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Quantum interference with molecules: The role of internal states

Mark Hillery, Leonard Mlodinow’* and Vladimir Buzek?®
1Department of Physics, Hunter College of CUNY, 695 Park Avenue, New York, New York 10021 USA
Research Center for Quantum Information, Slovak Academy of Sciences, 845 11 Bratislava, Slovakia
3Quniverse, Li&e udolie 116, 841 04 Bratislava, Slovakia
(Received 19 February 2005; published 14 June 2005

Recent experiments have shown that fullerene and fluorofullerene molecules can produce interference pat-
terns. These molecules have both rotational and vibrational degrees of freedom. This leads one to ask whether
these internal motions can play a role in degrading the interference pattern. We study this by means of a simple
model. Our molecule consists of two masses a fixed distance apart. It scatters from a potential with two or
several peaks, thereby mimicking two or several slit interference. We find that in some parameter regimes the
entanglement between the internal states and the translational degrees of freedom produced by the potential can
decrease the visibility of the interference pattern. In particular, different internal states correspond to different
outgoing wave vectors, so that if several internal states are excited, the total interference pattern will be the
sum of a number of patterns, each with a different periodicity. The overall pattern is consequently smeared out.
In the case of two different peaks, the scattering from the different peaks will excite different internal states so
that the path the molecule takes becomes entangled with its internal state. This will also lead to degradation of
the interference pattern. How these mechanisms might lead to the emergence of classical behavior is discussed.
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[. INTRODUCTION mental result has been analyzed in detail and theoretically
) ) explained by K. Hornbergeat al.[10,13. In particular, these
How big does an object have to be before quantum megythors have studied the effect of thermal radiation at differ-
chanical effects disappear? A cat is presumably too large, bint temperatures of the molecule on the decoherence of
a molecule may not be. Interference with holecules was fyllerenes, taking into account that these molecules are not
demonstrated as early as 1980, and there have been a plackbody radiators. Under this assumption they have been
number of subsequent experiments with small moleculegple to find a good agreement with experimental results.
[2-6]. In a series of recent experiments, the group at the Another possible source of decoherence is the coupling
University of Vienna(Vienna, Austria has shown that mol-  petween the translational motion of the molecule and its in-
ecules consisting of many atoms, such as fullerenes or flugernal state$10]. The vibrational and rotational states of the
rofullerenes can produce an interference pattern after travefolecule can be thought of as a reservoir that the molecule
ing through a gratind7,8]. Molecules, however, come in carries with it. When the molecule passes through a region in
many sizes, so one might expect that, in regard to their transyhich there is a potential, the translational motion of the
lational degrees of freedom, small molecules behave quamnoplecule and its internal modes can become entangled.
tum mechanically while large ones do not. Where is theTherefore, the molecule’s internal reservoir can cause differ-
boundary between these behaviors, and what causes the tratht outgoing momenta or different paths the molecule can
sition, if indeed it takes place? take through the region of nonzero potential to decohere.
There are several mechanisms that can destroy an inter- Here we wish to examine the effect of the internal states
ference pattern produced by matter waves. For example, th§f the molecule on its interference. We shall do so by con-
decoherence of molecules in a beam can be caused by collidering a simple model that is a version of two-slit interfer-
sions with lighter particles from the environme(see, €.g., ence, the most fundamental quantum mechanical interference
Refs.[9,10]). Other destructive environmental influences arephenomenon. Our molecule will be a rigid rotator, consisting
grating vibrations, the finite size of a grating, or even Cori-of two equal masses separated by a fixed distance, and, for
olis forces(see, e.g., Ref[11]). Obviously, the chief de- simplicity, it will be confined to two dimensions. The mol-
stroyer of quantum coherences is thermal radiation througBcule has both translational and rotational degrees of free-
which the molecules become entangled with extethight)  dom. It will scatter off of a potential, which will initially be
degrees of freedom. This mechanism, which leads to the disaken to be one consisting of two pealsee Fig. 1 The
appearance of the interference pattern, has been studied thgfolecule will interact with both parts of the potential, and
retically by several groups. The interference pattern found byhe two scattered waves will both be incident on a detector at
the group in Vienna disappears if the internal temperature o§ome distant point. The result of this process is described by
the molecules is sufficiently higt2000 K) [12]. This experi-

