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Abstract
Optical Schrödinger cat states—that is, even and odd coherent states—are
considered as possible candidates for forming a computational basis for a
coherent state qubit. The distinguishability of the two originally orthogonal
states after experiencing loss is quantified in terms of quantum relative
entropy. This is a physically instructive quantity related to probabilities of
faults in identifying the state. This distinguishability is important for
classical communication and for the problem of reading out the result of a
quantum computation by a lossy device. It is shown that the
distinguishability can significantly increase if the environment is prepared in
an appropriately chosen squeezed state.
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1. Introduction

The advances in the theory of quantum information [1] have
gone far beyond any realization that can be even conceived
at the present state of art. Production of many quantum
bits entangled with each other, while disentangled with the
environment is rather problematic.

Quantum error correction codes [2, 3] provide solutions
for use in this struggle which are general, and not dependent
on the actual realization of the qubits. It is on the other
hand interesting to examine whether it is possible to protect
quantum information against certain errors specific to the
concrete physical systems.

There are several physical systems examined as candidates
for representing quantum bits [4–8]. Our study concerns
optical qubits, constituting one of the possibilities [9].

Optical qubits are embodied by modes of the
electromagnetic field. The computational basis states |0〉 and
|1〉 are identified by two orthogonal quantum states, e.g. two
polarization states of a single spatial mode in the case of
a polarization qubit, or the Fock states |01〉 and |10〉 of
two field modes in the case of the dual-rail representation.
Another possibility is to use a subspace of the Hilbert space
of a single-mode light field spanned by a pair of sufficiently
distant coherent states, which are approximately orthogonal.
Such coherent state qubits have attracted much attention

recently [10–12], including in quantum teleportation [13, 14],
or theoretical realization of quantum circuits [15] based on
these states.

On may chose an alternative computational basis for
a coherent state qubit, namely two orthogonal optical
Schrödinger cats: coherent superpositions of coherent states.
These states were originally introduced by Dodonov et al [16]
as ‘even and odd coherent states’. They have per se the
disadvantage of being highly non-classical, but the appearance
of such states in the context of coherent state qubits is a natural
consequence. The preparation of these states has already
been investigated [17], but their detection, i.e. a projective
measurement with Schrödinger cat eigenstates, is still an open
question. Their manipulation—that is, realization of unitary
transformations—is on the other hand a simple task using beam
splitters.

The Schrödinger cats have the advantage of having more
photons than few-photon Fock states; thus they are in a sense
more ‘macroscopic’. On the other hand, the essence of their
nature is the phase-space interference between the constituent
coherent states, which is extremely fragile against loss and
environmental decoherence.

In this paper we demonstrate that it is possible to protect
Schrödinger cats against the decohering effect of loss by
applying a squeezing to their environment. The application
of squeezing in order to lower noise is a prevalent technique
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in gravitational wave interferometry (see [18] and references
therein). We do not address the technical question of realizing
the squeezing of the environment, which depends on the
particular implementation, but to give one example, a high Q
cavity containing a Schrödinger cat may be placed in another
cavity sufficiently controlled to maintain its proper squeezing.
For the case of transmission of qubits through optical fibres,
one may think of the squeezing of the phononic modes of the
media [19], since they are responsible for decoherence. We
are here rather concerned with the theoretical estimation of
whether squeezing is advantageous at all.

The decoherence behaviour of Schrödinger cats has
already been investigated primarily in terms of phase-space
distributions [20–25]. We adopt here a more information-
theoretical approach.

We examine the distinguishability via measurements of
the two basis states of a qubit exposed to loss. This
distinguishability is primarily a necessary and sufficient
condition for classical communication applications. In a
quantum information scenario the robustness in terms of
distinguishability of two special orthogonal states is not
a sufficient requirement for the usefulness in quantum
computation. This can be regarded as a quantification of bit-
flip errors. Against these errors, a collection of error correcting
codes have been developed; however, the circumstances are
different during the computation process and the read-out
process. The latter allows a different range of techniques.

