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Entangled graphs. II. Classical correlations in multiqubit entangled systems
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Bipartite correlations in multiqubit systems cannot be shared freely. The presence of entanglement or clas-
sical correlation on certain pairs of qubits may imply correlations on other pairs. We present a method of
characterization of bipartite correlations in multiqubit systems using a concept of entangled graphs which has
been introduced in our earlier work@M. Plesch and V. Buzˇek, Phys. Rev. A67, 012322~2003!#. In entangled
graphs, each qubit is represented by a vertex while the entanglement and classical correlations are represented
by two types of edges. We prove by construction that any entangled graph with classical correlations can be
represented by amixedstate ofN qubits. However, not all entangled graphs with classical correlations can be
represented by a pure state.
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I. INTRODUCTION

The laws of quantum mechanics impose strict bounds
bipartite entanglement in multipartite systems. This issue
been first addressed by Wootterset al. @1,2# who have de-
rived bounds on shared bipartite entanglement in multiqu
systems. In particular, in their paper, O’Connors and Wo
ters @2# have searched for a state of a multiqubit ring w
maximal possible entanglement between neighboring qu
Another version of the same problem has been analyze
Koashi, Bužek, and Imoto,@3# who have derived an explici
expression for the multiqubit, completely symmetric sta
~entangled web! in which all possible pairs of qubits ar
maximally entangled.

A more general approach has been suggested by Du¨r who
has introduced a concept ofentanglement molecules@4#, that
is, quantum structures such that each qubit is represente
a point~‘‘atom’’ ! while an entanglement between two qub
is represented by a ‘‘bound.’’ Du¨r has shown that under th
condition that the ‘‘strength’’ of the bound, i.e., a particul
value of the degree of entanglement, is arbitrary~though
nonzero!, an arbitrary entanglement molecule can be rep
sented by amixedstate of a multiqubit system. On the oth
hand, Dür has considered just the condition of inseparabi
for a given set of pairs of qubits in the multiqubit system, b
he did not impose a strict condition of separability for t
remaining pairs of qubits. This issue has been addresse
our earlier paper@5# where we have introduced a concept
entangled graphs. In the graph, each qubit is represented
a vertex, and an edge between two vertices denotes enta
ment between these two qubits~specifically, the correspond
ing two-qubit density operator is inseparable!. By construc-
tion, we have proved that any entangled graph withN
vertices andk edges can be associated with apuremultiqubit
state.

In Refs.@1–5#, the main issue has been the distribution
bipartite entanglement in multiqubit systems. On the ot
hand, it is of importance to understand how entanglemen
well as classical correlations is shared in multiqubit syste
In order to illuminate this problem, we generalize the co
cept of entangled graphs. Specifically, we will consider
1050-2947/2003/68~1!/012313~6!/$20.00 68 0123
n
as

it
t-

ts.
by

e

by

-

t

in

le-

f
r

as
s.
-
-

tangled graphs with classical correlations. In the graph, e
qubit is represented by a vertex and vertices can be c
nected by two types of edges; one type corresponds to
tanglement between two specific qubits~the corresponding
bipartite density operator is inseparable! while the second
type corresponds to classical correlations~the corresponding
bipartite density operator is separable but not factorize!.
The main result of our paper is that for any entangled gra
with classical correlations, one can find a mixed state tha
represented by this graph. We also prove that not every
tangled graph with classical correlations can be represe
by a pure state, though we find several categories of
tangled graphs that can be associated with pure multiq
states.

II. ENTANGLED GRAPHS WITH CLASSICAL
CORRELATIONS

Let us consider a general stater of an N-qubit systemS.
Density matricesr i j of all possible pairs in systemS are
defined as

r i j 5TrS\$ i , j %~r!, ~2.1!

where the trace is performed over the set of qubitsS\$ i , j %,
which denotes the whole system except two qubitsi andj. In
general, there exist two basic types of bipartite density m
trices. Those fulfilling the separability condition~e.g., see
Ref. @6#!

r i j 5(
n

z i
n

^ j j
n ~2.2!

are called separable, i.e., these density operators des
states of two qubits that are not entangled but they areclas-
sically correlated~providing n>2). All other states are en
tangled, i.e., they are not separable.

