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Abstract. We analyze how an action of a qubit channel (map) can be estimated from the measured data
that are incomplete or even inconsistent. That is, we consider situations when measurement statistics is
insufficient to determine consistent probability distributions. As a consequence either the estimation (re-
construction) of the channel completely fails or it results in an unphysical channel (i.e., the corresponding
map is not completely positive). We present a regularization procedure that allows us to derive physically
reasonable estimates (approximations) of quantum channels. We illustrate our procedure on specific ex-
amples and we show that the procedure can be also used for a derivation of optimal approximations of
operations that are forbidden by the laws of quantum mechanics (e.g., the universal NOT gate).

PACS. 03.65.-w Quantum mechanics – 03.67.Hk Quantum communication – 03.65.Wj State reconstruc-
tion, quantum tomography

1 Introduction

For any reliable quantum information processing it is im-
portant to know how states of quantum systems are trans-
formed under the action of quantum channels (maps). It
is therefore essential to develop tools by means of which
we can acquire knowledge about properties of quantum
channels. Providing we have no prior knowledge about an
action of a particular transformation our task is to de-
termine characteristics of a corresponding quantum map
based on correlations between input and output states of
quantum systems that serve as probes of the channel.

In principle, the action of a quantum channel can be
probed in two different ways: (1) The first option is to use
as an input a single entangled state of a bi-partite sys-
tem [1–4]. One particle (e.g., a qubit) of this bi-partite
system is transformed under the action of the channel
while the second particle remains unchanged (or evolves
according to a known transformation). By performing a
complete quantum tomography of the bi-partite system
at the output of the channel and comparing the input and
output states one can determine what is a specific action
of the channel under consideration. (2) The second option
is to use a collection of linearly independent test states
(forming a basis of the vector space of all Hermitian op-
erators) [5–8]. By performing a correlation measurement
between a specific input and corresponding output state
(that has been tomographically reconstructed) we can de-
termine the map that characterizes the quantum channel.
For a total determination of the map we have to use a
complete set of test states.

a e-mail: buzek@savba.sk

Reconstruction of quantum channels using entangled
states might seem to be more efficient since a preparation
of just one state of an entangled pair is required. Never-
theless, there are two technical problems that make this
approach less practical than a utilization of single particle
states. Specifically, one has to generate input bi-partite
entangled states with a very high fidelity (it is essential
that for a reliable channel reconstruction the input test
states have to be prepared with a very high fidelity). Si-
multaneously, the tomographic reconstruction of a bipar-
tite entangled state at the output of the channel has to
be almost perfect. But the most difficult obstacle is to se-
cure that the “reference” particle from the entangled pair
does not undergo uncontrolled changes during the time
when the second particle is affected by the action of the
quantum channel. These conditions are rather difficult to
met. For this reason in the present paper we will concen-
trate our attention on the second scenario. This approach
is based on the fact that the action of any channel is de-
scribed by a linear map E and therefore it is completely
determined by its action on basis elements, i.e. a set of lin-
early independent states, which play the role of test states.
We assume, that these single-partite test states are known
(i.e., their preparation is under a complete control). Thus
the process of the channel reconstruction reduces to the
reconstructions of single-particle states at the output of
the quantum channel. The number of test states equals d2,
where d is the dimension of the Hilbert space of a quantum
system under consideration. In order to fully characterize
the action of the quantum channel acting on a such quan-
tum system we need d2(d2−1) real parameters, i.e. in the
case of a qubit channel we need 12 real parameters.
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In our previous paper [9] we have analyzed the ques-
tion of the process reconstruction from incomplete experi-
mental data. That is, we have considered a situation when
the correlation input-output measurements do not allow
for a unique determination of the d2(d2 − 1) real param-
eters. We have shown how to proceed with the process
estimation in the case of incomplete experimental data.
In this paper we want to study more delicate problem —
how to perform process estimation when the experimental
data are incomplete and/or they are not consistent. That
is, the straightforward estimation leads to maps that are
not physical (i.e., they are positive but not completely
positive) [10]. We will present a regularization procedure
that allows us to handle such situations. Moreover, we will
show that this procedure also allows us to determine op-
timal approximations of non-physical operations. As an
example we will analyze in detail the so called universal
NOT gate. The paper is organized as follows. In Section 2
we briefly describe properties of qubit state space while
in Section 3 we discuss the structure of space of qubit op-
erations (channels). Sections 4 and 5 are devoted to the
reconstruction of quantum channels from incomplete data.
Approximations of non-physical operations are derived in
Section 6. The conclusions are presented in Section 7.

