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Abstract
We derive an upper bound on the action of a direct product of two quantum
maps (channels) acting on bi-partite quantum states. We assume that the
individual channels �j affect single-particle states so that for an arbitrary input
ρj , the distance Dj(�j [ρj ], ρj ) between the input ρj and the output �j [ρj ]
of the channel is less than ε. Given this assumption we show that for an
arbitrary separable two-partite state ρ12, the distance between the input ρ12

and the output �1 ⊗ �2[ρ12] fulfils the bound D12(�1 ⊗ �2[ρ12], ρ12) �√
2 + 2

√
(1 − 1/d1)(1 − 1/d2) ε where d1 and d2 are the dimensions of the

first and second quantum system respectively. In contrast, entangled states are
transformed in such a way that the bound on the action of the local channels
is D12(�1 ⊗ �2[ρ12], ρ12) � 2

√
2 − 1/d ε, where d is the dimension of the

smaller of the two quantum systems passing through the channels. Our results
show that the fundamental distinction between the set of separable and the
set of entangled states results in two different bounds which in turn can be
exploited for discrimination between the two sets of states. We generalize our
results to multi-partite channels.

PACS numbers: 03.67.−a, 03.65.Ud, 03.65.Yz

1. Introduction

Investigation of properties of communication channels is more than ever today a central issue
of information science. It is generally accepted that quantum systems have the capacity to
carry information efficiently, and any transformation of these systems can be considered as an
action of a quantum channel (see, e.g., [1–5]).

Some general questions arising from the transmission of quantum entaglement through
quantum channels have been analysed by Schumacher in [6]. He has considered a pure
entangled state of a pair of two systems R and Q, and the system Q has been subjected to a
dynamical evolution (quantum channel). Schumacher has shown that the two quantities of
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interest, the entanglement fidelity Fe and the entropy exchange Se, can be related to various
other fidelities and entropies and are connected by an inequality reminiscent of the Fano
inequality of classical information theory.

In this paper we address the question how do two local channels (each acting
independently) affect a bi-partite quantum state. This scenario is rather general and can
be applied to a number of situations, e.g. quantum computation with quantum computer
imperfectly isolated from the environment or analysis of quantum error correcting codes.
In the context of quantum error correction, this problem has been addressed by Knill and
Laflamme in [7] for a particular case of two qubits and for a particular choice of a distance
(fidelity) characterizing the change of the bi-partite state. In [8] Aharonov et al have
analysed errors for a general model of quantum computation with mixed states and non-
unitary operations. There however a different measure was introduced. The rationale being
that measurable distinguishability of gates (super-operators) should not increase if we consider
additional quantum systems which do not evolve. Here in contrast we are not interested in the
distinguishability of superoperators but rather in the actions of the channels on a given state
and how to relate these local actions to the change of the global state.

Specifically, consider a pair of quantum channels characterized by maps �1 and �2,
respectively. It means that after sending a quantum system over, for instance, the first channel,
the final state of the quantum system (or equivalently the output of the channel) is �1[ρ1]
where ρ1 is the corresponding input. Moreover, let the two channels fulfil the following
condition,

Dj(�j [ρj ], ρj ) � ε, ∀ρj ∈ S(Hj ), j = 1, 2, (1)

where Dj(. , .) for j = 1, 2 are some distance functions (metric) defined on the set of all
density operators S(H1) and S(H2) representing the set of all physically realizable states of
quantum systems passing through channels 1 and 2, respectively. These conditions restrict
the action of each of the two channels independently of the action of the other channel.
Specifically, the state of a quantum system affected by one of the two channels has to be in a
small (epsilon) neighbourhood of the state describing the quantum system before the system
was sent through the channel.

The parameter ε quantifies the action of the two quantum channels. For ε = 0 the two
channels are ‘perfect’ (i.e., the information transmitted via channels is not disturbed) as the
output equals the input while for ε large the output can be significantly different from the
corresponding input4.

The question we would like to address is, how big is the change induced by the two local
channels when the inputs are correlated. That is, let us prepare an arbitrary initial state ρ12

of two quantum systems. The first part of the jointly prepared system is sent over the first
channel while the second part is sent over the second channel. Both channels individually fulfil
condition (1), where, e.g., ρ1 = Tr2 ρ12. In what follows we will show that the two-partite
action of the channel �1 ⊗ �2 for all possible physical states ρ12 ∈ S(H12) fulfils a bound on
its action that is determined by single-partite conditions given by equation (1).

Let us note that the problem can be transformed into the estimation of the map
� = �1 ⊗ �2 − 1112 where the map 1112 is the identity acting on the joint system. If the
distance D12(. , .) as well as distances D1(. , .) and D2(. , .) are defined via a norm then our
task is to estimate the norm ‖�(ρ12)‖. Similar expressions for a general class of the so-called
p-norms has been studied extensively for � being a physical map (more specifically the product
of two physical maps) in [9, 10]. However, in our case the map � is neither a positive map nor

4 Let us note that there is no relation between the parameter ε and the capacity of the channel in general.
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a direct product of two maps. Due to the fact that the map � is not positive and subsequently
not physical our situation is not applicable to [9, 10] and similar studies.

The paper is organized as follows. In section 2 we introduce necessary definitions and
discuss a particular case of separable states, i.e. the initial state of the joint system (the system
composed of two quantum systems that are sent over the two quantum channels) is separable.
As a next step we drop any assumptions on the initial state and analyse the most general case
of an arbitrary initial state in section 3. The results obtained are discussed in subsection 3.1. In
section 4 we extend our analysis to the case of more than two quantum channels and illustrate
the nature of changes on a simple example. Finally, in section 5 we summarize our results and
outline possible extensions.

