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Entangled graphs. Il. Classical correlations in multiqubit entangled systems
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Bipartite correlations in multiqubit systems cannot be shared freely. The presence of entanglement or clas-
sical correlation on certain pairs of qubits may imply correlations on other pairs. We present a method of
characterization of bipartite correlations in multiqubit systems using a concept of entangled graphs which has
been introduced in our earlier wofk. Plesch and V. Blgk, Phys. Rev. &7, 012322(2003]. In entangled
graphs, each qubit is represented by a vertex while the entanglement and classical correlations are represented
by two types of edges. We prove by construction that any entangled graph with classical correlations can be
represented by mixedstate ofN qubits. However, not all entangled graphs with classical correlations can be
represented by a pure state.
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[. INTRODUCTION tangled graphs with classical correlations. In the graph, each

qubit is represented by a vertex and vertices can be con-

The laws of quantum mechanics impose strict bounds omected by two types of edges; one type corresponds to en-
bipartite entanglement in multipartite systems. This issue hat&nglement between two specific qubitee corresponding
been first addressed by Woottessal. [1,2] who have de- bipartite density operator is insepargbiehile the second
rived bounds on shared bipartite entanglement in multiqubityPe corresponds to classical correlatigtie corresponding

systems. In particular, in their paper, O’Connors and WootDipartite density operator is separable but not factojized

ters[2] have searched for a state of a multiqubit ring with The main result of our paper is that for any entangled graph

maximal possible entanglement between neighboring qubitdVith classical correlations, one can find a mixed state that is

Another version of the same problem has been analyzed bigPresented by this graph. We also prove that not every en-

Koashi, Buek, and Imoto[3] who have derived an explicit tangled graph with classical correlations can be represented

expression for the multiqubit, completely symmetric stateDy & pure state, though we find several categories of en-

(entangled webin which all possible pairs of qubits are tangled graphs that can be associated with pure multiqubit

maximally entangled. states.

A more general approach has been suggested yvba
has introduced a concept efitanglement molecul¢$], that [l. ENTANGLED GRAPHS WITH CLASSICAL
is, quantum structures such that each qubit is represented by CORRELATIONS

a point(“atom”) while an entanglement between two qubits
is represented by a “bound.” Dithas shown that under the
condition that the “strength” of the bound, i.e., a particular
value of the degree of entanglement, is arbitréttyough
nonzerg, an grb|trary entanglement_molecule can be repre- pii=Trs.i.i1(p), (2.1)
sented by anixedstate of a multiqubit system. On the other
hand, Du has considered just the condition of inseparabilitywhere the trace is performed over the set of quBitéi,j},
for a given set of pairs of qubits in the multiqubit system, butwhich denotes the whole system except two quibétsd;j. In
he did not impose a strict condition of separability for the general, there exist two basic types of bipartite density ma-
remaining pairs of qubits. This issue has been addressed ifices. Those fulfilling the separability conditiof.g., see
our earlier papef5] where we have introduced a concept of Ref. [6])
entangled graphsin the graph, each qubit is represented by
a vertex, and an edge between two vertices denotes entangle-
ment between these two qubitpecifically, the correspond-
ing two-qubit density operator is insepargblBy construc-
tion, we have proved that any entangled graph with are called separable, i.e., these density operators describe
vertices and edges can be associated withure multiqubit  states of two qubits that are not entangled but theyckrs-
state. sically correlated(providing n=2). All other states are en-

In Refs.[1-5], the main issue has been the distribution oftangled, i.e., they are not separable.
bipartite entanglement in multiqubit systems. On the other In what follows, our task will be to use the concept of
hand, it is of importance to understand how entanglement agntangled graphk5] to characterize bipartite correlations in
well as classical correlations is shared in multiqubit systemsmultiqubit systems. First we note that when no entanglement
In order to illuminate this problem, we generalize the con-between two qubits is present, two classes of bipartite den-
cept of entangled graphs. Specifically, we will consider en-sity operators can be identified. These @reseparable den-

Let us consider a general staieof an N-qubit systemS.
Density matricesp;; of all possible pairs in syster§ are
defined as

pij=; (o8 (2.2
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(1) A system ofN qubits is represented by a graph with
vertices.

(2) Vertices in the graph can be connected by two types of
edges.

(3) Entanglement edge between two verti¢sslid line)
denotes nonzero entanglement between relevant qubits; pres-
ence of entanglement implies also the presence of classical
correlation.