In what follows, our task will be to use the concept
entangled graphs@5# to characterize bipartite correlations
multiqubit systems. First we note that when no entanglem
between two qubits is present, two classes of bipartite d
sity operators can be identified. These are~1! separable den-
©2003 The American Physical Society13-1
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sity operators of form~2.2! and~2! density operators that ar
given by tensor products of single-particle density opera
~i.e., the corresponding two-qubit density operator is fac
ized @7,8#!. Correspondingly, we will divide a set of sep
rable density matrices~2.2! into two categories; if the sum in
Eq. ~2.2! has at least two terms (n.1), the corresponding
density operators describe classically correlated bipa
states. On the other hand, if there is only one term prese
the right-hand side of Eq.~2.2! then

r i j 5r i ^ r j , ~2.3!

i.e., the bipartite density operator is equal to the tensor pr
uct of two single-qubit density operators and the correspo
ing two qubits are not correlated at all. The single-qubit d
sity operators in Eq.~2.3! are obtained by the standard tra
rule

r i5TrS\$ i %~r!, ~2.4!

whereS\$ i % denotes the set of all qubits except thei th one.
If condition ~2.3! is fulfilled, then the corresponding tw
qubits are not correlated at all.

We remind ourselves that in the case ofentangled graphs
@5# ~where only entangled and separable matrices were
sidered!, an edge between two vertices has represented
tanglement, whereas no edge has simply meant no enta
ment. In what follows, we will consider three types
bipartite density operators;~1! nonseparable density oper
tors that describe entangled pairs of qubits,~2! separable
density operators that describe classically correlated pair
qubits, and~3! factorable density operators that descri
states of independent~uncorrelated! qubits. Therefore, we
will need two types of edges—one that corresponds to
entanglement between two qubits, while the second co
sponds to separable qubits that cannot be described by
torized density operators.

With these two types of edges, we can introduce the c
cept of an entangled graph with classical correlations~some
examples of such graphs are presented in Fig. 1!:

FIG. 1. Some examples of entangled graphs with classical
relation corresponding to states of four qubits. Solid edges are
sociated with entangled bipartite states, while dashed edges
scribe correlated but not entangled~i.e., separable but no
factorized! bipartite states.
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~1! A system ofN qubits is represented by a graph withN
vertices.

~2! Vertices in the graph can be connected by two types
edges.

~3! Entanglement edge between two vertices~solid line!
denotes nonzero entanglement between relevant qubits;
ence of entanglement implies also the presence of clas
correlation.

~4! Correlation edge between two vertices~dashed line!
denotes classical~and only classical! correlation between rel-
evant qubits that are described by separable but not fac
able density operator@see Eq.~2.2!#.

~5! No edge between two vertices~no line! denotes no
correlation between relevant qubits and the correspond
density operator is given by the tensor product of sing
qubit density operators@see Eq.~2.3!#.

By definition, for a given multipartite state~pure or
mixed! it is always possible to construct a correspondi
graph. We simply calculate all bipartite density operators a
test for the presence of entanglement, as well as for the c
dition ~2.3! associated with the absence of classical corre
tion. However, the inverse question is much more attract
Given anentangled graph with classical correlations, is it
possible to construct a state, which would be represente
this graph? This question implicitly contains another imp
tant issue: Does entanglement and classical correlations
tween specific pairs of qubits imply entanglement and
classical correlation on other pairs of qubits in multiqub
systems?

A graph corresponding toN qubits is completely specified
by two sets of nonordered pairs of vertices$ i , j %. The first set
SE corresponds to entangled pairs;$ i , j %PSE⇔$ i , j % are en-
tangled. The second setSC describes correlated pairs;$ i , j %
PSC⇔$ i , j % that are correlated. Each pair$ i , j %¹SC is com-
pletely uncorrelated, i.e., it is in a product state. It is wo
remembering thatSE,SC, i.e., each entangled pair is als
classically correlated. We can also define a specific subse
SC, the set of classically~and only classically! correlated
pairsSCC5SC/SE. We define also a vector~of the lengthN)
mW , whose componentsmi denote the number of qubits
which are uncorrelated with thei th qubit; e.g.,mi is the
number of pairs$ i , j %¹SC with a fixed i. Let us denoteM
5 1

2 ( i 51
N mi as the total number of uncorrelated pairs. T

inequalities

0<mi<N21,

0<M<
N~N21!

2
~2.5!

exhibit simple attributes of the system, that no particle can
uncorrelated with more than (N21) particles and that the
maximum number of pairs of qubits in the system is equa
N(N21)/2.

III. MIXED STATES

A mixed state of a quantum mechanical system is alw
determined by a larger number of parameters than a p

r-
s-
e-
3-2
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state of the same system. For instance, a pure state of a
is represented by a point on a Poincare sphere, that is,
pure state is determined by two parameters. On the o
hand, a mixed state~a convex combination of pure states! is
represented by a point inside a Poincare sphere and is d
mined by three parameters. In general, number of par
eters, which are needed for a specification of a mixed stat
much larger than the number of parameters needed for sp
fication of a pure state@9#. One of the consequences of th
ve

m
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property of mixed states is that it is much easier to ful
constraints imposed by the graph structure on mixed st
with more ‘‘free parameters,’’ than on pure states.

