number program states encoding the corresponding unitary transforma-
tions. This is exactly the content of the Proposition 3.

Comments
Above we have studied how POVMs can be physically realized using

the so-called measurement-assisted quantum processors. In particular,

388 Bužek, Hillery, Ziman, and Roško

we have analyzed how to perform a complete state reconstruction and
von-Neumann measurements. As a result we have found that an arbitrary
collection of von-Neumann measurements cannot be realized on a sin-
gle programmable quantum processor of finite dimension. We have shown
how to use the QID processor to perform the state reconstruction.

The number of implementable von-Neumann measurements is limited
by the dimension of the program register. Our main result is that with a
program register containing Nd orthogonal states one can certainly find
a processor which performs arbitrary N von-Neumann measurements. In
principle, one can do much better than this. We have shown that non-
orthogonal program states can be used very efficiently. This makes the
programmability of unitary transformations and von-Neumann measure-
ments different. In particular, the QID processor can be exploited to per-
form three von-Neumann measurements by using three non-orthogonal
states of only two qubits of the program register. Using dp = d dimen-
sional program space one can encode maximally N =d −2 von-Neumann
qudit measurements into orthogonal program states. (for a qubit we have
N =1).

Relaxing the condition of compatibility with the projection postulate
the processor allows us to realize any collection of N PVMs by using only
dp = N dimensional program space. An open question is whether we can
perform more PVMs or not. The two tasks can be performed by program-
mable processors: the realization of von-Neumann measurements and the
application of unitary transformations on the data register. This two appli-
cations are different. According to Nielsen and Chuang, (7) any collection
of N unitary transformations requires N dimensional program space. For
N von-Neumann measurements the upper bound reads dp = Nd and any
improvement strongly depends on the specific set of these measurements.

7.2. Measurement of Husimi Function with Programmable Processors

In what follows we will show how quantum filtering of the orig-
inal (input) data register can be realized and how propensities (e.g., a
Husimi function) of the input register can be easily measured using the
programmable processor as represented by the QID.

7.2.1. Quantum Propensities

According to Wódkiewicz,(57) propensity means the tendency (or
probability) of a measured object to take up certain states prescribed
by a measuring device. Let the measuring device—the so-called quantum
ruler—be in a pure state |Φ〉. The quantum-ruler state can be “shifted” by

Programmable Quantum Processors 389

an action of some generalized displacement operator D(g), where g is an
element of a group G. If the measured system is in a pure state |Ψ〉, then
its probability to be in the ruler state shifted by g (i.e., the propensity) is

PΦ,Ψ(g) = |〈Ψ|D(g)|Φ〉|2, (7.23)

whereas if the system is in a mixed state described by the density operator
ρ, the propensity is

PΦ,ρ(g) = Tr
(
ρD(g)|Φ〉〈Φ|D+(g)

)
. (7.24)

In our case, that of a finite dimensional Hilbert space, the group G
will be formed by discrete translations on a torus: if g1 ≡ (n1,m1) and
g2 ≡ (n2,m2) are elements of G, then their group product is g1g2 ≡
((n1 +n2)modN , (m1 +m2)modN). The corresponding displacement oper-
ator is then given by the expression Rx (n)Rp(m). We see that while the
displacement is not a representation of the group G in the Hilbert space
under consideration, nevertheless it is representation of this group in a ray
space, which enables us to define the propensity uniquely. For a pure state
|Ψ〉 we can write the propensity in the form (see Ref. 36):

PΦ,Ψ(n,m) = |〈Ψ|Rx (n)Rp(m)|Φ〉|2. (7.25)

In the case of a statistical mixture described by the density operator ρ the
corresponding propensity reads

PΦ,ρ(n,m) = Tr
[
ρRx (n)Rp(m)|Φ〉〈Φ|R†

p(n)R
†
x (m)

]
. (7.26)

7.2.2. Propensities and POVM Measurements

The propensities as defined above are in fact results of so-called gen-
eralized (POVM) measurements (e.g., see Ref. 2). To see this let us recall
that

Fmn = Rx (n)Rp(m)|Φ〉〈Φ|R†
p(m)R

†
x (n) (7.27)

where |Φ〉 is a ruler state are positive operators and they fulfill the condi-
tion

∑
mn

Fmn = N I . (7.28)

390 Bužek, Hillery, Ziman, and Roško

So the operators Fmn (or more specifically the operators fmn = Fmn/N)
form a complete set that can be used for a complete measurement of the
state of a qudit. We note that other operators of the form Eq. 7.27, e.g.,

Fmn = Rx (m)R
†
p(n)ρRp(n)R

†
x (m) (7.29)

also realize a POVM measurement.

7.2.3. Q-function in Discrete Phase Space

In an analogy with a continuous (q, p) phase space, where the Q-
function (Husimi function) is defined as the propensity of a state to be
in the vacuum state, we define the discrete Q-function as the propensity
(7.23)

Q(n,m) ≡ PΦ,ρ(n,m), (7.30)

with the quantum ruler being in a “vacuum” state. The problem is how to
define a vacuum state corresponding to a finite-dimensional Hilbert space.

Before specifying the ruler state, we will mention several properties of
discrete Q-functions. If we assume that the ruler state |Φ〉 is chosen (i.e.,
the vacuum state is specified) then the Q-function has the following prop-
erties:

(i) it is uniquely defined;
(ii) it is non-negative;

(iii) it is normalized to N
∑
n,m

Q(n,m) = N ; (7.31)

(iv) for properly chosen ruler states |Φ〉 the information about a sys-
tem state can be completely reconstructed from the corresponding
Q-function.

7.2.4. Ruler State

In analogy with the continuous limit, where the ruler state associ-
ated with a Husimi function is the ground (vacuum) state of the harmonic
oscillator, let us consider following requirements on the ruler state: (i) it
should be in some sense centered at origin of phase space [i.e., the point
(0,0)], (ii) it should be “symmetric” with regards to the quantities X and
P , i.e., its wave function should have similar form in both representations
(perhaps up to scalings), and (iii) it should be in some sense a minimum

Programmable Quantum Processors 391

uncertainty state, which means that in the phase space it should be repre-
sented by a peak which is as narrow as possible. As shown in Ref. 31 all
the above properties are fulfilled by the ground state of the Hamiltonian

H0 =− cos
(

2π
N

X

)
− cos

(
2π
N

P

)
. (7.32)

We will use this ground state as the ruler state in our forthcoming consid-
erations.

7.2.5. Measurement of Husimi Function via QID

Let us now study the action of the quantum information distributor
when the two ancillary qudits are prepared in a superposition state

|Θ〉23 = (α|Ξ00〉23 +β|xm〉2|pn〉3) , (7.33)

with the two real amplitudes α and β satisfying the normalization condi-
tion

α2 +β2 + 2αβ
N

cos
(

2π
N

nm

)
=1 . (7.34)

With this program state the QID acts on the input data qudit |Ψ〉1 =∑
k ck |xk〉 so that at the output the three qudits are in the following states:

ρ1 = (1−β2)ρ+ β2

N
I ; (7.35)

ρ2 = (1−α2)Rx (m)R
†
p(n)ρRp(n)R

†
x (m)+

α2

N
I ;

(7.36)

ρ3 = (1−α2 −β2)Rx (m)Rp(n)ρ
T R†

p(n)R
†
x (m)

+α
2 +β2

N
I , (7.37)

where ρ = |Ψ〉〈Ψ| and ρT is the transpose of the density operator ρ =∑
k,k′ ckc∗

k′ |xk〉〈xk′ |. That is, in the basis |xk〉 the transposed density opera-
tor reads ρT =∑

k,k′ c∗
k ck′ |xk〉〈xk′ |.

The action of the QID discussed earlier, allows us to reconstruct par-
tially the state of the measured system without a total “destruction” of the
state of the data register. From our discussion in Sec. 3.3 that the entan-
gled component of the program register (represented by the state |Ξ00〉23)
dictates how “much” of the original information encoded in the qudit 1

392 Bužek, Hillery, Ziman, and Roško

is transferred from the data register to the program register at the out-
put of the QID. For instance, if the amplitude α is equal to unity (i.e.,
β = 0) then the data register is not perturbed at all, and no information
is transferred. On the other hand, for α<1 some of the information from
the data is transferred to the program at the expense of noise introduced
into the data register. The trade-off between the information transfer and
the noise introduced into the data register is nicely seen from Eq. 5.3. The
amount of noise that is transferred into the first (data) qudit is dictated by
the amplitude β that weights the factorizable contribution to the program
state, i.e. |xn〉2|pm〉3. Moreover, this specific state also determines opera-
tions (rotations) that are performed on program qudits.

In order to illustrate the action of the QID we plot in Fig. 11 Q-
functions of an input qudit that is initially prepared in the ground state
of the Hamiltonian (7.32), as well as the three output qudits. The ruler
state is chosen to be again the ground state of the Hamiltonian (7.32). The
Husimi functions do correspond to the situation when a POVM mea-
surement is performed on the density operator ρ j (j = 1,2,3) given by
Eqs. 7.35–7.37, respectively.