(4) Correlation edge between two verticetashed ling
denotes classicdhnd only classicalcorrelation between rel-
evant qubits that are described by separable but not factor-
able density operatdisee Eq(2.2)].

(5) No edge between two verticdso line) denotes no
correlation between relevant qubits and the corresponding
FIG. 1. Some examples of entangled graphs with classical Corglekr)l_sng operator Is given by the tensor product of single-
relation corresponding to states of four qubits. Solid edges are asq-u I ens_lt_y_operato@ee_ Eq.(2.3)]._ .

By definition, for a given multipartite statépure or

sociated with entangled bipartite states, while dashed edges de-. it is al ible t truct di
scribe correlated but not entangled.e., separable but not mixed it is always possible to construct a corresponding

factorized bipartite states. graph. We simply calculate all bipartite density operators and
test for the presence of entanglement, as well as for the con-

sity operators of forn{2.2) and(2) density operators that are c_Iition (2.3 associa’ged with the a_bse_nce of classical corr_ela-
given by tensor products of single-particle density operator§on. However, the inverse question is much more attractive:
(i.e., the corresponding two-qubit density operator is factorGiven anentangled graph with classical correlations it

ized [7,8]). Correspondingly, we will divide a set of sepa- POssible to construct a state, which would be represented by
rable density matrice€.2) into two categories; if the sum in this graph? This question implicitly contains another impor-
Eq. (2.2 has at least two termsn1), the corresponding t@nt issue: Does entanglement and classical correlations be-
density operators describe classically correlated bipartitéveen specific pairs of qubits imply entanglement and/or
states. On the other hand, if there is only one term present iplassical correlation on other pairs of qubits in multiqubits

the right-hand side of E¢2.2) then systems? . o -~
A graph corresponding tN qubits is completely specified
pij=pi®pj, (2.3) by two sets of nonordered pairs of vertidég }. The first set

_ S _ ) SE corresponds to entangled paifs;j} € SE<{i,j} are en-
i.e., the bipartite density operator is equal to the tensor pmdtangled. The second s&F describes correlated pair§;, j}
uct of two single-qubit density operators and the correspondg SCe{i,j} that are correlated. Each pdir,j} ¢ S© is com-
ing two qubits are not correlated at all. The single-qubit denyetely uncorrelated, i.e., it is in a product state. It is worth
sity operators in Eq(2.3) are obtained by the standard trace remembering thaS5C S, i.e., each entangled pair is also
rule classically correlated. We can also define a specific subset of
2.4 S®, the set of classicallfand only classically correlated

' pairsS©©=SC/SE. We define also a vectdof the lengthN)

whereS\{i} denotes the set of all qubits except ilie one. m, whose componentsn, denote the number of qubits,
If condition (2.3 is fulfilled, then the corresponding two which are uncorrelated with theh qubit; e.g.,m; is the
qubits are not correlated at all. number of pairgi,j} ¢ S© with a fixedi. Let us denotev

We remind ourselves that in the caseeotangled graphs =13 .m; as the total number of uncorrelated pairs. The
[5] (where only entangled and separable matrices were cofinequalities
sidered, an edge between two vertices has represented en-

pi=Trsiy(p),

tanglement, whereas no edge has simply meant no entangle- O=m;=N-—1,

ment. In what follows, we will consider three types of

bipartite density operatorg)l) nonseparable density opera- N(N—-1)

tors that describe entangled pairs of qubit®), separable OSM$T (2.9

density operators that describe classically correlated pairs of
qubits, and(3) factorable density operators that describeexhibit simple attributes of the system, that no particle can be
states of independerfuncorrelatedl qubits. Therefore, we uncorrelated with more tharN(— 1) particles and that the
will need two types of edges—one that corresponds to thénaximum number of pairs of qubits in the system is equal to
entanglement between two qubits, while the second correN(N—1)/2.
sponds to separable qubits that cannot be described by fac-
torized density operators.