2 Structure of qubit state space

Firstly, let us consider a simple geometrical representa-
tion of a qubit state space. This state space has a topol-
ogy of a sphere that is often called as the Bloch sphere.
The set of all Hermitian operators form a real vector
space endowed with a scalar product defined by the re-
lation (A|B) = TrAB. Consequently, any operator can
be written as a linear combination of operators that form
an orthogonal basis. The set of the Pauli σ-matrices, i.e.
{I , σx, σy, σz} ≡ {I , σ}, represents a standard choice of
the operator basis for a qubit (see, e.g., Ref. [8]). The
state space of a qubit is a subset of all Hermitian oper-
ators with a unit trace. Except the operator σ0 = I all
other members of the σ-basis are traceless. Therefore any
operator with a unit trace can be written as � = 1

2 (I +r·σ).
Such operators represent a quantum state only when the
operator � is positive, i.e. |r| ≤ 1. In this way we obtain
the Bloch sphere representation of qubit states, � ↔ r.
A state reconstruction is a task of experimental specifi-
cation of the vector r = (x, y, z). From the orthogonality
condition Trσkσl = 2δkl we find that components of the
vector r are determined by an expression rk = Tr�σk.
That is, they are equal to mean values of the Hermitian
operators (measurements) σx, σy, σz . So the complete re-
construction is straightforward: all one has to do is to
measure mean values of three system operators σx, σy, σz .

Let us note that sometimes the reconstructed density
operator may not satisfy the condition |r| ≤ 1. This fail-
ure of the reconstruction scheme is usually caused by an
inconsistent measurement statistics which results in an in-
correct identification of probabilities and consequently in
the derivation of false mean values. The easiest way how to
perform a regularization of the reconstruction in this case

is the following one: the reconstructed density operator
has to have always a unit trace, i.e. the operator is repre-
sented by a vector r though it might have a length larger
than unity. In this case the reconstruction procedure fails
since the estimated operator is not physical. One can ar-
gue that an actual physical state is the closest one to the
“reconstructed” operator represented by a point on the
Bloch sphere (a pure state) with rc pointing in the same
direction as the reconstructed vector r. Formally the reg-
ularization corresponds to a multiplication of the original
vector r by a positive constant k, i.e. rc = kr. From the
physical point of view this regularization can be under-
stood as an admixture of a “white” noise described by the
operator 1

2 I [that is represented by the center of the Bloch
sphere, i.e. 0 = (0, 0, 0)] to the measured data. Formally
this “regularization” procedure reads

�c = k�+ (1 − k)
1
2
I =

1
2
(I + kr · σ). (1)

Such correction corresponds to the addition of completely
random and equally distributed events (“clicks”) to the
outcome statistics of measurement results. In what fol-
lows we will utilize an analogue of this intuitive picture
to regularize reconstructions of maps describing quantum
channels.

3 Structure of qubit channels

The structure of qubit channels is known mainly due
to work of Ruskai et al. [12]. Let us briefly summarize
main properties of qubit channels. Any completely posi-
tive map E can be imagined as an affine transformation of
the vector r, i.e. r → r′ = T r + t, where T is a real 3 × 3
matrix and t is a translation. However, this form guaran-
tees only the preservation of the trace and the hermiticity
of the transformation E . In fact, the set of all completely
positive tracepreserving maps forms a specific convex sub-
set of all affine transformations. For qubits the number of
parameters specifying the channel equals to 12. Because
of the affinity of any evolution map E , one can use the
following matrix representation

E =
(

1 0
t T

)
, and � =

(
1
r

)
. (2)

The coefficients of the matrix E are given by a relation
Ekl = Tr(σkE [σl]), where σk(l) are Pauli σ matrices.

