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Improving the performance of probabilistic programmable quantum processors
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We present a systematic analysis of how one can improve performance of probabilistic programmable
guantum processors. We generalize a simple Vidal-Masanes-Cirac processor that rgdlizesations on a
qubit with the phase of the rotation encoded in a state of the program register. We show how the probability of
success of the probabilistic processor can be enhanced by using the processor in loops. In addition we show
that the same strategy can be utilized for a probabilistic implementation of nonunitary transformations on
qubits. In addition, we show that an arbitrary @Wtransformation of qubits can be encoded in program state
of a universal programmable probabilistic quantum processor. The probability of success of this processor can
be enhanced by a systematic correction of errors via conditional loops. Finally, we show that all our results can
be generalized also for qudits. In particular, we show how to implemeliNSkbtations of qudits via pro-
grammable quantum processor and how the performance of the processor can be enhanced when it is used in
loops.
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[. INTRODUCTION In a probabilistic processor, one measures the output pro-
S¢ram state. If the proper result is obtained, the de;ired op-
they perform is determined by a set of instructions that i€£"@tion has been performed on the data state, and if not, then
sent into the machine along with the data to be processed!® output of the data register is discarded. In this kind of a
This is a very desirable feature; we do not have to build &>c€nario, one wants the probability of successfully perform-
different circuit every time we want to perform a different N9 the operation to be as close to 1 as possible. In fact, what

procedure. It would be useful to be able to develop quantun®n€ would like is, given a set of operations that one wishes to
processors with the same property. pe_rf_orm, a procedure for syste_zmatlcally increasing the prob-
The development of programmable quantum circuits is arility of successfully performing these operations.
area that has attracted attention only recently. The basic In the case of one-parameter unitary groups acting on qu-
model for these circuits consists of two parts: a data registepits this was done by Preskil#] and Vidal, Masanes, and
and a program register. There are two inputs, a data stat&irac [5]. Vidal, Masanes, and Cirac considered the one-
which is sent into the data register and on which an operatioparameter group of operations given bya)=exp (iao,),
is to be performed, and a program state, which is sent intfor 0<a <27, and discussed two equivalent methods of
the program register, that specifies the operation. The firghaking the probability of performinty(a) arbitrarily close
result was due to Nielsen and Chuang, who showed that & 1. A circuit consisting of a single controllet>T (CNOT)
deterministicuniversalquantum processor does not eist  gate, with the control qubit as the data and the target qubit as
The problem is that a new dimension must be added to thghe program, can successfully perfolia) with a probabil-
program space for each unitary operator that one wants to Rg, of 1/2. If the procedure fails, however, the data qubit,
able to perform on the data. A similar situation holds if one nich was initially in the statdy), is left in the stateU(
studies quantum circuits that implement completely p03|t|ve,_a)|lp>_ What we can now do is to send this qubit back into

tsricmeép][:rsnt?lri\éls gO:cn%p;sp;at?aer: tg:”#ﬁ;feurgg?{gdoiﬁihﬁ agfinitethe same circuit, but with the program state that encodes the
perationU(Za). This also has a probability of 1/2 of suc-

program space, for example, the phase damping channel, bBPe"e , .
others, such as the amplitude damping channel, require &f€ding, and increases the total success probability for the
infinite program space. If one drops the requirement that th&Vo-step procedure to 3/4. Note that our program state has
processor be deterministic, then universal processors becorfitcreased to two qubits, one for the first step and the other
possible[1,4—§. These processors are probabilistic: theyfor the second. We can continue in this way simultaneously
sometimes fail, but we know when this happens. increasing the success probability and the size of the pro-
A number of examples of programmable quantum circuitsgram state. It is also possible to design more complicated
have been proposed. One is a quantum “multimeter” thatircuits that perform the entire procedure at once, i.e., they
performs unambiguous state discrimination on a set of twdave a one-qubit data state, Brqubit program state, and a
states, the set being specified by the progf@inThere are  success probability of 1@ /2)N [5].
also devices that evaluate the expectation value of an arbi- In this paper we would like to extend these ideas in a
trary operator, the data representing the state in which theumber of different directions. First, we shall show that it is
expectation value is to be evaluated and the program stagossible to boost the probability of sets of nonunitary opera-
specifying the operatd,9]. tions. It will then be shown how to increase the success