Y other studiegsee, e.g., Ref$14,15) an assumption has been
made, that the molecule is a blackbody radiator and consequently
*Permanent address: Alexei Nicolai Inc., 1970 La France Avenuethese results, while they illustrate the effect of this type of decoher-
South Pasadena, CA 91030. ence, do not apply directly to experiments in Vienna.
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: * particular if it consists of two peaks, which are not the same.
| Then the path the molecule takes and its internal state can
| N become entangled. If the internal states are sufficiently dif-
: Bl V1 ferent, then they will reveal which path the molecule took,
| m . . .
' B . and there will be no interference pattern. Our model will
9«) b allow us to study both of these mechanisms.
(X, ¥) '\ — g > We calculate the cross section for our scattering in the
/ . Born approximation, which we must modify to take into ac-
n / -d count the internalrotationa) states of the molecule. This
) o . . . . .
: ) . calculation is relatively standard, so we have relegated it to
s : an appendix. We begin the next section with the expression
for the cross section, and proceed to analyze its implications.

Il. CROSS SECTION
FIG. 1. (Color online Schematic illustration of a scattering of a

two-atom molecule on a potential composed of t@aussiahn We begin by describing our system in more detail. The
peaks. The two “atoms” of the molecule have a massand each  molecule consists of two “atoms,” both of massand each
located a distance: from the center of mass of the molecule. The located a distanca from the center of mass of the molecule.
location of the center of mass is given 0%,Y). The angle between The location of the center of mass is given ®§,Y) and its

the line connecting the two masses and the positisis is¢, and ~ momentum by(P,,P,). The angle between the line connect-
the angular momentum corresponding to the rotation of the moling the two masses and the positixeaxis is ¢, and the
ecule in thex-y plane isL. The angle between the wave vector of gngular momentum corresponding to the rotation of the mol-
the outgoing molecule and the positiyeaxis is denoted by, and  gcyle in thex-y plane isL. There is also a potential with

0 is a unit vector pointing in the .directi.on of the outgoing wave \yhich the particles interack. In Fig. 1 we present a sche-
vector. The angles are measured in radians. matic picture of the physical situation we consider. The

the scattering cross section, and we shall be interested ffamiltonian describing the system is

whether or not it exhibits interference fringes. It is straight- 1 1

forward to extend our model to the case in which the poten- H=-—(P2+ Pi) +—L%+V(X+ acose,Y + asin ¢)
tial has more than two peaks, in particular to the experimen- 4m 2l

tally relevant situation in which it represents a diffraction +V(X - @ cosg,Y - asing), (2.2
grating, and the interference pattern resulting from the scat- _ o
tering from this type of potential will be studied as well. ~ wherel =2ma? is the moment of inertia of the molecule. We

Entanglement between internal and translational stateshall label the states of the systeji, |) by the wave vector
can, in fact, contribute to washing out an interference patof the center of mas& and the quantum number of the
tern, but only in certain parameter regimes. We shall examineotational motionl. The states are normalized so that
two ways in which this can happen. The first is a result of the . ,
fact th;([ after the scattering,pdﬁfferent internal states of the (llkr,17) = &k =k )ay- (2.2
molecule have different wave vectors describing their trans- Now we consider the situation in which the molecule
lational motion, i.e., the outgoing momenta and the internatomes in from the negative direction with an initial state
states of the molecule become entangled. For example, if the
molecule is initially in a plane wave state of its translational - .
motion and not rotating, and the outgoing state contains [Win) = _E ilk =kg,1). (2.3
components that correspond to rotational motion of the mol- 1=
ecule, then these components will have a wave vector whodeet 9 be the angle between the wave vector of the outgoing
magnitude is smaller than that of the original wave vectormolecule (the wave vector after the scattering has taken
This follows from energy conservation; some of the translaplace and the positivg axis, andli be a unit vector pointing
tional kinetic energy has been transformed into rotationaln the direction of the outgoing wave vector. The cross sec-
kinetic energy by the scattering. This mechanism was protion for the scattering is given by
posed by Hegerfeldt and Kéhler as a means of separating an

excited state of a molecule from its ground stgt6]. Mol- o(6) = (277)34L12 D ®<k_2 + E B w)
ecules, which either have or have not been excited, pass k . \4m 21 2

through a transmission grating, and, because of the differ- n

ence in their wave vectors, the ground and excited state mol- X |2k (k1L 51T, VK D2, (2.9

ecules scatter in different directions. In our case, the different . .
parts of the state of the scattered molecule, each part havi%here@(xﬁl if x>0 and®(x)=0, if x<0, and
a different wave vector, result in a total interference pattern —( K& 12 (1")3\?
made up of patterns with different spacings between their (k1517 =2\m<ﬁ 5‘7)
peaks, and this causes a smearing out of the overall pattern.