2. Separable inputs

In the formulation of the problem we encounter three different metric (distance) functions:
D1(. , .),D2(. , .) and D12(. , .) acting on different sets and thus measuring distances between
different types of objects. In order to make our discussion explicit we will consider a specific
choice of the distances offered by the norm of the Hilbert–Schmidt spaces corresponding to
systems 1, 2 and the joint system 12, respectively5

Da(ρa, σa) ≡ ‖ρa − σa‖a

=
√

Tra[(ρa − σa)(ρa − σa)†]. (2)

The label a denotes systems 1, 2 or the joint system 12, and ρa, σa ∈ S(Ha) are the density
operators representing possible physical states of the system labelled a. The norms that we
have used to define distances D1(. , .),D2(. , .) and D12(. , .) are called 2-norms and are only
a particular case of the so-called p-norms. However, due to the fact that we will use only
basic properties of the distances D1(. , .),D2(. , .) and D12(. , .), we will keep our derivation
as general as possible so that it can be repeated with a broad class of different distances. Only
in the end will we use the specific choice of distances to derive a tight bound.

Our task is to estimate the distance

D12(�1 ⊗ �2[ρ12], ρ12), (3)

for all physically reasonable initial states ρ12 ∈ S(H12) provided the two maps �1 and �2

fulfil condition (1). First, note that for any distance (this follows from the triangle property of
a distance) holds

D12(�1 ⊗ �2[ρ12], ρ12) � D12(�1 ⊗ 11[ρ12], ρ12)

+ D12(11 ⊗ �2[�1 ⊗ 11[ρ12]],�1 ⊗ 11[ρ12]). (4)

It means that instead of considering the case with two local channels, it is sufficient to consider
only an action of a single local channel acting on one of the two subsystems and estimate the
distance D12(�1 ⊗ 11[ρ12], ρ12).

We start with the simplest case—the case of factorizable states of the form ρ12 = ρ1 ⊗ρ2.
This corresponds to the situation as if the two channels were considered separately so that the
two quantum systems that are sent through the channels are prepared individually. In this case
we exploit the following property,

D12(ρ
′
1 ⊗ ρ2, ρ1 ⊗ ρ2) � D1(ρ

′
1, ρ1), (5)

5 The set of all density operators representing the set of physical states of a quantum system is a subset of a vector
space. In such a case it is natural to define the metric (distance function) with the help of a norm so that the linear
structure of the vector space is respected. There are several ways to introduce a norm on a vector space. However,
the set of all density operators is also a subset of the Hilbert–Schmidt space which is a Hilbert space and we can use
the norm induced with the scalar product of the Hilbert space.
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of the distances D1(. , .),D2(. , .) and D12 where the operators ρ1, ρ
′
1 and ρ2 are the density

operators representing states of the first and the second system, respectively. Let us note that
this relation holds even if the distances are defined with any p-norm or even fidelity. Using
equation (5) we have that D12(�1 ⊗11[ρ1 ⊗ρ2], ρ1 ⊗ρ2) � D1(�1[ρ1], ρ1) and consequently,
for the initial state of the form ρ1 ⊗ ρ2, the distance (3) is always less than or at most equal
to 2ε

D12(�1 ⊗ �2[ρ1 ⊗ ρ2], ρ1 ⊗ ρ2) � 2ε, (6)

due to equations (4) and (1).
The same holds for the initial state ρ12 of the form ρ12 = ∑

i αiρ
i
1 ⊗ ρi

2, where
αi � 0,

∑
i αi = 1 and ρi

1 and ρi
2 denote the density operators of systems 1 and 2 respectively,

that follows from the linearity of the map �1 ⊗ �2

D12

(
�1 ⊗ �2

[∑
i

αiρ
i
1 ⊗ ρi

2

]
,
∑

i

αiρ
i
1 ⊗ ρi

2

)

= D12

(∑
i

αi�1 ⊗ �2
[
ρi

1 ⊗ ρi
2

]
,
∑

i

αiρ
i
1 ⊗ ρi

2

)
,

and the fact that the distance D12(. , .) is jointly convex, that is

D12


∑

j

αj�1 ⊗ �2
[
ρ

j

1 ⊗ ρ
j

2

]
,
∑

j

αjρ
j

1 ⊗ ρ
j

2




�
∑

j

αjD12
(
�1 ⊗ �2

[
ρ

j

1 ⊗ ρ
j

2

]
, ρ

j

1 ⊗ ρ
j

2

)
.

The last expression is a sum of terms where each term is bounded by 2ε, and the sum of the
coefficients αi is equal to unity. In consequence we obtain the bound

D12

(
�1 ⊗ �2

[∑
i

αiρ
i
1 ⊗ ρi

2

]
,
∑

i

αiρ
i
1 ⊗ ρi

2

)
� 2ε, (7)

for an arbitrary separable state.

2.1. Hilbert–Schmidt distance

The bound on the action of a product of two quantum channels on separable states (7) is valid
for any triple of distances D1(. , .),D2(. , .) and D12(. , .) that satisfy relation (5) (the distance
D2(. , .) has to fulfil relation (5) with swapped labels 1 and 2) and in addition the distance
D12(. , .) has to be jointly convex. That is, the bound is valid if D1(. , .),D2(. , .) and D12(. , .)

are trace distances6 or, more generally, the distances defined with p-norms or even fidelity.
The question is whether it is possible to derive a better (tighter) bound or, in other words,
whether the bound is optimal. For the trace distances the bound is optimal indeed, and it can
be shown that there is a pair of maps such that the bound is saturated. In what follows we will
show that for the distances introduced in equation (2) the bound can be further optimized.