For quantum computation in general, it is important to
examine the decoherence behaviour of all the possible states
of the qubit. When carrying out measurements to obtain the
result of the computation, however, distinguishability of the
computational basis states is in itself a relevant issue. Consider
for instance the following scenario. We have a quantum logic
network that solves a decision problem given a set of input
qubits (such the one that realizes the Deutsch algorithm). The
answer must be a simple ‘yes’ or ‘no’; therefore the result can
be encoded into the output qubits as either of the computational
basis states. In order to convert this to classical information, a
measurement is carried out with respect to the computational
basis. The identification of the elements of the computational
basis is therefore crucial to performing the read-out step. If we
assume that the computation is deterministic, the resulting state
may be obtained several times, and repeated measurements can
be made. In certain cases we may assume that the quantum
logic network is nearly ideal, but the detection in the read-
out step is lossy. In this case we arrive to the problem of
distinguishing between the computational basis elements in a
lossy environment via repeated measurements.

Our quantification of distinguishability relies on the
concept of quantum relative entropy, which has also
found important applications in the field of entanglement
measures [26]. This quantity, though harder to calculate, has a
more transparent operational meaning than simply the overlap
of the states: it is directly related to the probability of faults in
the identification of the given state. We develop a coherent state
approach for its calculation in our scenario, which is applicable
in different problems too.

Our main result is that appropriate squeezing of the
environment (which is modelled here by a single bosonic
mode) can significantly improve the distinguishability of the
decohered Schrödinger cat states.

signal

environment

Figure 1. The model for loss. The signal mode interferes with an
auxiliary ‘environmental’ mode on a nearly transparent beam
splitter.

The paper is organized as follows. In section 2 we
introduce the concepts required for our consideration. In
section 3 the calculations of distinguishability are performed,
and results are presented. In section 4 conclusions are drawn.

2. Preliminaries

In this section we describe Schrödinger cats, the simple model
of loss applied in our consideration, and quantification of
distinguishability of two quantum states.

2.1. Schrödinger cats as a computational basis

For representing a qubit there are two orthogonal states
required, spanning the two-dimensional Hilbert space. In the
case of travelling wave light fields, one may choose orthogonal
Schrödinger cat states as the basis. If we denote a coherent state
with amplitude α by |α〉, in a general notation this basis can
be written as

|α, s〉 = Ñ−1
s

∑
λ=±1

λs |λα〉 (=Ñ−1
± (|α〉 ± |−α〉)), (1)

where the normalization factor Ñ 2
s = 2[1 + (−1)se−2|α|2 ]. For

s = 0, |α, s〉 is usually termed the ‘even coherent state’, + or
the ‘male’ Schrödinger cat, and for s = 1 it is usually the
‘odd coherent state’, − or ‘female’ Schrödinger cat. These
states have the properties of being orthogonal and simple
superpositions of coherent states. The use of coherent states as
the basis motivates us to use the coherent state representation
throughout our calculations.

2.2. The model of loss

A possible way of modelling loss is that depicted in figure 1.
The signal mode is interfering with an auxiliary mode, which
represents a bosonic mode of the environment (a field mode or a
phonon mode), usually assumed to be in a vacuum state. There
are more sophisticated models for loss, derived e.g. from exact
investigation of dispersing and absorbing media [27, 28]. In
many of the cases, however, the simple model with one single
beam splitter is satisfactory (cf, for instance, [29]).

In our consideration the state of the ‘environment’ mode
is not necessarily vacuum. We shall squeeze our vacuum
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prior to mixing with the signal, which models physically
the squeezing of the environmental mode. In the case of
a squeezed environment the phase relations in the system
become important, and the beam splitter parameters are written
as t = eiϕt cos τ and r = eiϕr sin τ , where the modulus of the
transmittance |t | ≈ 1 if we assume weak interaction with the
environment.