It is obvious from the expression (7.36) that if the von Neumann
measurement using the projector |Φ〉2〈Φ| (i.e., projecting on the ruler
state) on the qudit 2 is performed then this measurement results in a
reconstruction of the Husimi function of the original data state affected
by the amount of noise determined by the particular value of α. In other
words, this projective measurement will result in the reconstruction of the
Husimi function of the operator ρ(out)

2 = (1 − α2)ρ + α2

N I . Certainly, the
state of the data register is then affected not only by the action of the QID
but also by the effect of the projective measurement performed on the sec-
ond qudit.

To understand the role of the projective measurement performed on
the program register on the state of the data register at the output of the
QID, let us consider the following. We will study the action the quantum
information distributor when the two ancillary qudits are prepared in a
superposition state given by Eq. 7.33. With this program state the QID
acts on the input data qudit |Ψ〉1 = ∑

k ck |xk〉 so that at the output the
three qudits are in the state:

|Ω(out)〉123 = P123|Ψ〉1 [α|Ξ00〉23 +β|xm〉2|pn〉3]
(7.38)

= α|Ψ〉1|Ξ00〉23 +β
[

Rx (m)R
†
p(n)|Ψ〉

]
2
|Ξnm〉31 .

Then we will assume that both program qudits are measured projectively.
The qudit 2 is projected in the ruler state |Φ〉2 =∑

k fk |xk〉2 while the qudit

Programmable Quantum Processors 393

Fig. 11. Husimi functions of the input state of the data
qudit and the output qudits. The input data qudit is ini-
tially prepared in the ground state of the Hamiltonian (7.32)
while the auxiliary system (ancilla) is initially prepared in the
state |Θ〉 = 0.75|Ξ00〉 − 0.64|x7〉|p5〉. The top graph, labeled
QΨ(k, l), represents the Husimi function of the initial state
of the data qudit. The three graphs, labeled Q1(k, l), Q2(k, l)
and Q3(k, l), represent the Husimi functions of reduced states
ρ1, ρ2 and ρ3 of the composite system that are given by
Eqs. (7.35–7.37), respectively.

Fig. 12. Logical network for the quantum information dis-
tributor with a projective measurement performed on the pro-
gram register.

3 is projected on the transposed ruler state |ΦT〉3 :=∑
k f ∗

k |xk〉3. Schemat-
ically this situation is depicted in Fig. 12.

The data qudit after the action of the QID and this projective mea-
surement reads

394 Bužek, Hillery, Ziman, and Roško

|Ψ(out)〉1 �2 〈Φ| 3〈ΦT|Ω(out)〉123

= α√
N

|Ψ〉1 + β〈Φ|Rx (m)R
†
p(n)|Ψ〉√

N
R†

x (m)Rp(n)|Φ〉1. (7.39)

This means that by acquiring knowledge of a particular value of the
Husimi functions of the second and the third qudits, the data qudit
“collapses” into the state (7.39). The disturbance of the original data
state depends on the value of α, the particular point (m,n) at which the
Husimi functions of the program qudits are measured and the specific
choice of the ruler state.

Comments
From the above discussion it follows that it is possible to use the

QID to measure the discrete Q function of an arbitrary qudit that serves
as the input data of the programmable processor. This is equivalent to
realizing a class of POVM operators. Another possibility, is to split the
input into two parts, to find the Q function of one part and retain the
other part. There is a trade-off involved: the more information that is
retained, the more smeared is the Q function, and the better the Q func-
tion, the more distorted is the information in the retained qudit. Thus, the
QID provides us with a very flexible programmable quantum information
processing device, which has a number of useful applications.

7.3. Programmable State Discriminators

Now we focus our attention on another class of programmable
devices. We will analyze whether it is possible to construct a universal
(multi-purpose) quantum measurement device (“quantum multi-meter”).
That is, an apparatus that could perform a specific class of generalized
measurements (POVM) in such a way that each member of this class could
be selected by a particular quantum state of a “program register.” The key
property of this approach is a possibility to control the choice of the mea-
surement (e.g., the measurement basis in case of a projective measurement)
by a (in principle, unknown) quantum state of the program register. This
state can be determined, for instance, as a result of some quantum-infor-
mation process.

As discussed above, the generalized POVM measurement(13−15) is
defined by the fact that the probability of each of its result (the number
of results may be, in general, larger than the dimension of the Hilbert space
of the measured system) is given by the expression pµ= TrS

(
FµρS

)
, where

ρS is the state of the system and Fµ are positive operators that constitute

Programmable Quantum Processors 395

the decomposition of the identity operator (
∑
µ Fµ= I). Each POVM can be

implemented using an ancillary quantum system in a specific state and real-
izing a projective von Neumann measurement on the composite system.(14)

In other words, if one has an “input” (measured) state ρS in the Hilbert
space HS it is always possible to find some state ρA in a space HA and a set
of orthogonal projectors {Eµ} acting on HS ⊗HA (

∑
µEµ= I) such that

Fµ=TrA
(
EµρA

)
(7.40)

are positive operators as discussed above.
In general, we can assume, that the initial state of the ancilla can

be prepared with an arbitrary precision. The ancilla can be considered
as a part of the “program register.” Further, we note that the general
projection measurement on the composite system can be represented by a
unitary transformation on the composite system followed by a fixed pro-
jection measurement (e.g., independent projective measurements on indi-
vidual qubits). Therefore the problem of designing the programmable
quantum multi-meter reduces to the question whether an arbitrary unitary
operation (on the Hilbert space with a given dimension) can be encoded
in some quantum state of a program register of a finite dimension. It has
been proved by Nielsen and Chuang(7) that any two inequivalent oper-
ations require orthogonal program states. Thus the number of encoded
operations cannot be higher than the dimension of the Hilbert space of
the program register.

In general, we can describe a quantum multi-meter as a (fixed) uni-
tary operation acting on the measured system (or a “data register”) and
an ancillary system (“program register”) together and a (fixed) projective
measurement realized afterwards on the same composite system. Clearly,
such a device can perform only a restricted set of POVM’s. One can, there-
fore, ask what is the optimal unitary transformation that enables us to
implement “the largest set of POVM’s” (in comparison with the set of
POVM’s that would be obtainable when we allowed any unitary trans-
formation on the same Hilbert space). One can also ask what unitary
transformation can help to approximate all the POVM’s (generated by an
arbitrary unitary transformation) with the highest precision (fidelity) on
average. Clearly, the last task requires definition of the distance measure
between two POVM’s. This is an interesting problem per se, however, it
goes far beyond the scope of our considerations here. Both optimization
problems mentioned above are rather non-trivial. Moreover, the intro-
duced scheme is perhaps too general from a practical point of view. There-
fore, below we will concentrate our attention on a more specific case: On
the problem of state discrimination.

396 Bužek, Hillery, Ziman, and Roško

We stress once again that a quantum multi-meter as discussed below
is a device which in contrast to its classical counterpart is controlled
(switched, programmed) by quantum states of a program register that are
allowed to be mutually non-orthogonal.

7.3.1. Discrimination of Quantum States

Let us study a particular example of a “quantum multi-meter” serving
for a programmable unambiguous state discrimination. So, it is in place to
say a few words about quantum state discrimination now.

A general unknown quantum state cannot be determined completely
by a measurement performed on a single copy of the system. But the
situation is different if a priori knowledge is available(13−15)—e.g., if
one works only with states from a certain discrete set. Even quantum
states that are mutually non-orthogonal can be distinguished with a cer-
tain probability provided they are linearly independent (for a review see
Ref. 58). There are, in fact, two different optimal strategies(59): First,
the strategy that determines the state with the minimum probability for
the error(13,14) and, second, unambiguous or error-free discrimination (the
measurement result never wrongly identify a state) that allows the possi-
bility of an inconclusive result (with a minimal probability in the optimal
case).(60−64) We will concentrate our attention to the unambiguous state
discrimination. It has been first investigated by Ivanovic(60) for the case
of two equally probable non-orthogonal states. Peres(2) solved the prob-
lem of discrimination of two states in a formulation with POVM mea-
surement. Later Jaeger and Shimony(63) extended the solution to arbi-
trary a priori probabilities. Chefles and Barnett(64) have generalized Peres’s
solution to an arbitrary number of equally probable states which are
related by a symmetry transformation. Unambiguous state discrimination
were already realized experimentally. The first experiment, designed for the
discrimination of two linearly polarized states of light, were done by
Huttner et al.(65) There are also some newer proposals of optical imple-
mentations.(66) The interest in the quantum state discrimination is not
only “academic”—unambiguous state discrimination can be used, e.g., as
an efficient attack in quantum cryptography.(67)

7.3.2. “Universal” Discriminator

Let us suppose that we want to discriminate unambiguously between
two known non-orthogonal states. However, we would like to have a pos-
sibility to “switch” the apparatus in order to be able to work with several
different pairs of states.