Let ρ1 = 1/d111+ c̄ · σ̄ be an input of channel 1. We have expressed the state of the system
labelled as ‘1’ using the identity operator 11 and d2

1 − 1 generators σ̄ = {σ1, σ2, . . .} of the
group SU(d1) multiplied with the complex unity where d1 is the dimension of the Hilbert space

6 The trace distance is defined with the help of the 1-norm, and D(ρ, σ ) is equal to the sum of eigenvalues of the
positive operator |ρ − σ | where |ρ − σ | ≡

√
(ρ − σ)†(ρ − σ) and ρ, σ ∈ B(H).
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of system 1 and the vector c̄ = {c1, . . .} is a real vector with d2
1 − 1 elements. In addition we

require that the set of operators {σα} satisfy the ortho-normalization condition Tr σασβ = δαβ .
After the quantum system has been sent through the quantum channel �1, the state of the
system (the output) can be expressed using the same notation �1[ρ1] = 1/d111 + c̄′ · σ̄ with
new coefficients c̄′ where the prime indicates the fact that the system has been sent through
the quantum channel. Equivalently, ρ2 = 1/d211 + d̄ · τ̄ is the most general state of system 2
where τ̄ are generators of SU(d2) multiplied with complex unity, d2 is the dimension of the
Hilbert space of system 2 and the operators {τβ} satisfy the relation Tr τβτω = δβω.

We estimate the distance (3) for an arbitrary separable state and the particular choice of
distances (2). Due to the joint convexity of the distance D12(. , .) and the linearity of the map
�1 ⊗�2 it is sufficient to consider the case where the state ρ12 is a pure state (for more details
see the end of the previous section)

ρ12 = (1/d111 + c̄ · σ̄ ) ⊗ (1/d211 + b̄ · τ̄ ) (8)

where c̄ · c̄ = (1 − 1/d1) and b̄ · b̄ = (1 − 1/d2).
In this case we do not use relation (4) which means that the two channels are not considered

separately and the output of the product of the two channels �1 and �2 is

�1 ⊗ �2[ρ12] = (1/d111 + c̄′ · σ̄ ) ⊗ (1/d211 + b̄′ · τ̄ ). (9)

Inserting the two expressions, input (8) and output (9), into the definition of the distance (2)
we obtain that

D12(�1 ⊗ �2[ρ12], ρ12) = ‖(c̄′ − c̄) · σ̄ ⊗ 1/d211 + 1/d111 ⊗ (b̄′ − b̄) · τ̄

+ c̄′ · σ̄ ⊗ b̄′ · τ̄ − c̄ · σ̄ ⊗ b̄ · τ̄‖12. (10)

Last expression squared can be bounded from above by a sum of three terms

‖(c̄′ − c̄) · σ̄ ⊗ 1/d211‖2
12 + ‖1/d111 ⊗ (b̄′ − b̄) · τ̄‖2

12

+ [‖(c̄′ − c̄) · σ̄ ⊗ b̄′ · τ̄‖12 + ‖c̄ · σ̄ ⊗ (b̄′ − b̄) · τ̄‖12]2.

Observing that ‖(c̄ − c̄′) · σ̄ ⊗ 1/d211‖2
12 = 1/d2D

2
1(�1[ρ1], ρ1), and equivalently ‖1/d111 ⊗

(b̄ − b̄′) · τ̄‖2
12 = 1/d1D2(�2[ρ2], ρ2) and b̄′ · b̄′ � (1 − 1/d2) we can bound the distance

squared with the expression 1/d2ε
2 + 1/d1ε

2 + (
√

1 − 1/d1 +
√

1 − 1/d2)
2ε2. Finally, the

distance between the input and the corresponding output of the product of the two channels
fulfils the bound

D12(�1 ⊗ �2[ρ12], ρ12) �
√

2 + 2
√

(1 − 1/d1)(1 − 1/d2) ε, (11)

where d1 and d2 are the dimensions of the Hilbert spaces corresponding to the quantum systems
sent through channels 1 and 2, respectively. Even though we have proved the bound for pure
separable states, we note that the result is valid for an arbitrary separable state due to the
linearity of the map �1 ⊗ �2 and the joint convexity of the distance D12(. , .). Bound (11) is
undoubtedly better than bound (7) as it has been derived for a specific choice of distances. In
addition, it can be shown that the bound is optimal in the sense that there is a pair of maps �1

and �2 and a separable state ρ12 such that bound (11) is saturated (optimality is discussed in
more detail in section 5).

3. Entangled states

We have seen that if the initial state of the joint system 12 is factorizable or even separable then
the action of the two channels is bounded by the expression

√
2 + 2

√
(1 − 1/d1)(1 − 1/d2) ε.

It may be tempting to say that the same holds for an arbitrary state. However, as the next
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example illustrates, if the joint state of the two systems 1 and 2 is entangled then for certain
maps the separable bound can be broken.

Let us consider the Hilbert spaces H1 and H2 corresponding to systems 1 and 2 to be two-
dimensional spaces. This is the simplest possible case though the physical representations of
such systems are numerous. As an example we can mention spin one-half particles, polarized
photons or particular internal degrees of freedom of an ion. Let us note that in quantum
information theory such systems are denoted as qubits since they represent the quantum
analogue of a classical bit of information.