2.3. Quantification of the distinguishability of two quantum
states

To quantify the distinguishability of two quantum states, it
is most appropriate to utilize the so-called quantum Sanov
theorem (theorem 8 of [26]; see also [30] and [31]). The
reasoning behind this is that we are considering the read-out
problem of an outcome of a deterministic quantum calculation.
Thus the output state may be reproduced as many times as
we wish. We also assume that it is possible to construct a
measurement that projects onto either of the possible outcomes,
since the result of the computation corresponds to a classical
bit. In this scenario, we have to distinguish between the two
originally orthogonal quantum states.

The quantum Sanov theorem determines the probability
of not distinguishing two quantum states described by the
density matrices σ and � after n optimally chosen projective
measurements. That is, the probability that after performing
n measurements on n copies of a given quantum state σ , the
results falsely yield that it was the state � is asymptotically

P(σ → �) = e−nS(σ‖�), (2)

where
S(σ‖�) = Tr σ(ln σ − ln �) (3)

is the quantum relative entropy. The higher the quantum
relative entropy, the smaller the probability of a fault.

Since S(·‖·) is not symmetric in its arguments, it might be
easier to tell σ from � than to tell � from σ . It is important
to emphasize that quantum Sanov theorem gives a theoretical
limit of distinguishability. This is not necessarily reached by
an arbitrary measurement, but no optimized measurement can
perform better.

3. Decoherence and distinguishability of
Schrödinger cats

In this section, we shall apply the tools mentioned in section 2
to orthogonal Schrödinger cats |α, s〉. First we shall calculate
how the basis states are transformed by decoherence, then we
shall develop a formula for expressing their quantum relative
entropy.

3.1. Decoherence of Schrödinger cats

Consider the arrangement in figure 1. Let the state of the signal
mode be one of the Schrödinger cats of equation (1). The
environment mode is considered to be in a squeezed vacuum
state, which can be expressed as a superposition of coherent
states placed along a straight line in the phase space (i.e. in a
one-dimensional coherent state representation) as [32–34]

|Sq, ζ 〉 =
∫

R

e−γ x2 |xeiϕ〉 dx . (4)

Thus the whole system of the signal and environment modes
is in the state (cf equations (1) and (4))

|ψ in
s 〉 = |α, s〉|Sq, ζ 〉

= N−1
s (γ )

∑
λ=±1

λs
∫

R

e−γ x2 |λα〉|xeiϕ〉 dx . (5)

The parameters of squeezing are γ and ϕ and are denoted
according to Barnett and Radmore [35] as γ = 1/(exp(2|ζ |)
− 1) and ϕ = arg(ζ )/2 + π . The normalization factor is
Ns(γ ) = ÑsN (γ ), where N (γ )2 = π/

√
γ 2 + γ .

In the coherent state representation it is easy to describe the
action of the beam splitter, as coherent states interfere simply
as classical fields. The output amplitude for each coherent state
pair is the sum of the transmitted and reflected amplitudes. To
obtain the state remaining from the Schrödinger cat after the
interference, this output density operator must be traced out
in the environment mode. The resulting density matrix of the
output modes of the beam splitter reads

�̂s = Ns(γ )
−2

∑
λ,ν=±1

(λν)s
∫

R2
e−γ x2

e−γ y2

× 〈−νr∗α + t∗eiϕ y|−λr∗α + t∗eiϕx〉
× |λtα + reiϕx〉〈νtα + reiϕ y| dx dy (6)

where complex numbers r and t stand for the reflectivity and
transmittivity of the beam splitter, including phase shifts. Our
aim is now to calculate the relative entropy of the density matrix
in equation (6).

