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Recent experiments have shown that fullerene and fluorofullerene molecules can produce interference pat-
terns. These molecules have both rotational and vibrational degrees of freedom. This leads one to ask whether
these internal motions can play a role in degrading the interference pattern. We study this by means of a simple
model. Our molecule consists of two masses a fixed distance apart. It scatters from a potential with two or
several peaks, thereby mimicking two or several slit interference. We find that in some parameter regimes the
entanglement between the internal states and the translational degrees of freedom produced by the potential can
decrease the visibility of the interference pattern. In particular, different internal states correspond to different
outgoing wave vectors, so that if several internal states are excited, the total interference pattern will be the
sum of a number of patterns, each with a different periodicity. The overall pattern is consequently smeared out.
In the case of two different peaks, the scattering from the different peaks will excite different internal states so
that the path the molecule takes becomes entangled with its internal state. This will also lead to degradation of
the interference pattern. How these mechanisms might lead to the emergence of classical behavior is discussed.
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I. INTRODUCTION

How big does an object have to be before quantum me-
chanical effects disappear? A cat is presumably too large, but
a molecule may not be. Interference with H2 molecules was
demonstrated as early as 1930f1g, and there have been a
number of subsequent experiments with small molecules
f2–6g. In a series of recent experiments, the group at the
University of ViennasVienna, Austriad has shown that mol-
ecules consisting of many atoms, such as fullerenes or fluo-
rofullerenes can produce an interference pattern after travel-
ing through a gratingf7,8g. Molecules, however, come in
many sizes, so one might expect that, in regard to their trans-
lational degrees of freedom, small molecules behave quan-
tum mechanically while large ones do not. Where is the
boundary between these behaviors, and what causes the tran-
sition, if indeed it takes place?

There are several mechanisms that can destroy an inter-
ference pattern produced by matter waves. For example, the
decoherence of molecules in a beam can be caused by colli-
sions with lighter particles from the environmentssee, e.g.,
Refs.f9,10gd. Other destructive environmental influences are
grating vibrations, the finite size of a grating, or even Cori-
olis forces ssee, e.g., Ref.f11gd. Obviously, the chief de-
stroyer of quantum coherences is thermal radiation through
which the molecules become entangled with externalslightd
degrees of freedom. This mechanism, which leads to the dis-
appearance of the interference pattern, has been studied theo-
retically by several groups. The interference pattern found by
the group in Vienna disappears if the internal temperature of
the molecules is sufficiently highs2000 Kd f12g. This experi-

mental result has been analyzed in detail and theoretically
explained by K. Hornbergeret al. f10,13g. In particular, these
authors have studied the effect of thermal radiation at differ-
ent temperatures of the molecule on the decoherence of
fullerenes, taking into account that these molecules are not
blackbody radiators. Under this assumption they have been
able to find a good agreement with experimental results.1

Another possible source of decoherence is the coupling
between the translational motion of the molecule and its in-
ternal statesf10g. The vibrational and rotational states of the
molecule can be thought of as a reservoir that the molecule
carries with it. When the molecule passes through a region in
which there is a potential, the translational motion of the
molecule and its internal modes can become entangled.
Therefore, the molecule’s internal reservoir can cause differ-
ent outgoing momenta or different paths the molecule can
take through the region of nonzero potential to decohere.

Here we wish to examine the effect of the internal states
of the molecule on its interference. We shall do so by con-
sidering a simple model that is a version of two-slit interfer-
ence, the most fundamental quantum mechanical interference
phenomenon. Our molecule will be a rigid rotator, consisting
of two equal masses separated by a fixed distance, and, for
simplicity, it will be confined to two dimensions. The mol-
ecule has both translational and rotational degrees of free-
dom. It will scatter off of a potential, which will initially be
taken to be one consisting of two peaksssee Fig. 1d. The
molecule will interact with both parts of the potential, and
the two scattered waves will both be incident on a detector at
some distant point. The result of this process is described by

*Permanent address: Alexei Nicolai Inc., 1970 La France Avenue,
South Pasadena, CA 91030.

1In other studiesssee, e.g., Refs.f14,15gd an assumption has been
made, that the molecule is a blackbody radiator and consequently
these results, while they illustrate the effect of this type of decoher-
ence, do not apply directly to experiments in Vienna.
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the scattering cross section, and we shall be interested in
whether or not it exhibits interference fringes. It is straight-
forward to extend our model to the case in which the poten-
tial has more than two peaks, in particular to the experimen-
tally relevant situation in which it represents a diffraction
grating, and the interference pattern resulting from the scat-
tering from this type of potential will be studied as well.