Then, any physical state of system 1 (or equivalently of system 2) can be written as
ρ1 = 1

2 (11 + �α · �σ), where �α = (α1, α2, α3) is a vector in a three-dimensional real vector space
and the three matrices �σ = (σ1, σ2, σ3) are the well-known Pauli operators. For the matrix
ρ1 to represent a physical state the norm of the real vector �α has to be less than or equal to 1.
It follows that the set of all physically realizable states of system 1 corresponds to a unit ball
(Bloch sphere) in the three-dimensional vector space R

3.
The map �1, we will consider in this particular example, is a simple contraction of the

ball representing the set of states such that

�1 : ρ1 → 1
2 (11 + (1 − k)�α · �σ), (12)

where (1 − k) is a parameter of the contraction. Physically, the map �1 describes a channel
with uncoloured (‘white’) noise since each input state is mixed with the absolute mixture 1/2 11
which is the fixed point of the �1. In order to preserve condition (1) the parameter k has to
fulfil the relation k �

√
2ε. In what follows we assume k = √

2ε.
In the same way the most general state of system 2 is ρ2 = 1

2 (11 + �β · �σ), where
�β = (β1, β2, β3) is a real vector and |β| � 1. The map �2 has been chosen to be the
same as the map �1

�2 : ρ2 → 1
2 (11 + (1 − k′) �β · �σ), (13)

with the same contraction parameter k′ = k = √
2ε so that condition (1) is fulfilled in this

case too.
To show that the separable bound can be broken we have to consider an entangled state.

However, we will not consider an arbitrary state but a very specific one—a maximally entangled
state known as the Bell state of the form ρ12 = 1/2(|01〉 − |10〉)(〈01| − 〈10|), where 0 and 1
denote two basis vectors of H1 (or H2). For subsequent calculations, it is useful to rewrite the
state using the Pauli operators ρ12 = 1/4(11 ⊗ 11 −σ1 ⊗σ1 −σ2 ⊗σ2 −σ3 ⊗σ3). Inserting ρ12

into equation (3) and using the linearity of the transformation �1 ⊗ �2 as well as equation (2)
the distance in equation (3) reads

D12(�1⊗�2[ρ12], ρ12) =
∥∥∥∥−k − k′ + kk′

4
{σ1⊗σ1 + σ2⊗σ2 + σ3⊗σ3}

∥∥∥∥
12

.

Both constants, k as well as k′, are equal to
√

2ε. Neglecting terms of the order ε2 and
evaluating the norm using the scalar product we find

D12(�1 ⊗ �2[ρ12], ρ12) ≈
√

6ε. (14)

This result clearly shows that even though the two maps �1 and �2 fulfil relations (1) the map
�1 ⊗ �2 constructed as a direct product of the two maps can affect the states it acts on in a
much stronger way. How much the joint (and particularly entangled) states can be changed
by two arbitrary maps �1 and �2 is addressed in the next paragraph.

Let ρ12 be an arbitrary mixed state. The deviation of the output of the channel �1 ⊗ �2

from the input ρ12 is characterized by the distance (3). In order to estimate the distance we
exploit (as in the case of separable states) the bound given by equation (4)

D12(�1⊗�2[ρ12], ρ12] � D12(�1⊗11[ρ12], ρ12) + D12(11⊗�2[ρ̃12], ρ̃12), (15)
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where ρ̃12 = �1 ⊗ 11[ρ12]. As we do not make any assumptions, neither about the maps �1

and �2 nor the initial state ρ12, the two states ρ̃12 and ρ12 can be arbitrary physical states of
the joint quantum system, i.e. arbitrary density operators. It means that taking, for instance,
the first term on the right-hand side of equation (15) we need to estimate this term for all
possible maps �1 and all possible states ρ12. This fact allows us to rewrite the bound for (3)
in a different way

D12(�1 ⊗ �2[ρ12], ρ12) � 2 sup{�1,ρ12}‖�1 ⊗ 11[ρ12] − ρ12‖12,

where the factor 2 appears because we have two terms in equation (15) and the supremum
runs over all possible maps �1 and all initial states ρ12.7

A mixed state ρ12 can be decomposed into a mixture of pure states ρ12 = ∑
k αk|ψk〉〈ψk|.

Using a basic property of the norm (or joint convexity of the distance) and the normalization
condition

∑
k αk = 1 we can simplify the last expression and instead of searching for the

supremum over all possible states ρ12 of the joint system 12, it is sufficient to consider pure
states only. It means that

D12(�1⊗�2[ρ12], ρ12) � 2 sup{�1,|ψ〉〈ψ |}‖�1⊗11[|ψ〉〈ψ |] − |ψ〉〈ψ |‖12, (16)

where the supremum runs over all possible maps �1 and all possible pure states |ψ〉〈ψ | ∈
S(H12) of the joint system 12. Since we have used only a basic property of the norm the
last relation is valid for any distance defined with the help of a norm (or more generally any
distance that is jointly convex). However, in what follows we will use specific properties of
the Hilbert–Schmidt norm and further results are valid for that particular choice of the norm
only.