Any matrix T can be written in the so-called singular
value decomposition, i.e. T = RUDRV where RU , RV are
orthogonal rotations and D = diag{λ1, λ2, λ3} is a diag-
onal matrix with λk being the singular values of T . Each
three-dimensional orthogonal rotation RU (element of the
group S0(3)) is related to some qubit unitary transforma-
tion U (an element of the group SU(2)) via the relation
U�U † = 1

2 (I +(RUr) ·σ). This means that any map E is a
member of less-parametric family of maps of the “diagonal
form” ΦE . In particular, E [�] = UΦE [V †�V ]U † where U, V
are unitary operators. This reduction of parameters is very



M. Ziman et al.: Process reconstruction from incomplete and/or inconsistent data 217

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

� �

� �

�

�

�

�

��������� ��� �����

������ �� ��� �� ��

���� �� ��

������� ��

���� �����

���� �� ��

���

��

Fig. 1. The set of positive unital trace-preserving linear maps
ΦE parametrized by three real parameters λ1, λ2, λ3. The point
λ1 = λ2 = λ3 = −1 corresponds to a physically unrealiz-
able transformation — the universal NOT (denoted as NOT in
the figure) operation [13], i.e. the space reflection of the Bloch
sphere r → r′ = −r (the inversion of the Bloch sphere with
respect to its center). The point λ1 = λ2 = λ3 = 1 represents
the identity map I (denoted as Id).

helpful, and most of the properties (also complete positiv-
ity) of E is reflected by the properties of ΦE . The map E is
completely positive (CP) only if ΦE is also CP. Let us note
that ΦE is determined not only by the matrix D, but also
by a new translation vector τ = RUt, i.e. under the ac-
tion of the map ΦE the Bloch sphere transforms as follows
rj → r′j = λjrj + τj .

A special type of completely positive maps is a class of
unital transformations, i.e. maps for which the total mix-
ture (the center of the Bloch sphere) is not affected by the
transformation. It means that the translation term van-
ishes, i.e. t = τ = 0. In this case the geometrical analysis
is quite simple. The positivity of the transformation ΦE
corresponds to the conditions |λk| ≤ 1, i.e. these trans-
formations are represented by points lying inside a cube
(see Fig. 1). The conditions of the complete positivity [12]
requires the validity of the following four inequalities

|λ1 ± λ2| ≤ |1 ± λ3|. (3)

These inequalities specify a tetrahedron inside a cube of
all positive unital maps with the extreme points being
four unitary transformations I , σx, σy, σz (see Fig. 2). As
a result of this analysis one can conclude that the unital
completely positive maps ΦE form a tetrahedron.

4 The channel reconstruction: inconsistent
statistics

Let us consider a situation when we want to estimate
a channel, but neither experimental data nor non-trivial
prior knowledge are available. Following the approach uti-
lized for quantum state estimation [15] one can assume
that in the absence of knowledge about the character of
quantum channel the most reliable estimation of this chan-
nel corresponds to an equally weighted “average” over all
possible quantum maps. The question is what is the av-
erage over all completely positive maps? We have already

NOT

I

X

Z

Y
U−NOT

Fig. 2. The pictorial representation of the “position”of com-
pletely positive unital maps in the space of all positive uni-
tal maps. The CP unital maps form a tetrahedron with four
unitary transformations in its vertices (extremal points), that
correspond to σ-matrices. The un-physical universal NOT op-
eration (denoted as NOT) and its best completely positive
approximation called the optimal universal NOT (denoted as
U-NOT) are shown as well. The optimal universal NOT is rep-
resented by the point λ1 = λ2 = λ3 = −1/3.

argued [9] that for qubits this average is the map A that
transforms the whole state space into the total mixture,
i.e. A[�] = 1

2 I . The reasoning goes as follows: The maps
E± ↔ (T,±t) have the property that if one of them is
completely positive the second one is CP as well. Con-
sequently, the average 1

2 (E+ + E−) is a unital map, i.e.
the average of all maps will be a unital map. As we al-
ready said, the unital maps (up to unitary transforma-
tions) form a tetrahedron. The average over all points in
tetrahedron is represented by the center of the tetrahe-
dron, i.e. λ1 = λ2 = λ3 = 0, which corresponds to the
contraction into the total mixture. Therefore, the average
over all completely positive maps of acting on a qubit is
the contraction of the whole Bloch sphere into its center,
i.e. A[�] = 1

2 I .
The result of a complete reconstruction based on the

four test states (i.e., any collection of four mutually lin-
early independent qubit states) is a map that is for sure
trace-preserving and positive. However, it could happen
that it is not completely positive. How to extract the phys-
ical map Ec from an unphysical result E? One way is to
follow a similar reasoning like for the state reconstruction,
when an unphysical result was corrected (regularized) by
adding a noise into the system.