Classical computers are programmable, that is, the ta

1050-2947/2004/69)/0423118)/$22.50 69 042311-1 ©2004 The American Physical Society



HILLERY, ZIMAN, AND BUZEK PHYSICAL REVIEW A 69, 042311(2004

probability of operations on qudits. Finally, more compli- N N

cated groups of operations will be considered. 2 Al A, = 2 AGAL = 1adiie (2.2)
Before we proceed, we would like to justify the concept =1 j=1

of a programmable quantum processor. One may considgfnere) s the identity operator ofig. If the circuit acts on

several arguments why programmable quantum processofj, input statéy)y® |=),, we find that
might be of interest. The most important argument is as fol- P

lows: Let us imagine a situation when a set of instructions N

that characterize an operation to be performed on the data is G(|)a® |E)p) = 2 AE) e @ i)y, (2.3
encoded in asingle copy of a quantum system. This may =1

happen when the set of instructio(es program is obtained  \yhere

as an output of a quantum computgrhatever this device

is). This output state might be in genemahknown In this _ N _

situation one has two options: First, one can measure and A(E) =2 p<k|':>PAJ'k' (2.4
estimate the program state and with the classical information k=1

so obtained, one caelassicallycontrol the evolution of the Let us begin by applying this formalism to@oT gate,

data register. The main obstacle in this approach is that thghe simplest example considered in REH]. Both the data
fidelity of estimation of a state of quantum system based orand program spaces are two dimensional, and the data space
a measurement of just a single copy of the state is negligiblys the control qubit and the program space is the target qubit.
small (it is inversely proportional to a dimension of the Hil- Expressing the operator for tloT gate in the form given

bert space of the program registeThis is the reason why in Eq.(2.1) and choosing the bas{f0),|1)} for the program

the programmable quantum processor that takes as an inpgfhace, we find that

the unknown quantum program register is a better alterna-

tive. The quantum processor will perform operations that are Ago=10)(0], Agy=1)(1,
specified by the program register even thougfclassical
user of the processor does not have any information about A= 1X1], A;=1]0X0|. (2.5

the set of instructions. Another advantage of this approach is
that the unknown program state can be efficierglgported ~ We want to use this circuit to perform the operatidfa)
to a distant programmable quantum processor. Let us imagnd this can be done with the program state

ine a situation that on a board of a satellite we have a set of 1

data encoded in a quantum state. Depending on the task we |Z(a)= ?(eia|o> + e—ia|1>), (2.6)
would like to perform different data processirig.g., we V2

want to perform operations or transformations that eve
might not be known at the time of the launch of the satgllite
In this situation it might be very convenient to have a pro- 1

grammable processor on board the satellite. Then the set of G(|g ® |E(a))p) = > Al(@)|h)g @ [i)p, (2.7
(in principle, unknow instructions encoded in the state of j=0

the program register can be teleported from a control cent

onto the satellite and a desired operation on the data can %Kéhere the program operators are
performed.

Prhis gives us the output state

i

g € 1
Aoa) = E|O><0| + E|1><1| = EU(a),

II. OPERATIONS ON QUBITS

i ia 1
A(@) = S=|1]+ S (0N0| = ZU(- ). (2.8)
V2 V2

e
We shall begin by describing the methods developed in V2
Refs.[4] and[5] in terms of the formalism presented in Ref.
[6]. There, the input data state is in the Hilbert spatgthe
program state in the spa@é,, andG is the unitary operator,
acting on the spack/y® H,, that describes the action of the

circuit. This operator can be expressed as

Therefore, if we measure the output of the program register
in the computational basis and obtdd), thenU(«) has been
carried out on the data state. This occurs with a probability of
1/2.

If we obtain|1) instead ofl0) when we measure the pro-
gram register output, then the operatld(r-a) has been per-