Any pure state |ψ〉 ∈ H12 can be expressed using the Schmidt basis

|ψ〉 =
nψ∑
k=1

βk|k〉1 ⊗ |k〉2, (17)

where {|k〉1} and {|k〉2} are two sets of orthonormal vectors of H1 and H2, respectively, and βk

are the real positive coefficients. The integer nψ denotes the number of elements in the Schmidt
decomposition of the given pure state and is always less than or equal to the dimension of the
smaller of the two Hilbert spaces H1 and H2. In this particular basis the state ρ12 = |ψ〉〈ψ |
has the form

|ψ〉〈ψ | =
nψ∑

k,l=1

βkβl|k〉1〈l| ⊗ |k〉2〈l|. (18)

Let us now estimate the expression ‖�1 ⊗ 11[|ψ〉〈ψ |] − |ψ〉〈ψ |‖2
12 from equation (16). Using

equation (18) for the density operator |ψ〉〈ψ | and tracing over the degrees of freedom belonging
to the second system we have that

‖�1⊗ 11[|ψ〉〈ψ |]−|ψ〉〈ψ |‖2
12 =

nψ∑
k,l=1

β2
k β

2
l Tr1Vkl(Vkl)

†, (19)

where Vkl = �1[|k〉1〈l|] − |k〉1〈l|. At this point we apply relations (A.1), (B.1) and (B.2)
(proved in appendices A and B) and equation (1) that establish the following inequalities:

Tr1Vkl(Vkl)
† � 2ε2, ∀ k = l,

Tr1Vkk(Vkk)
† � ε2, ∀ k.

7 Given the fact that we have specified the dimension of neither system 1 nor system 2, the two systems can be
different. Therefore we should find the supremum over all �1 and all ρ12 of the first expression in equation (15) and
all �2 and all ρ̃12 of the second expression in equation (15). However, the results are the same in both cases.
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These inequalities bound each contribution (trace term) in the sum on the right-hand side of
equation (19). If we replace each term with the corresponding bound and maximize over all
possible βj then we estimate the expression on the left-hand side of the last equality as

‖�1 ⊗ 11[|ψ〉〈ψ |] − |ψ〉〈ψ |‖2
12 � (2 − 1/d) ε2,

where d is the dimension of the smaller of the two Hilbert spaces H1 and H2 in the case that
the two subsystems 1 and 2 are different8. Since the result is independent of both the map �1

and the state |ψ〉〈ψ | it holds for all maps �1 and all density operators |ψ〉〈ψ | (representing
pure states). Consequently, the supremum over all maps �1 and all pure states ρ12 is less than
or equal to this value and so is the distance (3)

D12(�1 ⊗ �2[ρ12], ρ12) � 2
√

2 − 1/d ε. (20)

Bound (20) is valid for entangled as well as separable states. However, for separable states
we have already found a tighter bound

√
2 + 2

√
(1 − 1/d1)(1 − 1/d2) ε (see equation (11))

which means that the entangled states can be affected by independent channels more strongly
than separable states.

3.1. Detection of entanglement

The difference in the behaviour of separable and entangled states resulted in two different
bounds. The bound for entangled states is weaker and this bound is obeyed by entangled and
separable states. On the other hand the bound for separable states (11) is tighter and need not
be fulfilled by entangled states. Subsequently, any state that violates bound (11) is necessarily
entangled and a direct product of physical channels can be exploited as a kind of ‘entanglement
witness’. Let us point out that the entanglement witnesses, known in the literature [11, 12], are
based on a different approach. They are constructed using positive but not completely positive
maps (that is non-physical maps) acting on one of the two subsystems, and the non-positivity
of the final operator (output) is the indication of entanglement. In contrast, in our case, we
have a product of two physical maps so that a physical (completely positive) map is acting on
each of the two subsystems and the difference between an input and the corresponding output
is measured. In addition there is a potential advantage in this approach. Not only the question
whether a state is entangled or separable can be answered. If we relate the distance to the
entanglement then we could answer the question how much entanglement is shared by two
quantum systems.

Similarly as in the case of entanglement witnesses, given a pair of maps, the detection
need not be (and in general is not) perfect. In other words given a pair of channels only a
subset of the set of all entangled states violates bound (11), and those are the only states that
are detected as entangled. Naturally, it is desirable to optimize the detection so that the whole
set of entangled states is detected. There are several things we can do to optimize the detection
of entangled states using quantum channels:

(i) optimal choice of the distances D1(. , .),D2(. , .) and D12(. , .);
(ii) optimal choice of the pair of channels (maps �1 and �2) and subsequent derivation of

the bound for separable states for that particular choice.

It is obvious that both elements influence detection of entanglement. Let us point out that
the choice of maps is not limited to physical channels. The problem is usually formulated

8 If the two subsystems 1 and 2 are different then the number of elements nψ in the Schmidt decomposition
equation (17) is always less than or equal to d—the dimension of the smaller of the two Hilbert spaces H1 and H2.
Consequently, the number of coefficients βj we maximize over is always bounded by this number, which in turn
bounds the maximum.
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as follows: given a density matrix of a bipartite system how strongly are the two subsystems
entangled. That is we have a complete knowledge of the elements of the density matrix
and we are allowed to execute arbitrary operation (function) on the matrix to calculate
the entanglement. Such operation can be non-physical and even nonlinear. Construction
of entanglement witnesses using a general class of non-physical but linear maps has been
investigated in [13]. The authors have shown that with the help of linear maps it is possible
to distinguish perfectly the set of entangled states from the set of separable states. Here we
show that this approach could be useful not only for the problem of detection but also for the
problem of quantifying entanglement.

