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We present a systematic analysis of how one can improve performance of probabilistic programmable
quantum processors. We generalize a simple Vidal-Masanes-Cirac processor that realizes U(1) rotations on a
qubit with the phase of the rotation encoded in a state of the program register. We show how the probability of
success of the probabilistic processor can be enhanced by using the processor in loops. In addition we show
that the same strategy can be utilized for a probabilistic implementation of nonunitary transformations on
qubits. In addition, we show that an arbitrary SU(2) transformation of qubits can be encoded in program state
of a universal programmable probabilistic quantum processor. The probability of success of this processor can
be enhanced by a systematic correction of errors via conditional loops. Finally, we show that all our results can
be generalized also for qudits. In particular, we show how to implement SU(N) rotations of qudits via pro-
grammable quantum processor and how the performance of the processor can be enhanced when it is used in
loops.
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I. INTRODUCTION

Classical computers are programmable, that is, the task
they perform is determined by a set of instructions that is
sent into the machine along with the data to be processed.
This is a very desirable feature; we do not have to build a
different circuit every time we want to perform a different
procedure. It would be useful to be able to develop quantum
processors with the same property.

The development of programmable quantum circuits is an
area that has attracted attention only recently. The basic
model for these circuits consists of two parts: a data register
and a program register. There are two inputs, a data state,
which is sent into the data register and on which an operation
is to be performed, and a program state, which is sent into
the program register, that specifies the operation. The first
result was due to Nielsen and Chuang, who showed that a
deterministicuniversalquantum processor does not exist[1].
The problem is that a new dimension must be added to the
program space for each unitary operator that one wants to be
able to perform on the data. A similar situation holds if one
studies quantum circuits that implement completely positive,
trace-preserving maps rather than just unitary operators[2,3].
Some families of maps can be implemented with a finite
program space, for example, the phase damping channel, but
others, such as the amplitude damping channel, require an
infinite program space. If one drops the requirement that the
processor be deterministic, then universal processors become
possible [1,4–6]. These processors are probabilistic: they
sometimes fail, but we know when this happens.

A number of examples of programmable quantum circuits
have been proposed. One is a quantum “multimeter” that
performs unambiguous state discrimination on a set of two
states, the set being specified by the program[7]. There are
also devices that evaluate the expectation value of an arbi-
trary operator, the data representing the state in which the
expectation value is to be evaluated and the program state
specifying the operator[8,9].

In a probabilistic processor, one measures the output pro-
gram state. If the proper result is obtained, the desired op-
eration has been performed on the data state, and if not, then
the output of the data register is discarded. In this kind of a
scenario, one wants the probability of successfully perform-
ing the operation to be as close to 1 as possible. In fact, what
one would like is, given a set of operations that one wishes to
perform, a procedure for systematically increasing the prob-
ability of successfully performing these operations.

In the case of one-parameter unitary groups acting on qu-
bits this was done by Preskill[4] and Vidal, Masanes, and
Cirac [5]. Vidal, Masanes, and Cirac considered the one-
parameter group of operations given byUsad=exp siaszd,
for 0øa,2p, and discussed two equivalent methods of
making the probability of performingUsad arbitrarily close
to 1. A circuit consisting of a single controlled-NOT (CNOT)
gate, with the control qubit as the data and the target qubit as
the program, can successfully performUsad with a probabil-
ity of 1/2. If the procedure fails, however, the data qubit,
which was initially in the stateucl, is left in the stateUs
−aducl. What we can now do is to send this qubit back into
the same circuit, but with the program state that encodes the
operationUs2ad. This also has a probability of 1/2 of suc-
ceeding, and increases the total success probability for the
two-step procedure to 3/4. Note that our program state has
increased to two qubits, one for the first step and the other
for the second. We can continue in this way simultaneously
increasing the success probability and the size of the pro-
gram state. It is also possible to design more complicated
circuits that perform the entire procedure at once, i.e., they
have a one-qubit data state, anN-qubit program state, and a
success probability of 1−s1/2dN [5].

