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Abstract
One of potential applications of quantum processors should be a simulation
of dynamics of quantum systems. In this paper we analyse whether it is
possible to simulate a paradigmatic model of an exponential decay of a
two-level system using a programmable quantum gate array. That is, we
would like to simulate the decay of a two-level system in such a way that the
parameters of the decay itself are encoded in the state of the ancilla that
serves as a program for the programmable gate array. We show that it is
impossible to simulate the exponential decay precisely with the
finite-dimensional programmable gate array. On the other hand, we present
a very simple model of a Markovian decay process that can be efficiently
simulated on a simple programmable gate array. We compare this
Markovian process with the exponential decay.

Keywords: Programmable quantum circuits, decoherence, exponential decay

1. Introduction

The Wigner–Weisskopf decay [1] of a two-level quantum
system (a two-level atom) is the typical textbook example of a
decoherence process [2]. One may consider a two-level atom
as the system under consideration, which is interacting with
an infinite set of modes of the electromagnetic field in a free
space. The field modes are modelled as harmonic oscillators.
In order to describe the evolution of the system as a Markovian
process, several approximations are made. That is, in the
dipole approximation, the rotating wave approximation, the
weak-interaction limit (first order of perturbation), and, finally,
the Markov approximation, one obtains the master equation for
the exponential decay of the excited state to the ground state.

In this study we focus on a physically much simpler
situation: the time evolution of a decaying two-level atom can
be viewed as a quantum operation or quantum channel from
the two-level system’s point of view. The two-level system
can be regarded as a qubit, and exponential decay is referred
to as an amplitude damping channel in this context [3, 4]. It is
well known that, supplementing the qubit with a single-qubit

ancilla and assuming a specific interaction between these two
systems, amplitude damping channel can be realized—that is,
an exponential decay can be mimicked by this very simple
model system. This is called the unitary representation of the
quantum operation. However, there is no Hamiltonian that
the required interaction can be described by. For each time
duration to be simulated, a separate quantum circuit has to
be built. This would require infinite resources to model the
exponential decay.

This problem may be overcome by the application of a
programmable quantum gate array (a quantum processor) [5–
9]. In this case, the parameters of the evolution should be
encoded into the initial quantum state of the ancillary qubit(s),
and the quantum circuit itself is fixed. The ancillary qubit
may be either dropped after the operation of the circuit or
subjected to a measurement, and the result may be accepted
or rejected depending on the measurement result. The latter
case is called the probabilistic regime, and it has been shown
to provide a good way of implementing quantum operations,
though with a finite probability of success [7, 8]. We restrict
ourselves to the other, deterministic regime [9], which should
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always see success. We remark here that there exist several
other different approaches for simulating generic quantum
operations on simple quantum circuits [10–12].

This paper is devoted to an investigation of a deterministic
programmable implementation of amplitude damping, and
its comparison with the unitary representation. It is a good
example to use to study the role of the information flow
between two qubits and the entangling power of the interaction
in the decoherence process [13, 14].

The paper is organized as follows. In section 2 we
summarize some facts concerning the unitary representation
of the amplitude damping channel. Section 3 describes the
programmable quantum circuit approach. Section 4 compares
the two situations from the point of view of information
flow and entanglement. Section 5 summarizes our results.
Throughout this paper, we will denote the elements of the
computational basis by |0〉 and |1〉 for qubits, and |0〉, |1〉,
and |2〉 for qutrits. In the case of qubits, |0〉 will be referred to
as the ground state, while |1〉 will be referred to as the excited
state, as in the case of two-level atoms.

2. Unitary representation of amplitude damping

Suppose that we have a qubit in an initial state

�in =
(

�00 �01

�10 �11

)
. (1)

Amplitude damping is a quantum operation, Eγ,t , that acts
on the input state as

�out(t) = Eγ,t [�in] =
(

�00 + (1 − e−γ t)�11

√
e−γ t�01√

e−γ t�10 e−γ t�11

)
.

(2)
Here the subscript t stands for the time, and γ is a constant
scaling time, and describes the speed of the decay. In
fact, the calculation of this decay parameter γ from first
principles (i.e. from the wavefunctions of the atomic states
and the interaction Hamiltonian) was the main concern of the
original Wigner–Weisskopf paper [1]. Throughout the process
described by equation (2), the excited state decays into the
ground state exponentially.