Let us express the most general bipartite two-qubit state ρ12 using the Pauli operators
σj , j = 1, 2, 3

ρ12 = 1

4


11 +

3∑
j=1

αjσj ⊗11 +
3∑

k=1

11⊗σk +
3∑

j,k=1

γjkσj ⊗σk


 ,

where αj , βk and γjk for j, k = 1, 2, 3 are the real parameters. Further, consider a linear map
�12

�12 : ρ12 → ρ12 +
ε

4


−11 +

3∑
j,k=1

γjkσj ⊗ σk


 . (21)

With the help of the map (21) and the trace distance we define the following function:

F(ρ12) ≡ 1

ε
Tr12|�12[ρ12] − ρ12| − 1. (22)

The factor 1/ε is there to eliminate the dependence on the epsilon while −1 has been added
for convenience only. The function F has the following properties:

(i) F
(∑

j λjρ
j

12

)
�

∑
j λjF

(
ρ

j

12

)
, convexity.

(ii) F
(
U1 ⊗ U2 ρ12 U

†
1 ⊗ U

†
2

) = F(ρ12), local unitary equivalence ∀U1 and ∀U2.
(iii) F(ρ12) � 0,∀ρ12, non-negativity.
(iv) F(ρ12) = 0, for all separable states.
(v) F(ρ12) = C(ρ12), where ρ12 is a pure or Werner state (for definition of the Werner state

see [14]) and C(ρ12) is the concurrence (see [15]).

Through the extension of the proposed method to non-physical maps and a suitable choice
of the map acting on the joint state ρ12 we have managed to construct a function that detects
entanglement on all Werner states. Moreover, some of the listed properties of the function F
are supposed to be fulfilled by a function that not only distinguishes separable and entangled
states but performs a harder task—measures entanglement between two quantum systems.
Though the constructed function is not a proper measure of entanglement (there are entangled
states for whichF is zero) a suitable extension might ‘correct’ the function so that all entangled
states are detected.

4. N channels

In many physical situations it is less convenient to divide the system under consideration into
two large subsystems than into a large number (say N) of smaller but equal systems. A typical
example is the envisaged quantum computer composed of small micro-traps each holding a
single qubit. In such a case individual qubits are spatially separated so that the interaction
with the environment can be described by local maps �i where the index i labels the qubits (or
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micro-traps). These maps can be derived phenomenologically or determined experimentally so
their knowledge can be assumed. Obviously, we want to keep the influence of the environment
as small as possible so each of the maps would satisfy a condition similar to equation (1)

Di(�i[ρi], ρi) � ε, ∀ i = 1, . . . , N, ∀ ρi ∈ S(Hi ), (23)

where Di(. , .) are again metrics (distance functions) and S(Hi ) is the set of all density
operators for each i = 1, . . . , N . Using these maps we can find the state of a particular qubit
after interaction with the environment. However, what is more important is the final state of
the whole system

�1 ⊗ · · · ⊗ �N [ρ1,...,N ], (24)

and, in particular, how much the joint state ρ1,...,N has changed due to the interaction with the
environment. This change can be characterized by a distance between the original state ρ1,...,N

and the output of the product of the individual maps given by equation (24)

D1,...,N (�1 ⊗ · · · ⊗ �N [ρ1,...,N ], ρ1,...,N ), (25)

where the D1,...,N is a metric (distance function) defined on the set of all density operators
S(H1,...,N ) of the joint system 1, . . . , N . Here we use the same definition of the metric
(distance) as before and define the functions Di(. , .) for j = 1, . . . , N and D1,...,N (. , .)

with the help of the norm of the corresponding Hilbert–Schmidt space (for more details see
section 2)

Di(ρ, σ ) ≡ ‖ρ − σ‖i , (26)

D1,...,N (ρ, σ ) ≡ ‖ρ − σ‖1,...,N . (27)

Using these definitions it can be shown that the distance in equation (25) is always less than
or equal to N

√
2 − 1/d ε where d is the dimension of the Hilbert space Hi .

We note that the action of the product of local channels �1 ⊗· · ·⊗�N on separable states
is such that D1,...,N (�1 ⊗ · · · ⊗ �N [ρ1,...,N ], ρ1,...,N ) � Nε. This means that the restriction
to the set of separable states leads to the decrease of the bound on D1,...,N by the factor√

2 − 1/d .9

To prove the statement we will use a very similar line of reasoning as in the case of
two subsystems. First, taking advantage of the triangle inequality we bound the distance in
equation (25) as follows:

D1,...,N (�1 ⊗ · · · ⊗ �N [ρ1,...,N ], ρ1,...,N )

� D1,...,N (�1 ⊗ · · · ⊗ �N [ρ1,...,N ], 11 ⊗ �2 ⊗ · · · ⊗ �N [ρ1,...,N ])
...

+ D1,...,N (11 ⊗ · · · ⊗ 11 ⊗ �N [ρ1,...,N ], ρ1,...,N ). (28)

Each of the N terms on the right-hand side of the last equation can be rewritten as

D1,...,N

(
11 ⊗ · · · ⊗ 11 ⊗ �i ⊗ 11 ⊗ · · · ⊗ 11

[
ρ̃

(i)
1,...,N

]
, ρ̃

(i)
1,...,N

)
, (29)

where

ρ̃
(i)
1,...,N = 11 ⊗ · · · ⊗ 11 ⊗ �i+1 ⊗ �i+2 ⊗ · · · ⊗ �N [ρ1,...,N ],

so it is sufficient to bound expression (29). Next, we divide the whole system into two parts,
an elementary system i and the rest. From this point the proof takes the same lines as in the
case of two subsystems discussed in section 3. Therefore we recall result (20) obtained there

9 Here we have used bound (7) for separable states that can easily be extended to a multi-partite case.
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and refer the reader to section 3 for more details. Equation (20) states that

D1,...,N

(
11 ⊗ · · · ⊗ 11 ⊗ �i ⊗ 11 ⊗ · · · ⊗ 11

[
ρ̃

(i)
1,...,N

]
, ρ̃

(i)
1,...,N

)
�

√
2 − 1/d,

where d is the dimension of the ith elementary subsystem. Since we have N terms in the
expression on the right-hand side of equation (28) the distance (25) is bounded by

D1,...,N (�1 ⊗ · · · ⊗ �N [ρ1,...,N ], ρ1,...,N ) � N
√

2 − 1/d ε, (30)

where N is the number of elementary subsystems each satisfying condition (26), and d is the
dimension of the Hilbert spaces Hi corresponding to the elementary subsystems.