Entanglement between internal and translational states
can, in fact, contribute to washing out an interference pat-
tern, but only in certain parameter regimes. We shall examine
two ways in which this can happen. The first is a result of the
fact that after the scattering, different internal states of the
molecule have different wave vectors describing their trans-
lational motion, i.e., the outgoing momenta and the internal
states of the molecule become entangled. For example, if the
molecule is initially in a plane wave state of its translational
motion and not rotating, and the outgoing state contains
components that correspond to rotational motion of the mol-
ecule, then these components will have a wave vector whose
magnitude is smaller than that of the original wave vector.
This follows from energy conservation; some of the transla-
tional kinetic energy has been transformed into rotational
kinetic energy by the scattering. This mechanism was pro-
posed by Hegerfeldt and Köhler as a means of separating an
excited state of a molecule from its ground statef16g. Mol-
ecules, which either have or have not been excited, pass
through a transmission grating, and, because of the differ-
ence in their wave vectors, the ground and excited state mol-
ecules scatter in different directions. In our case, the different
parts of the state of the scattered molecule, each part having
a different wave vector, result in a total interference pattern
made up of patterns with different spacings between their
peaks, and this causes a smearing out of the overall pattern.
The second way in which the pattern can be degraded comes
into play if the potential is different in different regions, in

particular if it consists of two peaks, which are not the same.
Then the path the molecule takes and its internal state can
become entangled. If the internal states are sufficiently dif-
ferent, then they will reveal which path the molecule took,
and there will be no interference pattern. Our model will
allow us to study both of these mechanisms.

We calculate the cross section for our scattering in the
Born approximation, which we must modify to take into ac-
count the internalsrotationald states of the molecule. This
calculation is relatively standard, so we have relegated it to
an appendix. We begin the next section with the expression
for the cross section, and proceed to analyze its implications.

II. CROSS SECTION

We begin by describing our system in more detail. The
molecule consists of two “atoms,” both of massm, and each
located a distancea from the center of mass of the molecule.
The location of the center of mass is given bysX,Yd and its
momentum bysPx,Pyd. The angle between the line connect-
ing the two masses and the positivex axis is f, and the
angular momentum corresponding to the rotation of the mol-
ecule in thex-y plane isL. There is also a potential with
which the particles interact,V. In Fig. 1 we present a sche-
matic picture of the physical situation we consider. The
Hamiltonian describing the system is

H =
1

4m
sPx

2 + Py
2d +

1

2I
L2 + VsX + a cosf,Y + a sinfd

+ VsX − a cosf,Y − a sinfd, s2.1d

whereI =2ma2 is the moment of inertia of the molecule. We
shall label the states of the system,uk , ll by the wave vector
of the center of massk and the quantum number of the
rotational motionl. The states are normalized so that

kk,l uk8,l8l = d2sk − k8ddl,l8. s2.2d

Now we consider the situation in which the molecule
comes in from the negativey direction with an initial state

uCinl = o
l=−`

`

cluk = kŷ,ll. s2.3d

Let u be the angle between the wave vector of the outgoing
molecule sthe wave vector after the scattering has taken
placed and the positivey axis, andû be a unit vector pointing
in the direction of the outgoing wave vector. The cross sec-
tion for the scattering is given by

ssud = s2pd34m2

k
o

l,l8=−`

`

QS k2

4m
+

l2

2I
−

sl8d2

2I
D

3uclu2ukksk,l, ;l8dû,l8uVukŷ,llu2, s2.4d

whereQsxd=1 if xù0 andQsxd=0, if x,0, and

ksk,l ; l8d = 2ÎmS k2

4m
+

l2

2I
−

sl8d2

2I
D1/2

. s2.5d

This is to be compared with the cross section for the scatter-
ing, in two dimensions, of a particle of massM and no in-