N formed on the data state. We can try to correct this by send-
G= Ar @ i K, 21 ing the stateU(—a)|#)4 back into the same circuit, but with
j,kEzl i ® Do oK 2.1 the program staté=(2a)),,. If we measure the program out-
put and obtairj0), then the output of the data register is
U(2a)U(- @)= U(a)|¢h)q, (2.9

whereN is the dimension of{,, Ay is an operator orHg,
and{[j)|j=1,... N} is an orthonormal basis for the program and this happens with a probability of 1/2. This will correct
space. The operatofs satisfy[6] the previous error.
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A circuit that does this all at once can be constructed fronfrom our first attempt, which i#\;(Z)|#)y, and send it into

three qubits and two quantum gafé&g. Qubit 1 is the data

the processor again, but this time with the program state

qubit, and qubits 2 and 3 are the program qubits. The first

gate is acNOT gate with qubit 1 as the control and qubit 2 as

_, 1 1/2
the target. The second gate is a Toffoli gate with qubits 1 and 5" = <1+—|z|4> (|0 +Z2)). (2.1
2 as controls and qubit 3 as the target. A Toffoli gate does
nothing to the control bits, and does nothing to the target bi{;o again measure the program state, and if we find 0, the
unless both control bits are 1, in which case it flips the targehtput of the data register is the desired StAE) | ). If
bit. If we denote the orthonormal program space basis by ;o failed, that is, we found 1, we can try yet again, but we

|0>p =0),/0)s, |2>p =1)5/0),

|1>p: 0)2]1)3, |3>p: 1121, (2.10
then this circuit can be described by the operators

Ag=[0)0l, Ap=0, Agp=|1X1], Ag=0,

need to modify the program state every time we repeat the
process.

Rather than performing this procedure sequentially, i.e.,
sending in the input state, seeing if we succeed, and if not
trying the procedure again with a modified program state, we
can again do everything at once bglargingthe size of the
program space. We shall use a slightly different processor
than the one used by Vidal and Cirac. It has the same four-

A;p=0, A;=[0)0|, A;p=0, Aj=|1)1], dimensional program space, but the operatysare now
given by
Axp=0, Ay=|1X1], A,p=|0X0|, Axy=0,
Ago=10X0], Aq=[1X1], Ap=0, Ap=0,
Azp=|1X(1], A3=0, Az=0, Ag=|0X0|.
(2.1 A1p=0, A;=[0X0], Ap=[1X1], A;3=0,

The program state is now
A=0, Ay;=0, Ap=|0X0|, Axp=[1X1],

3

(@) =33 eC-Anjy, (212

2j=0 Az=[1X1], Az =0, Ax=0, Asz=[0X0|.
At the output of the processor the program register is mea- (2.17
sured in the computational basis, and only if both qubits are _
found to be in the statél) does the procedure fail. The The program state is now
overall probability of succeeding is 3/4.

Now let us go back to theNoT gate with a single qubit _

program and consider a more general program state |=>p: > Ck|k>p’ (2.18

k=0
|E) =col0) + ¢y 1), (2.13

3

where ¢,,1=2¢, for k=0,1,2, andnormalization then re-
the operatord\o(Z) andA,(E) are quires that

Ao(E) = col0)(0] + &1 1)(1, o= L |22

g (2.19
A(E) = 00| + col2)(1]. (2.14 1

These operators are not unitary, but they do have the propFhe operation of the processor is given by

erty thatAy(E)A(E)=A1(E)Ao(E)=cec4l. The output state

of this circuit is given by Eq(2.7), so that it can be used to 3

realize, probabilistically, either of the nonunitary operators, G(|q® [E)p) = 2 AE) B4 ® iy, (2.20
Ag(E) or A(E). It also suggests that we should be able to 1=0

apply something like the Preskill-Vidal-Masanes-Cirac

scheme. In particular, suppose we are trying to perform th&/nere

operation 3

B(2) = |0)(0] +Z1)(1]. (2.15 A(E) = kE CAjk: (2.21)
=0

If c;=2¢, thenAy(E) is proportional toB(z). We send the

data state into the processor and then measure the progrand the operatory, are given in Eq(2.17). This processor
state in the{|0),|1)} basis. If we get O we have succeeded,will perform the operatiorB(z) with a reasonably high prob-
but if we get 1 we have instead appliéd(=) to the state. If ~ ability. In order to see this, we first note tha(Z)
we fail, however, we can try again. We now take the outputEZAy(E) for j=0,1,2,.This implies that
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2

)

G(|ha® [E)p) = Af(BE)|h)g @ (
j=0
+Ag(E)| g @ [3)p, (2.22

and Ay(E)=c,B(z). At the output of the processor we mea-
sure the program state in tfig)|j=0, ..., 3 basis, and if we

PHYSICAL REVIEW A 69, 042311(2004

l:)suc_’ 1_(1_|Z|2)|B|2:||B(Z)¢”21 (2-31)
and if|z>1, the limit is
1 1 2
Psue— 1 - 1_W |a| = W”B(Z)‘A“ . (2.32

Therefore, only in the case that we are implementing a uni-

get 0,1, or 2, we have carried out the desired operation. lfary operation can this sequence of processors achieve a suc-
l)4=al0)+B|1), then the probability of success depends oncess probability arbitrarily close to 1.

the input state and is given by

Psuc= (

1-12°

———)mw+uﬂma

2.23
1 _|Z|8 ( )

If we average this probability over all input states we find

that
1

S _1(1-lzr
suc™— 2

———)u+u%.