The second way in which the pattern can be degraded coméshis is to be compared with the cross section for the scatter-
into play if the potential is different in different regions, in ing, in two dimensions, of a particle of maké and no in-

(2.5
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ternal structure from a potenti®i(r), which is, in the Born tween the slits in a two-slit interference experiment. The ma-
approximation, trix element appearing in the cross section is then the sum of
four terms, as both/; and V, are evaluated at the points

M2 o (X+acosep, Y+asing) and (X—a cos¢, Y—asing), i.e.,
o(6) = fdzre"k<u‘y>'fv(r)2 . (2.6)  the coordinates of the two masses of the molecule. We de-
27k fine, forj=1,2

We now need to calculate the matrix element of the - 1 )
potential. First we shall assume that the potential is the sum Vi(kiky) = o f de dye' & WVi(xy).  (2.7)
of two terms,V(r)=V;(r)+V,(r), whereV,(r) is centered m
about the pointd,0) andV,(r) is centered about the point For the matrix element o¥;(X+a cos¢,Y +a sin ¢), which
(=d,0). The distance @ plays the role of the distance be- we shall denote by/(+ , we then have

) oo 2
(k01" VP|kg,1) = dX| dY| dge* @RIV (X + o cose,Y + a sin ¢)
J J
0 —o0 0

(2m?3)_

1 _ 21 ) ,
= 2—VJ-(— Kk sin 6,k — k cose)f dgpe ™ %exg — ika sin 6 cosplexdi(k — k cosé)a sin ¢]
m 0

= 2P 0013 (o ki = KV, (kY = «0). (2.9
[
The angleu satisfies Vy(r) = VeIt + k1%, (2.13
_ Kk sing K COSO—-K With this potential, the cross section becomes
Sinu=——"—+, COSu=——"-+, (2.9
[0 =] [0 =] 8amPANV2 R Py
()= ——— 2 o [1+(-DP
so that k = 4m 21 2
_ tan'l[ ksing ] 2.10 x e ¥ ~W517232 (| ili ~ k| coZ(d sin )| ]2,
K kcosf—k ' ' (2.14)

Note that the quadrant in which lies is specified by Eq. The existence of an interference pattern can be seen from the
(2.9. The evaluation of the matrix element of; (X presence of the cosine term.

—a cos¢,Y-asin ¢), which we denote bw is S|m||ar We shall examine this expression in a number of param-
and we find eter regions. First, consider the case in which «, i.e., the
potential varies slowly over distances of the order of the size
of the molecule. We would not expect the fact that the mol-

(011" |V( )|ky )= (2 )1 12€ RRRECE I (af i~ k) ecule has internal degrees of freedom to play much of a role
in this case, and this is, indeed what we find. Note that,
><Vj(k§/—;<l]). (2.1 because of the Gaussian factor, the cross section will be
small unlesg«{—ky|A is of order one or smaller. We have
Consequently, we have that that

A . 1 ... , L k0 —ky|A > |[k—KA
(M) = e L - g

A 2 1/2

2 >H(kA)2+<—> [|2—(|')2]} —kA‘.
X 2 Vj(k§ - «0). (2.12 @

j=1 (2.15

Let us begin by considering the case in whihandV,  From this expression we see that for o, we will have that
are both Gaussians with the same width |kli—ky|A>1 unlessl=1", and this implies that only the
P terms withl=1" will contribute to the sum in Eq2.14). In

V(1) = VeI~ dxI7a% that case we have that=k, and
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32mPAYVA o
o(6) = %’eﬂk@z'” ~IP232(KalG - 9)co(kd sin 6).