When the reconstructed map is not completely positive
we can regularize this result by an analogue of the total
mixture, i.e. the map A. In particular, this regularization
of a quantum channel reads

Ec = kE + (1 − k)A =
(

1 0
kt kT

)
. (4)

The correction (regularization) corresponds to a “mini-
mal” adjustment of the parameter k such that the map Ec

is completely positive.
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Let us estimate what is this minimal (critical) value of
the parameter k, i.e. the value which surely regularizes any
positive map and transforms it into a CP map. Trivially,
it is enough to set k = 0. In this case we completely ignore
the measured data and the “corrected” map is A. How-
ever, we are interested in some nontrivial bound, i.e. in the
largest possible value of k. As we have already mentioned,
the reconstructed map is always positive. Consider, for
simplicity, that the map is also unital. Then the “worst”
example of a positive map, which is not completely posi-
tive, is the universal NOT operation. In this case the dis-
tance between this map and the tetrahedron of completely
positive maps is extremal (see Fig. 2). This artificial exam-
ple serves as a good test of our method, and gives us some
bound on k, i.e. a value that surely corrects each result.
The conditions of the complete positivity given in equa-
tion (3) imply that k = 1/3, i.e. λ1 = λ2 = λ3 = −1/3
(see Fig. 2). Surprisingly, this is the same result as the
one that has been obtained in reference [13] where the
best (optimal) completely positive approximation of the
universal NOT operation, i.e. an optimal universal NOT
machine has been presented. In this sense our correction
method works optimally.

5 The channel reconstruction: incomplete
data

In this section we will present the reconstruction scheme
which can be used when the number of test states is re-
duced so that the complete reconstruction of the channel
cannot be performed [9]. On the other hand we assume
that each of the state used is represented by an infinite
ensemble of identically prepared states so the complete
tomography of a corresponding state at the output of the
channel can be performed.

In the case of qubit channels the aim is to perform the
reconstruction based on n = 0, 1, 2, 3, 4 measured input-
output correlations of the form �j → �′j . We have already
shown that having no information (n = 0), the best esti-
mation of the map is the contraction into a total mixture
(an average over all quantum channels) i.e. E0 = A. Mo-
tivated by such result, the reconstruction strategy (see
Ref. [9]) is as follows: all undetermined states (belonging
to the complement of the linear span of the used input
states) are assumed to be transformed into the total mix-
ture. That is, if a given test state is not explicitly used for
a channel reconstruction (i.e., it is not know how this state
is transformed by the action of the channel) it is assumed
that the channel transforms this state into a total mixture.
This additional assumption complements the knowledge
of how other test states are actually transformed by the
channel and allows us to use the deterministic procedure
of channel reconstruction (for details see e.g. Refs. [5–7]).

Because of the ad hoc assumption about the trans-
formation of unused test states it might happen that the
resulting map is not completely positive. In this case the
estimation procedure has to be complemented by a search
for a map for which the total mixture is “shifted” as little

as possible, i.e. the estimated channel is preferably uni-
tal. A specific situation occurs when the data contain in-
formation about the transformation of the total mixture.
In this case the strategy suggests to use the state E [12 I ]
as the state on which all other undetermined states are
mapped. As before, if such map is not completely positive
we have to search for a map, for which the deviation from
the transformation E [12 I ] is minimal.

The method described above is discussed in detail in
reference [9]. We note that this (incomplete) reconstruc-
tion can also fail (it gives no result), because it can happen
that no physical channel is compatible with given exper-
imental data. Even if the reconstructed operators �′j de-
scribe valid quantum states, the incomplete data can be in
a contradiction with the condition of a complete positiv-
ity. In what follows we will briefly describe our strategy on
a particular example — estimation of the identity chan-
nel (i.e. the channel, that does not change input states
at all). For more detailed and more general description of
this strategy see reference [9].