FIG. 1. sColor onlined Schematic illustration of a scattering of a
two-atom molecule on a potential composed of twosGaussiand
peaks. The two “atoms” of the molecule have a massm, and each
located a distancea from the center of mass of the molecule. The
location of the center of mass is given bysX,Yd. The angle between
the line connecting the two masses and the positivex axis isf, and
the angular momentum corresponding to the rotation of the mol-
ecule in thex-y plane isL. The angle between the wave vector of
the outgoing molecule and the positivey axis is denoted byu, and
û is a unit vector pointing in the direction of the outgoing wave
vector. The angles are measured in radians.
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ternal structure from a potentialVsr d, which is, in the Born
approximation,

ssud =
M2

2pk
UE d2re−iksû−ŷd·rVsr d2U . s2.6d

We now need to calculate the matrix element of the
potential. First we shall assume that the potential is the sum
of two terms,Vsr d=V1sr d+V2sr d, where V1sr d is centered
about the pointsd,0d and V2sr d is centered about the point
s−d,0d. The distance 2d plays the role of the distance be-

tween the slits in a two-slit interference experiment. The ma-
trix element appearing in the cross section is then the sum of
four terms, as bothV1 and V2 are evaluated at the points
sX+a cosf, Y+a sinfd and sX−a cosf, Y−a sinfd, i.e.,
the coordinates of the two masses of the molecule. We de-
fine, for j =1,2

Ṽjskx,kyd =
1

2p
E dxE dye−iskxx+kyydVjsx,yd. s2.7d

For the matrix element ofVjsX+a cosf,Y+a sinfd, which
we shall denote byVj

s+d, we then have

kkû,l8uVj
s+dukŷ,ll =

1

s2pd3E
−`

`

dXE
−`

`

dYE
0

2p

dfeiskû−kŷdReisl−l8dfVjsX + a cosf,Y + a sinfd

=
1

2p
Ṽjs− k sinu,k − k cosudE

0

2p

dfeisl−l8dfexpf− ika sinu cosfgexpfisk − k cosuda sinfg

=
1

s2pd1/2e−isl−l8dmJl−l8saukû − kŷudṼjskŷ − kûd. s2.8d

The anglem satisfies

sinm =
k sinu

ukû − kŷu
; cosm =

k cosu − k

ukû − kŷu
, s2.9d

so that

m = tan−1F k sinu

k cosu − k
G . s2.10d

Note that the quadrant in whichm lies is specified by Eq.
s2.9d. The evaluation of the matrix element ofVjsX
−a cosf,Y−a sinfd, which we denote byVj

s−d is similar,
and we find

kkû,l8uVj
s−dukŷ,ll =

1

s2pd1/2e−isl−l8dms− 1dl−l8Jl−l8saukû − kŷud

3Ṽjskŷ − kûd. s2.11d

Consequently, we have that

kkû,l8uVukŷ,ll =
1

2p
e−isl−l8dmf1 + s− 1dl−l8gJl−l8saukû − kŷud

3o
j=1

2

Ṽjskŷ − kûd. s2.12d

Let us begin by considering the case in whichV1 andV2
are both Gaussians with the same width

V1sr d = V0e
−ur − dx̂u2/D2

;

V2sr d = V0e
−ur + dx̂u2/D2

. s2.13d

With this potential, the cross section becomes

ssud =
8pm2D4V0

2

k
o

l,l8=−`

`

QS k2

4m
+

l2

2I
−

sl8d2

2I
Df1 + s− 1dl−l8g2

3 e−D2ukû − kŷu2/2Jl−l8
2 saukû − kŷudcos2skd sinuduclu2.

s2.14d

The existence of an interference pattern can be seen from the
presence of the cosine term.

We shall examine this expression in a number of param-
eter regions. First, consider the case in whichD@a, i.e., the
potential varies slowly over distances of the order of the size
of the molecule. We would not expect the fact that the mol-
ecule has internal degrees of freedom to play much of a role
in this case, and this is, indeed what we find. Note that,
because of the Gaussian factor, the cross section will be
small unlessukû−kŷuD is of order one or smaller. We have
that

ukû − kŷuD . uk − kuD

.UFskDd2 + SD

a
D2

fl2 − sl8d2gG1/2

− kDU .

s2.15d

From this expression we see that forD@a, we will have that
ukû−kŷuD@1 unless l = l8, and this implies that only the
terms with l = l8 will contribute to the sum in Eq.s2.14d. In
that case we have thatk=k, and
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ssud =
32pm2D4V0

2

k
e−skDd2uû − ŷu2/2J0

2skauû − ŷudcos2skdsinud.

s2.16d

Note that, as expected, all of the dependence on the internal
states is gone. If, in addition, the molecule is much smaller
than the wavelength corresponding to its center-of-mass mo-
tion, then the Bessel function can be replaced by 1, and all
vestige of internal structure disappears. In fact, in this limit
the scattering cross section becomes the same as that of a
particle with no internal structure and a mass of 2m scatter-
ing from a potential 2fV1sr d+V2sr dg fsee Eq.s2.6dg.