The unitary representation of this quantum operation is
depicted in part (a) of figure 1. Beside our system qubit S, take
an ancillary qubit A. Define a set of unitary operators on the
two-qubit system of S and A such that

U (t)|0〉S|0〉A = |0〉S|0〉A;
U (t)|1〉S|0〉A = √

e−γ t |1〉S|0〉A +
√

1 − e−γ t |0〉S|1〉A.
(3)

For a given value of γ t , the quantum logic network realizing
U has to be built. The ancilla should be prepared in the state
|0〉 initially. After operating the circuit, we drop the ancilla,
and obtain

�out(t) = trA[U (γ t)(�in ⊗ |0〉〈0|A)U †(γ t)]. (4)

Note that the information about γ t is treated completely
classically, as it is directly ‘encoded’ into the quantum circuit—
that is, this information represents a prescription for classical

ancilla

system

ancilla

system

a)

b)

Figure 1. Arrangements under consideration. Panel (a) shows the
unitary representation of amplitude damping, while panel (b) shows
the programmable quantum network approach that we adopt.

control of quantum dynamics (e.g. turning on and off an
external laser field).

Amplitude damping is a Markovian process: �out(t)
satisfies the master equation

d

dt
� = L̂�, L̂� =

3∑
i, j=1

CAD
i, j ([F̂i�, F̂†

j ] + [F̂i , � F̂†
j ]),

(5)
where F̂i = 1√

2
σ̂i , i = 1, . . . , 3, are the normalized Pauli

matrices. The right-hand side of equation (5) is in the
standard Gorini–Kossakowski–Sudarshan (GKS) form [15];
the Hermitian matrix

C(AD) = γ

4

( 1 −i 0
i 1 0
0 0 0

)
(6)

represents the amplitude damping process itself [16]. The time
evolution in Markovian processes can always be written in the
form of equation (5).

3. Programmed decay

Consider now the arrangement in figure 1(b). Our intention
is to encode the scaled time γ t into the initial state of
the ancilla. That is, the dynamics of the quantum system
under consideration is fully controlled by the state of another
quantum system (the ancilla). This type of scenario can be
utilized in the situation where the state of the control system
is totally unknown (e.g. may be an output of another quantum
process). Under such circumstances, one approach would be to
estimate the state of the ancilla and use it for a classical control
as discussed above. On the other hand, one might like to utilize
the whole potential of quantum information processing and to
use the quantum information of the program system without
measuring it. That is, to use it as an input program register to
the programmable quantum processor. This approach would
remove the need to build different circuits for different values
of scaled time. Instead of equation (4), we then have

�out(t) = trA[U (�in ⊗ |�(γ t)〉〈�(γ t)|A)U †]. (7)
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Surprisingly, this goal cannot be achieved. That is, the
parameter γ t in the exponential decay cannot be encoded into
a single-qubit program register. This can be shown as follows.
There must be a state of the ancilla for which the circuit remains
‘inert’. Let us choose the basis state |0〉A for this purpose. Thus
for any pure input state |�〉S,

U |�〉S|0〉A = |�〉S|0〉A. (8)

We can write |0〉A for the right-hand side; if this was not the
case, the circuit U could be supplemented by another circuit
acting on the ancilla only, to take the output state to |0〉A. As
the ancilla is dropped, this does not alter the operation of the
scheme.

For the t → ∞ limit, we also need an appropriate ancilla
state so that the system is certainly in the ground state finally:

U |�〉S|∞〉A = |0〉S|∞�〉A. (9)

This is required since an arbitrarily long time may be
considered. Now the ancilla may alter, and its final state may
depend on the input state of the system.

The scalar multiplication of equations (8) and (9) yields

A〈0|∞〉A = S〈�|0〉S A〈0|∞�〉A. (10)

Substituting |�〉A = |1〉, it immediately follows that |∞〉A =
|1〉A. From this, by substituting |�〉A = |0〉A, we find that
|∞0〉A = |1〉A. Thus equation (9) should read

U |�〉S|1〉A = |0〉S|1�〉A. (11)