5.1 Case study: identity channel

In what follows we will perform a step-by-step reconstruc-
tion of a qubit channel based on a knowledge of how a sin-
gle, two and three test states are transformed under the
action of a given channel.

Single test state. Let us assume that our knowledge
about the action of a particular channel is represented by
the assignment

�1 → �′1 = �1. (5)

We remind us that each state can be written in the
form �1 = 1

2 (I + r · σ) = 1
2 (I + wSz), where Sz =

|ψ〉〈ψ|− |ψ⊥〉〈ψ⊥| with |ψ〉, |ψ⊥〉 being eigenvectors of the
operator �1 and w describes an impurity of the state un-
der consideration, i.e. w =

√
1 − 2Tr�2

1. If w = 0 then �1

describes maximally mixed state and for w = 1 the state
is pure. In the Bloch-sphere picture the parameter w cor-
responds to the distance between the total mixture (the
center of the sphere) and a point corresponding to the
given state. One can define a new operator basis Sx, Sy, Sz

such that Sz is given as before, and Sj = UσjU
† with

unitary U . In this new basis the action of the channel is
described by the matrix

E1 =




1 0 0 0
x a d 0
y b e 0
z c f 1


 (6)

and the task of the estimation is to specify all matrix ele-
ments. Our strategy suggests that all states (belonging to
the complement of the linear span of �1) are transformed
into the total mixture, i.e. we set all the parameters equal
to zero.

Two test states. In this case the knowledge about the
action of the channel is represented by a transformation
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Fig. 3. The pictorial description of the channel estimation
when two states ρ1 and ρ2 are used to test the action of a
quantum channel and they are transformed according to equa-
tion (7).

of two test state given by the following relations

�1 → �′1 = �1; �2 → �′2 = �2. (7)

Irrespective of states �1 and �2 we use, they specify a line
crossing the Bloch sphere. In particular, from equation (7)
we obtain a knowledge about the transformation of all
states of the form

�λ = λ�1 + (1 − λ)�2 (8)

with a real parameter λ. This line crosses the Bloch
sphere in two extremal points representing pure states.
Let us choose one of these pure states [denoted by ξ1 =
1
2 (I +wSz)]. We also define a new operator (not necessar-
ily positive) ξ2 = 1

2 (I + vSx), which in the Bloch-sphere
picture corresponds to the intersection of the line �λ and
the line orthogonal at the center of the Bloch sphere to
the line given by points {ξ1, 1

2 I } (see Fig. 3). This new
state ξ2 defines the operator Sx. Using the new operator
basis Sx, Sy, Sz we can express the map characterizing the
action of the channel as

E2 =




1 0 0 0
x 1 a 0
y 0 b 0
z 0 c 1


 . (9)

We again set all free (unspecified by the measurement)
parameters to zero. As a result we find that the trans-
formation E2 = diag{1, 1, 0, 1} is not completely positive,
i.e. it does not describe a valid quantum channel. To pre-
serve the unitality of the channel (E2[12 I ] = 1

2 I ) one has
to verify the complete positivity of the transformation
E2 = diag{1, 1, k, 1}. We find out that the only possibil-
ity is to take k = 1. Consequently, the identity channel
is correctly estimated, but we are still not sure, whether
the map is unital. However, we have to note one specific
case, when the total mixture is among the states �λ, i.e.
ξ2 = 1

2 I . In this case

E2 =




1 0 0 0
0 e a 0
0 f b 0
0 g c 1


 (10)

and our reconstruction procedure leads us to the channel
E2 = diag{1, 0, 0, 1}, i.e. the values of all free parameters
are equal to zero. Note that in this case E2 = E1.

Three test states. Let us consider that the linear
span of �1, �2, �3 does not contain the total mixture. In
this case the estimated transformation takes the form

E3 =




1 0 0 0
x 1 0 0
y 0 1 0
z 0 0 1


 . (11)

The only possibility to preserve the complete positivity
of E3 is to chose x = y = z = 0, which is completely
compatible with our strategy. Consequently, the channel
is estimated perfectly and it is described by the trans-
formation E3 = diag{1, 1, 1, 1} = I. In the case, when
from the measured data it follows that 1

2 I → 1
2 I , the es-

timation coincides with the reconstruction with two test
states, where the transformation of the total mixture is
estimated to be E [12 I ] = 1

2 I . The only difference is that
in the three-state case the unitality is guaranteed by the
data. The reconstruction gives us the same result in both
cases, i.e. E3 = I. As a result we find that identity chan-
nels for qubits can be uniquely identified using just three
test states.

