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On a classical level the information can be represented by bits, each of which can be either 0 or
1. Quantum information, on the other hand, consists of qubits which can be represented as two-level
quantum systems with one level labeled |0〉 and the other |1〉. Unlike bits, qubits cannot only be in one
of the two levels, but in any superposition of them as well. This superposition principle makes quantum
information fundamentally different from its classical counterpart. One of the most striking difference
between the classical and quantum information is as follows: it is not a problem to �ip a classical bit,
i. e., to change the value of a bit, a 0 to a 1 and vice versa. This is accomplished by a NOT gate.
Flipping a qubit, however, is another matter: there exists the fundamental bound which prohibits to �ip
a qubit prepared in an arbitrary state |Ψ〉 = α|0〉 + β|0〉 and to obtain the state |Ψ⊥〉 = β∗|0〉 − α∗|1〉
which is orthogonal to it, i. e., 〈Ψ⊥|Ψ〉 = 0. We experimentally realize the best possible approximation
of the qubit �ipping that achieves bounds imposed by complete positivity of quantum mechanics.

INTRODUCTION

Let us assume the Poincar�e sphere, which represents a state space of a qubit. The points
corresponding to |Ψ〉 and |Ψ⊥〉 are antipodes of each other. The desired spin-�ip operation
is therefore the inversion of the Poincar�e sphere (see Fig. 1).

It is well known that this inversion preserves angles (which is related to the scalar
product |〈Φ, Ψ〉| of rays). Therefore, by the arguments of the Wigner theorem, the ideal
spin-�ip operation must be implemented either by a unitary or by an anti-unitary operation.
Unitary operations correspond to proper rotations of the Poincar�e sphere, whereas anti-unitary
operations correspond to orthogonal transformations with determinant −1. The spin-�ip is an
anti-unitary operation; i. e., it is not completely positive.

Due to the fact that the tensor product of an antilinear and a linear operator is not correctly
deˇned, the spin-�ip operation cannot be applied to a qubit, while the rest of the world is
governed by unitary evolution1. On the other hand, if we consider a spin-�ip operation, we
have in mind a Universal NOT gate �ipping an input qubit to its orthogonal state. The gate
itself is an operation applied to the qubit, that is just a subsystem of a ®whole universe¯.
Therefore, a completely positive operation must be represented. It is well known that any

1In fact, exactly this property makes the spin-�ip operation so important in all criteria of inseparability for
two-qubit systems [1, 2].
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Fig. 1. The state space of a qubit is a Poincaré
sphere. Pure states are represented by points on

the sphere, while statistical mixtures are points

inside the sphere. The Universal NOT operation
corresponds to the inversion of the sphere, since

the states |Ψ〉 and |Ψ⊥〉 are antipodes

completely positive operation on a qubit can be
realized by a unitary operation performed on
the qubit and the ancillary system. Following
this arguments, we see that the ideal Univer-
sal NOT gate which would �ip a qubit in an
arbitrary state does not exist.

Obviously, if the state of the qubit is
known, then we can always perform a �ip op-
eration. In this situation the classical and quan-
tum operations share many similar features,
since the knowledge of the state is a classical
information, which can be manipulated accord-
ing to the rules of classical information process-
ing (e. g., known states can be copied, �ipped,
etc.). But the universality of the operation is
lost. That is, the gate which would �ip the
state |0〉 → |1〉 is not able to perform a �ip
|(0〉 + |1〉)/

√
2 → (|0〉 − |1〉)/

√
2.

Since it is not possible to realize a perfect
Universal NOT gate [3] which would �ip an
arbitrary qubit state, it is of interest to study
what is the best approximation to the perfect
Universal NOT gate. Here, one can consider
two possible scenarios. The ˇrst one is based
on the measurement of input qubit(s) Å using

the results of an optimal measurement, one can manufacture an orthogonal qubit, or any
desired number of them. Obviously, the ˇdelity of the NOT operation in this case is equal
to the ˇdelity of estimation of the state of the input qubit(s). The second scenario would
be to approximate an anti-unitary transformation on a Hilbert space of the input qubit(s) by
a unitary transformation on a larger Hilbert space which describes the input qubit(s) and
ancillas.

It has been shown recently that the best achievable ˇdelity of both �ipping scenarios is
the same [4Ä6]. That is, the ˇdelity of the optimal Universal NOT gate is equal to the ˇdelity
of the best state-estimation performed on input qubits [7Ä9] (one might say that in order to
�ip a qubit we have to transform it into a bit). In what follows we brie�y describe the unitary
transformation realizing the quantum scenario for the spin-�ip operation; that is, we present
the optimal Universal NOT gate. Then we describe our experiment (see also Ref. [10]) in
which we ®�ip¯ qubits encoded in polarization states of photons.