o(k,0,A=1,d=2) o(k,8,A=1,d=2)

(216) Omax \

Note that, as expected, all of the dependence on the interne ‘
states is gone. If, in addition, the molecule is much smaller
than the wavelength corresponding to its center-of-mass mo
tion, then the Bessel function can be replaced by 1, and al
vestige of internal structure disappears. In fact, in this limit
the scattering cross section becomes the same as that of
particle with no internal structure and a mass of 2catter-
ing from a potential PV;(r)+V,(r)] [see Eq.(2.6)]. .
In the experiments with fullerenes, the ratio of the slit
separation to the de Broglie wavelength of the molecules was®
of the order of 16, and the scattering only at angles near the
forward direction was observed. Let us see what our toy
model predicts for a situation similar to this one. We shall
assume thatd~ 10%, @<d but the two are of the same order ~ FIG. 2. (Color onling We plot the cross sectiom(6) as a func-
of magnitude, and, for simplicity, that our molecule starts intion of ¢ (measured in radiangnd the momenturk (measured in
the =0 state. In addition, we shall concentrate our attentiorflimensionless uniisWe compare two cases: A molecule withft
on angles near the forward direction, in particulésr 1074 column and without(right column internal degrees of freedom.

We now have that From the figure it is obvious that the internal structure of the mol-
ecule causes a suppression of the interference pattern. The cross
(12 |12 sectiono in the presence of the internal structure of the molecule is
k=Kl1--——5| , (2.17  represented by Eq2.14 where we assume that the incident mol-
(ka)

ecule is in the state with=0. The cross section corresponding to
so that the only angular momentum states that can be excitd@ie case with a molecule that does not have an internal structure is
are the ones satisfyinkp=1". Sinceka~ 10%, it seems that ~diven by Eq.(2.21). Otherwise the molecules are considered to be
many internal states can be excited, and that this could haJge same, i.e., we assume units such thatl andz=1. The two

an effect on the interference pattern. In particular, the interSaussian peaks are characterizedgy 1 andA=1. The distance
ference pattern is given by the ¢ad sin §) factor, so that if between each scattering peak and the origin of the coordinate sys-

many values of’, and hence many values gf are allowed, tem 'S.d:2 (the upper row andd:.6 (the lower rOV\.)' we Ob.serve
. that with largerd the frequency of interference oscillations is larger.
then the interference pattern could be smeared out.

. . S . The suppression of oscillations due to the presence of internal mo-
This does not happen in this situation. As was noted ear:- PP P

L. . . lecular states is clearly seen in both cases, de2 andd=6.
lier, in order for the Gaussian factor not to cut everything off,
we must havek-«| of order one or less, that is

d1-l1- (1?2 |12 -1 (2.18 KA(1-cos6)?, ka(1-cosh) ' andkdsin 6 are all of order
(ka)? ' ' one, and the cross section exhibits strong interference
fringes.

Let us assume that<d, but thatkA> 1. Then in order to
satisfy the above condition, we must havé(ka) <1, and,
in particular,’ / (ka) < 1/\kA. This implies that the values of
« that contribute to the sum in the expression for the cros
section, lie in the range betwe&andk-(1/A), that is, all
of these values are very close koMaking the approxima-
tion that k=k, we find that

In our examples so far, the internal states have not influ-
enced the interference pattern. One regime in which they do
is whenkA, ke, andkd are roughly of order one. In Fig. 2 we
?)resent the cross sectiar(¢) as a function off and the
momentumk for parameters in this range. We compare two
cases: First, we consider the case when the molecule has an
internal structure and the cross sectig(®) is described by

|« = ky| = V2k(1 - cosh)*?, (2.19  EQg.(2.14. Second, we analyze the situation when the mol-
ecule has no internal structure. In all cases when we are
and comparing scattering with and without internal structure, the
BrPAN2 "2 molecule without iqterna! structure is 'Faken to have a mass of
o(0) = m o <k2 _ %)[1 +(-1)'P 2m, and the potent_lal _actlng onitis t\Nlc_e t_hat of the potential
k Voo a for the molecule with internal structutthis is to compensate

5 . = for the fact that for the molecule with internal structure, the
X g (kA 1-cosOi2ge (\2ak(1 - cose)Y?) potential acts on each partiglé=or this case using the gen-
. eral expression given by E@2.6) we can derive the cross
x cog(kdsin 6). (2.20 section for the scattering potential with two Gaussian peaks

In the ranged~ (1/kd)~107, we find that the quantities in the form
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%’exp{— A%2(1 - cosb) Jcog(kd sin 6).