In the experiments with fullerenes, the ratio of the slit
separation to the de Broglie wavelength of the molecules was
of the order of 104, and the scattering only at angles near the
forward direction was observed. Let us see what our toy
model predicts for a situation similar to this one. We shall
assume thatkd,104, a,d but the two are of the same order
of magnitude, and, for simplicity, that our molecule starts in
the l =0 state. In addition, we shall concentrate our attention
on angles near the forward direction, in particular,u,10−4.
We now have that

k = kF1 −
sl8d2

skad2G1/2

, s2.17d

so that the only angular momentum states that can be excited
are the ones satisfyingkaù l8. Sinceka,104, it seems that
many internal states can be excited, and that this could have
an effect on the interference pattern. In particular, the inter-
ference pattern is given by the cosskd sinud factor, so that if
many values ofl8, and hence many values ofk, are allowed,
then the interference pattern could be smeared out.

This does not happen in this situation. As was noted ear-
lier, in order for the Gaussian factor not to cut everything off,
we must haveuk−ku of order one or less, that is

kDH1 −F1 −
sl8d2

skad2G1/2J , 1. s2.18d

Let us assume thatD,d, but thatkD@1. Then in order to
satisfy the above condition, we must havel8 / skad!1, and,
in particular,l8 / skad,1/ÎkD. This implies that the values of
k that contribute to the sum in the expression for the cross
section, lie in the range betweenk andk−s1/Dd, that is, all
of these values are very close tok. Making the approxima-
tion thatk=k, we find that

ukû − kŷu = Î2ks1 − cosud1/2, s2.19d

and

ssud =
8pm2D4V0

2

k
o

l8=−`

`

QSk2 −
sl8d2

a2 Df1 + s− 1dl8g2

3 e−skDd2s1−cosud/2Jl8
2
„
Î2aks1 − cosud1/2

…

3cos2skdsinud. s2.20d

In the rangeu,s1/kdd,10−4, we find that the quantities

kDs1−cosud1/2, kas1−cosud1/2, andkdsinu are all of order
one, and the cross section exhibits strong interference
fringes.

In our examples so far, the internal states have not influ-
enced the interference pattern. One regime in which they do
is whenkD, ka, andkd are roughly of order one. In Fig. 2 we
present the cross sectionssud as a function ofu and the
momentumk for parameters in this range. We compare two
cases: First, we consider the case when the molecule has an
internal structure and the cross sectionssud is described by
Eq. s2.14d. Second, we analyze the situation when the mol-
ecule has no internal structure. In all cases when we are
comparing scattering with and without internal structure, the
molecule without internal structure is taken to have a mass of
2m, and the potential acting on it is twice that of the potential
for the molecule with internal structuresthis is to compensate
for the fact that for the molecule with internal structure, the
potential acts on each particled. For this case using the gen-
eral expression given by Eq.s2.6d we can derive the cross
section for the scattering potential with two Gaussian peaks
in the form

FIG. 2. sColor onlined We plot the cross sectionssud as a func-
tion of u smeasured in radiansd and the momentumk smeasured in
dimensionless unitsd. We compare two cases: A molecule withsleft
columnd and withoutsright columnd internal degrees of freedom.
From the figure it is obvious that the internal structure of the mol-
ecule causes a suppression of the interference pattern. The cross
sections in the presence of the internal structure of the molecule is
represented by Eq.s2.14d where we assume that the incident mol-
ecule is in the state withl =0. The cross section corresponding to
the case with a molecule that does not have an internal structure is
given by Eq.s2.21d. Otherwise the molecules are considered to be
the same, i.e., we assume units such thatm=1 and"=1. The two
Gaussian peaks are characterized byV0=1 andD=1. The distance
between each scattering peak and the origin of the coordinate sys-
tem isd=2 sthe upper rowd andd=6 sthe lower rowd. We observe
that with largerd the frequency of interference oscillations is larger.
The suppression of oscillations due to the presence of internal mo-
lecular states is clearly seen in both cases, i.e.,d=2 andd=6.
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ssud =
32pm2D4V0

2

k
expf− D2k2s1 − cosudgcos2skdsinud.

s2.21d

From Fig. 2 it is obvious that the internal structure of the
molecule causes a suppression of the interference pattern. In
the figure we use units and values of the parameters involved
in the expressions for the cross section such thatkD, ka, and
kd are not too largesof the order between 1 and 10 in di-
mensionless units used in the figured.