1-12°

(2.29

|

As an example, we can consider the cég&=1/2, which
gives usPg,=0.7.

This can easily be generalized to Blndimensional pro-
gram. The operatord;, are now given by

A= 8 l]0)0| + 81,11, (2.295

where the addition in the second Kronecker delta is don

modulo N. These operators satisfy E(R.2), so that they
define a unitary operator. The program state is now

N-1
E)y=co> 2y, (2.26)
i=0
where
o= 2 (2.27
Chlc = . .
0 1-|2™N

This yields the following output state:
N-2

G| ® |E)p) = coB@|¥)a ® 2 2j)y
j=0

+A(BE)|gg ® IN= D)y, (2.28
where
An-1(E) = co(ZH0)(O] + [1)(2]). (2.29

The probability of successfully performing(z) on |)q is

given by

_@-1Z (2N +|BP)
21

Psuc: 1 —||AN-1(E)¢||2 =1

(2.30

When |z]=1, this is equal to 1€1/N). An examination of
Psuc shows that it is an increasing function Nf In the case
that|Z=1 it approaches 1 d@s— . This is no longer true if
|zl # 1; if |7 <1, we find that the limit is

Ill. QUDITS

We now want to see how these arguments can be gener-
alized to higher-dimensional systems, and, for the sake of
simplicity, let us start by examining qutrits. The data space is
now three dimensional, and let us take for the operatqrs

Ago=10X0, Ag=[1X1], Agp=1[2)2],
Ao=12X2], A1 =[0X0],  App=[1X1],
Ago=[1X(1], Axn=(2X2], Ayp=|0)X0|. (3.1
The general program state is
|E) =Col0) + ¢4 1) + ¢,[2), (3.2
Svhich gives the program operators
A(E) = col0X(0] + ca| 1)(1] + ¢ 2)(2],
A(E) = col2)(2] + ¢4|0)(0] + ¢, 11,
A(E) = col (1] + c4[2)(2] + ¢,|0)(0. (3.3
The output state is
2
[Wou) = 2 AE) e ® [()p, (3.9
j=0

so that if we measure in the program space andjgéte
output state of the data registerA(Z)|¢)g.

Suppose we are trying to apply the operatgf=) to the
input data state. The probability of succeeding is
(UANE)AY(E)| ). If we fail, however, we can try again, and
this will increase the total probability of success. To see how
this works, let us consider an example. Suppose that we mea-
sured the program register and got 1 instead of 0. That means
we now have the statd;(Z)|¢)q. We take this state and put
it through the processor again, but with a modified program
state

E') =cg|0) +c1f1) + c52). (3.5

Suppose we now measure the output in the program space
and get 0. IfA4(E')A1(E) < Ag(E), then we have succeeded
on our second try. Noting that

Ao(E") = cg|0X0] +c1| (1| + c5[2)(2],

we see that this condition is satisfied if

(3.6
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. ac . ac . ac, If we want to modify more than one basis vector ampli-
Co= P €= o C= o (3.7 tude, we can apply these processors successively, each de-
! 2 0 signed to modify a single amplitude. In the case that all of
The constantr is chosen so thdE’) is normalized. the operations are unitary, this ifadimensional, program-

What we can conclude from this is that we can, by trialmable phase gate, whose probability of succeeding can be
and correction, boost the probabilities of implementing op-made arbitrarily close to 1.
erators that ardiagonalin the basig|0),|1),|2)}. In the case

that the operator we are trying to implement is unitary, i.e., IV. REALIZATION OF SU(2) ROTATIONS
|cJ|—1/\3 then our probability of success at each trial is
1/3, so that our probability of success affértrials is 1 In the Vidal-Masanes-Cirac model the angle of thel)U