In what follows we present a mixed state, which is d
fined by the setsSC and SE. Then, we will prove that the
bipartite density operators have all the desired propert
thus this state is represented by the graph specified by
setsSE andSC.

The mixed state ofN qubits given by the expression
r5
1

2~N21!2 H FN223N1
1

2
M12G u0 . . . 0&^0 . . . 0u

1(
i 51

N F ~N21!2
1

2
mi G u0 . . . 01i0 . . . 0&^0 . . . 01i0 . . . 0u

1(
$ i , j

PSE u0 . . . 01i0 . . . 0&^0 . . . 01j0 . . . 0u

1(
$ i , j

PSE u0 . . . 01j0 . . . 0&^0 . . . 01i0 . . . 0u

1 (
$ i , j %¹SC

1

2
u0 . . . 01i0 . . . 01j0 . . . 0&^0 . . . 01i0 . . . 01j0 . . . 0uJ ~3.1!
rre-

ld
ar-

we
is characterized by a graph, specified by the number of
ticesN and the setsSE andSC.

The density operator~3.1! is represented by a convex su
of pure states u0 . . . 0 . . . 0&, u0 . . . 01i0 . . . 0&,
u0 . . . 01i0 . . . 01j0 . . . 0&, and 1/A2(u0 . . . 01i0 . . . 0&
1u0 . . . 01j0 . . . 0&), so it describes a mixed state ofN qu-
bits.

In what follows, we show that for$ i , j %PSE, the qubitsi
and j are entangled. In this case, the reduced~bipartite! den-
sity operator, obtained from Eq.~3.1! by tracing over rel-
evant qubits, has the form

r i j
E5

1

2~N21!2 S 2N226N14 0 0 0

0 N21 1 0

0 1 N21 0

0 0 0 0

D .

~3.2!

One could use the Peres-Horodecki criterion@6# to determine
whether the density matrix~3.2! describes an entangled sta
of two qubits. Instead of this, we can calculate the conc
rence@10# of this state which would allow us to determin
the strength of the entanglement. For the density matrix~3.2!
the concurrence reads 1/(N21)2, thus it is larger than zero
which means that the pair of qubitsi and j is indeed en-
tangled.
r-

r-

For every$ i , j %PSCC5SC/SE, the qubitsi and j have to
be correlated, but not entangled. We can calculate the co
sponding reduced density operator

r i j
C5

1

2~N21!2 S 2N226N14 0 0 0

0 N21 0 0

0 0 N21 0

0 0 0 0

D .

~3.3!

This matrix is diagonal and the partial transposition wou
not change it at all. This proves that the corresponding bip
tite state is not entangled.

From Eq.~3.3!, we can find density operatorsr i andr j of
individual qubits:

r i5r j5
1

2~N21!2 S 2N225N13 0

0 N21D . ~3.4!

In order to test the presence of classical correlations
will utilize the condition ~2.3!. The tensor product of two
states ~3.4! corresponds to uncorrelated~factorized! two-
qubit density operator
3-3
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r i ^ r j5
1

2~N21!2S 2N226N1
9

2
0 0 0

0 N2
3

2
0 0

0 0 N2
3

2
0

0 0 0
1

2

D
~3.5!

and we immediately see thatr i ^ r jÞr i j
C , i.e., the pair of

qubits in the state~3.3! is correlated.
For the rest of the pairs$ i , j %¹SC, the reduced density

operatorrS can be found to be given by Eq.~3.5!, which
means that these qubits are not correlated at all sincer i j

S

5r i ^ r j .
Herewith, we have proved that the state~3.1! is repre-

sented by a graph specified by the two setsSE andSC. The
state~3.1! exhibits also some other interesting properties. F
instance, concurrencies for all pairs$ i , j %PSE have the same
value. This is a natural consequence of the fact that all
density matrices of entangled pairs are identical. From
~3.4!, we also see that all single-qubit density operators
identical and that they depend only on the total number
qubits N. This means that the information about the gra
itself is encoded only in the correlations; there is no way
extract any information about the specification of the gra
only via single-qubit measurements.

IV. PURE STATES

The problem of a construction ofpure states correspond
ing to a specific graph is~as expected! more complicated
than for mixtures. As mentioned above, the number of ‘‘fre
parameters in this case is smaller and one cannot ‘‘cont
off-diagonal matrix elements in the same way as in the c
of mixed states@11#. Therefore, we start our discussion wi
the simplest case of three qubits and we examine thorou
all possible graphs. Then we formulate a theorem about
existence and nonexistence of some classes of graphs.