Programmable Quantum Processors 397

Let us have two (non-orthogonal) input states of a qubit. We can
always choose such a basis that they read α0|0D〉 ± β0|1D〉 with α0 =
cos(ϕ0/2) and β0 = sin(ϕ0/2); the value of ϕ0 can be from 0 to π/2 (ϕ0
is the angle between the two states). Let us have one additional ancillary
qubit, initially in a state |0A〉. On both the “data” and the ancilla we apply
the following unitary transformation UD A:

|0D0A〉 → cos θ |0D0A〉+ sin θ |0D1A〉,
|1D0A〉 → |1D0A〉,

(7.41)|0D1A〉 → − sin θ |0D0A〉+ cos θ |0D1A〉,
|1D1A〉 → |1D1A〉,

where cos θ = tan(ϕ0/2). If we then make a von Neumann measurement
consisting of the projectors P+ = |+〉〈+|, P− = |−〉〈−|, and P0 = I − P+ −
P−, where

|±〉= (|0D0A〉± |1D0A〉) /√2, (7.42)

we can unambiguously determine the input state (with a certain prob-
ability of the success). This measurement is optimal in the sense that
the probability of inconclusive result is the lowest possible (and it is the
same for both states). The probability of the successful discrimination is
2 sin2(ϕ0/2).(62)

Let us suppose now the set of pairs

|ψ1〉 = α |0D〉+β |1D〉,
(7.43)|ψ2〉 = α |0D〉−β |1D〉,

where α = cos(ϕ/2) and β = sin(ϕ/2), for all ϕ from the interval (0, π).
That is, we consider all pairs of states that lie on a real plane and that
are located symmetrically around the state |0D〉; see Fig. 13. Further, let
us suppose that the ancillary qubit is allowed to be in an arbitrary pure
state

|Ξ〉A =a|0A〉+b|1A〉. (7.44)

Thus the total input state reads

|Ψ〉D A = (α |0D〉±β |1D〉)⊗ (a |0A〉+b |1A〉)
= αa |0D0A〉+αb |0D1A〉±βa |1D0A〉±βb |1D1A〉. (7.45)

398 Bužek, Hillery, Ziman, and Roško

Fig. 13. The states |ψ1〉 and |ψ2〉 [defined
by Eq. (7.44)] with real coefficients α and β

can be visualized in a two-dimensional real
space. The angle ϕ is related to the overlap of
the two states: 〈φ1|φ2〉 = cosϕ= |α|2 + |β|2 =
2|α|2 −1.

After the action of transformation (7.42) on this state one obtains the
resulting state in the following form [the transformation is fixed for all ϕ;
still cos θ = tan(ϕ0/2)]

UD A|Ψ〉D A = (αa cos θ −αb sin θ) |0D0A〉
+ (αa sin θ +αb cos θ) |0D1A〉
±βa |1D0A〉±βb |1D1A〉. (7.46)

If the coefficients a and b in the state of the ancilla are chosen in such a
way that

UD A|Ψ〉D A = (αa cos θ −αb sin θ)=βa :=q/
√

2 (7.47)

then the expression (7.46) simplifies to the form

UD A|Ψ〉D A =q |±〉+ const1 |0D1A〉± const2 |1D1A〉, (7.48)

where the states |±〉 are defined by Eq. (7.42). Clearly, applying the projec-
tive measurement introduced above one is able to discriminate unambigu-
ously states (7.44) for any given ϕ ∈ (0, π) provided he/she has prepared
the proper state of the ancilla. The first term in Eq. (7.48) corresponds

Programmable Quantum Processors 399

to the successful discrimination, while the last two terms correspond to
inconclusive results. The probability of success is

Psucc =|q|2 = Popt R(ϕ, ϕ0)=2 sin2 ϕ

2
R(ϕ, ϕ0), (7.49)

where

R(ϕ, ϕ0)= cosϕ0 (cosϕ+1)
1+ cosϕ0 − sinϕ sinϕ0

(7.50)

is the ratio between the actual value of the probability of successful dis-
crimination and its optimal value. This expression is obtained from the
condition (7.47) together with the normalization relation |a|2 +|b|2 =1.

From above it follows that it is possible to implement a “univer-
sal quantum multi-meter” that is able to discriminate probabilistically but
unambiguously (with no errors) between two non-orthogonal states for the
large class of non-orthogonal pairs. The selection of the desired regime
(i.e., the selection of the pair of states that should be unambiguously dis-
criminate) is done by the choice of the quantum state of the ancillary
qubit. This program state selects the measurement to be performed on the
system. The probability of the successful discrimination can be optimal
only for one such pair of states.

In the limit case when ϕ0 = 0, i.e., θ =π/2 (this is the fixed parame-
ter of the employed unitary transformation), the probability of the success-
ful discrimination for different ϕ’s (i.e., for different settings of the ancilla
and different pairs of input states) is the same as in the “quasi-classical”
case, Psucc = 1

2 sin2 ϕ. By a quasi-classical approach we mean the proba-
bilistic measurement when one randomly selects11 the projective measure-
ment in one of two orthogonal basis that both span the two-dimensional
space containing both non-orthogonal states of interest (7.44). One basis
consists of the state |ψ1〉 and its orthogonal complement |ψ⊥

1 〉. If one finds
the result corresponding to |ψ⊥

1 〉 he/she can be sure that the state |ψ1〉 was
not present. Analogously, the other basis consists of the state |ψ2〉 and its
orthogonal complement.

On the other hand, when ϕ0 =π/2, i.e., θ=0, there is no way how to
fulfill the condition (7.47) with a �= 0 (and Psucc �= 0) unless α=β= 1/

√
2.

That is, only two orthogonal states (7.42) can be unambiguously discrim-
inated.

If the parameter ϕ0 is somewhere in between 0 and π/2 the proba-
bility of success (as a function of ϕ) is very close to the optimal value in

11With the same probabilities provided that the frequencies of the occurrence of the input
states are also the same.

400 Bužek, Hillery, Ziman, and Roško

0.5

0.6

0.7

0.8

0.9

1.0

B

A

0 π/2π/4 ϕ

R

Fig. 14. The ratio R(ϕ, ϕ0) of the actual probability
of successful discrimination to the optimal value of this
probability as a function of the angle ϕ between two
considered state vectors. The curve (A) shows the “quasi-
classical” limit (ϕ0 =0). The curve (B) represents the case
when ϕ0 =π/4.

the relatively large vicinity of ϕ0; see Fig. 14. However, for small values of
ϕ it goes below the success probability of the quasi-classical case and for
ϕ=π/2 (orthogonal states) the probability of successful discrimination is
lower than unity.

One can ask for the optimal value of ϕ0 in the sense that the
average probability of successful discrimination [or, alternatively, function
R(ϕ, ϕ0)] over some chosen interval of ϕ’s is maximal. For example, if we
are interested in the average value of R(ϕ, ϕ0) over the interval of ϕ from
0 to π/2 we find that it is maximized when ϕ0 ≈0.235π (the correspond-
ing average value of R is 0.92).

For pedagogical reasons till now we have only worked with the states
from a particular real subspace of the Hilbert space of the data qubit. How-
ever, it should be stressed that the method works for any two “input” states
that are symmetrically displaced with respect to |0D〉. In other words, the
condition (7.47) can be fulfilled for any complex α and β. Simply,

b

a
= 1

sin θ

(
cos θ − β

α

)
.

The probability of the successful discrimination of states then reads

Psucc = 2 sin θ |αβ|2
1−2 cos θ �(αβ) , (7.51)

where �(αβ) denotes the real part of αβ.

Programmable Quantum Processors 401

Comments
Above we have proposed a programmable quantum measurement

device for the error-free discrimination of two non-orthogonal states of
qubit that works with a large set of pairs of states. The device can be
set to discriminate unambiguously any two states that are symmetrically
located around some fixed state [in the sense of Eq. (7.44)]. The setting is
done through the state of a program register that is represented by another
qubit. This means that the particular pair of states that can be unambig-
uously discriminated is specified by the state of a “program” qubit. Two
possible input states of the “data qubit” that are in correspondence with
the program setting are never wrongly identified but from time to time
we can get an inconclusive result. The probability of successful discrimi-
nation is optimal only for one program setting. However, the device can
be designed in such a way that the probability of successful discrimina-
tion is very close to the optimal value for a relatively large set of pro-
gram settings. Let us stress the quantum nature of the “programming”:
The states of the program register that represent different programs can
be non-orthogonal.

8. APPROXIMATE PROGRAMMABLE QUANTUM PROCESSORS

In this section we shall discuss processors that approximate sets of
unitary operators. We shall show, for a given processor, how to select an
optimal program vector to approximate a particular unitary operator. In
addition, we shall give a lower bound on the number of dimensions the
program space must have to approximate a set of unitary operators to a
given level of accuracy. In the last part of the paper we will address the
question of optimal programmability, i.e., which processor is the best in
approximating all channels.

