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Abstract. We extensively discuss the problem of encryption of quantum
information. We present an attack on the private quantum channel which
applies when partial classical description of the cipher text is known (the
known-ciphertext attack) and show how to avoid this situation. The quantum
analogue of the known-plaintext attack is also discussed.

1. Introduction
Quantum cryptography is a rapidly developing branch of quantum information

processing. The most fundamental results of quantum cryptography include
quantum distribution of the key [1, 2], quantum secret sharing [3, 4], quantum
oblivious transfer [5] and other cryptographic protocols [6]. Quantum cryptogra-
phy has two main goals. The first is to ensure the transmission (or manipulation) of
classical information in the way that the security is guaranteed by laws of quantum
mechanics in contrast with classical cryptographic protocols which are based
mainly on some arguments from complexity theory. The other goal is to ensure
secure manipulation of quantum information, such as secret sharing of quantum
information [4].

The rapid development of quantum cryptography has lead to the formulation
of the encryption of quantum information defined in terms of the so-called
quantum private channel [7], in which the plaintext is quantum information, the
transmission channel is quantum while the key is either quantum or classical. As a
consequence, we do not have to care about secure distribution of quantum
information (as in [3]), but we can concentrate our attention on the protocol itself.
A different method of encryption of quantum information which uses entangle-
ment as the key was proposed by Leung [8].

In section 2 we define the private quantum channel as well as the quantum one-
time pad. In section 3 we assume an attack against the private quantum channel
which applies when Eve obtains at least partial classical information about the
ciphertext. We determine the situations when this problem arises and describe
how to avoid them. In section 4, some quantum analogies of the known plaintext
attack are suggested and their benefit for Eve is briefly discussed.
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2. How to encrypt quantum information
2.1. Quantum one-time pad

The encryption of quantum information was independently developed in [7]
and [9] and it is a generalization of a side effect of quantum teleportation [10]. Let
us define the Pauli matrices as usual:

�0 ¼
1 0
0 1

� �
; �1 ¼

0 1
1 0

� �
; �2 ¼

0 �i
i 0

� �
; �3 ¼

1 0
0 �1

� �
: ð1Þ

When a qubit in a state � is teleported from Alice, then it is randomly modified
by one of the Pauli operators, each with probability 1

4
. Since Bob (the receiver) does

not know which of the operators was applied, he must obtain two classical bits
from Alice to gain this knowledge. The two classical bits K specify which of the
operators was applied; they determine the state of the system to be �K��K .
Without knowledge about which of the operations was applied the qubit appears
to be on average in the state 1

4

P3
i¼0 �i��i ¼ 1=2I for any �. The state 1=2I contains

no information about � and therefore this technique can be considered to be a
perfect encryption of a qubit.

The encryption of one qubit follows. Let us assume that Alice wants to
transmit one qubit to Bob in the way that Eve cannot use this qubit for any
purpose when she intercepts it. Further let us suppose that Alice and Bob share in
advance two secret classical bitsK. When Alice wants to send a qubit Q in the state
�, she performs the following: she applies the operation �K on Q to transform it
into the state �K��K and sends this state to Bob via public quantum channel. Eve
does not know the key, so the system appears to be in the state 1=2I from her point
of view. On the other hand, when Bob receives the system, he applies �K to
reconstruct the original state �.

The encryption of a multiple-qubit state is a simple modification of the single-
qubit procedure as described above. Whenever a multiple-qubit state is factorable,
we can encrypt each of the qubits independently. However the question arises of
how to encrypt entangled states. Surprisingly this is done again by encrypting each
qubit independently and any state � of n qubits will be turned into ð1=2nÞI�n (see
[9] for the proof). In this way we need two classical bits to encrypt each qubit and
to encrypt an n qubit state we need 2n bits. This encryption scheme is called the
quantum one-time pad [7, 9].

2.2. Private quantum channel
The general framework of the quantum one time pad is called the private

quantum channel and is defined in the following way (see figure 1).

Definition 1: Let S � H2n be a set of pure n-qubit states and E ¼ fpi1=2Uigni¼1 be a
superoperator, where each Ui is a unitary operator on H2m and

PN
i¼1 pi ¼ 1. Let �a

be an ðm� nÞ-qubit density matrix and �0 be an m-qubit density matrix. Then
½S; E; �a; �0� is a private quantum channel if and only if for all j�i 2 S it holds that

Eðj�ih�j � �aÞ ¼
Xn
i¼1

piUiðj�ih�j � �aÞU�
i ¼ �0: ð2Þ

The meaning of the private quantum channel is the following. Alice wants to
establish a communication (quantum) channel with Bob with the property that any
state j�i 2 S will be transmitted securely. Eve is not able to use the transmitted
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state for any purpose. The encryption of the state is done in the way that one of the

operators fUigi is applied. The operator Ui is chosen with probability pi. The

classical key specifies which of the unitary operators was applied. The unitary

operatorsUi are acting on H2m , while the state j�i is only n dimensional. Therefore

the unitary operator is applied on the state j�ih�j � �a. It means that the unitary

operators act on the system which is being encrypted and on the auxiliary system,

which is initially factorized from the system being encrypted. The initial state of

the auxiliary system is �a.
The security of the transmission has the following meaning: without knowledge

of the key (without knowledge about which of the operators was used) any initial

state j�i 2 S together with the ancilla appears to be in the state �0 after the

encryption. This means that all states from the set S are physically indistinguish-

able after the encryption.