A. Three-qubit graphs

In the case of three qubits, there are ten possible
tangled graphs with classical correlation. We present th
graphs in Fig. 2. We know that for six of these graphs, th
exist pure states. For example,

a→u000&,

b→ 1

A2
u0&~ u00&1u11&),

g→ 1

A3
~ u001&1u010&1u100&),
01231
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h→ 1

2
~ u000&1u100&1u110&1u111&),

i→ 1

A3
~ u000&1u011&1u111&),

j→ 1

A2
~ u000&1u111&).

For the other four graphs, it is not possible to find any pu
state, which would be represented by them. These f
graphs exhibit one common property: they all include at le
one vertex, which is connected with just one of the other t
vertices. We will show that this property of a graph immed
ately leads to nonexistence of a pure state associated
this graph. The only possible exception is a graph of formb
in Fig. 2, when there is an isolated pure entangled two-qu
state @as, for example, a Bell pair (1/A2)(u00&1u11&)],
which is not connected with the rest of the system at all.

B. Multiqubit graphs

For more than three qubits, we have a very large num
of possible graphs. Typically, the number of different grap
grows as exp(N2) and already forN54 it gives a number
greater than 100. Necessarily, one needs to categorize t
graphs in order to study the problem. Therefore, let us div
these graphs into two basic categories

(1) Disconnected graphs. These are the graphs whose ve
tices can be divided into~at least! two groups~each group
containing at least one vertex!, which are connected neithe
by an entanglement edge nor by a correlation edge.

(2) Connected graphs. In these graphs, every pair of ve
tices is connected directly or via other vertices.

FIG. 2. Ten possible entangled graphs with classical correlat
for three qubits. Graphsc, d, e, and f do not have representative
among pure states.
3-4
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Let us first consider disconnected graphs. For a largN
this group of graphs is much smaller than the second o
For disconnected graphs, the question of existence of p
states can be easily reduced to a problem of graphs
smaller number of vertices.

We can divide all vertices in a disconnected graph i
two groups, which are not connected by any edge. We de
the two subsystems asA and B, respectively. As the two
subsystems are not correlated, we can write

rAB5rA^ rB , ~4.1!

whererAB is the density operator of the whole system wh
rA andrB are the density operators of the two subsyste
According to our assumption, the whole system is in a p
state, i.e.,rAB is pure. Consequently, the two subsyste
have to be in pure states as well. Thus,

uC&AB5uc&A^ uc&B ~4.2!

and we can state that the whole stateuC&AB exists, if and
only if uc&A and uc&B do exist. One could follow the sam
argument if there are more disconnections in the gra
Therefore, every disconnected graph can be represented
pure state if and only if every separated subset of vert
~separated subgraph! can be represented by a pure state.
Fig. 3, we present examples of disconnected graphs that
not be represented by pure states~first row! and that can be
represented by pure states~second row!.

For connected graphs, we have not been able to find
simple algorithm to determine the existence of a pure s
that would represent a given graph. However, we can form
late theorems about specific classes of graphs, which ex
some special properties.

It is obvious that every graph containing only one vert
has a representation among pure states~any pure state of a
qubit!. Also, for a graph containing two vertices, which a
connected by an entanglement edge, one is able to fin
pure state@for example, a Bell-state (1/A2)(u00&1u11&)].
On the other hand, there is no pure state that would co

FIG. 3. Six examples of disconnected entangled graphs w
classical correlations for five qubits. In the first row, there are
amples of graphs that cannot be represented by pure states o
qubits. In the second row, there are examples of graphs that ca
represented by pure states.
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spond to a two-vertex graph with a correlation edge This
be seen from the fact that such a state would have to
written in a form

uc&AB^cu5(
i 51

k

l i~rA
i

^ rB
i !, ~4.3!

with k.1, l i.0, andrA
i ÞrA

j , what is clearly not possible
For more qubits, we can determine one type of graph t

cannot be represented by pure states: these are the g
with the so-calledopen edges. If a vertex in a connected
multivertex graph is connected with the rest of the gra
with just a single edge~correlation or entanglement!, then we
will call it as an open edge~since it is not a part of any
closed chain of edges!. Now we can formulate a theorem fo
graphs with open edges:

A connected graph withN vertices (N.2) containing at
least one open edge can never be represented by a pure
of N qubits.