8.1. Optimal Program States

Let us consider a processor that acts on the Hilbert space H=Hd ⊗
Hp, where Hd is the data Hilbert space and Hp is the program Hilbert
space. Let us denote the dimension of Hd by D and that of Hp by N .
The processor itself is represented by a unitary operator G, which acts on
H. The action of the processor on the input state |ψ〉d |Ξ〉p is given by(9)

G(|ψ〉d ⊗|Ξ〉)=
N∑

j=1

A j (Ξ)|ψ〉d | j〉p, (8.1)

402 Bužek, Hillery, Ziman, and Roško

where {| j〉p| j = 1, . . . , N } is an orthonormal basis of Hp. The operators
A j (Ξ) are expressed in terms of the operators A jk , where G is expressed
as

G =
N∑

j,k=1

A jk ⊗| j〉p p〈k|. (8.2)

These operators obey the relations

N∑
j,k=1

A†
jk1

A jk2 = Idδk1k2;

N∑
k=1

A†
j1k A j2k = Idδ j1 j2 , (8.3)

where Id is the identity operator on Hd . The operator A j (Ξ) is given by

A j (Ξ)=
N∑

k=1

A jk p〈k|Ξ〉p, (8.4)

from which it follows that

N∑
j=1

A†
j (Ξ)A j (Ξ)= Id . (8.5)

We now need to discuss how to measure how close our processor
comes to achieving a particular unitary operation. We shall use, what has
been called by Gilchrist et al., the process fidelity,(68) which was originally
proposed by Raginsky.(69,70) It is defined as follows. Let T1 and T2 be two
completely positive maps, which map operators on the Hilbert space K
onto operators on the same space. We shall assume that the dimension of
K is finite and equal to D. The Jamiolkowski isomorphism allows us to
associate a density matrix on K ⊗K with each of these maps. Define the
maximally entangled state

|Φ〉= 1√
D

D∑
j=1

| j〉| j〉, (8.6)

where {| j〉| j = 1, . . . , N } is an orthonormal basis of K. For each map Tj ,
define the density matrix ρ j to be

ρ j = (I ⊗ Tj)(|Φ〉〈Φ|), (8.7)

Programmable Quantum Processors 403

for j =1,2, where I is the identity map. The process fidelity is defined as

Fproc(T1,T2)=
[

Tr
√√

ρ1ρ2
√
ρ1

]2

. (8.8)

The process fidelity has a number of useful properties that are dis-
cussed in Refs. 69, 70 and 68, one of which is the fact that it is symmetric,
i.e., Fproc(T1,T2)= Fproc(T2,T1).

We are going to be interested in the case in which one of the maps is
unitary. In particular, let us assume that T1(ρ)=UρU−1 for some unitary
operator U . In this case we have that ρ1 is a pure state so that ρ1/2

1 =ρ1.
This gives us that

Tr
√√

ρ1ρ2
√
ρ1 = 1

D

D∑
j1, j2=1

〈 j1|U−1T2(| j1〉〈 j2|)U | j2〉

1/2

. (8.9)

If T2 is the result of the action of a processor, we have for a density matrix
ρd , representing a data state, that

T2(ρ)=
N∑

j=1

A j (Ξ)ρd A j (Ξ)
†, (8.10)

which gives us, finally, that (we denote the map T1 by the operator U)

F(U,T2)= 1
D2

N∑
j=1

∣∣∣Tr(U−1 A j (Ξ))

∣∣∣
2
. (8.11)

Using the notation for the Hilbert–Schmidt scalar product (A|B)=TrA† B
this can be rewritten in the form F(U,T2)= 1

D2

∑
j |(A j (Ξ)|U)|2.

This fidelity can also be expressed in terms of the operators A jk .
Defining the matrix

Mk1k2 = 1
D2

N∑
j=1

Tr
(

A†
jk1

U
)

Tr
(

U−1 A jk2

)
, (8.12)

we have, from Eq. (8.4), that

F(U,T2)=
N∑

k1,k2=1

p〈Ξ|k1〉p Mk1k2 p〈k2|Ξ〉p. (8.13)

404 Bužek, Hillery, Ziman, and Roško

Now consider the following problem. Suppose we are given a pro-
cessor and we wish to find the best program to approximate the unitary
operator U , where by best we mean the program that maximizes the pro-
cess fidelity. An examination of Eq. (8.13) shows that this can be accom-
plished by finding the eigenvector of M = ∑

k1,k2
Mk1k2 |k1〉〈k2| with the

largest eigenvalue, and choosing the program vector to be this eigenvector.
The corresponding fidelity will just be the largest eigenvalue of M .

This procedure is particularly simple to carry out when the processor
is, what was called in Ref. 9, a U processor. This is a processor that is a
controlled-U gate. Each basis vector |k〉p in Hp is associated with a uni-
tary operator Uk acting on Hd . That is, if the program state is |k〉p, then
the operator Uk is applied to the data state. The operators A jk for this
type of processor are particularly simple, A jk = δ jkUk , which implies that
the matrix M is given by

Mk1k2 = 1
D2

∣∣∣Tr(U†Uk1)

∣∣∣
2
δk1k2 . (8.14)

Because in this case M is diagonal, we simply find the diagonal element
that is largest. This is the largest eigenvalue of M and the maximum value
of the fidelity. The value of k corresponding to this diagonal element tells
us which of the basis vectors |k〉p is the program that will achieve this
fidelity. This implies that to best approximate a unitary operator U by a
U processor, we simply find which of the unitary operators that the pro-
cessor can perform perfectly has the largest Hilbert–Schmidt inner product
with U and perform that operation. Note that this prescription does not
make use of superpositions of the basis states in the processor.

8.2. An Example

Before proceeding with the exploration of the general properties of
approximate quantum processors, it is useful to analyze the following
example. We shall consider a processor acting on qubits with an N
dimensional program space spanned by the orthonormal basis {|k〉p|k =
0, . . . , N − 1}. Define the shift operators E+ and E−, acting on the pro-
gram space as E+|k〉= |k +1〉 and E−|k〉= |k −1〉, where the addition and
subtraction are modulo N . We also define the program states

|θ〉= 1√
N

N−1∑
k=0

e−ikθ |k〉. (8.15)

Programmable Quantum Processors 405

If θ = θm = (2πm)/N then the state |θm〉 becomes an eigenstate of E+ and
E−

E+|θm〉= eiθm |θm〉 ; E−|θm〉= e−iθm |θm〉. (8.16)

For the qubit, whose Hilbert space is spanned by the two orthonormal
vectors |0〉d and |1〉d , define the operators σ (+) and σ (−), where σ (+)|0〉d =
|1〉d , σ (+)|1〉d =0, and σ (−)= (σ (+))†. We shall consider a specific realiza-
tion of the U processor defined by the operator G acting on Hd ⊗Hp

G = exp
[
i
(π

2

)(
σ (+)⊗ E− +σ (−)⊗ E+

)]
. (8.17)

The fact that G is a U processor can be seen when we let G to act on the
state |ψ〉d |θm〉p. Here we obtain the result

|Ωm〉 = G(|ψ〉d ⊗|θm〉p)

= exp
[
i
(π

2

) (
e−iθmσ (+)+ eiθmσ (−)

)]
|ψ〉d ⊗|θm〉p. (8.18)

Defining

U (θ)= exp
[
i
(π

2

) (
e−iθσ (+)+ eiθσ (−)

)]
, (8.19)

we see that we can perform U (θ) perfectly when θ=θm , for some m. Sup-
pose, however, we are interested in using this processor to approximately
perform U (θ), for θ not equal to any of the θm . We know what the opti-
mal strategy is from the previous section, find the operator U (θm) which
has the greatest overlap (in the sense of the Hilbert–Schmidt inner prod-
uct) with U (θ) and perform that operation. Here we are going to examine
a strategy, which is simpler to implement, but not optimal. We shall simply
use the state |θ〉p as a program state. We find that this gives us a process
fidelity of

F = 1
N 2

N−1∑
m=0

cos2(θm − θ) sin2[N (θm − θ)/2]
sin2[(θm − θ)/2] . (8.20)

This sum is an oscillatory function of θ with a period 2π/N . The minima
of this function are achieved for θ=π/N +2πk/N when the process fidel-
ity takes the minimal value Fmin =1−2/N .

Let us see how this compares to using the optimal program states.
The process fidelity between the operators U (θ1) and U (θ2) is given by

F(U (θ1),U (θ2))= cos2(θ1 − θ2). (8.21)

406 Bužek, Hillery, Ziman, and Roško

If we approximate U (θ) by U (θm), where m is chosen so that U (θ) and
U (θm) have the largest Hilbert–Schmidt inner product, then the fidelity is
bounded below by

F ≥ cos2
(π

N

)
∼1−

(π
N

)2
. (8.22)

Note that in this case the error is of order 1/N 2, while in the previous
case it was of order 1/N , so there is a cost to not using the best program
states.