With these two types of edges, we can introduce the con-
cept of an entangled graph with classical correlatimsne A mixed state of a quantum mechanical system is always
examples of such graphs are presented in Big. 1 determined by a larger number of parameters than a pure

IIl. MIXED STATES
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state of the same system. For instance, a pure state of a qupitoperty of mixed states is that it is much easier to fulfill
is represented by a point on a Poincare sphere, that is, eacbnstraints imposed by the graph structure on mixed states
pure state is determined by two parameters. On the othewith more “free parameters,” than on pure states.

hand, a mixed statéa convex combination of pure states In what follows we present a mixed state, which is de-
represented by a point inside a Poincare sphere and is detdined by the setS® and SE. Then, we will prove that the
mined by three parameters. In general, number of paranbipartite density operators have all the desired properties,
eters, which are needed for a specification of a mixed state, thus this state is represented by the graph specified by the
much larger than the number of parameters needed for speaetsSF and SC.

fication of a pure statf9]. One of the consequences of this  The mixed state oN qubits given by the expression

0...0¢0...0

= ! [NZ 3N+1M+2
P 2(N—1)? 2

N
+ 1{(l\l—l)—%miho...olo...o><o...03,o...o|

+; €SF10...030...0)(0...030...0
1]

+;eSE|0...OJiO...O>(0...010...O|
1]

+ > E|o...01ro...01io...o><o...o;ro...OJjo...o| (3.1

{i,jresC 2

is characterized by a graph, specified by the number of ver- For every{i,j} e S°¢=S/SF, the qubitsi andj have to

ticesN and the setS§F and S©. be correlated, but not entangled. We can calculate the corre-
The density operatdgB.1) is represented by a convex sum sponding reduced density operator

of pure states [0...0...0, [0...010...0),

0...030...030...0), and 142(/0...0310...0)

+10...030...0)), so it describes a mixed state Nfqu- 2N’-6N+4 0 0 O
bits. o o 1 0 N—1 0

In what follows, we show that fofi,j} e S5, the qubitsi pi=—— .
andj are entangled. In this case, the redu@eigartite den- 2(N—1)? 0 0 N-10
sity operator, obtained from E@3.1) by tracing over rel- 0 0 0 0
evant qubits, has the form (3.3

2N*-6N+4 0 0 This matrix is diagonal and the partial transposition would
1 0 N—1 1 0 not change it at all. This proves that the corresponding bipar-
pﬁ=—2 . tite state is not entangled.
2(N-1) 0 1 N-1 0 From Eq.(3.3), we can find density operatops andp; of
0 0 0 0 individual qubits:
(3.2
2

One could use the Peres-Horodecki criteffi6hto determine pi=p: :; 2N"=5N+3 0 . (3.9
whether the density matri¢3.2) describes an entangled state P 2(N=1)2 0 N—-1

of two qubits. Instead of this, we can calculate the concur-

rence[10] of this state which would allow us to determine

the strength of the entanglement. For the density mé&si® In order to test the presence of classical correlations we
the concurrence reads WE 1)?, thus it is larger than zero will utilize the condition (2.3). The tensor product of two
which means that the pair of qubitsandj is indeed en- states(3.4) corresponds to uncorrelatedactorized two-
tangled. qubit density operator
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9 a ° b C T d
2N?— 6N+ 5 0 0 o0 |
3 . . . |
0 N-- O 0 [
1 2 l
pi®PI=—— .
- 3
2(N=1) 0 0 N-3 0
L e » f » g h
0 o o d i |
< |
(3.5 \\ |
and we immediately see that®p;#pf, i.e., the pair of >
qubits in the staté€3.3) is correlated. / J 1
For the rest of the pair§i,j} ¢ S°, the reduced density // // I
operatorpg can be found to be given by E@3.5), which < < |
means that these qubits are not correlated at all sp‘i?]ce N N
=pi®p]‘ . AN \i
Herewith, we have proved that the std&1) is repre-
sented by a graph specified by the two s&tsandS°. The FIG. 2. Ten possible entangled graphs with classical correlations

state(3.1) exhibits also some other interesting properties. Fokor three qubits. Graphs, d, e, andf do not have representatives
instance, concurrencies for all pafisj} € SE have the same among pure states.

value. This is a natural consequence of the fact that all the

density matrices of entangled pairs are identical. From Eq. 1

(3.4), we also see that all single-qubit density operators are h— §(|000>+|100)+|110>+|11]>),

identical and that they depend only on the total number of

qubits N. This means that the information about the graph .

itself is encoded only in the correlations; there is no way to L

extract any information about the specification of the graph = \/§(|OOO>+ 01D +]111),

only via single-qubit measurements.