To prove this theorem, let us denote the qubit, which
connected only via one edge~the open edge! with the rest of
the system, as the first qubit. The qubit mediating this c
nection~the other end of the open edge! will be denoted as
the second one. The structure of the remaining part of
graph is not important for our consideration and we sim
denote it as the ‘‘rest’’~see Fig. 4!.

Since we consider the wholeN-qubit system to be in a
pure state, the state of the first qubit has to be mixed~other-
wise it could not be correlated or entangled with other pa
of the system!. The density operator of the first qubit the
can be written in a form

r15auc&^cu1~12a!uc'&^c'u, ~4.4!

where 0,a,1 and the two statesuc& anduc'& are mutually
orthogonal, i.e.,̂ cuc'&50.

The part of the graph denoted as the rest withN22 ver-
tices is also in a mixed state with the corresponding den
operatorr rest that can be written in a form

r rest5AuC&^Cu1~12A!rC
' , ~4.5!

where 0,A,1 andrC
' is a density operator ofN22 qubits

which is orthogonal to the stateuC&, i.e., ^CurC
' uC&50.

Because we assume that the part of the graph~corresponding
to N22 qubits! that we denote as rest is not correlated w
the vertex 1 at all, we can express the joint density opera
r1% rest of the first qubit and the rest as the tensor product
two density operatorsr1 andr rest , i.e.,

th
-
ve
be

FIG. 4. Schematic visualization of the structure of a graph w
an open edge. The vertex 1 is connected with the rest of the sy
via a single edge.
3-5
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r1% rest5r1^ r rest . ~4.6!

On the other hand, by the definition of our task, the wh
graph corresponding toN qubits has to be in a pure sta
uJ&1% 2% rest . Correspondingly, the qubit~vertex! number 2
has to purify simultaneously both density operatorsr1 and
r rest in such a way thatr15Tr2,rest(uJ&^Ju) and r rest
5Tr2,1(uJ&^Ju), while r1% rest5Tr2(uJ&^Ju).

However, this is impossible even if we assume that
density operatorrC

' in Eq. ~4.5! is a projector~i.e., rC
'

5uC'&^C'u) since even in this case the density opera
r1% rest is equal to a statistical mixture of four mutually o
thogonal states:

r1% rest5r1^ r rest5aAucC&^cCu1a~12A!

3ucC'&^cC'u1~12a!Auc'C&^c'Cu1~12a!

3~12A!uc'C'&^c'C'u. ~4.7!

As discussed earlier in Sec. III in order to purify the sta
~4.7!, we would need a four-dimensional ancilla@9#, which
obviously is not available in our considerations since
vertex 2 is just a qubit with a two-dimensional Hilbert spac
This proves the Theorem 2.

C. Other classes of graphs

1. Entangled webs

Let as consider graphs withall pairs of vertices connecte
with an edge~either correlation or entanglement!. These
types of graphs can be represented by pure states of the

uJ&5au0, . . . ,0&1bu1, . . . ,1&

1 (
$ i , j %PSE

g

Ak
u1& i u1& j u0, . . . ,0&S\$ i , j % ~4.8!

with the normalization conditionuau21ubu21ugu251, and
a,b,g.0. The pure state~4.8! describes a graph such th
pairs of vertices in the setSE are entangled while all othe
pairs of vertices are correlated@5#.
01231
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2. Connected graphs with no open edges

Through numerical simulations we have searched for p
states corresponding to graphs of four qubits. We have fo
a pure state for every connected graph with no open ed
Specifically, taking into account general properties of grap
described above, we have found only 20 graphs that rem
ambiguous. With the help of our simulation, we have be
able to find at least one pure state as a representative of
graph.

Unfortunately, we have not been able to generalize t
result for connected graphs with no open edges for more t
four vertices.

V. CONCLUSIONS

In order to understand how correlations and entanglem
are shared among qubits in multiqubit systems, we have
troduced a concept of entangled graphs with classical co
lations. Every qubit is represented by a vertex, and corr
tions between two qubits are represented by edges.
types of edges stand for two possible types of~nonzero! cor-
relations: the entanglement edge corresponds to entan
ment between a specific pair of qubits~vertices!, while the
correlation edge denotes classical correlation. No edge
tween two qubits means that the corresponding bipartite d
sity operator is the tensor product of single-qubit dens
operators.

We have shown that any graph withN vertices can be
represented by a mixed state ofN qubits. On the other hand
only some graphs can be represented by pure states. In
ticular, we have shown that connected graphs withN vertices
that contain an open edge can never be represented by a
state. Interestingly enough, in the case of three- and fo
vertex graphs, we have been able to find pure states fo
other graphs~i.e., connected graphs with no open edges!.
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