What we then have is a an approximate processor that can be made
very accurate by choosing N large enough. It achieves an accuracy of
order 1/N in approximating U (θ) with the simple program state |θ〉d ,
which is not as good as the best accuracy, 1/N 2, but the approximation
in none the less a good one for N sufficiently large. Thus, we see that a U
processor, making use of a simple program, can be quite useful in approxi-
mating the action of a set of operators labeled by a continuous parameter.

8.3. Bound on Program Space Dimension

We would now like to find a bound on the resources required to
achieve a given accuracy in approximating a set of unitary operators by
means of a fixed processor. In particular, we want to see how the dimen-
sion of the program space grows as the accuracy of the approximation
increases.

The Schwartz inequality |(A|B)|≤√
(A|A)(B|B) implies that

|Tr(U † A j (Ξ))|≤
√

D[Tr(A†
j (Ξ)A j (Ξ))]1/2, (8.23)

and, therefore, if the action of our processor with the program state |Ξ〉p

is given by the map T , we have that

F(U,T) = 1
D2

N∑
j=1

|Tr(U † A j (Ξ))|2

≤ 1
D

N∑
j=1

Tr(A†
j (Ξ)A j (Ξ))=1. (8.24)

In the last equality we used the normalization property of Kraus opera-
tors (8.5), i.e.,

∑
j A†

j (Ξ)A j (Ξ)= I .
We begin by assuming that the fidelity is 1 and seeing what this

implies about the operators A j (Ξ). If F(U,T) = 1, then, we see from
above, that Schwartz inequality has to be saturated. This means that the

Programmable Quantum Processors 407

operators A j (Ξ) and U are colinear, i.e., A j (Ξ)=β jU , where β j is a com-
plex number. Furthermore, Eq. (8.5) implies

∑N
j=1 |β j |2 =1. Now suppose

that we have two different unitary operators that can be realized perfectly,
U1 by the program state |Ξ1〉p and U2 by the program state |Ξ2〉. There-
fore, A j (Ξ1)=β1 jU1 and A j (Ξ2)=β2 jU2. We then have that

N∑
j=1

β∗
1 jβ2 jU

−1
1 U2 =

N∑
j=1

A†
j (Ξ1)A j (Ξ2)

= Id p〈Ξ1|Ξ2〉p, (8.25)

where we have used Eqs. (8.4) and (8.3). If U1 �= U2, then this equation
implies that both p〈Ξ1|Ξ2〉p and

∑N
j=1 β

∗
1 jβ2 j are zero. This result is sim-

ply a restatement of the Nielsen–Chuang theorem: If two unitary opera-
tors are realized perfectly by a processor, their program vectors must be
orthogonal.

Now let us suppose that the processor performs the operation U with
a fidelity greater than or equal to 1 − ε, i.e., F(U,T)≥ 1 − ε, where T is
specified by Kraus operators A j (Ξ). Let us express these operators as

A j (Ξ)=β jU + B j (Ξ), (8.26)

where Tr(U † B j (Ξ)) = 0. This decomposition is unique. The inequality
F(U,T) ≥ 1 − ε implies the following condition on coefficients β j =
1
D (U |A j (Ξ))

1≥ F(U,T)= 1
D2

N∑
j=1

|(U |A j (Ξ))|2 =
N∑

j=1

|β j |2 ≥1− ε. (8.27)

Tracing both sides of the normalization condition
∑

j A j (Ξ)
† A j (Ξ)= I we

obtain the inequality
∑

j Tr[B j (Ξ)
† B j (Ξ)]=∑

j (B j (Ξ)|B j (Ξ))≤ Dε.
Next consider the situation in which our processor can approximate

two unitary operators, U1 and U2, each with a fidelity greater than or
equal to 1 − ε. In particular, if T1 is the map produced by the program
state |Ξ1〉p and T2 is the map produced by the program state |Ξ2〉p, then
both F(U1,T1) and F(U2,T2) are greater than or equal to 1− ε. We also
have that

A j (Ξ1) = β1 jU1 + B1 j (Ξ1);
(8.28)

A j (Ξ2) = β2 jU2 + B2 j (Ξ2),

408 Bužek, Hillery, Ziman, and Roško

where Tr(U †
1 B1 j (Ξ1))= Tr(U †

2 B2 j (Ξ2))= 0. As in the case when the uni-
tary operators were performed perfectly, consider the quantity

Id〈Ξ1|Ξ2〉 =
N∑

j=1

A j (Ξ1)
† A j (Ξ2)

=
N∑

j=1

[β∗
1 jU

†
1 + B†

1 j (Ξ1)][β2 jU2 + B2 j (Ξ2)]. (8.29)

Let us evaluate the absolute value of traces of both sides

D|〈Ξ1|Ξ2〉| =
∣∣∣∣∣∣
∑

j

(A j (Ξ1)|A j (Ξ2))

∣∣∣∣∣∣

=
∣∣∣∣∣∣
∑

j

[β∗
1 jβ2 j (U1|U2)+β∗

1 j (U1|B2 j)

+ β2 j (B1 j |U2)+ (B1 j |B2 j)]
∣∣∣∣∣∣

≤ |(U1|U2)|
∑

j

β∗
1 jβ2 j |+2D

√
ε+ Dε. (8.30)

In the last line we used the formulas
∑

j

|(B1 j |B2 j)| ≤
∑

j

√
(B1 j |B1 j)(B2 j |B2 j)

≤
√∑

j

(B1 j |B1 j)
∑

j

(B2 j |B2 j)

≤ Dε,

(8.31)

and ∣∣∣∣∣∣
∑

j

β∗
1 j (U1|B2 j)

∣∣∣∣∣∣
≤

∑
j

|β1 j |
√
(U1|U1)(B2 j |B2 j)

≤ D
√
ε .

(8.32)

As a result we obtain the bound on the inner product between two pro-
gram states

|〈Ξ1|Ξ2〉|≤ 1
D

|(U1|U2)|
∣∣∣∣∣∣
∑

j

β∗
1 jβ2 j

∣∣∣∣∣∣
+2

√
ε+ ε . (8.33)

Programmable Quantum Processors 409

Next we will estimate the first term. The idea is to use Eq.(8.29) and
apply both sides to a special vector |ψη〉 that maximizes the quantity 1−
|〈ψ |U †

1 U2|ψ〉|2. Let us denote this maximum by η, i.e.,

η=max
ψ

[
1−|〈ψ |U †

1 U2|ψ〉|2
]
. (8.34)

This quantity describes the distinguishability of two unitary transforma-
tions, and a short calculation shows that η≤ ‖U1 − U2‖2. After applying
both sides of Eq. (8.29) to |ψη〉 we find the components of the resulting
vectors orthogonal to |ψη〉 by applying the projection operator P⊥

η = I −
|ψη〉〈ψη| to both sides. The left side vanishes and we obtain the equality

0 = P⊥
η (

∑
j

A j (Ξ1)
† A j (Ξ2))|ψη〉

=
∑

j

β∗
1 jβ2 j P⊥

η U †
1 U2|ψη〉+ |ω〉, (8.35)

where

|ω〉 = P⊥
η

N∑
j=1

(
β∗

1 jU
†
1 B2 j (Ξ2)+β2 j B†

1 j (Ξ1)U2

+B†
1 j (Ξ1)B2 j (Ξ2)

)
|ψη〉. (8.36)

We now want to find a bound on ‖ω‖. Using the facts that the operator
norm is bounded by the Hilbert–Schmidt norm, we have that

∥∥∥∥∥∥
N∑

j=1

B†
j (Ξ1)B j (Ξ2)

∥∥∥∥∥∥
≤

N∑
j=1

(B j (Ξ1)|B j (Ξ1))
1/2

×(B j (Ξ2)|B j (Ξ2))
1/2

≤ εD, (8.37)

and
∥∥∥∥∥∥

N∑
j=1

β∗
1 jU

†
1 B2 j (Ξ2)

∥∥∥∥∥∥
≤

N∑
j=1

|β1 j |(B j (Ξ2)|B j (Ξ2))
1/2

≤ √
εD. (8.38)

410 Bužek, Hillery, Ziman, and Roško

Applying these inequalities we have that ||ω|| ≤ εD + 2
√
εD. In addition,

we find that ||P⊥
η U †

1 U2ψη||=√
η. Therefore, we can conclude

∣∣∣∣∣∣
N∑

j=1

β∗
1 jβ2 j

∣∣∣∣∣∣
≤ εD +2

√
εD√

η
. (8.39)

Defining

F =min

(
1,
εD +2

√
εD

η

)
, (8.40)

we have, finally, that

|〈Ξ1|Ξ2〉|≤ F

D
|(U1|U2)|+2

√
ε+ ε. (8.41)

Note that in the case that both operations are carried out without error,
in which case ε=0, this inequality implies that the program vectors must
be orthogonal, recovering the known result.