(2.21)

o(h) =

PHYSICAL REVIEW A 71, 062103(2005

1075 to 10°8, which agrees with what was seen.

In order to investigate the role of internal states for the
case of a grating potential, we again go to the regime in
which kA, ke, andkd are roughly of order one. The expres-

From Fig. 2 it is obvious that the internal structure of theSion for the cross section of a molecule with no internal

molecule causes a suppression of the interference pattern.
the figure we use units and values of the parameters involv
in the expressions for the cross section such khakeq, and

kd are not too larg€of the order between 1 and 10 in di-

gtructure scattering off of a potential witiNZ 1 identical

cpeaks can be found by using the general expression given by

Eqg. (2.6) and is given by

mensionless units used in the figure _ 32mPANV;
The actual experiments use a grating instead of two slits, ol(6) = K expl - A%*(1 - coso)]
and it is straightforward to incorporate this into our model. ) )
Suppose that the potential consists df+#21 peaks centered sinf{[kd(2N + 1)sin ¢]/2} (2.27)
on thex axis, so that sir’[(kd sin 6)/2] '

N

V(r)= D o(r =ndR),

n=-N

(2.22

We plot the cross sections(6) given by Egs.(2.25 and
(2.27 in Fig. 3 as a function of andk for different values
of N. From the figure we can again conclude that the pres-

whereu(r) is the potential for one of the peaks. We then findence of the internal structure of the molecule leads to a sup-

that

N
-~ o= 1 _ SN+ 1)/2]
V(k)_n:E_Ne 5 (K) = Snd2) 5(K).

(2.23

In the case that the peaks are Gaussian
u(r) = Ve IPa%,

the cross section becomes

(2.249

2mmPANVE
U(Q)ZWTO E <k2

_ar

a2

)[1 +(-1)"]?

"=
W @ @)d - k9\2/23|2,(\,'5a|xﬂ )

sir[(kd(2N + 1)sin 6)/2]
sir?[(xd sin 6)/2]

(2.29

If we are in the regime in which the experiments were done
i.e., kd~10* and « and A both less thard but of similar
order of magnitude, the same considerations as those in the
derivation of Eq.(2.20 apply, and we find for the cross

section

A2 @ "2
0.(9):2’7Tm—kAVO E ®<k2_%>[1+(_ l)l’]z

|"=—o

x g kA-c0s023] (\24ak(1 - cos6)*?)

sir?{[kd(2N + 1)sin 6]/2}
sir?[(kd sin 6)/2]

(2.26

We note that neaf=0 the spacing between peaks is roughly

pression of the interference pattern.

Ill. DIFFERENT PEAKS

So far we have considered only the case in which both of
the peaks in the potential are the same. We shall now con-
sider the case in which they are not. This will give rise to
another mechanism that can decrease the visibility of the
interference pattern. The different peaks will give rise to dif-
ferent excitations of the internal states, and the interference
pattern will be proportional to the overlap between these
internal states. The overlap is related to the information
about the path the molecule followed through the potential.
If the overlap is zero, then by looking at the internal state of
the molecule, we can determine from which peak it scattered,
then there will be no interference pattern. If the overlap is
greater than zero, then there is partial information about the
path, and the visibility of the interference pattern is corre-
spondingly reduced.

'’ We shall now assume that the potential is the sum of two
terms,V(r)=V;(r —dX) +V,(r +dX), where

r2
Vi(r) :Vo(l —A—2>e‘<"ﬁ)2, (3.1

Vz(r) = Voe_(r/A)z.