3.2. Calculation of relative entropies

In order to calculate the relative entropy we take its power series
around the identity operator. For arbitrary density matrices �
and �′, this reads

S(�̂‖�̂′) =
∞∑

n=1

n∑
k=1

(
n

k

)
(−1)k

n
(Tr �̂�̂′k − Tr �̂k+1). (7)

For the decohered Schrödinger cat states �s and �s′ in the
argument, the two traces in equation (6) produce a sum of
Gaussian integrals:

Tr{ρ̂s ρ̂
k
s′ } = Ns(γ )

−2Ns′ (γ )−2k
∑

λ1,ν1=±1

(λ1ν1)
s

×
∑

λ2,ν2=±1

(λ2ν2)
s′ · · ·

∑
λk+1,νk+1=±1

(λk+1νk+1)
s′

× Gk+1(λ1, ν1, . . . , λk+1, νk+1), (8)

where

Gk({λi }, {νi }) =
∫

R2k

k∏
l=1

exp[−γ (x2
l − y2

l )]

× 〈−νlr
∗α + t∗eiϕ yl |−λlr

∗α + t∗eiϕxl〉
× 〈νl tα + reiϕ yl |λl+1tα + reiϕxl+1〉 dk x dk y. (9)

(Modulo k is assumed for the indices.) After expanding the
coherent state products and introducing

(A)lm = −(
γ + 1

2

)
δlm + |t |2θ(k − m)δl,m+k

+ |r |2θ(k − m)δl,[m−1]k +k, (10)

(b)l = θk−l(λ[l−1]k − λl)r t∗α∗eiϕ

+ θl−(k+1)(λk+[l−k+1]k − λl)r
∗tαe−iϕ, (11)

c =
k∑

l=1

(λlλ[l+k+1]k +k |r |2 + λlλl+k |t |2)|α|2 − k|α|2, (12)
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Figure 2. A polar plot of the dependence of the relative entropy
S(+‖−) on the relative phase-space orientation angle φ of
equation (19) of the cat state and the squeezing of the environment
for different magnitudes of squeezing. The beam splitter
transmittivity is t = 0.95; |α| = 3.

with

(x)i :=
{

xi , when i � k,

yi−k, otherwise,
(13)

(λ)i :=
{
νi , when i � k,

λi−k, otherwise,
(14)

θi :=
{

1, if i � 0,

0, otherwise,
(15)

and Q = 1
2 (A + AT), Gk can be expressed explicitly:

Gk(λ) =
∫

R2k

exp[xTAx + bTx + c] d2kx

= π k

√
det Q

e− 1
4 bTQ−1b+c. (16)

From equations (7), (8) and (16) we obtain the relative
entropy of two decohered Schrödinger cat states �s and �s′ as

S(ρ̂s‖ρ̂s′ ) =
∞∑

n=1

1

n

n∑
k=1

(
n

k

)
(−1)kπ k+1

√
det Q

Fk, (17)

where

Fk =
∑

λ∈{±1}2k+2

Ns(γ )
−2(λk+1λ2k+2)

s

×
[
Ns′(γ )−2k

k∏
l=1

(λlλk+1+l)
s′ − Ns(γ )

−2k
k∏

l=1

(λlλk+1+l)
s

]

× e− 1
4 bTQ−1b+c. (18)

The series expansion in equation (17) is convergent in
norm, and though its convergence is not very fast, it can be
evaluated numerically. The data plots presented in this paper
result from this evaluation.

We remark that for |α| � 1, the convergence of the
series in equation (17) is slow. Our method is suitable for
larger values of |α|, which is the physically interesting case.
Therefore the |α| scales of the figures start at 1.
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Figure 3. Contour level plots of the maximally improved entropy
S(+‖−) versus the magnitude |ζ | of squeezing and the magnitude of
the |α| parameter of the coherent state constituting the cats. The
beam splitter transmittivity is t = 0.95.

3.3. Results

In what follows, the two relative entropies in the argument
will be denoted by S(+‖−) and S(−‖+) respectively. We
chose the beam splitter transmittivity to be 0.95. For smaller
transmittivity (i.e. higher loss), the behaviour of the entropies
is similar, but the actual values are smaller.