In this paper we would like to extend these ideas in a
number of different directions. First, we shall show that it is
possible to boost the probability of sets of nonunitary opera-
tions. It will then be shown how to increase the success
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probability of operations on qudits. Finally, more compli-
cated groups of operations will be considered.

Before we proceed, we would like to justify the concept
of a programmable quantum processor. One may consider
several arguments why programmable quantum processors
might be of interest. The most important argument is as fol-
lows: Let us imagine a situation when a set of instructions
that characterize an operation to be performed on the data is
encoded in asingle copy of a quantum system. This may
happen when the set of instructions(a program) is obtained
as an output of a quantum computer(whatever this device
is). This output state might be in generalunknown. In this
situation one has two options: First, one can measure and
estimate the program state and with the classical information
so obtained, one canclassicallycontrol the evolution of the
data register. The main obstacle in this approach is that the
fidelity of estimation of a state of quantum system based on
a measurement of just a single copy of the state is negligibly
small (it is inversely proportional to a dimension of the Hil-
bert space of the program register). This is the reason why
the programmable quantum processor that takes as an input
the unknown quantum program register is a better alterna-
tive. The quantum processor will perform operations that are
specified by the program register even though a(classical)
user of the processor does not have any information about
the set of instructions. Another advantage of this approach is
that the unknown program state can be efficientlyteleported
to a distant programmable quantum processor. Let us imag-
ine a situation that on a board of a satellite we have a set of
data encoded in a quantum state. Depending on the task we
would like to perform different data processing(e.g., we
want to perform operations or transformations that even
might not be known at the time of the launch of the satellite).
In this situation it might be very convenient to have a pro-
grammable processor on board the satellite. Then the set of
(in principle, unknown) instructions encoded in the state of
the program register can be teleported from a control center
onto the satellite and a desired operation on the data can be
performed.

II. OPERATIONS ON QUBITS

We shall begin by describing the methods developed in
Refs.[4] and[5] in terms of the formalism presented in Ref.
[6]. There, the input data state is in the Hilbert spaceHd, the
program state in the spaceHp, andG is the unitary operator,
acting on the spaceHd ^ Hp, that describes the action of the
circuit. This operator can be expressed as

G = o
j ,k=1

N

Ajk ^ u jlp pkku, s2.1d

whereN is the dimension ofHp, Ajk is an operator onHd,
andhu jl u j =1, . . . ,Nj is an orthonormal basis for the program
space. The operatorsAjk satisfy f6g

o
j=1

N

Ajk1

† Ajk2
= o

j=1

N

Ak1jAk2j
† = Iddk1k2

, s2.2d

whereId is the identity operator onHd. If the circuit acts on
the input stateucld ^ uJlp, we find that

Gsucld ^ uJlpd = o
j=1

N

AjsJducld ^ u jlp, s2.3d

where

AjsJd = o
k=1

N

pkkuJlpAjk. s2.4d

Let us begin by applying this formalism to aCNOT gate,
the simplest example considered in Ref.[5]. Both the data
and program spaces are two dimensional, and the data space
is the control qubit and the program space is the target qubit.
Expressing the operator for theCNOT gate in the form given
in Eq. (2.1) and choosing the basishu0l , u1lj for the program
space, we find that

A00 = u0lk0u, A01 = u1lk1u,

A10 = u1lk1u, A11 = u0lk0u. s2.5d

We want to use this circuit to perform the operationUsad
and this can be done with the program state

uJsadl =
1
Î2

seiau0l + e−iau1ld. s2.6d

This gives us the output state

Gsucld ^ uJsadlpd = o
j=0

1

Ajsaducld ^ u jlp, s2.7d

where the program operators are

A0sad =
eia

Î2
u0lk0u +

e−ia

Î2
u1lk1u =

1
Î2

Usad,

A1sad =
eia

Î2
u1lk1u +

e−ia

Î2
u0lk0u =

1
Î2

Us− ad. s2.8d

Therefore, if we measure the output of the program register
in the computational basis and obtainu0l, thenUsad has been
carried out on the data state. This occurs with a probability of
1/2.