Let us summarize the incomplete reconstruction of the
identity channel. The hierarchy of estimations on different
levels specified by the number of test states is as follows

E0 = A ; (12)
E1 = diag{1, 0, 0, 1}; (13)
E2 = E3 = E4 = I. (14)

From our previous discussion we can conclude that the
identity channel can be reconstructed using just three
test states. Given the fact, that for any unitary channel E
the induced map ΦE represents the identity channel, i.e.
ΦE = I we can conclude that for a complete determina-
tion of a unitary channel we need just three test states. A
unitary transformation is determined by the choice of the
basis Sx, Sy, Sz.

6 Combination of data imperfections:
incomplete and inconsistent data

In this section, we will study how to perform a process
reconstruction when the data obtained from the measure-
ment are incomplete as well as inconsistent. To secure that
the incomplete reconstruction does not fail we can adopt
the regularization procedure as described earlier in the
paper. In particular, we have two options: (i) either to
regularize the output test states, or (ii) to regularize the
estimated map itself.

The first scenario has to be used always when the
state reconstruction of some of the output test states �′j
fails. However, also if all the test states are estimated (re-
constructed) correctly (i.e. they are legitimate physical
states), the complete positivity is not guaranteed and the
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process reconstruction might fail. This situation can occur
even for two test states. Specifically, the assignments �1 →
�′1 and �2 → �′2 are compatible with some completely pos-
itive map E if and only if D(�1, t�2) ≥ D(�′1, t�

′
2) for all

real positive t [14]. Unfortunately, for three and four test
states no similar result is known. Therefore the complete
positivity of the process reconstruction has to be checked
for each individual case separately.

In what follows we will utilize (demonstrate) two re-
construction strategies:

• we will use the reconstruction from incomplete data
as discussed above. In the case of a failure (the recon-
structed channel is not a CP map) a regularization of
outputs of test states is performed (noise is admixed
into the output states, so that the reconstructed map
becomes CP);

• we will assume that an unknown map transforms all
states except the basis test states into the total mix-
ture, i.e. we set all free parameters to zero. If the re-
sulting map is not completely positive, then the map
will be regularized by adding the average channel A.

Let us consider a particular example that allows us to
demonstrate these two methods. In our example we will
use an “artificial” and unphysical data generated by the
universal NOT operation [13]. The logical NOT operation
is defined by relations |0〉 → |1〉, |1〉 → |0〉 in a computer
basis {|0〉; |1〉}. These relations do not completely deter-
mine a quantum channel, i.e. many quantum channels per-
form such transformations. For instance, the “classical”
NOT can be viewed as the transformation of the Bloch
sphere into the line connecting North (|1〉〈1|) and South
Pole (|0〉〈0|), i.e. NOTc[�] = 1

2 (I + 〈σz〉�Sz) with 〈σz〉� =
Tr�σz . There exists also a unitary (“quantum”) realization
of the logical NOT operation, i.e. NOTq[�] = σx�σx. How-
ever, a natural generalization of the NOT operation is the
so called universal NOT gate, which performs the trans-
formation |ψ〉 → |ψ⊥〉 for all states |ψ〉 (for mixed states
we will use the notation �→ �T ). The universal NOT gate
is not completely positive. The optimal universal NOT op-
eration is the closest physically valid map that performs
approximatively the universal NOT. In reference [13] it
has been shown that the corresponding quantum chan-
nel that maximizes the average fidelity under given con-
straints reads ENOT = diag{1,−1/3,−1/3,−1/3}.

6.1 Case study: the universal NOT gate

Formally the universal NOT operation determines the fol-
lowing transformations on a set of test (basis) states

�x =
1
2
(I + σx) → �′x =

1
2
(I − σx) ; (15)

�y =
1
2
(I + σy) → �′y =

1
2
(I − σy) ; (16)

�z =
1
2
(I + σz) → �′z =

1
2
(I − σz) ; (17)

�0 =
1
2
I → �′0 =

1
2
I . (18)

Let us start with the first reconstruction strategy as de-
scribed above. In the case when just one or two states have
been used to test the action of the quantum channel no
regularization is needed to estimate the channel.