The actual experiments use a grating instead of two slits,
and it is straightforward to incorporate this into our model.
Suppose that the potential consists of 2N+1 peaks centered
on thex axis, so that

Vsr d = o
n=−N

N

vsr − ndx̂d, s2.22d

wherevsr d is the potential for one of the peaks. We then find
that

Ṽskd = o
n=−N

N

e−ikxndṽskd =
sinfkxds2N + 1d/2g

sinskxd/2d
ṽskd.

s2.23d

In the case that the peaks are Gaussian

vsr d = V0e
−ur u2/D2

, s2.24d

the cross section becomes

ssud =
2pm2D4V0

2

k
o

l8=−`

`

QSk2 −
sl8d2

a2 Df1 + s− 1dl8g2

3 e−sDd2ukû − kŷu2/2Jl8
2 sÎ2aukû − kŷud

3
sin2f„kds2N + 1dsinu…/2g

sin2fskd sinud/2g
. s2.25d

If we are in the regime in which the experiments were done,
i.e., kd,104 and a and D both less thand but of similar
order of magnitude, the same considerations as those in the
derivation of Eq.s2.20d apply, and we find for the cross
section

ssud =
2pm2D4V0

2

k
o

l8=−`

`

QSk2 −
sl8d2

a2 Df1 + s− 1dl8g2

3 e−skDd2s1−cosud/2Jl8
2
„
Î2aks1 − cosud1/2

…

3
sin2hfkds2N + 1dsinug/2j

sin2fskdsinud/2g
. s2.26d

We note that nearu=0 the spacing between peaks is roughly
2p / fkds2N+1dg sthe first peak is atu=0, the second, which
is not as high, is between 2p / fkds2N+1dg and 4p / fkds2N
+1dgd. In the experiment, a molecule passes through about
100 slitssthis is the beam width divided by the slit spacingd,
which gives a value ofN of around 50. This implies an
angular spacing between peaks in the pattern nearu=0 of

10−5 to 10−6, which agrees with what was seen.
In order to investigate the role of internal states for the

case of a grating potential, we again go to the regime in
which kD, ka, andkd are roughly of order one. The expres-
sion for the cross section of a molecule with no internal
structure scattering off of a potential with 2N+1 identical
peaks can be found by using the general expression given by
Eq. s2.6d and is given by

ssud =
32pm2D4V0

2

k
expf− D2k2s1 − cosudg

3
sin2hfkds2N + 1dsinug/2j

sin2fskdsinud/2g
. s2.27d

We plot the cross sectionsssud given by Eqs.s2.25d and
s2.27d in Fig. 3 as a function ofu andk for different values
of N. From the figure we can again conclude that the pres-
ence of the internal structure of the molecule leads to a sup-
pression of the interference pattern.

III. DIFFERENT PEAKS

So far we have considered only the case in which both of
the peaks in the potential are the same. We shall now con-
sider the case in which they are not. This will give rise to
another mechanism that can decrease the visibility of the
interference pattern. The different peaks will give rise to dif-
ferent excitations of the internal states, and the interference
pattern will be proportional to the overlap between these
internal states. The overlap is related to the information
about the path the molecule followed through the potential.
If the overlap is zero, then by looking at the internal state of
the molecule, we can determine from which peak it scattered,
then there will be no interference pattern. If the overlap is
greater than zero, then there is partial information about the
path, and the visibility of the interference pattern is corre-
spondingly reduced.

We shall now assume that the potential is the sum of two
terms,Vsr d=V1sr −dx̂d+V2sr +dx̂d, where

V1sr d = V0S1 −
r2

D2De−sr/Dd2, s3.1d

V2sr d = V0e
−sr/Dd2.