If we obtain u1l instead ofu0l when we measure the pro-
gram register output, then the operationUs−ad has been per-
formed on the data state. We can try to correct this by send-
ing the stateUs−aducld back into the same circuit, but with
the program stateuJs2adlp. If we measure the program out-
put and obtainu0l, then the output of the data register is

Us2adUs− aducld = Usaducld, s2.9d

and this happens with a probability of 1/2. This will correct
the previous error.
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A circuit that does this all at once can be constructed from
three qubits and two quantum gates[5]. Qubit 1 is the data
qubit, and qubits 2 and 3 are the program qubits. The first
gate is aCNOT gate with qubit 1 as the control and qubit 2 as
the target. The second gate is a Toffoli gate with qubits 1 and
2 as controls and qubit 3 as the target. A Toffoli gate does
nothing to the control bits, and does nothing to the target bit
unless both control bits are 1, in which case it flips the target
bit. If we denote the orthonormal program space basis by

u0lp = u0l2u0l3, u2lp = u1l2u0l3,

u1lp = u0l2u1l3, u3lp = u1l2u1l3, s2.10d

then this circuit can be described by the operators

A00 = u0lk0u, A01 = 0, A02 = u1lk1u, A03 = 0,

A10 = 0, A11 = u0lk0u, A12 = 0, A13 = u1lk1u,

A20 = 0, A21 = u1lk1u, A22 = u0lk0u, A23 = 0,

A30 = u1lk1u, A31 = 0, A32 = 0, A33 = u0lk0u.
s2.11d

The program state is now

uJsadl =
1

2o
j=0

3

eis3−2jdau jlp. s2.12d

At the output of the processor the program register is mea-
sured in the computational basis, and only if both qubits are
found to be in the stateu1l does the procedure fail. The
overall probability of succeeding is 3/4.

Now let us go back to theCNOT gate with a single qubit
program and consider a more general program state

uJl = c0u0l + c1u1l, s2.13d

the operatorsA0sJd andA1sJd are

A0sJd = c0u0lk0u + c1u1lk1u,

A1sJd = c1u0lk0u + c0u1lk1u. s2.14d

These operators are not unitary, but they do have the prop-
erty thatA0sJdA1sJd=A1sJdA0sJd=c0c1I. The output state
of this circuit is given by Eq.(2.7), so that it can be used to
realize, probabilistically, either of the nonunitary operators,
A0sJd or A1sJd. It also suggests that we should be able to
apply something like the Preskill-Vidal-Masanes-Cirac
scheme. In particular, suppose we are trying to perform the
operation

Bszd = u0lk0u + zu1lk1u. s2.15d

If c1=zc0, thenA0sJd is proportional toBszd. We send the
data state into the processor and then measure the program
state in thehu0l , u1lj basis. If we get 0 we have succeeded,
but if we get 1 we have instead appliedA1sJd to the state. If
we fail, however, we can try again. We now take the output

from our first attempt, which isA1sJducld, and send it into
the processor again, but this time with the program state

uJ8l = S 1

1 + uzu4D
1/2

su0l + z2u1ld. s2.16d

We again measure the program state, and if we find 0, the
output of the data register is the desired state,A0sJducld. If
we failed, that is, we found 1, we can try yet again, but we
need to modify the program state every time we repeat the
process.