The Fourier transforms of these potentials are given by

~ 1
Vy(k) = gVOkZA“e‘(kA)Z/“, (3.2

27/[kd(2N+1)] (the first peak is at=0, the second, which
is not as high, is betweennZ[kd(2N+1)] and 4/[kd(2N
+1)]). In the experiment, a molecule passes through about
100 slits(this is the beam width divided by the slit spacing
which gives a value oN of around 50. This implies an
angular spacing between peaks in the pattern e of

-1
Va(k) = SV %e k%,

so that the matrix element of the total potential is
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o(k,®,4=1,d=6,N=1) ok, A=1,d=6,N=1) Now consider a particular example. As usual, we shall

.

assume that the molecule is initially in theQ state. We
shall also assume that3kae= 1, which means that the there
are three terms in thE sum (thel’=+1 terms vanish Let
us now examine the terms corresponding/tcandV, in the
above matrix element. Define the magnitude of the differ-
ence between the outgoing and incoming momenta tq be
=|q| whereq=«{-ky. The V; contribution atl’=0 is pro-
o(k,6,A=1,d=6,N=2) portional toJy(aq)g? exd—(qA/2)?] while the V, contribu-
tion is proportional toJy(aq) exd—(qA/2)?]. The function

g? exd—(gA/2)?] has a maximum aj=2/A. If @ andA are
1 chosen so that this maximum occurs at a zerd,otq), then
the contribution oV, to the scattering dt =0 will be greatly
suppressed. What will happen then is thatwill scatter the
molecule primarily into thé’ = +2 states and/, will scatter
it primarily into thel’=0 state. The result will be a suppres-
sion of the interference pattern.

Let us make this more specific. First, the cross section for
this choice of potential and the molecule initially in the
=0 state is given by

Onmax (N) \

o

Omax (N)
° 2mmPV2AS Z , ,
o(f)= === 3 [1+(- 1P (agye ™"
I'=—0
FIG. 3. (Color online We plot the cross section(6) of the (qA)4 (qA)2
molecule that is scattered by a grating modeled as a potential with X1+ 1_6 + TCOS{2Kd sind) |. (3.9

2N+ 1 Gaussian peaks. We present the cross section as a function of

¢ (measured in radiahgnd the momenturk (measured in dimen-  For the same choice of the potential but for the molecule

sionless unitsfor different values oN. We compare two cases: We yithout an internal structure we find the cross section using
assume the molecule witleft column and without(right column Eq. (2.6) in a form

internal degrees of freedom. From the figure it is obvious that the

internal structure of the molecule causes a suppression of the inter- 8mmP\V2A4 2
i . ) = - 07 (@2
ference pattern. The cross secti@rin the presence of the internal a\v) = K
structure of the molecule is represented by Ef25 where we
assume that the incident molecule is in the state Wwith. The cross (gA)*  (gA)? .
. . : X[ 1+ + cog2«kdsind)|. (3.5
section corresponding to the case with a molecule that does not 16 2

have an internal structure is given by E@®.27). Otherwise the
molecules are considered to be the same and we assume units sushFig. 4 we plot the cross sectiowg6) given by Eqs(3.4)
thatm=1 and%=1. The Gaussian peaks are characterized/py and(3.5). We consider the case wh&n=5/2,kA=3/2, and
=1 andA=1. The distance between adjacent scattering pea#ls is kd=4. In this case we see that the interference pattern is
=6. We consider three different types of gratings witk1 (i.e.,  almost completely suppressed by decoherence due to the in-
scattering on three Gaussian peaks—see the firs}, neith N=2 ternal states of the molecule.
(i.e., scattering on five Gaussian peaks—see the secong aod
with N=10 (i.e., scattering on 21 Gaussian peaks—see the third
row). The maximal values of the cross section that are achieved
from smallk and #=0 are different for different values ™. Par- The Coup“ng of internal and translational degrees of free-
ticularly, these values are proportionalN8. In any case, we see a dom of an object can lead to the degradation of an interfer-
suppression of the quantum interference patterns due to the pregpce pattern produced by the scattering of the object from a
ence of internal molecular states. potential. This is a result of the entanglement between the
internal and translational degrees of freedom of the object
L produced by the potential. We have studied two different
A NS N — il PNEL A e forms this entanglement can take. In the first, different out-
(VD = 27 L+ 97 o (ol - KD going wave vectors become entangled with different internal
states producing an interference pattern made up of parts

IV. CONCLUSION

% EVOAZQ—IKG - ky[*A%/4 with different periodicities, which leads to a smearing of the
2 overall pattern. The second results from the entanglement of
A2 o o the internal states and different paths the molecule can fol-
X Z|Kl] — ky|?eixdsin ¢ 4 grikdsing | low through the potential.