The Fourier transforms of these potentials are given by

Ṽ1skd =
1

8
V0k

2D4e−skDd2/4, s3.2d

Ṽ2skd =
1

2
V0D2e−skDd2/4,

so that the matrix element of the total potential is
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kkû,l8uVukŷ,ll =
1

2p
e−isl−l8df1 + s− 1dl−l8gJl−l8saukû − kŷud

3
1

2
V0D2e−ukû − kŷu2D2/4

3FD2

4
ukû − kŷu2eikd sin u + e−ikd sin uG .

s3.3d

Now consider a particular example. As usual, we shall
assume that the molecule is initially in thel =0 state. We
shall also assume that 3.kaù1, which means that the there
are three terms in thel8 sum sthe l8= ±1 terms vanishd. Let
us now examine the terms corresponding toV1 andV2 in the
above matrix element. Define the magnitude of the differ-
ence between the outgoing and incoming momenta to beq
= uqu whereq=kû−kŷ. The V1 contribution atl8=0 is pro-
portional toJ0saqdq2 expf−sqD /2d2g while the V2 contribu-
tion is proportional toJ0saqd expf−sqD /2d2g. The function
q2 expf−sqD /2d2g has a maximum atq=2/D. If a andD are
chosen so that this maximum occurs at a zero ofJ0saqd, then
the contribution ofV1 to the scattering atl8=0 will be greatly
suppressed. What will happen then is thatV1 will scatter the
molecule primarily into thel8= ±2 states andV2 will scatter
it primarily into the l8=0 state. The result will be a suppres-
sion of the interference pattern.

Let us make this more specific. First, the cross section for
this choice of potential and the molecule initially in the
l =0 state is given by

ssud =
2pm2V0

2D4

k
o

l8=−`

`

f1 + s− 1dl8g2Jl8
2 saqde−sqDd2/2

3F1 +
sqDd4

16
+

sqDd2

2
coss2kd sinudG . s3.4d

For the same choice of the potential but for the molecule
without an internal structure we find the cross section using
Eq. s2.6d in a form

ssud =
8pm2V0

2D4

k
e−sqDd2/2

3F1 +
sqDd4

16
+

sqDd2

2
coss2kd sinudG . s3.5d

In Fig. 4 we plot the cross sectionsssud given by Eqs.s3.4d
ands3.5d. We consider the case whenka=5/2,kD=3/2, and
kd=4. In this case we see that the interference pattern is
almost completely suppressed by decoherence due to the in-
ternal states of the molecule.

IV. CONCLUSION

The coupling of internal and translational degrees of free-
dom of an object can lead to the degradation of an interfer-
ence pattern produced by the scattering of the object from a
potential. This is a result of the entanglement between the
internal and translational degrees of freedom of the object
produced by the potential. We have studied two different
forms this entanglement can take. In the first, different out-
going wave vectors become entangled with different internal
states producing an interference pattern made up of parts
with different periodicities, which leads to a smearing of the
overall pattern. The second results from the entanglement of
the internal states and different paths the molecule can fol-
low through the potential.

Even though our model was very simple, it is possible to
draw some conclusions from the results based on it, and to

FIG. 3. sColor onlined We plot the cross sectionssud of the
molecule that is scattered by a grating modeled as a potential with
2N+1 Gaussian peaks. We present the cross section as a function of
u smeasured in radiansd and the momentumk smeasured in dimen-
sionless unitsd for different values ofN. We compare two cases: We
assume the molecule withsleft columnd and withoutsright columnd
internal degrees of freedom. From the figure it is obvious that the
internal structure of the molecule causes a suppression of the inter-
ference pattern. The cross sections in the presence of the internal
structure of the molecule is represented by Eq.s2.25d where we
assume that the incident molecule is in the state withl =0. The cross
section corresponding to the case with a molecule that does not
have an internal structure is given by Eq.s2.27d. Otherwise the
molecules are considered to be the same and we assume units such
that m=1 and"=1. The Gaussian peaks are characterized byV0