Rather than performing this procedure sequentially, i.e.,
sending in the input state, seeing if we succeed, and if not
trying the procedure again with a modified program state, we
can again do everything at once byenlarging the size of the
program space. We shall use a slightly different processor
than the one used by Vidal and Cirac. It has the same four-
dimensional program space, but the operatorsAjk are now
given by

A00 = u0lk0u, A01 = u1lk1u, A02 = 0, A03 = 0,

A10 = 0, A11 = u0lk0u, A12 = u1lk1u, A13 = 0,

A20 = 0, A21 = 0, A22 = u0lk0u, A23 = u1lk1u,

A30 = u1lk1u, A31 = 0, A32 = 0, A33 = u0lk0u.
s2.17d

The program state is now

uJlp = o
k=0

3

ckuklp, s2.18d

where ck+1=zck for k=0,1,2, andnormalization then re-
quires that

uc0u2 =
1 − uzu2

1 − uzu8
. s2.19d

The operation of the processor is given by

Gsucld ^ uJlpd = o
j=0

3

AjsJducld ^ u jlp, s2.20d

where

AjsJd = o
k=0

3

ckAjk, s2.21d

and the operatorsAjk are given in Eq.s2.17d. This processor
will perform the operationBszd with a reasonably high prob-
ability. In order to see this, we first note thatAjsJd
=zjA0sJd for j =0,1,2,.This implies that
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Gsucld ^ uJlpd = A0sJducld ^ So
j=0

2

zju jlpD
+ A3sJducld ^ u3lp, s2.22d

andA0sJd=c0Bszd. At the output of the processor we mea-
sure the program state in thehu jl u j =0, . . . ,3j basis, and if we
get 0,1, or 2, we have carried out the desired operation. If
ucld=au0l+bu1l, then the probability of success depends on
the input state and is given by

Psuc= S1 − uzu6

1 − uzu8Dsuau2 + uzu2ubu2d. s2.23d

If we average this probability over all input states we find
that

Psuc=
1

2
S1 − uzu6

1 − uzu8Ds1 + uzu2d. s2.24d

As an example, we can consider the caseuzu2=1/2, which
gives usPsuc=0.7.

This can easily be generalized to anN-dimensional pro-
gram. The operatorsAjk are now given by

Ajk = d j ,ku0lk0u + d j+1,ku1lk1u, s2.25d

where the addition in the second Kronecker delta is done
modulo N. These operators satisfy Eq.s2.2d, so that they
define a unitary operator. The program state is now

uJl = c0o
j=0

N−1

zju jlp, s2.26d

where

uc0u2 =
1 − uzu2

1 − uzu2N . s2.27d

This yields the following output state:

Gsucld ^ uJlpd = c0Bszducld ^ o
j=0

N−2

zju jlp

+ AN−1sJducdl ^ uN − 1lp, s2.28d

where

AN−1sJd = c0szN−1u0lk0u + u1lk1ud. s2.29d

The probability of successfully performingBszd on ucld is
given by

Psuc= 1 − iAN−1sJdci2 = 1 −
s1 − uzu2dsuau2uzu2sN−1d + ubu2d

uzu2N − 1
.

s2.30d

When uzu=1, this is equal to 1−s1/Nd. An examination of
Psuc shows that it is an increasing function ofN. In the case
that uzu=1 it approaches 1 asN→`. This is no longer true if
uzuÞ1; if uzu,1, we find that the limit is

Psuc→ 1 − s1 − uzu2dubu2 = iBszdci2, s2.31d

and if uzu.1, the limit is

Psuc→ 1 −S1 −
1

uzu2Duau2 =
1

uzu2
iBszdci2. s2.32d

Therefore, only in the case that we are implementing a uni-
tary operation can this sequence of processors achieve a suc-
cess probability arbitrarily close to 1.

III. QUDITS

We now want to see how these arguments can be gener-
alized to higher-dimensional systems, and, for the sake of
simplicity, let us start by examining qutrits. The data space is
now three dimensional, and let us take for the operatorsAjk

A00 = u0lk0u, A01 = u1lk1u, A02 = u2lk2u,

A10 = u2lk2u, A11 = u0lk0u, A12 = u1lk1u,

A20 = u1lk1u, A21 = u2lk2u, A22 = u0lk0u. s3.1d

The general program state is

uJl = c0u0l + c1u1l + c2u2l, s3.2d

which gives the program operators

A0sJd = c0u0lk0u + c1u1lk1u + c2u2lk2u,

A1sJd = c0u2lk2u + c1u0lk0u + c2u1lk1u,

A2sJd = c0u1lk1u + c1u2lk2u + c2u0lk0u. s3.3d

The output state is

uCoutl = o
j=0

2

AjsJducld ^ u jlp, s3.4d

so that if we measure in the program space and getj , the
output state of the data register isAjsJducld.