A unitary linear operator satisfying equations (8) and (11)
may be defined as

U |0〉S|0〉A = |0〉S|0〉A;
U |0〉S|1〉A = |0〉S|1〉A;
U |1〉S|0〉A = |1〉S|0〉A;
U |1〉S|1〉A = |0〉S|2〉A,

(12)

where we had to assume that the ancilla is at least a qutrit. This
circuit will unfortunately not produce the amplitude damping
of the form of equation (2). We will show that the process
realized this way is a combination of amplitude and phase
damping. Further enlargement of the ancilla space will not
alter this situation fundamentally, as a state orthogonal to |0〉A

and |1〉A must appear in the last row of equation (12).
It is interesting to note that the same scheme with a qubit

ancilla works for most unital operations, which preserve the
maximally mixed state (having a density matrix proportional
to the identity matrix), e.g., a Pauli channel.

Let us now examine the process that is implemented by
the programmable array with the circuit corresponding to the
transformation (12). The ancilla is now a qutrit, in the suitable
initial ‘program’ state

|�prog(γ t)〉 = √
e−γ t |0〉 +

√
1 − e−γ t |1〉. (13)

Substituting equations (12) and (13) into (7), the result is

�
(PAD)
out (t) =

(
�00 + (1 − e−γ t)�11 e−γ t�01

e−γ t�10 e−γ t�11

)
. (14)

In what follows, we call this process programmed amplitude
damping. Comparing with equation (2), we find that the off-
diagonal matrix elements of the density matrix decay faster in
this process than in the case of amplitude damping: the square
root in the off-diagonal matrix element disappears.

The programmed amplitude damping is a Markovian
process with the GKS matrix

C(PAD) = γ

4

( 1 −i 0
i 1 0
0 0 1

)
. (15)

This may be compared with equation (6). The difference is
the appearance of a constant matrix element in the lower right
corner that describes a phase damping about the z-axis of the
Bloch sphere. This illustrates the convenience of the GKS
formalism: a linear combination of GKS matrices describes a
process where these two Markovian processes are combined
in such a way that another Markovian process is obtained.
The combination may be realized by the repeated alternating
application of the two processes, with an infinitesimally small
time step in each case. In our case, programmed amplitude
damping is a combination of amplitude and phase damping
channels.

Thus we have found that amplitude damping cannot be
implemented on a programmable quantum gate array with
finite resources deterministically, but a similar Markovian
process can be implemented instead.

4. Information transfer

Let us now investigate the role of information in the processes
described above. In order to do so, we calculate the von
Neumann entropy of each subsystem involved. Let us assume
that the input states of the system as well as the ancilla
qubits are pure (they are represented by points on a Bloch
sphere). Correspondingly, the total von Neumann entropy
of system + ancilla is zero. Given the fact that the evolution
is unitary, the total entropy will remain zero during the time
evolution, while according to the Araki–Lieb theorem the two
subsystems will have the same entropy S:

Ssystem = Sancilla := S. (16)

It is also easy to see that S is independent of the declination
φ on the Bloch sphere. S is physically interesting, because
it characterizes both the mutual information of the two
subsystems, and the entangling power of U : for a pure
entangled state, the von Neumann entropy of one of the
subsystems is a measure of the entanglement.

Figure 2 shows the entropy S for amplitude damping and
the programmed amplitude damping processes, as a function of
the azimuthal angle θ on the Bloch sphere, and the probability
of decay p = 1 − exp(−γ t). The value p = 0 corresponds to
t = 0, while p = 1 describes the t → ∞ case.

Figure 2 is self-explanatory, and clearly displays the
characteristics of both processes. It should also be noticed
that, except for the case when the entropy is zero, the
entropy in the programmed amplitude damping is always
superior to the entropy of amplitude damping. There is more
mutual information in each subsystem in the programmed
amplitude damping, the joint state is more entangled, and hence
decoherence is faster.
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Figure 2. The entropy of one of the subsystems in amplitude
damping (AD) and programmed amplitude damping (PAD)
processes as a function of azimuthal angle θ of the initial pure state
on the Bloch sphere, and decay probability p = 1 − exp(−γ t).

5. Conclusions

We have considered the possibility of quantum programmed
deterministic simulation of exponential decay. We have
found that exponential decay cannot be simulated this way,
but a similar procedure that can be simulated in this way
was introduced. Both processes are Markovian; they were
compared in the GKS representation. This provides a good
example of the convenience of this formalism. The two
processes illustrate well the role of information flow and the
entangling power of the interaction.
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