=1 andD=1. The distance between adjacent scattering peaks isd
=6. We consider three different types of gratings withN=1 si.e.,
scattering on three Gaussian peaks—see the first rowd, with N=2
si.e., scattering on five Gaussian peaks—see the second rowd; and
with N=10 si.e., scattering on 21 Gaussian peaks—see the third
rowd. The maximal values of the cross section that are achieved
from smallk and u=0 are different for different values ofN. Par-
ticularly, these values are proportional toN2. In any case, we see a
suppression of the quantum interference patterns due to the pres-
ence of internal molecular states.
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put forward some conjectures. In order for internal states to
be excited, they must be of sufficiently low energy. If the
molecule is of sizeL and massM, the lowest rotational mode
will have an energy of order 1/ML2. We would expect the
mass of the molecule to scale roughly as its volume, which
means thatM ,L3, so that the energy of a low-lying rota-
tional state is proportional to 1/L5. There will also be vibra-
tional modes. The energy of the low-lying acoustic phonon
modes will be proportional to 1/L. In both cases, it is clear
that the larger the object, the more low energy internal states
it will have.

In our simple model, the coupling between the transla-
tional motion and the internal state with angular momentum
l sif the molecule was initially in the zero angular momentum

stated is determined by the productJlsaqdṼsqd. Therefore, if
the Fourier transform of the potential is significant in the
region nearl /a, whereJlsaqd is largest in absolute value,
then there will be a a good chance of exciting thelth rota-
tional state. This implies that in order to excite internal
states, the potential must vary on a scale of the order of the
size of the object or smaller. Clearly this restriction is much
less stringent for a large object than a small one.

These considerations suggest that it is easier to excite in-
ternal states in a large object than in a small one. There are
more low lying states, and for a given potential, the probabil-
ity of exciting one of these states is greater for the larger
object, because the conditions for doing so are less restric-
tive. This further suggests that it is more likely for the trans-
lational motion of a large object to become entangled with its

internal states than would be the case of a smaller object.
This gives us a possible mechanism for the emergence of

classical behavior for an object with internal structure mov-
ing in a potential. If we consider the path-integral description
of its dynamics, each of the paths it can follow will corre-
spond to different internal excitations. Therefore, these paths
will decohere, and instead of a coherent superposition of
paths, we will have an incoherent one. In addition, the clas-
sical path will be the most probable, so that the object will
simply follow this path through the potential.

There are clearly many gaps to be filled in before we can
claim that this picture is correct. The calculations in this
paper are a first step. More sophisticated models and treat-
ments are called for. However, even this very simple model
shows that internal states can act as a reservoir and cause
different states of translational motion to decohere.
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APPENDIX: DERIVATION OF THE CROSS SECTION

Here we calculate the cross section for the scattering of
our molecule from a potential, to first order in the potential.
If the initial state of the molecule isuk , ll, and we want to
find the amplitude to scatter into the stateuk8 , l8l. To lowest
order in the potential, theS-matrix element for this process is

kk8,l8uSuk,ll = ds2dsk8 − kddl,l8

− 2pidS sk8d2

4m
+

sl8d2

2I
−

k2

4m
−

l2

2I
Dkk8,l8uVuk,ll.

sA1d

In order to find the scattering amplitude for a more general
initial state,

uCinl = o
l=−`

` E d2kCinsk,lduk,ll, sA2d

we simply multiply both sides of Eq.sA1d by Cinsk , ld, in-
tegrate overk, and sum overl.

In order to find the cross section, we shall follow the
treatment in Ref.f17g. The scattered wave function,Fssk , ld
is given by

Fssk8,l8d = − 2pi o
l=−`

` E d2kdS sk8d2

4m
+

sl8d2

2I
−

k2

4m
−

l2

2I
D

3kk8,l8uVuk,llCinsk,ld. sA3d

If û is a unit vector in thek8 direction, then the probability of
the particle scattering in theû direction,Psûd is

FIG. 4. sColor onlined We plot the cross sectionssud of the
molecule that is scattered by a potential composed of two noniden-
tical peaks. We present the cross section as a function ofu smea-
sured in radiansd. The potential is described by Eq.s3.1d. We con-
sider two situations: When the molecule has an internal structure
sdashed lined given by Eq.s3.4d and when the molecule does not
have an internal structuressolid lined given by Eq. s3.5d. When
internal states of the molecule are present, then depending on which
path the molecule follows through the potential, that is which peak
it scatters from, differentsdistinguishabled internal states of the
molecule are excited. Consequently, in principle the path can be
determined, and the interference is suppressedsthis situation situa-
tion is very similar to that discussed in papers on “which-way in-
formation” in double-slit experiments—see, e.g., Refs.f18,19gd.
Here the cross section is given by Eq.s3.4d. We consider parameters
such thatka=5/2, kD=3/2, andkd=4, and we obtain the cross
section given by the dashed line. When the molecule has no internal
structure, the path cannot be determined and the interference pattern
is preservedssolid lined. The cross sectionssud in this case is given
by Eq. s3.5d and for the same values of parameters as beforesi.e.,
ka=5/2, kD=3/2, andkd=4d.
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Psûd = o
l8=−`