1
i— —(|000)+|111)).
IV. PURE STATES j \/§(| 0+[111)

The problem of a construction @ure states correspond-
ing to a specific graph igas expectedmore complicated For the other four graphs, it is not possible to find any pure
than for mixtures. As mentioned above, the number of “free”state, which would be represented by them. These four
parameters in this case is smaller and one cannot “controlgraphs exhibit one common property: they all include at least
off-diagonal matrix elements in the same way as in the casene vertex, which is connected with just one of the other two
of mixed state$11]. Therefore, we start our discussion with vertices. We will show that this property of a graph immedi-
the simplest case of three qubits and we examine thoroughi§tely leads to nonexistence of a pure state associated with
all possible graphs. Then we formulate a theorem about th#his graph. The only possible exception is a graph of form
existence and nonexistence of some classes of graphs.  in Fig. 2, when there is an isolated pure entangled two-qubit

state [as, for example, a Bell pair (42)(]00)+|11))],
. which is not connected with the rest of the system at all.
A. Three-qubit graphs

In the case of_ three q_ubits, there. are ten possible en- B. Multiqubit graphs

tangled graphs with classical correlation. We present these

graphs in Fig. 2. We know that for six of these graphs, there FOr more than three qubits, we have a very large number
exist pure states. For example, of possible graphs. Typically, the number of different graphs

grows as exp{?) and already foiN=4 it gives a number
a—|000), greater than 100. Necessarily, one needs to categorize these
graphs in order to study the problem. Therefore, let us divide
these graphs into two basic categories

b—s i|0>(|00>+ 11)), (1) Disconnected graph3hese are the graphs whose ver-
V2 tices can be divided int¢at least two groups(each group
containing at least one vertgxvhich are connected neither
1 by an entanglement edge nor by a correlation edge.
g— —=(]001)+]010) +|100)), (2) Connected graphdn these graphs, every pair of ver-
\/§ tices is connected directly or via other vertices.
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i ./\ ° rest

FIG. 4. Schematic visualization of the structure of a graph with
an open edge. The vertex 1 is connected with the rest of the system

PN via a Single edge.

spond to a two-vertex graph with a correlation edge This can
be seen from the fact that such a state would have to be
written in a form

*—0 *—0 *—0 ‘
FIG. 3. Six examples of disconnected entangled graphs with | ) al ¥/l = 2 Ni(pa®ph), (4.3
classical correlations for five qubits. In the first row, there are ex- i=1

amples of graphs that cannot be represented by pure states of five ) _
qubits. In the second row, there are examples of graphs that can beith k>1, \;>0, andp}, # p , what is clearly not possible.
represented by pure states. For more qubits, we can determine one type of graph that
cannot be represented by pure states: these are the graphs
Let us first consider disconnected graphs. For a I&ige with the so-calledopen edgeslf a vertex in a connected
this group of graphs is much smaller than the second onenultivertex graph is connected with the rest of the graph
For disconnected graphs, the question of existence of purgith just a single edgécorrelation or entanglementhen we
states can be easily reduced to a problem of graphs witiill call it as an open edge(since it is not a part of any
smaller number of vertices. closed chain of edggsNow we can formulate a theorem for
We can divide all vertices in a disconnected graph intographs with open edges:
two groups, which are not connected by any edge. We denote A connected graph witiN vertices (N>2) containing at
the two subsystems a& and B, respectively. As the two |east one open edge can never be represented by a pure state

subsystems are not correlated, we can write of N qubits.
B To prove this theorem, let us denote the qubit, which is
PAB=PA® P 42 connected only via one edgthe open edgewith the rest of

: : . the system, as the first qubit. The qubit mediating this con-
wherep,g is the density operator of the whole system while nection(the other end of the open edgaill be denoted as

pa andpg are the density operators of the two subsystems, -
According to our assumption, the whole system is in a puréhe second one. The structure of the remaining part of the

state, i.e.,pap is pure. Consequently, the two subsystem§raph is not important for our consideration and we simply

: denote it as the “rest{see Fig. 4.
have to be in pure states as well. Thus, Since we consider the whols-qubit system to be in a