Suppose we are trying to apply the operatorA0sJd to the
input data state. The probability of succeeding is
kcuA0

†sJdA0sJducl. If we fail, however, we can try again, and
this will increase the total probability of success. To see how
this works, let us consider an example. Suppose that we mea-
sured the program register and got 1 instead of 0. That means
we now have the stateA1sJducld. We take this state and put
it through the processor again, but with a modified program
state

uJ8l = c08u0l + c18u1l + c28u2l. s3.5d

Suppose we now measure the output in the program space
and get 0. IfA0sJ8dA1sJd~A0sJd, then we have succeeded
on our second try. Noting that

A0sJ8d = c08u0lk0u + c18u1lk1u + c28u2lk2u, s3.6d

we see that this condition is satisfied if

HILLERY, ZIMAN, AND BUŽEK PHYSICAL REVIEW A 69, 042311(2004)

042311-4



c08 =
ac0

c1
, c18 =

ac1

c2
, c28 =

ac2

c0
. s3.7d

The constanta is chosen so thatuJ8l is normalized.
What we can conclude from this is that we can, by trial

and correction, boost the probabilities of implementing op-
erators that arediagonalin the basishu0l , u1l , u2lj. In the case
that the operator we are trying to implement is unitary, i.e.,
ucju=1/Î3, then our probability of success at each trial is
1/3, so that our probability of success afterN trials is 1
−s2/3dN. This probability goes to 1 asN goes to infinity.
These conclusions generalize in a straightforward way to qu-
dits.

We now want to explore increasing the probability of suc-
cessfully performing an operation on qudits by increasing the
size of the program space. The data space is now of dimen-
sion D, and the orthonormal basis spanning it is
hu0ld, . . . ,uD−1ldj. We shall consider a particular kind of op-
eration, one that changes the amplitude of one of the basis
states and leaves the rest alone(up to overall normalization).
Suppose the state whose amplitude we want to change is
u0ld. The operator we want to implement is

B0szd = zu0lp pk0u + X, s3.8d

where

X = o
k=1

D−1

uklp pkku. s3.9d

For our processor, we shall choose the operatorsAjk,
where j andk run from 0 toD−1 to be

Ajk = d jkX + dk,j+1u0lp pk0u, s3.10d

where all additions are moduloD. The program state

uJlp = c0o
k=0

N−1

zkuklp, s3.11d

whereuc0u2 is given by Eq.s2.27d, gives us for 0ø j øN−2

AjsJd = c0z
jB0szd. s3.12d

The probability of successfully performingB0szd on the data
stateucld, Psuc, is

Psuc=
uzu2sN−1d − 1

uzu2N − 1
iB0ci2, s3.13d

whenuzu Þ1, and it issN−1d /N whenuzu=1. In the limit that
N goes to infinity,Psuc goes to 1 ifuzu=1. If uzu.1 we have

Psuc→
1

uzu2
iB0ci2, s3.14d

and if uzu,1, then

Psuc→ iB0ci2. s3.15d

As before, we see that it is only in the case that the operation
is unitary that the probability goes to 1.

If we want to modify more than one basis vector ampli-
tude, we can apply these processors successively, each de-
signed to modify a single amplitude. In the case that all of
the operations are unitary, this is aD-dimensional, program-
mable phase gate, whose probability of succeeding can be
made arbitrarily close to 1.

IV. REALIZATION OF SU(2) ROTATIONS

In the Vidal-Masanes-Cirac model the angle of the U(1)
rotation that is supposed to be performed on a qubit is en-
coded in a quantum state of the program. The rotation itself
is then applied on the data qubit via theCNOT gate that plays
the role of a programmable processor. As we have discussed
above the probability of success of the rotation can be en-
hanced, providing the data qubit is processed conditionally in
loops. The dynamics of each “run” of the processor is con-
ditioned by the result of the measurement performed on the
program register.