Now suppose that we have M unitary operators that we want imple-
mented by a processor so that the process fidelity for each of the oper-
ators is greater than or equal to 1 − ε. How many dimensions must
Hp have? In order to answer this question, we first find the values of
Y jk = (F/D)|(U j |Uk)| corresponding to each pair of operators in our set,
and use these values to find the largest set of linearly independent vec-
tors in the set of program vectors. Linear independence can be deduced
from the following result: If {vk |k =1, . . . , K } are vectors of length 1, and
|〈vk1 |vk2〉|<1/(K − 1), then the vectors {vk |k = 1, . . . , K } are linearly inde-
pendent.(9,11) Suppose that there is a subset of our operators, with M ′
members, whose pairs have small values of Y jk , and let the largest value
of Y jk for this subset be Ymax. Then we have for all of the program vec-
tors corresponding to this set, that

|〈Ξ j |Ξk〉|≤Ymax +2
√
ε+ ε=q(Ymax, ε). (8.42)

Let Kq be the largest integer such that Kq < (1/q)+ 1. What the result
we just quoted implies, is that any set of vectors whose size is Kq or less,
will be linearly independent. Therefore, if M ′ ≤ Kq , then all of the program
vectors will be linearly independent, and the dimension of Hp must be at
least M ′. If M ′>Kq , then the dimension of Hp must be at least Kq . This,
then, is the restriction our result imposes on the dimension of the program
space.

Programmable Quantum Processors 411

As an example, suppose we want to implement the operators I , σ1,
σ2, and σ3 on qubits, where the operators σ j , for j = 1,2,3, correspond
to the usual Pauli matrices. For all pairs of these operators we find that
Y jk =0, and

q(0, ε)=2
√

2ε+ ε. (8.43)

Our bounds then give us that for ε < 0.02 the program space must have
four dimensions, for ε < 0.05 it must have at least three dimensions, and
for ε <0.17 it must have at least two dimensions.

8.4. One-Parameter Group: Two Approaches

Programmable processors can be exploited to implement quantum
maps probabilistically. In this case a specific measurement on the program
state is performed and if an a priori defined result is obtained then we
know that a desired operation has been performed on the data. In other
words the specific measurement that is accompanied by a post-selection
induces the desired transformation of the data register. As was discussed
in Ref. 11 a probabilistic processor without measurement can be used as
an approximate processor. In this case the transformation can be expressed
as

Eξ [�]= psuccessT [�]+ perrorN [�] , (8.44)

where T is the channel we want to approximate, and psuccess and perror are
independent of the input data state, ρ. Due to the concavity of the square
root of the process fidelity we find that psuccess ≤ F(Eξ ,T), i.e., the accu-
racy of the approximation is bounded from below by the probability of
success.

Here we want to compare the performance of a probabilistic pro-
cessor used as an approximate one with a different type of approximate
processor in order to see which requires greater resources. Both will be
used to implement operators in the same one-parameter group. In partic-
ular, consider the operations on qudits (with orthonormal basis {|k〉|k =
1, . . . , D}) specified by

U (θ)= eiθ |1〉〈1|+ X, (8.45)

where X =∑N
k=2 |k〉〈k|, and 0≤ θ <2π .

412 Bužek, Hillery, Ziman, and Roško

Consider the processor described by the operators A jk for 1 ≤ j, k ≤
N , where

A jk =
{
δ jk X + δk, j+1|1〉〈1| j < N ;
δNk X + δk,1|1〉〈1| j = N ,

(8.46)

originally described in Ref. 42. With the program state

|Ξ〉= 1√
N

N∑
k=1

ei(k−1)θ |k〉, (8.47)

we find that for 1≤ j ≤ N −1

A j (Ξ)= 1√
N

ei(j−1)θU (θ), (8.48)

and for j = N

AN (Ξ)= 1√
N

(
ei(N−1)θ X +|1〉〈1|

)
. (8.49)

What this means is that if after the action of the processor, the pro-
gram state is measured in the basis {|1〉p, . . . |N 〉p} and if the result | j〉p is
obtained, where j �= N , then the operation U (θ) has been carried out on
the data. However, if the result |N 〉p is obtained, then the operation U (θ)
has not been performed. Because each of these outcomes is equally likely,
the probability of obtaining the desired result is (N − 1)/N . If instead of
measuring the output of the program register we discard it, i.e., trace over
it, we can use this processor as an approximate one. The process fidelity in
this case is given by

F =1− 2(D −1)
N D2

(1− cos(Nθ)). (8.50)

Another processor that will approximate this one-parameter group
can be constructed by dividing the interval [0,2π) into subintervals and
approximating all of the operators U (θ) for θ in a particular subinterval
by a single operator. In particular, let �θ =π/N , and approximate U (θ)
for 2 j�θ≤θ≤2(j +1)�θ by U j =U ((2 j +1)�θ), where j =0,1, . . . , N −1.
We now define a U processor by setting, for j, k =0,1, . . . , N −1

A jk = δ jkU j . (8.51)

Programmable Quantum Processors 413

In order to approximate U (θ) for 2 j�θ ≤ θ ≤ 2(j + 1)�θ , we choose the
program state |Ξ〉p =| j〉p. For this processor we find that

1− F ≤ 2(D −1)
D2

(1− cos�θ)∼ 2(D −1)
D2

π2

4N 2
. (8.52)

By comparing the two fidelities, we see that for a fixed value of the pro-
gram space dimension, N , the second processor will provide a greater
accuracy.

Comments
In this section we have examined the approximation of a set of uni-

tary operators by means of a programmable quantum circuit, i.e., a quan-
tum processor. The programs themselves are quantum states. We have
shown, for a fixed processor, how to find the program that induces the
best approximation of a particular unitary operator. In addition, we have
found bounds on the size of the program space that is necessary to
approximate a set of operators to a given precision.

Approximate processors can be characterized by their accuracy and
by the resources they require. By the accuracy, or level of precision, we
mean the quantity εG = 1 − minE∈Γ maxξ∈S(Hp) F(E,Eξ).12 Here Γ is the
set of maps we want to realize, S(Hp) is the set of positive operators
on Hp with trace one (note that we are allowing mixed program states
here) and Eξ [�] = TrpG� ⊗ ξG†. The dimension of the program space,
N , characterizes the resources required. We wish to know how these two
parameters are related. We have made some progress here in exploring this
relation for limited sets of maps. The problem becomes more difficult if
one considers Γ to be the set of all unitary maps and harder yet if it
is the set of all completely positive trace-preserving maps. Once we have
these definitions of precision and resources, we can consider two problems.
First, given a specific degree of precision εG for some set of maps Γ, how
large must the program space be? Second, for fixed resources, what is the
optimal processor, i.e., for which G is the accuracy the best (εG the least)?
In Ref. 71 one case of this problem was solved by D’Ariano and Per-
inotti. The data states were qubits, and Γ was the set of unitary opera-
tors acting on a single qubit. The program space was also a single quibit
so that N = 2. They then showed that the optimal accuracy is given by
εG = 3/4. This precision can be achieved when G is a swap gate,(72) i.e.,
CSWAP(|ψ〉 ⊗ |φ〉)= |φ〉 ⊗ |ψ〉 for all states |ψ〉, |φ〉. For a processor with
both the data and program spaces having the same dimension D and G

12The definition of the accuracy of the processor εG is not unique. For instance, one can
consider the CB-norm and use averages in the definition.

414 Bužek, Hillery, Ziman, and Roško

given by the d-dimensional version of the swap gate, we find that F(U,Eξ),
where Eξ is the map induced on the data by the processor with program
ξ , is independent of both the program and U , and is equal to 1/D2. This
implies that for this processor, the accuracy is given by εG = 1 − 1

D2 . We
suspect that this is the optimal value if the size of the program register
equals to the size of the data register, i.e., N = D, but whether this sus-
picion is correct is beyond the scope of this paper and will be analyzed
elsewhere.(72)

There are many open issues remaining. One possibility is to shift our
focus, and rather than ask what type of the processor can perform a given
set of operations with a particular level of precision, ask instead if it is
possible to characterize the operations that a given processor can perform
to a specified accuracy. Another issue is the following. So far, we have
assumed that we are approximating a set of unitary operators with just a
single use of a processor. What happens if we can use the same processor
more than once? It turns out that multiple usage of the processor can sig-
nificantly improve the accuracy of the approximation. In particular, when
the U processor (which can perform a set of unitary operators perfectly)
is used n times, the one can perfectly perform not only the original set of
operators, but any product of these operators that is of length n or less.

It would also be useful to find specific processors, which are not U
processors, that can approximate a wide class of unitary operations. As
we have seen, superpositions of the basis program states are not useful in
optimally approximating a unitary operator with a U processor, but they
very well may be useful in doing so with other types of processors.

Probabilistic processors have shown themselves to be very flexible
devices. They can perform large classes of operations while requiring only
limited resources. Their drawback is that these operations are performed
with a probability that is less than one. It remains to be seen how flexible
deterministic processors are, but the results here place some constraints on
what they can accomplish. In this paper we have given an example of how
a probabilistic processor can be used as an approximate one.