(1) When we use only a single test state (e.g., a pure
state) the resulting estimated map is a contraction of the
Bloch sphere into a line connecting two mutually orthog-
onal states. If we use the data �z → �′z, then this line
is given by the points (0, 0,±1), i.e. the Bloch sphere is
mapped into the z-axis. This map can be understand as
the “classical” logical NOT.

(2) In the case of two test states, we obtain a unitary
rotation. If we use �z → �′z and �y → �′y, then the re-
sult is a rotation by the angle π around the x-axis, i.e.
the σx operation. This operation is usually referred to as
the “quantum” (unitary) logical NOT (see Fig. 4).

When three test states are used to determine the ac-
tion of the universal NOT gate we face a serious diffi-
culty: let us consider transformations of three test states
�x,y,z → �′x,y,z. In this case no completely positive map
exists. Therefore, a regularization of output states is re-
quired — in particular, we have to determine a minimal
amount of noise that is “included” in the output states so
that the channel estimation with these regularized (noisy)
output states will result in a CP map. It turns out that
the amount of noise corresponds to the value k = 1/3.
Therefore the transformation that is closest to the univer-
sal NOT gate and is CP has the form

�′j =
1
3
�T

j +
2
3

1
2
I . (19)

We can conclude that already for three test states we find
that the reconstructed map that is CP is the optimal uni-
versal NOT operation [13]. In Figure 4 we see how the
estimation of the map changes with the number n of used
test states.

In what follows we will study the second strategy for
a reconstruction (estimation) of the best possible approx-
imation of the universal NOT gate. Instead of searching
for a completely positive map by “admixing” the small-
est possible amount of noise into the outputs of the test
states, let us assume that all states except the test states
are mapped into the total mixture1. Using this approach
we can be sure that the resulting map is positive, but not
completely positive. Therefore we have to use a regulariza-
tion of the map. Obviously, in this case the resulting map
will not explicitly satisfy conditions imposed by the trans-
formation of test states, �j → �′j , i.e. with the given data.
But this has to be expected since it is the only way how to
impose the CP condition on the reconstructed map. Us-
ing this type of regularization of the map we arrive at the
same estimations as in the case of previous strategy. How-
ever, for n = 2 (two test states) the situation is different.
In this case, the reconstructed map acts as follows

r = (x, y, z) → r′ = (0,−y,−z). (20)

1 More specifically, states that are complemented to a linear
span of the test states.
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Fig. 4. The figure represents how our knowledge about the
channel (the universal NOT gate) is improved with increasing
the number of test states when the first reconstruction strat-
egy is used. If no measurement has been performed then the
best possible estimation of the channel is the contraction of the
Bloch sphere into its center (n = 0). When a single test state
�z → �′

z is used the optimal estimation of the transformation is
a contraction of the whole Bloch sphere into a line connecting
the “north” (denoted as N) and “south” poles of the Bloch
sphere (i.e. the points (0, 0,±1), respectively). This contrac-
tion is represented by the figure n = 1 in the picture. When
two test states (n = 2) are used, i.e. �z → �′

z and �y → �′
y,

then the result of the estimation of the action of the quantum
channel is a rotation by the angle π around the x-axis, i.e.
the σx operation. Finally, when three (n = 3) or four (n = 4)
test states are used to determine the action of the quantum
channel prescribed by the universal NOT transformation, the
best estimation of the channel is the optimal universal NOT
gate (see the two figures of the lower line in the picture, both
figures are the same and they describe the action of the opti-
mal universal NOT gate). In this case the regularization of the
output test states has been used in order to estimate a map
that is completely positive. As a specific example we show how
the “north” pole N of the Bloch sphere is transformed under
the action of estimated maps.