[P as=|¥)a®| ) 4.2 pure state, the state of the first qubit has to be mixader-
wise it could not be correlated or entangled with other parts
and we can state that the whole stéle) g exists, if and of the system The density operator of the first qubit then
only if |)a and|¢)g do exist. One could follow the same can be written in a form
argument if there are more disconnections in the graph.
Therefore, every disconnected graph can be represented by a pr=al )yl +(1—a)|ly" )y, (4.9
pure state if and only if every separated subset of vertices
(separated subgraplean be represented by a pure state. Inwhere 0<a<1 and the two statdss) and|") are mutually
Fig. 3, we present examples of disconnected graphs that cafrthogonal, i.e.{y]4")=0.
not be represented by pure statésst row) and that can be The part of the graph denoted as the rest With 2 ver-
represented by pure statescond row. tices is also in a mixed state with the corresponding density
For connected graphs, we have not been able to find angperatorp,es; that can be written in a form

simple algorithm to determine the existence of a pure state

that would represent a given graph. However, we can formu- pres=Al PN (V| +(1—A)py, (4.9
late theorems about specific classes of graphs, which exhibit
some special properties. where 0<A<1 andpy, is a density operator df —2 qubits

It is obvious that every graph containing only one vertexwhich is orthogonal to the statgl'), i.e., (¥|py|¥)=0.
has a representation among pure stétey pure state of a Because we assume that the part of the gaphresponding
qubit). Also, for a graph containing two vertices, which are to N—2 qubit9 that we denote as rest is not correlated with
connected by an entanglement edge, one is able to find the vertex 1 at all, we can express the joint density operator
pure state[for example, a Bell-state (JZE)(|OO)+|11))]. P1erest Of the first qubit and the rest as the tensor product of
On the other hand, there is no pure state that would correwo density operatorp, andp,est, i.€.,
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Plorest=P1® Prest- (4.6) 2. Connected graphs with no open edges

Through numerical simulations we have searched for pure
tates corresponding to graphs of four qubits. We have found
a pure state for every connected graph with no open edges.
Specifically, taking into account general properties of graphs
; ) — described above, we have found only 20 graphs that remain
Prest N HSUCD a way thatpl:Ter’eiq:HXz') and prest ambiguous. With the help of our simulation, we have been
=Tr2,(I2)(E]), while p1ores=Tra(|Z)(Z]). able to find at least one pure state as a representative of each

However, this is impossible even if we assume that thegraph.
density operatorpy, in Eq. (4.5 is a projector(i.e., py Unfortunately, we have not been able to generalize this

=| W) (W) since even in this case the density operatoresy|t for connected graphs with no open edges for more than
Piorest IS €qual to a statistical mixture of four mutually or- for vertices.

thogonal states:

On the other hand, by the definition of our task, the whoIes
graph corresponding td qubits has to be in a pure state
|E)1e20rest- Correspondingly, the qubiverteY number 2
has to purify simultaneously both density operatpysand

Piorest=P1® Prest= aA| ¢\P><¢\I’| +a(l1-A) V. CONCLUSIONS
SV €M WL+ (1—a)Al - W+ (1— In order to understand how correlations and entanglement
[P PP |+ (A=Al Wy P+ (1-2) are shared among qubits in multiqubit systems, we have in-
X(1=A) |-yt (4.7  troduced a concept of entangled graphs with classical corre-

lations. Every qubit is represented by a vertex, and correla-
As discussed earlier in Sec. Ill in order to purify the statetions between two qubits are represented by edges. Two
(4.7, we would need a four-dimensional ancifla], which  types of edges stand for two possible typegrufnzerd cor-
obviously is not available in our considerations since therelations: the entanglement edge corresponds to entangle-
vertex 2 is just a qubit with a two-dimensional Hilbert space.ment between a specific pair of qubitgertices, while the

This proves the Theorem 2. correlation edge denotes classical correlation. No edge be-
tween two qubits means that the corresponding bipartite den-
C. Other classes of graphs sity operator is the tensor product of single-qubit density
operators.

1. Entangled webs We have shown that any graph with vertices can be

Let as consider graphs witill pairs of vertices connected represented by a mixed statefqubits. On the other hand,
with an edge(either correlation or entanglemgnThese only some graphs can be represented by pure states. In par-
types of graphs can be represented by pure states of the fonigular, we have shown that connected graphs Witrertices

- that contain an open edge can never be represented by a pure
[E)=al0,....0+8]1,....D state. Interestingly enough, in the case of three- and four-
vertex graphs, we have been able to find pure states for all
+{. ?SE %mim”o, . Osp (48 other graphgi.e., connected graphs with no open edges
ijle
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