In what follows we will show that an analogous strategy
can be applied in the case of the SU(2) rotations of a qubit,
when the parameters(angles) of the SU(2) rotations are en-
coded in the state of the program. In our earlier work[6] we
have shown that an arbitrary single-qubit unitary transforma-
tion can be implemented with the probabilityp=1/4 by us-
ing a quantum-information distributor machine(QID) as the
processor. The QID is a quantum processor with a single data
qubit and two program qubits. The quantum information dis-
tribution is realized via a sequence of fourCNOT gates, such
that first the data qubit controls theNOT operation on the first
and the second program qubits and then the first and the
second program qubits act as the control with the data qubit
as the target. At the end of this process a projective measure-
ment on the two program qubits is performed. The measure-
ment is performed in the basishu0lu+l ; u0lu−l ; u1lu+l ; u1lu−lj
(where u± l=su0l± u1ld /Î2). The realization of the desired
transformation is associated with the projection onto the vec-
tor u0lu+l. In what follows we will explicitly show how to
correct the cases of wrong results, i.e., of projections onto
one of the vectorsu0lu−l , u1lu+l and u1lu−l.

The action of the QID processor is given by relation
[10,6]

G = o
j=0

3

s j ^ uJ jlkJ ju, s4.1d

wheres j are standards matrices withs0= I. The basis pro-
gram vectorsuJ jl form the standard Bell basis, i.e.,

uJ0l =
1
Î2

su00l + u11ld,uJxl =
1
Î2

su01l + u10ld,

uJzl =
1
Î2

su00l − u11ld,uJyl =
1
Î2

su01l − u10ld.

The general program stateuJsmW dlp encoding the unitary
transformation UmW =expsimW ·sW d=cosmI + i sin msmW /md ·sW
wherem= umW u is given by the expression
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uJsmW dlp = cosmuJ0l + i
sin m

m
smxuJxl + myuJyl + mzuJzld.

s4.2d

Performing previously mentioned measurement in the pro-
gram basisu0+l , u0−l , u1+l , u1−l we obtain the following uni-
tary transformations:

u0l ^ u + l:ucld → UmW ucld,

u0l ^ u− l:ucld → szUmW szucld,

u1l ^ u + l:ucld → sxUmW sxucld,

u1l ^ u− l:ucld → syUmW syucld,

where

UmW = cosmI +
i sin m

m
smxsx + mysy + mzszd. s4.3d

To obtain this simple expression we have used the identity
s jsks j =−sk if kÞ j . All observed outcomes occur with the
same probabilityp=1/4.Using the above notation the action
of the QID can be expressed in the form

ucld ^ uJsmW dlp → 1

2
So

j=0

3

s jUmW s jucld ^ u j̃ lpD , s4.4d

where vectorshu j̃ lpj form the basis ofHp associated with the
realized measurement. The explicit form of the vectors is
presented in following section where we discuss a general
solution of SUsNd rotations of qudits.

We see that each outcome of the measurement indicates a
different unitary transformation which has been applied to
the data. Once we have obtained a specific result we can use
the same processor again to correct an incorrectly trans-
formed data register and consequently improve the success
probability. In particular, in the case of the resultj , the new
program register needs to encode the correcting transforma-
tion Uj

s1d=UmW s jUmW
†s j. The probability of implementing the

unitary transformation using one conditioned loop is given as
ps1d=1/4+3/16=7/16. Using more and more conditioned
loops the success probability is given bypsnd
=o j=1

n s3j−1/4jd=1/4o j=0s3/4d j =1−s3/4dn which converges
to unity, i.e.,psnd→1 as the number of conditioned loopsn
goes to infinity. For instance, 30 conditioned loops result in
the negligible probability of failure,p.10−4.