—(2/3)“. This probability goes to 1 abl goes to infinity.  rotation that is supposed to be performed on a qubit is en-
These conclusions generalize in a straightforward way to queoded in a quantum state of the program. The rotation itself
dits. is then applied on the data qubit via throT gate that plays

We now want to explore increasing the probability of suc-the role of a programmable processor. As we have discussed
cessfully performing an operation on qudits by increasing theibove the probability of success of the rotation can be en-
size of the program space. The data space is now of dimeranced, providing the data qubit is processed conditionally in
sion D, and the orthonormal basis spanning it isloops. The dynamics of each “run” of the processor is con-

{l0)g, ... ,|D-1)4}. We shall consider a particular kind of op- ditioned by the result of the measurement performed on the
eration, one that changes the amplitude of one of the bas@rogram register.
states and leaves the rest algop to overall normalization In what follows we will show that an analogous strategy
Suppose the state whose amplitude we want to change f&nh be applied in the case of the @rotations of a qubit,
|0)4. The operator we want to implement is when the paramete®ngles of the SU2) rotations are en-
coded in the state of the program. In our earlier wigkwe
Bo(2) =20)p (0] + X, (3.8)  have shown that an arbitrary single-qubit unitary transforma-
h tion can be implemented with the probabiliy=1/4 by us-
where ing a quantum-information distributor machif@ID) as the
D-1 processor. The QID is a quantum processor with a single data
X=> ||<>p p<k|. (3.9 qubit and two program qubits. The quantum information dis-
k=1 tribution is realized via a sequence of fatmoT gates, such

that first the data qubit controls theoT operation on the first
and the second program qubits and then the first and the
second program qubits act as the control with the data qubit

For our processor, we shall choose the operafyfs
wherej andk run from 0 toD-1 to be

Ay = 8 X+ 8i+1/0)p O (3.10 as the target. At the end of this process a projective measure-
ik k +U%/p p : .
ment on the two program qubits is performed. The measure-
where all additions are modu. The program state ment is performed in the basff0)|+);[0)[-);|1)|+);[1)[-)}
N-1 (where |+)=(|0)£|1))/2). The realization of the desired
- Coz Zk|k>p, (3.11) transformation is associated with the projection onto the vec-

tor [0)|+). In what follows we will explicitly show how to
o ) ) correct the cases of wrong results, i.e., of projections onto
where|co|” is given by Eq.(2.27), gives us for B<j<N-2  one of the vector$0)|-),|1)|+) and|1)|-).
Aj(E):coszo(z). (3.12 The action of the QID processor is given by relation

(10,6
The probability of successfully performiri8y(z) on the data 3
state|¥)q, Psyo IS ENE
|¢>d suo E : ‘:J ’ 4.1
|Z|2(N 1) _ , j=0
Psuc | |2N ”BO'v[’” (3-13)

whereo; are standardr matrices witho,=1. The basis pro-

. o gram vectors*w,} form the standard Bell basis, i.e.,
when|z| # 1, and it is(N-1)/N when|z]=1. In the limit that

N goes to infinity,Pg,. goes to 1 iflZ=1. If |2 >1 we have _ 1 _ 1
Eo)= (00 +[11),|=, = =(10D +[10),
v v

suc | |2||BO'70”2 (3-14)

1
and if |7 <1, then :z>=6(|00> 111)),|E,) = 5(|01>—|10>)-

2
Psuc— [Bov". (3.19 The general program staﬂé(ﬁ»p encoding the unitary
As before, we see that it is only in the case that the operatiotransformation ~ U;=explii-o)=cosul +i sin u(n/p) -
is unitary that the probability goes to 1. where u=|u| is given by the expression
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inw _ _ _ dits. We start our discussion with a brief description of the
(Mx|‘:x>+/'Ly|‘:Y>+:u“Z|:Z>)' QID in the case of qudits. First, we introduce a generaliza-
tion of the two-qubitcNoT gate [10] for qudits. This is a
(4.2 conditional shift operator defined with a control qud&”“

Performing previously mentioned measurement in the pro@nd the target qudith”,
gram basig0+),|0-),|1+),|1-) we obtain the following uni-