9. CONCLUSION

We have introduced a concept of programmable quantum devices.
These devices take as an input two registers: the data and the program
register. A quantum state of the program register contains information
about the transformation to be performed on the data register. The use-
fulness of this set up is obvious when we consider a situation when a set
of instructions that characterize an operation to be performed on the data

Programmable Quantum Processors 415

is encoded in a single copy of a quantum system. This may happen when
the set of instructions (a program) is obtained as an output of a quantum
computer (whatever this device is). This output state might be in general
unknown. In this situation one has two options: Firstly, one can measure
and estimate the program state and with the obtained classical information
one can perform a classical control of the evolution of the data register.
The main obstacle in this approach is that the fidelity of estimation of a
state of quantum system based on a measurement of just a single copy of
the state is negligible small (it is inversely proportional to a dimension of
the Hilbert space of the program register. This is the reason why the pro-
grammable quantum processor that takes as an input the unknown quan-
tum program register is a better alternative. The quantum processor will
perform operations that are specified by the program register even though
a (classical) user of the processor does not have an information about the
set of instructions.

In the paper we have analyzed various aspects of programmable
quantum devices. We have considered deterministic as well as probabilis-
tic programmable quantum processors. We have shown that probabilistic
processors are universal, though the price to be paid for the universality
is that the probability success is inversely proportional to the dimension of
the data register. Luckily enough, there exists a solution to this problem—
errors in implementation of probabilistic processors can be compensated
via multiple run of the processor with error-correcting program states. We
have shown how one can systematically improve performance of probabi-
listic quantum processors.

Through the paper we have been referring many times to the QID.
This remarkably simple quantum logical network composed of four C-NOT
gates has a potential of realizing many tasks in quantum information pro-
cessing. Depending on the state of the program register the QID can be
used for quantum cloning or for performing a universal NOT gate. It can
serve as a universal probabilistic programmable processor, it can be used
to perform specific POVM measurements. It is a challenge to realize this
quantum “machine” experimentally.

ACKNOWLEDGMENTS

This research was supported in part by the European Union projects
QGATES, QAP and CONQUEST, by the Slovak Academy of Sciences via
the projects VEGA and CE-PI under the contract I/2/2005, and by the
project APVT-99-012304. VB thanks the Alexander von Humboldt Foun-
dation for support. We thank Adam Brazier, Peter Knight, and Matyas
Koniorczyk for fruitful discussions and collaboration.

416 Bužek, Hillery, Ziman, and Roško

APPENDIX A: PREPROCESSING SUCCESS PROBABILITY

We have seen how the preprocessing scheme works for |Ξθ 〉⊗3 and
|Ξθ 〉⊗7, and that it produces the same probability for success as the one-
shot and iterative schemes with the same starting states. The general
scheme for preprocessing 2X − 1 copies of the basic program state, where
X is an integer, is an extension of the method used in Sec. 5.1.2 (see
Ref. 73). Given |Ξθ 〉⊗2X −1, the best VMC/HZB program state that can be
produced is |Ξ(X)

θ 〉, because the phases start at 0, rise in increments of −iθ
and the largest phase in |Ξθ 〉⊗2X −1 is −i(2X − 1)θ , which is also the big-
gest phase in |Ξ(X)

θ 〉, where the phases also rise in increments of −iθ from
a phase of 0. The strategy will be to permute the phases on the 22X −1

terms in |Ξθ 〉⊗2X −1, where the number of terms with each phase is bino-
mially distributed, in a useful way and then measure the leftmost M =
2X −1− X qubits to project into a remainder X -qubit state which will be
|Ξ(X)
θ 〉 or some other state which, upon further measurements of leftmost

remaining qubits, will be projected into |Ξ(r)
θ 〉 where r ∈{1,2, . . . X −1}, up

to a global phase, as was the case in the examples in Sec. 5.1.2 for X =2
and X =3, i.e., the permutation achieves:

1√
22X −1

22X−1∑
j=0

ei | j |θ | j〉→ 1√
2M

2M −1∑
k=0

|k〉⊗ |kΞ〉 . (A1)

The X -qubit states |kΞ〉 are given by

|kΞ〉=
X∑

l=1

2X−l−1∑
t=0

ak
lt

(
|t〉⊗ |Ξ(l)

θ 〉
)
, (A2)

where the |t〉 are (X − l)-qubit computational basis states and normaliza-
tion requires that

X∑
l=1

2X−l−1∑
t=0

|ak
lt |2 =1 (A3)

and we note that not all of the ak
l need be non-zero. In addition, these

coefficients have to be such that the measurement outcomes subsequent to
the initial M-qubit measurement are entangled with a particular eventual
outcome, i.e., one of the |Ξl〉 so that if we measure the initial M qubits
then carry out some more measurements, that the final measurement out-
come |t〉 tells us what VMC/HZB program state we have.

Programmable Quantum Processors 417

The allocation of phases in the construction of the permutation is
done in the same way as was shown in some detail for |Ξθ 〉⊗7, which is to
say, first one of each phase is allocated to the 2X terms that will produce
|Ξ(X)
θ 〉 upon one outcome of the measurement of the M leftmost qubits.

Following that, phases −iθ . . .−2X−1iθ and −i(2X−1 −1)θ . . .− i(2X −2)θ
(that was −iθ to −4iθ and −3iθ to −6iθ in the X = 3, N = 7 example)
are allocated to sets of 2X−1 terms until the phases −iθ and −i(2X −
2)θ are exhausted and then phases −2iθ . . .− (2X−1 + 1)iθ and −(2X−1 −
2)iθ . . .− i(2X −3) are allocated, etc, until there are only 2X−1 −2 different
phases left available (the “middle” 2X−1 − 2 phases if laid out as in the
tables of Sec. 5.1.3). These groups of terms will be those that realize
|Ξ(X−1)
θ 〉 post-measurement. Following this, the procedure is to allocate

groups of 2X−2 phases so as to create groups of terms that will realize
|Ξ(X−2)
θ 〉 post-measurements, and so on, until the last remaining phases,

−i(2X−1 − 1)θ and −2X−1iθ , are allocated to the terms that will produce
|Ξ(1)
θ 〉 post-measurements.

The key facts here are that all of the phases can be allocated in this
way to a group of terms associated, post-measurements, with the realiza-
tion of a state |Ξ(θ)s〉p where s ≤ X , as a little thought will show. Fur-
thermore, with the phases allocated in this way, every group of phases
allocated contains the “middle” two phases, −i(2X−1 − 1)θ and −2X−1iθ .
Thus, the number of groups of phases, W , is equal to the number of terms
in |Ξθ 〉⊗2X −1 that have phase −i(2X−1 −1)θ or −2X−1iθ , i.e.,

W =
(

2X −1
(2X −2)/2

)
. (A4)

If the number of groups corresponding to |Ξ(θ)s〉p is Ws , then, because
each individual phase from the terms in |Ξθ 〉⊗2X −1 is allocated to one of
these groups,

X∑
s=1

Ws = W =
(

2X −1
(2X −2)/2

)
. (A5)

Additionally, because all of the 22X −1 terms in |Ξθ 〉⊗2X −1 end up per-
muted into one of these sets, and because each set of form |Ξ(s)

θ 〉 contains
2s terms, with Ws sets of form |Ξ(s)

θ 〉 and s different types of set, then

X∑
s=1

2s Ws =2(2
X −1). (A6)

418 Bužek, Hillery, Ziman, and Roško

The probability, qs , that the final result is |Ξ(s)
θ 〉 following measurement(s),

can be expressed in terms of Ws . It is equal to the number of terms that
belong in sets of form |Ξ(s)

θ 〉 divided by the total number of terms, i.e.,:

qs = 2s Ws

2(2X −1)
. (A7)

Each state |Ξ(s)
θ 〉 will, if it is the outcome of the calculation, succeed

in the VMC/HZB scheme with a probability ps given by:

ps =1− 1
2s

(A8)

from Eq. 5.7.
The total success probability, pX , from preprocessing |Ξθ 〉⊗2X −1 fol-

lowed by the input of the resulting state as the program state into the
HZB/VMC scheme, is

pX =
X∑
s

psqs

= 1

2(2X −1)

(
X∑

s=1

2s Ws −
X∑

s=1

Ws

)

= 1− 1

2(2X −1)

(
2X −1

(2X −2)/2

)
. (A9)

where the last step was achieved using Eqs. (A5) and (A6). The total num-
ber of basic program qubits, N , is given by:

N =2X −1 (A10)

and substituting this into Eq. (A9), the overall probability of success, p,
is given by:

p =1− 1
2N

(
N

(N −1)/2

)
. (A11)

This is the same result as for the single-shot and iterative procedures on
|Ξθ 〉⊗N and so preprocessing gives the same overall probability of suc-
cess as in those case and the result is proved. Although this calculation
is based on a specific method of allocation of the states, it will be true
for any permutation allocation that puts all of the phases in the state
|Ξθ 〉⊗2X −1 into a grouping that produces a state |Ξ(θ)s〉p, s ≤ X and in
which each grouping contains the two “middle” phases, i.e., the phases
−i(2X−1 −1)θ and −2X−1iθ .