In [7, 9] it has been shown that this method of encryption using the Pauli

matrices is optimal in the sense that it is necessary to use at least two classical bits

to encrypt one qubit.

2.3. Quantum one-time pad as the private quantum channel

We can define the quantum one-time pad described in the section 2.1 in terms

of the private quantum channel framework. It serves also as an example of the

private quantum channel.

The quantum one-time pad works in the way that the transmitted qubit is

modified randomly by one of the Pauli operators, the corresponding key is a pair of

classical bits describing which of the Pauli operators was used (there are four Pauli

operators including the identity). More formally, the quantum one-time pad is

½H2n ; E; 1=2nI�, where E ¼ fð1=22nÞ�xjx 2 f0; 1; 2; 3gng. The operator �x is a gen-

eralization of a Pauli matrix for n qubit system such that, when x ¼ x1x2 . . . xn, then
�x ¼ �x1 � �x2 � � � � � �xn .
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Figure 1. A schematic description of the private quantum channel.



3. Known-ciphertext attack
In this section we shall discuss the problem that arises from the fact that Alice

sends only states from the set S and not from the whole Hilbert space. This attack
must be considered whenever Eve is able to obtain any classical information about
the ciphertext state. This fact especially enforces a specific usage of the classical
key which is different from the usage of the key in the classical case (in the case of
the classical one-time pad).

Let us define =ðSÞ ¼ fUij�iji ¼ 1n; j�i 2 Sg. The =ðSÞ is a set of all possible
ciphertext states. Further, let =2ðSÞ ¼ fU�

i j ~��ij i ¼ 1; . . . ; n; j ~��i 2 =ðSÞg.
The security problem caused by the set S arises when

=2ðSÞ 6� S ð3Þ
(figure 2). When we perform decryption without knowledge of the key, we must
accept all states U�

i j ~��i as candidates for the plaintext state. However, we can safely
ignore states U�

i j ~��i which do not belong to the set S, we can be sure that these
states were not the plaintext states. Therefore the original equation

E�1ðj ~��ih ~��jÞ ¼
XN
i¼1

piU
�
i j ~��ih ~��jUi ¼ �0 ð3Þ

is transformed to

E�1ðj ~��ih ~��jÞ ¼
X
i¼1...N
U�
i
j ~��i2S

piU
�
i j ~��ih ~��jUi; ð5Þ

which is not equal in general to any fixed ~��. Note that E�1 is not the inverse
superoperator to E. It just describes decryption without knowledge of the key. The
probabilities pi are the same as in the case of encryption, because there is a
probability pi that j ~��i was encrypted using Ui.

Let us consider the following example: S ¼ fj0i; j0i þ j1ig; E ¼ f1
4
�iji ¼

0; . . . ; 3g; �0 ¼ 1=2I. Therefore =ðSÞ ¼ fj1i; j0i; j0i þ j1i; j0i � j1ig. Let us
suppose that the ciphertext state is j0i þ j1i. Then Eve can learn the plaintext
with the probability 25% by measuring only two copies of the ciphertext state. The
considered measurement basis is fj0i; j1ig. If the two (or more) measurements{
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{ In the case of two measurements the probability of obtaining different results is 50%,
and the probability that Eve has chosen correct basis is 50%; this together gives us a 25%
chance of success.

2 n 2 n 2 n

Figure 2. Relation between the sets S;J ðSÞ and J 2ðsÞ.



give the result j0i and j1i, Eve can be sure that the ciphertext is neither j0i nor j1i
and hence the plaintext is j0i þ j1i. This is caused by the fact that
=2ðSÞ ¼ fj0i; j1i; j0i þ j1i; j0i � j1ig 6� S. By measuring the basis fj0i; j1ig, we
obtained the information that the ciphertext is either j0i þ j1i or j0i � j1i, which
yields that the original plaintext was either j0i þ j1i or j0i � j1i. Finally, only the
state j0i þ j1i is included in the set S; so we have revealed the plaintext.