The calculations confirm a fact that can be expected for
symmetry reasons: that, regarding the angular parameters, the
relative entropy depends on the following combination:

φ = arg(t) + arg(r) + arg(α) + 1
2 arg(ζ ). (19)

This means the parameters on the left-hand side, namely the
phase shift imparted by the beam splitter to the transmitted
and reflected beams, the polar angle of the coherent state
parameter, and the direction of the squeezing appear in the
above combination only. As in the output state the input mode
appears as transmitted, while the environment mode appears
as reflected, φ describes the direction of the squeezing relative
to the orientation of the Schrödinger cats. The dependence
on φ of the relative entropy S(+‖−) is plotted in figure 2.
The relative entropy S(−‖+) shows the very same behaviour.
From this we conclude, for a given pair of Schrödinger cats,
that squeezing in the appropriate direction increases both
relative entropies above the value corresponding to the vacuum
environment state (ζ = 0). On the other hand, an orthogonal
direction of squeezing (notice the 1/2 factor in equation (19))
can even worsen the situation. This is typical for squeezing
phenomena. In what follows, we treat only the case of maximal
improvement, i.e. φ = 0.

In figure 3 we have plotted the maximally improved
entropy S(+‖−) versus the magnitude of squeezing |ζ | and
the magnitude of the |α| parameter of the coherent states
constituting the cat. Note that |α| is the distance in phase space
between the two superposed coherent states. Large values
correspond to the quantum superposition of really macroscopic
states.

The entropy S(+‖−) is so similar to S(−‖+) that the
difference would not be visible in a plot such as figure 3. To
illustrate this, in figure 4 we have plotted both entropies as a
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Figure 4. Plots of both relative entropies S(+‖−) and S(−‖+)
versus the magnitude of the parameter α of the cats, for different
magnitudes |ζ | of the squeezing. The beam splitter transmittivity is
t = 0.95.

function of |α|. It can be seen that the difference between the
two entropies is relevant mainly for small |α| values, which is
the less interesting case. This is somewhat to be expected, as
for larger |α| values the two states are in a sense more similar,
which is apparent e.g. from the shape of their Wigner functions.
Thus the fault probability can be expected to be symmetric in
this case.

Returning to figure 3, we find that for a given not too large
|α|, there is an optimal magnitude of squeezing, for which the
improvement in the distinguishability of the two cats is the
highest. For higher |α| values—that is, for superpositions of
more macroscopic coherent states—more squeezing is needed.
This is natural as the two cats differ only in the well-known
phase-space interference pattern at the origin of the phase
space, which is extremely fragile for macroscopic states. It is
also visible that for high |α| values, squeezing cannot provide
a relevant improvement against decoherence.

It is remarkable that for |α| = 3, where the achievable
improvement is rather significant, there are about ten photons
present on average in the two Schrödinger cats. This means
that these states can play the role of a computational basis
with relatively high photon number, in comparison with the
polarization or dual-rail representation of qubits.

4. Conclusions

We have examined the behaviour of two orthogonal
Schrödinger cat states against loss, from the point of view
of distinguishability. The main concern was to provide an
example where a certain representation of qubits can be
protected against loss in a way specific to the concrete physical
realization. Distinguishability was quantified via the quantum
relative entropy, in the spirit of the quantum Sanov theorem.

We have studied the possible improvement achievable by
squeezing the environment mode. We have evaluated the
relative entropies using a power series, derived in the low-
dimensional coherent state representation.

We have found that for not too macroscopic superpositions
of coherent states, an improvement of the distinguishability

can be achieved by appropriately chosen squeezing. Both the
phase and magnitude of the squeezing are optimal for a given
parameter of the coherent state constituting the Schrödinger
cats.

In general, it would be worth finding an easy-to-calculate
quantitative feature for a couple of quantum states of physical
systems, which describes their applicability for representing
qubits. It could then be calculated instead of, for instance, the
relative entropy.
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034302
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