— > —f S
|E(@))p = cosu|Eg) +i

N-1
tary transformations:
y D= > [Kakl @ [(m+KmodNy(m|, (5.1
0) ® | +):[¢h)g — Uzl h)g, kim=0

which implies that
0) @ [= il g — U o) e P

N-1

1)@ | +):|g— o U 00 P)a, DIp= > Kk ® [((m=-KkmodN),(m|. (5.2
k,m=0

1D ®[=):[$ha— oyl zoyli)q, From this definition it follows that the operat@,, acts on

where the basis vectors of a qudit as

i sin M(Mxo'x+ﬂy0'y+ o). (43 Dap/K)|m) =|Kk)|(k + m)mod N}, (5.3

U;=cosul +
which means that this operator has the same action as the
To obtain this simple expression we have used the identitgonditional adder and can be performed with the help of the
ojoo;=—oy if k#]. All observed outcomes occur with the simple quantum network discussed in Héfl]. Note that for
same probabilityp=1/4.Using the above notation the action N>2 the two operator® andD" differ; they describe con-
of the QID can be expressed in the form ditional shifts in opposite directions. Therefore the generali-
NE zations of thecNOT operator to higher dimensions are just
== = . H conditional shifts.
[¥4® [Z(2)yp — Z(EUJU"“U‘M" @li ),;) (49 Following our earlier worK6,10] we can assume the net-
~ work for the probabilistic universal quantum processor to be
where vectorg|j )pt form the basis of{,, associated with the

realized measurement. The explicit form of the vectors is Pio3= D31D£1D13D12. (5.9
presented in following section where we discuss a general
solution of SUN) rotations of qudits. The data register consists of system 1 and the program reg-

We see that each outcome of the measurement indicateggier of systems 2 and 3. The sta®,),; acts as the “soft-
different unitary transformation which has been applied toware” that carries the information about the operatibio
the data. Once we have obtained a specific result we can ub€ implemented on the qudit data staf€);. The output
the same processor again to correct an incorrectly transtate of the three-qudit system, after the four controlled
formed data register and consequently improve the succes#ifts are applied, reads
probability. In particular, in the case of the resjlthe new
program register needs to encode the correcting transforma- |0)125= D31D31D13D1 W[ Ev)os. (5.5
tion U§1)=Uﬂa'jU’B(Tj. The probability of implementing the . ]
unitary transformation using one conditioned loop is given as "€ Sequence of four operators acting on the basis vectors
p(1)=1/4+3/16=7/16. Using more and more conditioned9Ves|Mm[k); as
loops the success probability is given by(n) s
=S (371/4)=1/435,(3/4)=1~(3/4)" which converges D31D51D13D12n)1|mM);[K)3 = [(n = m+ k)mod N),|(m+ n)
to unity, i.e.,p(n)— 1 as the number of conditioned loops xmod N),|(k + nymod N)5.
goes to infinity. For instance, 30 conditioned loops result in (5.6)
the negligible probability of failurep=107*. '

The example of Vidal, Masanes, and Cirac shows us that We now turn to the fundamental program states. A basis
we are able to replace the feedback scenario with a probab¢onsisting of maximally entangled two-particle statéise
listic scenario by using different processors. An open probanalog of the Bell basis for spi%u-particles) is given by
lem is whether the same replacement can be done in general,
or at least for the case of the QID. L N2

SRIEN S|

VN k=0

2

ka)|k>|(k —-n)modN), (5.7)

V. SU(N) ROTATIONS OF QUDITS

f—t

wherem,n=0, ... N-1. If |2, is the initial state of the
In what follow we will show that one can utilize the QID program register anf¥#)=%; o;lj)4 (here, as usualja;|?
for a probabilistic implementation of SN) rotations of qu-  =1) is the initial state of the data register, then it follows that
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_ @ 27ikm _ N
P1od¥)1|Emn2s= 2 —=exp [—] P12di)[K)|k—n) D, =]-1® %E exp {mi ”—S} In-r), (5.16
ik N N VNizo N
a; 2mikm, ) ) i inde-
= “Lexp li = nlk+ )|k +j - n) which means that the measurement can be performed inde
ik VN N pendently on two program qudits.