If we have supposed that j0i � j1i 2 S, then we would have obtained

E�1ðj0i þ j1iÞ ¼ E�1ðj0i � j1iÞ

¼ 1
2½ðj0i þ j1iÞðh0j þ h1jÞ þ ðj0i � j1iÞðh0j � h1jÞ� ¼ 1

2I:
ð6Þ

This is a sharp difference between our cipher and the classical one-time pad. In
the classical case, Eve gains nothing when she obtains an arbitrary number of
copies of ciphertext (she can even create them herself). Nevertheless, in the
quantum case we encrypt a state with continuously many states using only two
classical bits. This is safe as long as the classical description of the ciphertext is not
known.

In this way we can define a new class of attacks which has no analogy in the
classical cryptography: the known-ciphertext attack. This term seems to be rather
strange, but we must consider the fact that in the quantum world there is a
significant difference between ‘to have quantum information’ and ‘to know
quantum information’ (to have a classical description of the quantum information).
When Eve has the encrypted state (system in this state), she can do nothing
irrespective of her abilities to manipulate with quantum information. However,
when she knows the classical description of the encrypted state, she reduces the
continuum of possible original (plaintext) states to only four possible states. This
fact can in some cases allow her to determine the original state with certainty (see
the previous example). In this case, knowledge of the classical description of the
ciphertext leads to uncovering of the original message. This fact implies that the
classical description of the ciphertext is in general confidential information as
discussed in the following paragraph.

It might seem strange, but in the quantum case even the ciphertext must
be kept secret in the sense that any classical information about the ciphertext
must be kept secret. For example, when Alice wants to send twice the copy of a
state �, she must use independent keys for each copy. A typical example is when
the state was destroyed during transmission; Bob did not receive it and he asks
Alice for a new copy. Eve knows that the transmitted information will have the
same original meaning as the previous, but in the classical case this gives her no
advantage. In the classical case we can send it once more using the same key (just
send one more copy of the encrypted information). However, in the quantum one-
time pad we must use an independent key! In this case the security is maintained
and this is almost the same as teleporting an infinite number of systems in an
identical state.

4. Known-plaintext attack
In the classical cryptography the known-plaintext attack is the following

problem. The eavesdropper has a description of the cipher, he has the plaintext
and the ciphertext. His goal is to determine the key. In the case of the classical one-
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time pad the situation is simple; the eavesdropper just performs an XOR of

ciphertext and plaintext and obtains the key.

In the case of our cipher the situation is similar, but we must define first

the known-plaintext attack for quantum information. There are two possible

(basic) definitions of the known plaintext attack. The first is that the eavesdropper

has two systems P and C: the system P is in the plaintext state and the system C

is in the ciphertext state. In this case the eavesdropper is not able to determine

the key{ (if he does not have additional information about P or C){. The

other possibility is that the eavesdropper has a classical description of both

plaintext and ciphertext. In this case he is able to determine the key and therefore

we suggest that this case is considered as the known-plaintext attack in the

quantum case.

Naturally, there can be a large amount of possible definitions which vary

between the previous two definitions; for example the eavesdropper has some

additional information about P or C, the eavesdropper has more that one copy of P

or C, or the eavesdropper has classical description of P and one copy of C. The

advantages given to the eavesdropper in these situations do depend on the specific

realization of the private quantum channel, namely on the set S and the set of

encryption operations fUigi together with the probability distribution fpigi. In the

case when the eavesdropper has classical description of the plaintext and one

system in the ciphertext state, he is even not able to infer anything about the

ciphertext.

5. Conclusion

We proposed a new type of attack which has no analogy in the classical

cryptography: the known-ciphertext attack. We gave a specific example of the

situation in which this type of attack applies and suggested a way to avoid it.

Moreover we discussed a quantum version of the known-plaintext attack and we

described a variety of situations that can be considered to be the quantum known-

plaintext attack.

We point out that, each time that we design a quantum cryptographic system

(protocol, cipher, etc.) we have to remember fundamental differences between the

classical and quantum information. Especially important is the fact that it is

impossible to obtain a partial (deterministic) information about the basic unit of

classical information: the single classical bit. Either the eavesdropper knows the

value of the bit or he knows nothing (certainly probabilistic description is

different). In the quantum case we can have partial deterministic information

about the qubit. It can be the information such as ‘the state is not j0i’ or ‘the state

is either j0i or 1=21=2ðj0i þ j1iÞ’. As discussed in this article, even the partial

information about the plaintext can be sometimes enough to learn the plaintext. It

might be interesting to investigate what partial classical information about the
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{ In general it is impossible even to decide whether the systems P and C are in different
states.

{ In the case of the quantum one-time pad with S ¼ fj0i; j1ig the situation is similar to
the classical one-time pad. Eve measures both P and C in the basis fj0i; j1ig and obtains a
classical description of the plaintext and the ciphertext.



system must the eavesdropper learn to compromise the security of the (quantum)
cryptographic system.
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