Even though our model was very simple, it is possible to
(3.3 draw some conclusions from the results based on it, and to
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internal states than would be the case of a smaller object.
This gives us a possible mechanism for the emergence of
classical behavior for an object with internal structure mov-
ing in a potential. If we consider the path-integral description
of its dynamics, each of the paths it can follow will corre-
spond to different internal excitations. Therefore, these paths
will decohere, and instead of a coherent superposition of
-1.5-1-0.50 0.5 1 1.5 paths, we will have an incoherent one. In addition, the clas-
e sical path will be the most probable, so that the object will

FIG. 4. (Color online We plot the cross section(6) of the SlmTpr:y follow tr's ?ath through thek?oﬁnt('ja!' bef
molecule that is scattered by a potential composed of two noniden- ere are clearly many gaps to be filled in before we can

tical peaks. We present the cross section as a functioh (aiea- claim that this picture is correct. The calculations in this
sured in radians The potential is described by E€8.1). We con-  Paper are a first step. More sophisticated models and treat-

sider two situations: When the molecule has an internal structur8€nts are called for. However, even this very simple model
(dashed ling given by Eq.(3.4) and when the molecule does not shows that internal states can act as a reservoir and cause
have an internal structurésolid line) given by Eq.(3.5. When  different states of translational motion to decohere.

internal states of the molecule are present, then depending on which
path the molecule follows through the potential, that is which peak
it scatters from, differen{distinguishablg internal states of the
molecule are excited. Consequently, in principle the path can be Thjs research was supported by the National Science
determined, and the interference is suppres#@d situation situa-  Egundation under Grant No. PHY 0139692. In addition this
tion is very similar to that discussed in papers on “which-way in-\york was supported in part by the European Union projects
formation” in double-slit experiments—see, e.g., RdfE3,19). QGATES and CONQUEST, by the Slovak Academy of Sci-
Here the cross section is given by Eg§.4). We consider. parameters on-os via the project CE-PI, and by the project APVT-99-
such thatka=5/2, kA=3/2, andkd=4, and we obtain the cross 415304 e thank Klaus Hornberger and Markus Arndt for
section given by the dashed line. When the molecule has no |ntern§)ery helpful correspondence
structure, the path cannot be determined and the interference pattern '
is preservedsolid line). The cross section(6) in this case is given

by Eq. (3.5 and for the same values of parameters as beficee APPENDIX: DERIVATION OF THE CROSS SECTION
ka=5/2,kA=3/2, andkd=4).

O O O O
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) . Here we calculate the cross section for the scattering of
put forward some conjectures. In order for internal states t@ur molecule from a potential, to first order in the potential.
be excited, they must be of sufficiently low energy. If the |f the initial state of the molecule ik, 1), and we want to
molecule is of siz&. and mas#, the lowest rotational mode  fing the amplitude to scatter into the std#eé,1’). To lowest

. 2 1 .
will have an energy of order ML®. We would expect the 4 ger in the potential, th&-matrix element for this process is
mass of the molecule to scale roughly as its volume, which
means thaM ~ L%, so that the energy of a low-lying rota- (k’,I’|Sk,I) = 6?2(k’ — k)&,
tional state is proportional to 1?7. There will also be vibra-

. i . . (kr)Z (|r)2 k2 |2

tional modes. The energy of the low-lying acoustic phonon — 2l b o — — — K VK.
modes will be proportional to 1/ In both cases, it is clear 4m 2l 4m 2| ' '
that the larger the object, the more low energy internal states (A1)

it will have.

In our simple model, the coupling between the transladn order to find the scattering amplitude for a more general
tional motion and the internal state with angular momenturrinitial state,
| (if the molecule was initially in the zero angular momentum o
state is determined by the produdf(aq)V(q). Therefore, if W, = > d?kWi(k, DK, 1, (A2)
the Fourier transform of the potential is significant in the =0
region near/«, where J(«q) is largest in absolute value,
then there will |2 a a good chance of exciting thi rota-
. R . L tegrate ovek, and sum ovet.
tional state. This implies that in order to excite internal : .