Programmable Quantum Processors 419

REFERENCES

1. S. Lloyd and L. Viola, Phys. Rev. A, 65, 010101 (2002).
2. See for example: M. A. Nielsen and I.L. Chuang, Quantum Computation and Quantum

Information (Cambridge University Press, Cambridge, 2000).
3. G. Harel and V. M. Akulin, Phys. Rev. Lett. 82, 1 (1999).
4. E. Brion, V. M. Akulin, D. Comparat, I. Dumer, V. Gershkovich, G. Harel, G. Kurizki,

I. Mazets, and P. Pillet, Non-Holonomic Control I. arXiv: quant-ph/0507156 (2005).
5. S. Lloyd and S. M. Braunstein, Phys. Rev. Lett. 82, 1784 (1999).
6. B. Hladký, G. Drobný, and V. Bužek, Phys. Rev. A 61, 0221202 (2000).
7. M. A. Nielsen and I. L. Chuang, Phys. Rev. Lett. 79, 321 (1997).
8. M. Hillery, V. Bužek, and M. Ziman, Fortschr. Phys. 49, 987 (2001).
9. M. Hillery, M. Ziman, and V. Bužek, Phys. Rev. A 66, 042302 (2002).

10. J. Preskill, Proc. Roy. Soc. Lond. A 454, 385 (1998).
11. G. Vidal, L. Masanes, and J. I. Cirac, Phys. Rev. Lett. 88, 047905 (2002).
12. M. Hillery, V. Bužek, and M. Ziman, Phys. Rev. A 65, 022301 (2002).
13. C. W. Helstrom, Quantum Detection and Estimation Theory (Academic Press, New York, 1976).
14. A.S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory (North-Holland,

Amsterdam, 1982).
15. A.Peres, Quantum Theory: Concepts and Methods (Kluwer, Dordrecht, 1993).
16. P. Busch, P. Lahti, and P. Mittalstead, Quantum Theory of Measurement (Springer, Berlin,

1996).
17. S. Massar and S. Popescu, Phys. Rev. Lett. 74, 1259 (1995).
18. R. Derka, V. Bužek and A. K. Ekert, Phys. Rev. Lett. 80, 1571 (1998).
19. S. F. Huelga, J. A. Vaccaro, and A. Chefles, Phys. Rev. A 63, 042303 (2001).
20. J. Preskill, Quantum Theory of Information and Computation, see http://www.

theory.caltech.edu/people/ preskill.
21. A. Uhlmann, Rep. Math. Phys. 9, 273 (1976); ibid 24, 229 (1986).
22. V. Scarani, M. Ziman, P. Štelmachovič, N. Gisin, and V. Bužek, Phys. Rev. Lett. 88,

097905 (2002).
23. M. Ziman, P. Štelmachovič, V. Bužek, M. Hillery, V. Scarani, and N. Gisin, Phys. Rev. A

65, 042105 (2002)].
24. S. Braunstein, V. Bužek, and M. Hillery, Phys. Rev. A 63, 052313 (2001).
25. V. Bužek and M. Hillery, Phys. Rev. A 54, 1844 (1996).
26. V. Bužek, S. Braunstein, M. Hillery, and D. Bruß, Phys. Rev. A 56, 3446 (1997).
27. G. Alber, A. Delgado, N. Gisin, and I. Jex, Los Alamos arXive quant-ph/0008022.
28. V. Bužek, A. D. Wilson-Gordon, P. L. Knight and W. K. Lai, Phys. Rev. A 45, 8079

(1992).
29. D. T. Pegg and S. M. Barnett, Europhys. Lett. 6, 483 (1988); Phys. Rev. A 39, 1665

(1989); D. T. Pegg, J. A. Vaccaro, and S. M. Barnett, J. Mod. Opt. 37, 1703 (1990).
30. W. K. Wootters, Ann. Phys. 176, 1 (1987).
31. T. Opatrný, V. Bužek, J. Bajer, and G. Drobný, Phys. Rev. A 52, 2419 (1995).
32. U. Leonhardt, Phys. Rev. Lett. 74, 4101 (1995).
33. M. Koniorczyk, V. Bužek, and J. Janszky, Phys. Rev. A 64, 034301 (2001).
34. J. P. Paz, Phys. Rev. A 65, 062311 (2002).
35. D. Galetti and A. F. R. de Toledo Piza, Physica 149A, 267 (1988).
36. V. Bužek, C. H. Keitel, and P. L. Knight, Phys. Rev. A 51, 2575 (1995).
37. G. Alber, A. Delgado, N. Gisin, and I. Jex, J. Phys. A 34, 8821 (2001).
38. V. Vedral, A. Barenco, and A. Ekert, Phys. Rev. A 54, 147 (1996).
39. A. D. Pittenger, An Introduction to Quantum Computing (Birkhäuser, Boston, 2000).

420 Bužek, Hillery, Ziman, and Roško

40. D. I. Fivel, Phys. Rev. Lett. 74, 835 (1995).
41. M. Ziman and V. Bužek, Int. J. Quant. Inf., 1, 527 (2003).
42. M. Hillery, M. Ziman, and V. Bužek, Phys. Rev. A 69, 042311 (2004).
43. M. Koniorczyk, V. Bužek, and P. Adam, Eur. J. Phys. D 37, 275 (2006).
44. D. E. Evans and J. T. Lewis, Dilations of Irreversible Evolutions in Algebraic Quantum

Theory, Communications of Dublin Institute of Advanced Studies, Series A (Theoretical
Physics), No. 24, (DIAS, Dublin, 1977).

45. M. Dušek and V. Bužek, Phys. Rev. A 66, 022112 (2002).
46. J. Fiurášek et al., Phys. Rev. Lett. 89, 190401 (2002).
47. J. Fiurášek and M. Dušek, Phys. Rev. A 69, 032302 (2004).
48. J. A. Bergou and M. Hillery, Phys. Rev. Lett. 71, 042314 (2005).
49. J. P. Paz and A. Roncaglia, Phys. Rev. A 68, 052316 (2003).
50. A. K. Ekert, C. M. Alves, D. K. L. Oi, M. Horodecki, P. Horodecki, and L. C. Kwek,

Phys. Rev. Lett. 88, 217901 (2002).
51. G. M. D’Ariano, P. Perinotti, and M. F. Sacchi, Europhys. Lett. 65, 165 (2004).
52. G. M. D’Ariano, P. Perinotti, and M. F. Sacchi, in Proceedings of the 8th Int. Conf. on

Squeezed States and Uncertainty Relations, H. Moya-Cessa et al. (eds.) (Rinton, Prince-
ton, 2003), p. 86.

53. G.M. D’Ariano and P. Perinotti, Phys. Rev. Lett. 93, 180503 (2004)
54. M. Roško, V. Bužek, P. R. Chouha, and M. Hillery, Phys. Rev. A 68, 062302 (2003).
55. J. M. Renes, R. Blume-Kohout, A. J. Scott, and C. M. Caves, J. Math. Phys. 45, 2171

(2004).
56. P. Stelmachovič, private communication.
57. K. Wódkiewicz, Phys. Rev. Lett. 52, 1064 (1984); Phys. Lett. A 115, 304 (1986); Phys.

Lett. A 129, 1 (1988).
58. A. Chefles, Contemp. Phys. 41, 401 (2001).
59. S. M. Barnett, Fortschr. Phys. 49, 909 (2001).
60. I. D. Ivanovic, Phys. Lett. A 123, 257 (1987).
61. D. Dieks, Phys. Lett. A 126, 303 (1988).
62. A. Peres, Phys. Lett. A 128, 19 (1988).
63. G. Jaeger and A. Shimony, Phys. Lett. A 197, 83 (1995).
64. A. Chefles and S. M. Barnett, Phys. Lett. A 250, 223 (1998).
65. B. Huttner, A. Muller, J. D. Gautier, H. Zbinden, and N. Gisin, Phys. Rev. A 54, 3783

(1996).
66. J. A. Bergou, M. Hillery, and Y. Sun, Fortschr. Phys. 49, 915 (2001).
67. M. Dušek, M. Jahma, and N. Lütkenhaus, Phys. Rev. A 62, 022306 (2000).
68. A. Gilchrist, N. K. Langford, and M. A. Nielsen, Phys. Rev. A 71, 062310 (2005).
69. M. Raginsky, Phys. Lett. A 290, 11 (2001).
70. M. Raginsky, Phys. Rev. A 65, 032306 (2002).
71. G. M. D’Ariano and P. Perinotti, quant-ph/0510033.
72. M. Hillery, M. Ziman, and V. Bužek, Phys. Rev. A 73, 022345 (2006).
73. A. Brazier, V. Bužek, and P.L. Knight, Phys. Rev. A 71, 032306 (2005).