4.1. Example

To illustrate the character of changes induced by the local maps on the global state of the
whole system let us consider a simple model of N qubits undergoing a process of decoherence.
That is the Hilbert spaces Hi are two-dimensional and the maps �i are chosen to be

�i : 1
2 (11 + �α · �σ) → 1

2 {11 + α3σ3 + (1 − k)[α1σ1 + α2σ2]}, (31)

where k is equal to k = √
2ε in order to fulfil conditions (23). The action of the map �i is

such that it preserves the diagonal elements in the basis formed by the eigenvectors of σ3 while
the non-diagonal elements are suppressed. Such maps describe the process of dephasing, a
particular case of decoherence, since the vanishing of off-diagonal elements results in states
that describe statistical mixtures.

Consider the initial state of the joint system to be the Greenberger–Horn–Zeiliner (GHZ)
state

ρ1,...,N = 1
2 {|0 . . . 0〉〈0 . . . 0| + |0 . . . 0〉〈1 . . . 1| + |1 . . . 1〉〈0 . . . 0| + |1 . . . 1〉〈1 . . . 1|}. (32)

The action of the map �1 ⊗ · · · ⊗ �N on the state ρ1,...,N described above can be evaluated
straightforwardly and we obtain

�1 ⊗ · · · ⊗ �N [ρ1,...,N ] = 1
2 {|0 . . . 0〉〈0 . . . 0| + |1 . . . 1〉〈1 . . . 1|

+ (1 − k)N(|0 . . . 0〉〈1 . . . 1| + h.c.)}. (33)

Despite the fact that the state of each individual qubit remains unchanged (a consequence of
this is that conditions (23) are trivially fulfilled) the state of the whole system changes because
the off-diagonal elements are strongly suppressed. The distance (25) between the input ρ1,...,N

and the corresponding output �1 ⊗ · · · ⊗ �N [ρ1,...,N ] gives

D(�1 ⊗ · · · ⊗ �N [ρ1,...,N ], ρ1,...,N ) =
√

1
2 [1 + (1 − k)2N − 2(1 − k)N ],

which for ε very small can be estimated as

D(�1 ⊗ · · · ⊗ �N [ρ1,...,N ], ρ1,...,N ) ≈ Nε. (34)

The deviation of the GHZ state under the action of the direct product of local maps �i for
sufficiently small ε scales as Nε which confirms our more general result (30). Though the result
may seem to be optimistic (one might expect worse scaling with N) the effect of the action of
local maps is to disentangle the qubits (destroy quantum correlations between the qubits). In
addition, the disentanglement itself is strong since the off-diagonal elements are suppressed
exponentially with the increase of the number of systems involved in the dynamics. This
example nicely illustrates that though the deviation expressed with the help of the distance
(25) scales as Nε the entanglement may be destroyed much more dramatically.

Finally note that in this example the bound for separable states Nε, derived with the help
of equation (7), is not violated in spite of the fact that we have used an entangled state. We
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have already pointed out that it is not necessary for any entangled state to violate the separable
bound. To show that the bound can be violated indeed one can choose the map �1 defined in
section 3 for maps �i and the initial state of the form |bell〉⊗N/2 where |bell〉 denotes one of
the Bell states (see, for instance, section 3).

5. Conclusions

We have analysed the direct product of linear maps that describe local actions of a set of
quantum channels. We have found a bound on the action of such a product of maps (expressed
as a distance between an input and output of the product) provided the linear maps composing
the product are bounded as well. We have addressed two typical scenarios. In the first, a
quantum system is divided into two subsystems and the product is composed of two maps
acting on the two subsystems, respectively. In the second scenario a joint system is composed
of N equal subsystems and we have N linear maps acting on N subsystems of a given quantum
system.

Our analysis has shown that the fundamental difference between the set of separable and
entangled states yields two different bounds. For separable states the distance (3) is bounded
by

√
2 + 2

√
(1 − 1/d1)(1 − 1/d2) ε while in the case of entangled states the distance can be

larger and is bounded from above by 2
√

2 − 1/d ε.
Let us note that the bound for separable states (11) is optimal. That is there exists a pair of

channels �1 and �2 such that the bound is saturated (examples are presented in appendix C).
It is interesting to note that the channels that saturate the bound are the same channels that
saturate the separable bound (7) for the case of the trace distance (see appendix C) or bound
(20) for entangle states in the case of two-dimensional systems. Clearly, to establish the upper
bound on the action of a pair of local quantum channels it is sufficient to find a pair of channels
for which the action is maximal and set the bound to this maximum. The form of the channels
may depend on the dimensions d1 and d2. However, our results suggest that the channels
for which the bounds are maximal are of the same form for arbitrary d1 and d2 and are the
channels that we have used in our examples.