` E dk8k8uFssk8û,l8du2. sA4d

Substituting Eq.sA3d into the above equation and evaluating
the k8 integral gives us

Psûd = 8p2m o
l8=−`

`

o
l1,l2=−`

` E d2k1E d2k2

3dS k1
2

4m
+

l1
2

2I
−

k2
2

4m
−

l2
2

2I
DQS k1

2

4m
+

l1
2

2I
−

sl8d2

2I
D

3kk2,l2uVuksk1,l1; l8dû,l8l

3kksk1,l1; l8dû,l8uVuk1,l1lCin
* sk2,l2d

3Cinsk1,l1d, sA5d

wherek is defined in Eq.s2.5d.
Now let us consider an incoming beam of particles that

scatter off of the potential. The particles are in wave packets
Finsk , ld=finskdcl, where fin is highly localized aboutk
=kŷ. The incoming beam is of width 2R, so that the center of
the wave packets can be displaced in thex direction any-
where between −RøxøR. Therefore, we consider incoming
wave functions of the form

Cinsk,ld = e−ikxxFinsk,ld, sA6d

where −RøxøR. Consequently, we replaceCinsk , ld in Eq.
sA5d by the above expression, and then average the result
over x, i.e., we finds1/2Rde−R

R dxPsûd. Now 2RPsûd is just
the length of the part of the incoming beam that scatters in
the directionû, and this is just the cross sectionssûd. We,
therefore, have

ssûd =E
−R

R

dxPsûd. sA7d

Assuming the scattering center is much smaller than the
beam width, we can take the limitR→` in this equation,
which introduces a 2pdsk1x−k2xd into the integrals appearing
in Eq. sA5d. The result is

ssûd = 16p3m o
l8=−`

`

o
l1,l2=−`

` E d2k1E d2k2

3dS k1
2

4m
+

l1
2

2I
−

k2
2

4m
−

l2
2

2I
Ddsk1x − k2xd

3Fsk1,k2; l8,l1,l2d, sA8d

where

Fsk1,k2; l8,l1,l2d = QS k1
2

4m
+

l1
2

2I
−

sl8d2

2I
D

3kk2,l2uVuksk1,l1; l8dû,l8l

3 kksk1,l1; l8dû,l8uVuk1,l1l

3fin
* sk2dfinsk1dcl2

* cl1
. sA9d

Our remaining task is to evaluate the integrals. Let us first
do the k2 integral. The integral overk2x simply setsk2x
=k1x, and then thek2y integral setsk2y= ±ksk1y, l1; l2d. The
result is

ssûd = 16p3m o
l8=−`

`

o
l1,l2=−`

` E d2k1
2m

ksk1y,l1; l2d

3o
±

F„k1x,k1y,k1x, ± ksk1y,l1; l2d; l8,l1,l2….

sA10d

Now suppose thatfinskd=finxskxdfinyskyd, wherefinx is lo-
calized about zero andfiny is localized aboutk. Then the
effect of doing thek1x integral is simply to setk1x=0 in the
integrand. The result is

ssûd = 16p3m o
l8=−`

`

o
l1,l2=−`

` E dk1y
2m

ksk1y,l1; l2d

3QS k1y
2

4m
+

l1
2

2I
−

sl8d2

2I
D

3o
±

k±ksk1y,l1; l2dŷ,l2uVuksk1y,l1; l8dû,l8l

3kksk1y,l1; l8dû,l8uVuk1yŷ,l1l

3finy
* f±ksk1y,l1; l2dg

3finysk1ydcl2
* cl1

sA11d

We only get a substantial contribution to the remaining inte-
gral whenk1y,k andksk1y, l1; l2d,k. Note that this implies
that only the + in the sum over + and − contributes. These
two conditions imply that ksk, l1; l2d,k, which further
implies thatl1= l2. Doing thek1y integral, then, has the effect
of settingk1y=k and l1= l2 in the integrand, and the result is
Eq. s2.4d.
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