The example of Vidal, Masanes, and Cirac shows us that
we are able to replace the feedback scenario with a probabi-
listic scenario by using different processors. An open prob-
lem is whether the same replacement can be done in general,
or at least for the case of the QID.

V. SU(N) ROTATIONS OF QUDITS

In what follow we will show that one can utilize the QID
for a probabilistic implementation of SU(N) rotations of qu-

dits. We start our discussion with a brief description of the
QID in the case of qudits. First, we introduce a generaliza-
tion of the two-qubitCNOT gate [10] for qudits. This is a
conditional shift operator defined with a control qudit “a”
and the target qudit “b”,

Dab = o
k,m=0

N−1

uklakku ^ usm+ kdmod Nlbkmu, s5.1d

which implies that

Dab
† = o

k,m=0

N−1

uklakku ^ usm− kdmod Nlbkmu. s5.2d

From this definition it follows that the operatorDab acts on
the basis vectors of a qudit as

Dabukluml = uklusk + mdmod Nl, s5.3d

which means that this operator has the same action as the
conditional adder and can be performed with the help of the
simple quantum network discussed in Ref.f11g. Note that for
N.2 the two operatorsD andD† differ; they describe con-
ditional shifts in opposite directions. Therefore the generali-
zations of theCNOT operator to higher dimensions are just
conditional shifts.

Following our earlier work[6,10] we can assume the net-
work for the probabilistic universal quantum processor to be

P123= D31D21
† D13D12. s5.4d

The data register consists of system 1 and the program reg-
ister of systems 2 and 3. The stateuJVl23 acts as the “soft-
ware” that carries the information about the operationV to
be implemented on the qudit data stateuCl1. The output
state of the three-qudit system, after the four controlled
shifts are applied, reads

uVl123= D31D21
† D13D12uCl1uJVl23. s5.5d

The sequence of four operators acting on the basis vectors
gives unl1uml2ukl3 as

D31D21
† D13D12unl1uml2ukl3 = usn − m+ kdmod Nl1usm+ nd

3mod Nl2usk + ndmod Nl3.

s5.6d

We now turn to the fundamental program states. A basis
consisting of maximally entangled two-particle states(the
analog of the Bell basis for spin-1

2 particles) is given by

uJmnl =
1

ÎN
o
k=0

N−1

expSi
2p

N
mkDuklusk − ndmod Nl, s5.7d

wherem,n=0, . . . ,N−1. If uJmnlp is the initial state of the
program register anduCl=o j a ju jld shere, as usual,o jua ju2
=1d is the initial state of the data register, then it follows that
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P123uCl1uJmnl23 = o
jk

a j

ÎN
expF2pikm

N
GP123u jlukluk − nl

=o
jk

a j

ÎN
exp

2pikm

N
u j − nluk + jluk + j − nl

=o
jk

a jexp
− 2pi jm

N
u j − nluJmnl

=sUsm,nduClduJmnl, s5.8d

where we have introduced the notation

Usm,nd = o
s=0

N−1

exp
− 2ipsm

N
us− nlksu. s5.9d

This result is similar to the one we found in the case of a
single qubitssee the preceding sectiond. The operatorsUsm,nd

satisfy the orthogonality relation

TrfsUsm8,n8dd†Usm,ndg = Ndm,m8dn,n8. s5.10d

The space of linear operatorsTsHd defined on some Hilbert
spaceH with the scalar product given by Eq.s5.10d we
know asHilbert-Schmidt space. Thus the unitary operators
Usm,nd form an orthogonal basis in it and any operatorV
PTsHd can be expressed in terms of them,