. In order to clarify the role of the measurement we will
=> a-exp_ZLJmU = rewrite the output state of the QID using the bdds;) for
K N program qudits:

=(U™ W) E . (5.8 _ N-1 e 1
. _ P12odW)1|Ev)23= 2 AU ™)1 E )23
where we have introduced the notation m,n=0
N-1
' —2imsm = (m,n)
umm = > exp———I|s—nx(s. (5.9 = 2 U™,
=0 N m,n=0
1 N-1 _
This result is similar to the one we found in the case of a x| =3 exp [_ zwiw]|¢rs>23
single qubit(see the preceding sectioiThe operatorg)™" Nrso N
satisfy the orthogonality relation N-1 N-1
15 8 o] antrons]
Tr[(u(m’,n’))TU(m,n)] = NOmm Onn - (5.10 N r,s=0 mn=0 i N
The space of linear operatof$H) defined on some Hilbert < UM b gy, [ 51
space’H with the scalar product given by E@5.10 we mh [Vl Pro)zs (617

know asHilbert-Schmidt spaceThus the unitary operators o
UMM form an orthogonal basis in it and any operaior 12King into account that

e 7(H) can be expressed in terms of them, (mg-np)
- [uPATYmNyPa = exp{Zﬂ-i %} umn

V=3 d,umn (5.11) (5.18

m,n=0

The orthogonality relation allows us to find the expansionand choosing=s andg=r we find

coefficients in terms of the operators 1 mr-ns
NTr[(u<Svf>)T(u<m’”>)Tu<S’f>V] = exp{— 27Ti(T) -
1
A= NTr[(U(m'”))TV]. (5.12 (5.19

Therefore, the program vector that implements the operato'?ma"y’ the output of the QID can be rewritten in the form

V is given by L N2
N-1 P12d¥)1|Ev)2s= N > [USOVUE) TP, D,g),s,
r,s=0
Eo3= D ol Emnos. (5.13
| V/23 oot mn| mn>23 (5.20)

Application of the processor to the input Stat),|=)ys from which it is clear f[ha.t if the result of the measurement of
; the two program qudits igb,),5 then the systenidata is
yields the output state . + : .
left in the statefUSPV(US))T]|W),. Obviously, if s=r=0,
Droa= S d UMY, @ |2 _ 51 then the operatoY is applied on the data qudit. The prob-
(D12 % m ¥1® |Zmzs (519 ability of this outcome is 1N2. For all other results of the
measurement the data qudit is left in the state given above.
~ Now let us perform a measurement of the program outpupne can use these output states with a modified program
in the basis state to improve the performance of the programmable
N-1 ( | process(or). Specifically, we have to use the new program
1 (mr=ng) | _ =(rs . S
Dy== > exp[Zm ]|ﬂmn>- (5.15 state|E,,”) that is chosen after taking into account the
N =0 N result of the previous measurement. This program state
has first to “correct” the wrong realization of the opera-
The orthogonality of this measurement basis directly followstion V during the previous “run” of the processor and then
from the orthogonality of the entangled basi,,. We  apply (probabilistically, the original operatiotv. For this
should also note that the vectdmB,s) can be rewritten in a reason, the new program state has to perform the opera-
factorized form, i.e., tion
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VIS = VUSIV(UE)) T, (5.21) shown how to increase the probability of success when the
. ) . quantum processor is used in loops with updated program
This process of error correctiofeonditional loops can be  giates. We have generalized the whole problem and we have

usedK times and the technique of conditioned loops can b&pqwn that one can use a very simple quantum processor, the
exploited in order to amplify the probability of success. Ap- 5q_called quantum information distributor, to perform arbi-

plying the processoK times the probability of a successful 41y SU2) rotations of qubits as well as $N) rotations of
application of the desired SMN) operationV is p(K)=1 4 gits. It is also possible to use enlarged programs to in-

—(1-1N3K. crease the probability of success without the use of loops. We
have shown that if the processor is used in loops with prop-
VI. CONCLUSIONS erly chosen program states one can improve the performance

In this paper we have analyzed a probabilistic program—.Of the quantum programmable processor so that the probabil-

mable quantum processor. We have shown how to encodtey of failure_decreases expopentially.with the number of
information about the quar{tum dynamiesto be performed program qudits that store the information about transforma-

on a quantum systerfdata registerin the state of another tion on the data qudit.
quantum system(program registgr This information is
stored in such a way that the program can be used to proba-
bilistically perform the stored transformation on the data. In
our paper we have analyzed systematically how to perform This work was supported in part by the European Union
U(1) rotations of qubits and qudits and one-parameter famiprojects QGATES and CONQUEST, by the National Science
lies of nonunitary operations, where the parameter is enFoundation under Grant No. PHY-0139692, and by the Slo-
coded in states of quantum programs. In addition we haveak Academy of Sciences.
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