In order to find the cross section, we shall follow the

states, the potential must vary on a scale of the order of the . "~ Ref[17]. The scattered wave functio®(k 1)
size of the object or smaller. Clearly this restriction is much.

we simply multiply both sides of EqAL) by W¥;,(k,1), in-

less stringent for a large object than a small one. is given by

These considerations suggest that it is easier to excite in- » W (7 e 1
ternal states in a large object than in a small one. There are d(k’,I’) = - 2mi >, d2k5< f0)r_ K _)
more low lying states, and for a given potential, the probabil- == 4m 21 4m 2|
ity of exciting one of these states is greater for the larger S (K IV YW (K, D). (A3)

object, because the conditions for doing so are less restric-
tive. This further suggests that it is more likely for the trans-If 0 is a unit vector in thé’ direction, then the probability of
lational motion of a large object to become entangled with itshe particle scattering in the direction, P(Q) is
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~ . i 1|2 Eks Kol 141 _®(k_§+ﬁ_ﬁ)
P)= 2 | dkk|dykD,1). (A4) (kukail'\lpl) =0 5 -+ 0 ==

XKoo V] (kg l4;17)0,17)

|'=—

Substituting Eq(A3) into the above equation and evaluating

thek’ integral gives us X (kI 151G, VK, )
5 X (ko) pin(k) i th,.  (A9)
P =8@mS S | d f 2, T
[ PP Our remaining task is to evaluate the integrals. Let us first
22 ok R 22 () do the k, integral. The integral ovek,, simply setsks,
sl =L 4 L2 _ _2> (_l I _ ) =kyy, and then thek,, integral setsk, =+ «(kyy,l1;l5). The
dm 21 4dm 2| dm 2l 2l result is

X (K15 V] (kg l4;17)0,17)
X (re(Ky, 1318, VK, 1) W (K, 1)

o@)=16r"m > > | dk——
XWi(Ky,ly), (A5) e Li(kyal3;1)
wherex is defined in Eq(2.5). RN
Now let us consider an incoming beam of particles that X% Pk koo £ k2121 o).

scatter off of the potential. The particles are in wave packets

@, (k,1)= ¢ (K)th, where &, is highly localized abouk (A10)
=ky. The incoming beam is of widthR2 so that the center of
the wave packets can be displaced in ihdirection any-
where between R<x=<R. Therefore, we consider incoming
wave functions of the form

Now suppose tha¢in(k):¢inx(kx)¢iny(ky)a Where¢inx is lo-
calized about zero ang,, is localized abouk. Then the
effect of doing thek,, integral is simply to sek;,=0 in the

Wi (k,1) = e ™D, (k, 1), (A) integrand. The result is

where -R<=x<R. Consequently, we replack;,(k,l) in Eq.

(A5) by the above expression, and then average the result 0 o 2m
overx, i.e., we find(1/2R) [RdxP(l). Now 2RP(0) is just a0)=167m >, >, dkyy L]
the length of the part of the incoming beam that scatters in 1= l1== r(kay,l3312)
the directiond, and this is just the cross sectieri(). We, 2, 12 (112
therefore, have x®(—1¥ + - —)
o dm 21 2l
U(G):fRdXP(G)- (A7) X ) (Ek(Kyy 113129, 15 V] i(Kay, 1 151)0,17)
- +
Assuming the scattering center is much smaller than the ><<K(k1y,ll;l’)0,l’|V|k1y9,ll>
beam width, we can take the limR—c in this equation, ]
which introduces a 245(ky,—ky,) into the integrals appearing X finy[ £ re(kyy 1112)]
in Eq. (A5). The result is X diny(Kay) i th, (A11)
o(0) = 167°m E E dzklf d’k, . N L
[/ 2op | =% We only get a substantial contribution to the remaining inte-
s s gral whenk;y~k and «(kyy,11;1,) ~ k. Note that this implies
xa(ﬁ + |_1 _ ﬁ _ |—2>5(k —Kyy) that only the + in the sum over + and — contributes. These
4m 21 4m 21) 0 T two conditions imply that«(k,l;l,)~k, which further
o implies thatl,;=1,. Doing thek,, integral, then, has the effect
XFlkpkailwla), (A8) of settingky =k andl;=I, in the integrand, and the result is
where Eq. (2.4).
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