In the end let us point out that our analysis is not restricted to the case of physical maps
only and can be extended to the case of linear and hermiticity preserving maps that are not
physical.
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Appendix A

We prove the relation

‖�[|k〉〈l|] − |k〉〈l|‖2 = ‖�[|l〉〈k|] − |l〉〈k|‖2

= 1
4 {‖�[(|k〉〈l| + |l〉〈k|)] − (|k〉〈l| + |l〉〈k|)‖2

+ ‖�[(|k〉〈l| − |l〉〈k|)] − (|k〉〈l| − |l〉〈k|)‖2}. (A.1)

for all physical (linear, hermiticity preserving and completely positive) maps � with the norm
defined in equation (2) and k = l.
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Let us denote by Vkl the expression �[|k〉〈l|] − |k〉〈l|. Using the definition of the norm in
equation (2) we have that for any physical map �

‖�[|k〉〈l|] − |k〉〈l|‖2 = Tr VklV
†
kl,

‖�[|l〉〈k|] − |l〉〈k|‖2 = Tr V
†
klVkl,

‖�[(|k〉〈l| + |l〉〈k|)] − (|k〉〈l| + |l〉〈k|)‖2 = Tr
(
Vkl + V

†
kl

)(
V

†
kl + Vkl

)
,

‖�[(|k〉〈l| − |l〉〈k|)] − (|k〉〈l| − |l〉〈k|)‖2 = Tr
(
Vkl − V

†
kl

)(
V

†
kl − Vkl

)
.

Equation (A.1) is a direct consequence of the last result.

Appendix B

In this appendix we prove two relations

‖�[(|k〉〈l| + |l〉〈k|)] − (|k〉〈l| + |l〉〈k|)‖ � 2ε, (B.1)
‖�[(|k〉〈l| − |l〉〈k|)] − (|k〉〈l| − |l〉〈k|)‖ � 2ε, (B.2)

for all physical (linear, completely positive and hermiticity preserving) maps � satisfying the
condition given by equation (1) and k = l. The two expressions

‖�[(|k〉〈l| + |l〉〈k|)] − (|k〉〈l| + |l〉〈k|)‖,
‖�[(|k〉〈l| − |l〉〈k|)] − (|k〉〈l| − |l〉〈k|)‖,

can be rewritten as

‖�[(ρ1 − ρ2)] − (ρ1 − ρ2)‖, ‖�[i(ρ3 − ρ4)] − i(ρ3 − ρ4)‖,
where

ρ1 = 1
2 (|k〉 + |l〉)(h.c.), ρ2 = 1

2 (|k〉 − |l〉)(h.c.),

ρ3 = 1
2 (|k〉 + i|l〉)(h.c.), ρ4 = 1

2 (|k〉 − i|l〉)(h.c.).

By using the triangle inequality

‖�[(ρ1 − ρ2)] − (ρ1 − ρ2)‖ � ‖�[ρ1] − ρ1‖ + ‖�[ρ2] − ρ2‖,
‖�[i(ρ3 − ρ4)] − i(ρ3 − ρ4)‖ � ‖�[ρ3] − ρ3‖ + ‖�[ρ4] − ρ4‖,

we obtain the relations (B.1) and (B.2) owing to the conditions (1).

Appendix C

Here we present an example showing that bounds (7) and (11) are optimal. In this example
we will consider a more general case of distances D1(. , .), D2(. , .) and D12(. , .) and define
the distances with p-norms

Dp
a (ρa, σa) = (Tr|ρa − σa|p)1/p,

where a labels systems 1, 2 or 12, ρa and σa are the density operators and p is a positive
integer. The map �1 is chosen to be a contraction of the form

�1[ρ1] = (1 − k1)ρ1 + k1
1

d1
11,

where d1 is the dimension of the Hilbert space H1 and k1 is the contraction parameter. In
what follows we assume k1 = ε

/[
(1 − 1/d1)

p + (d1 − 1)
/
d

p

1

]1/p
so that the condition (1) is

fulfilled. Similarly, the map �2 is a contraction

�2[ρ2] = (1 − k2)ρ2 + k2
1

d2
11,
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where d2 is the dimension of the Hilbert space H2 and k1 = ε
/[

(1−1/d2)
p + (d2 −1)

/
d

p

2

]1/p
.

For the initial state we choose a pure state of the form ρ12 = |00〉〈00|. Keeping only terms of
the order of ε the distance between the input ρ12 and the output �1 ⊗ �2[ρ12] gives

D
p

12(�1 ⊗ �2[ρ12], ρ12) =
([

k1

(
1− 1

d1

)
+ k2

(
1− 1

d2

)]p

+

[
k1

d1

]p

(d1−1) +

[
k2

d2

]p

(d2−1)

)1/p

. (C.1)

Case study: trace distance. The trace distance is defined with the help of the 1-norm so
that p = 1. The two contraction parameters k1 and k2 read k1 = ε/[2(1 − 1/d1)] and
k2 = ε/[2(1 − 1/d2)]. Using these relations in equation (C.1) the distance between the input
and the output reads

D12(�1 ⊗ �1[ρ12], ρ12) = 2ε. (C.2)

Case study: Hilbert–Schmidt distance. The Hilbert–Schmidt distance is defined with the help
of the 2-norm so that p = 2. The two contraction parameters k1 and k2 read k1 = ε/

√
1 − 1/d1

and k2 = ε/
√

1 − 1/d2. Using these relations in equation (C.1) the distance between the input
and the corresponding output reads

D12(�1 ⊗ �1[ρ12], ρ12) =
√

2 + 2
√

(1 − 1/d1)(1 − 1/d2) ε. (C.3)
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