V = o
m,n=0

N−1

dmnU
sm,nd. s5.11d

The orthogonality relation allows us to find the expansion
coefficients in terms of the operators

dmn=
1

N
TrfsUsm,ndd†Vg. s5.12d

Therefore, the program vector that implements the operator
V is given by

uJVl23 = o
m,n=0

N−1

dmnuJmnl23. s5.13d

Application of the processor to the input stateuCl1uJVl23
yields the output state

uVl123= o
mn

dmnU
sm,nduCl1 ^ uJmnl23. s5.14d

Now let us perform a measurement of the program output
in the basis

uFrsl =
1

N
o

m,n=0

N−1

expF2pi
smr − nsd

N
GuJmnl. s5.15d

The orthogonality of this measurement basis directly follows
from the orthogonality of the entangled basisuJmnl. We
should also note that the vectorsuFrsl can be rewritten in a
factorized form, i.e.,

uFrsl = u− rl ^
1

ÎN
o
n=0

N

expF2pi
ns

N
Gun − rl, s5.16d

which means that the measurement can be performed inde-
pendently on two program qudits.

In order to clarify the role of the measurement we will
rewrite the output state of the QID using the basisuFrsl for
program qudits:

P123uCl1uJVl23 = o
m,n=0

N−1

dm,nU
sm,nduCl1uJmnl23

= o
m,n=0

N−1

dm,nU
sm,nduCl1

3F 1

N
o

r,s=0

N−1

expF− 2pi
smr − nsd

N
GuFrsl23G

=
1

N
o

r,s=0

N−1

o
m,n=0

N−1 HexpF− 2pi
smr − nsd

N
G

3dm,nU
sm,ndJuCl1uFrsl23. s5.17d

Taking into account that

fUsp,qdg†Usm,ndUsp,qd = expF2pi
smq− npd

N
GUsm,nd

s5.18d

and choosingp=s andq=r we find

1

N
TrfsUss,rdd†sUsm,ndd†Uss,rdVg = expF− 2pi

smr − nsd
N

Gdm,n.

s5.19d

Finally, the output of the QID can be rewritten in the form

P123uCl1uJVl23 =
1

N
o

r,s=0

N−1

fUss,rdVsUss,rdd†guCl1uFrsl23,

s5.20d

from which it is clear that if the result of the measurement of
the two program qudits isuFrsl23, then the systemsdatad is
left in the statefUss,rdVsUss,rdd†guCl1. Obviously, if s=r =0,
then the operatorV is applied on the data qudit. The prob-
ability of this outcome is 1/N2. For all other results of the
measurement the data qudit is left in the state given above.
One can use these output states with a modified program
state to improve the performance of the programmable
processor. Specifically, we have to use the new program
state uJV

sr,sdl that is chosen after taking into account the
result of the previous measurement. This program state
has first to “correct” the wrong realization of the opera-
tion V during the previous “run” of the processor and then
apply sprobabilisticallyd, the original operationV. For this
reason, the new program state has to perform the opera-
tion
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Vsr,sd = VfUss,rdVsUss,rdd†g−1. s5.21d

This process of error correctionsconditional loopsd can be
usedK times and the technique of conditioned loops can be
exploited in order to amplify the probability of success. Ap-
plying the processorK times the probability of a successful
application of the desired SUsNd operationV is psKd=1
−s1−1/N2dK.

VI. CONCLUSIONS

In this paper we have analyzed a probabilistic program-
mable quantum processor. We have shown how to encode
information about the quantum dynamicsV to be performed
on a quantum system(data register) in the state of another
quantum system(program register). This information is
stored in such a way that the program can be used to proba-
bilistically perform the stored transformation on the data. In
our paper we have analyzed systematically how to perform
U(1) rotations of qubits and qudits and one-parameter fami-
lies of nonunitary operations, where the parameter is en-
coded in states of quantum programs. In addition we have

shown how to increase the probability of success when the
quantum processor is used in loops with updated program
states. We have generalized the whole problem and we have
shown that one can use a very simple quantum processor, the
so-called quantum information distributor, to perform arbi-
trary SU(2) rotations of qubits as well as SU(N) rotations of
qudits. It is also possible to use enlarged programs to in-
crease the probability of success without the use of loops. We
have shown that if the processor is used in loops with prop-
erly chosen program states one can improve the performance
of the quantum programmable processor so that the probabil-
ity of failure decreases exponentially with the number of
program qudits that store the information about transforma-
tion on the data qudit.
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