That is, the states of the form � = 1
2 (I + xσx) are trans-

formed into the total mixture. Consequently, the map is
unital and has a diagonal form with λ1 = 0, λ2 = λ3 = −1,
which is not compatible with the complete positivity (see
Fig. 2). The parameter k = 1/2 can be used to correct this
map. This value of k can be derived from the inequalities
|λ1 ± λ2| ≤ |1 ± λ3|. One can observe this result in Fig-
ure 2 as the closest point from the tetrahedron to the
point (0,−1,−1). The whole incomplete reconstruction
using this method is depicted in Figure 5. In Table 1 we
present diagonal elements (all other matrix elements are
equal to zero) of matrices corresponding to reconstructed
maps based on the results of measurement of n test states.
We present results for both reconstruction methods.

7 Conclusion

Reconstruction of quantum maps is a challenging problem
motivated mainly by experimental realizations of quan-

� � � � � � � � �

� � � � � �

Fig. 5. The figure represents how our knowledge about the
channel (the universal NOT gate) is improved with increasing
the number of test states when the second reconstruction strat-
egy is used. If no measurement has been performed then the
best possible estimation of the channel is the contraction of the
Bloch sphere into its center (n = 0). When a single test state
�z → �′

z is used the optimal estimation of the transformation
is a contraction of the whole Bloch sphere into a line connect-
ing the “north” and “south” poles of the Bloch sphere (i.e. the
points (0, 0,±1), respectively). This contraction is represented
by the figure n = 1 in the picture. When two test states (n = 2)
are used, i.e. �z → �′

z and �y → �′
y, then the result of the es-

timation of the action of the quantum channel is described by
the transformation (19). Consequently, the map is unital and
has the diagonal form with λ1 = 0, λ2 = λ3 = −1. Unfortu-
nately this map is not completely positive. The regularization
parameter k = 1/2 is used to correct this map. Finally, when
three (n = 3) or four (n = 4) test states are used to determine
the action of the quantum channel prescribed by the universal
NOT transformation, the best estimation of the channel is the
optimal universal NOT gate.

Table 1. The two reconstruction scenarios for an un-physical
universal NOT gate result in a sequence of maps depending on
the number of test states. The subscript in the description of
a given map Ej corresponds to the number of test states that
have been used in the reconstruction. From the table it is clear,
that both methods give us the same process estimation except
for the case when two test states have been used.

1st method 2nd method
E0 {1, 0, 0, 0} {1, 0, 0, 0}
E1 {1, 0, 0, 1} {1, 0, 0, 1}
E2 {1, 1,−1,−1} {1, 0,−1/2,−1/2}
E3 {1,−1/3,−1/3,−1/3} {1,−1/3,−1/3,−1/3}
E4 {1,−1/3,−1/3,−1/3} {1,−1/3,−1/3,−1/3}

tum gates. These gates have to be tested thoroughly in
order to use them for any quantum computation. Another
important application of a channel reconstruction is in
quantum communication when characteristics of a quan-
tum channel have to be determined from a limited set of
tests performed on the channel.

In the present paper we have discussed some strategies
how to estimate quantum channels when only incomplete
and/or incompatible data from measurements is available.
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The incompatibility of available data results in estimated
maps that are not completely positive. In this case a reg-
ularization of the reconstruction procedure is required in
order to recover a physical (CP) map.

The regularization method represents a correction of
insufficient statistics. It uses a single parameter k that
can be understood as an addition of a white noise into our
data. In principle, we can face two situations: either recon-
structions of all test states at the output of the channel
correspond to proper quantum states, or there exist some
outcomes that are not proper quantum states. In this case
each of these states can be corrected by adding some noise
(using the multiplicative factor k as discussed above). We
have to keep in mind that the parameter k can be state de-
pendent. Therefore, we have to choose the smallest value
of k in order to correct the map. Once all the outputs (as
estimated from the measured data) are proper physical
states we can start to reconstruct the map itself. In spite
of the fact that all the test states at the output are proper
physical states the map that is estimated on the basis of
these states may be not completely positive. In this case
we have to search for the largest k, for which the corrected
map Ec = kE + (1 − k)A is completely positive. We have
shown that at least for unital maps the value k = 1/3
always regularizes the estimated map.

In order to illustrate our methods we have used the
data generated by an unphysical map — the universal
NOT gate. We have shown that using both approaches
the result is the same and the reconstructed map is the
best (optimal) approximation of the NOT operation [13].
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