1. THEORETICAL DESCRIPTION OF SPIN FLIPPING

Let H = C2 denote the two-dimensional Hilbert space of a single qubit. Then the input
state of N systems prepared in the pure state |Ψ〉 is the N -fold tensor product |Ψ〉⊗N ∈ H⊗N .
The corresponding density matrix is σ ≡ ρ⊗N , where ρ = |Ψ〉〈Ψ| is the one-particle density
matrix. An important observation is that the vectors |Ψ〉⊗N are invariant under permutations
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of all N sites; i. e., they belong to the symmetric, or ®Bose¯-subspace H⊗N
+ ⊂ H⊗N. Thus,

as long as we consider only pure input states, we can assume all the input states of the
device under consideration to be density operators on H⊗N

+ . We will denote by S(H) the
density operators over a Hilbert space H. Then the U-NOT gate must be a completely
positive trace preserving map T : S

(
H⊗N

+

)
→ S(H). Our aim is to design T in such a way

that for any pure one-particle state ρ ∈ S(H) the output T (ρ⊗N) is as close as possible to
the orthogonal qubit state ρ⊥ = 1 − ρ. In other words, we are trying to make the ˇdelity
F := Tr [ρ⊥T (ρ⊗N)] = 1−∆ of the optimal complement with the result of the transformation
T as close as possible to unity for an arbitrary input state. This corresponds to the problem
of ˇnding the minimal value of the error measure ∆(T ) deˇned as

∆(T ) = max
ρ,pure

Tr
[
ρT (ρ⊗N)

]
. (1)

Note that this functional ∆ is completely unbiased with respect to the choice of input state.
More formally, it is invariant with respect to unitary rotations (basis changes) in H. When
T is any admissible map, and U is a unitary on H, the map TU (σ) = U∗T (U⊗NσU∗⊗N )U
is also admissible and satisˇes ∆(TU ) = ∆(T ). We will show later on that one may look
for optimal gates T , minimizing ∆(T ), among the universal ones, i. e., the gates satisfying
TU = T for all U . For such U-NOT gates, the maximization can be omitted from the
deˇnition (1), because the ˇdelity Tr

[
ρT (ρ⊗N)

]
is independent of ρ.

1.1. Measurement-Based Scenario. An estimation device by deˇnition takes an input state
σ ∈ S(H⊗N

+ ) and produces, on every single experiment, an ®estimated pure state¯ ρ ∈ S(H).
As in any quantum measurement this will not always be the same ρ, even with the same input
state ρ, but a random quantity. The estimation device is, therefore, described completely by
the probability distribution of pure states it produces for every given input. Still simpler,
we will characterize it by the corresponding probability density with respect to the unique
normalized measure on the pure states (denoted ®dΦ¯ in integrals), which is also invariant
under unitary rotations. For an input state σ ∈ S(H⊗N

+ ), the value of this probability density
at the pure state |Φ〉 is

p(Φ, σ) = (N + 1)〈Φ⊗N, σΦ⊗N 〉. (2)

To check the normalization, note that
∫

dΦp(Φ, σ) = Tr [Xσ] for a suitable operator X ,
because the integral depends linearly on σ. By unitary invariance of the measure ®dΦ¯ this
operator commutes with all unitaries of the form U⊗N, and since these operators restricted to
H⊗N

+ form an irreducible representation of the unitary group of H (for d = 2, it is just the
spin N/2 irreducible representation of SU (2)), the operator X is a multiple of the identity.
To determine the factor, one inserts σ = 1, and uses the normalization of ®dΦ¯ to verify that
X = 1.

Note that the density (2) is proportional to |〈Φ, Ψ〉|2N, when σ = |Ψ⊗N 〉〈Ψ⊗N | is the
typical input to such a device: N systems prepared in the same pure state |Ψ〉. In that case,
the probability density is clearly peaked sharply at states |Φ〉 which are equal to |Ψ〉 up to a
phase.

Suppose now that we combine the state estimation with the preparation of a new state,
which is some function of the estimated state. The overall result will then be the integral
of the state valued function with respect to the probability distribution just determined. In
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the case at hand, the desired function is f(Φ) = (1 − |Φ〉〈Φ|). So the result of the whole
measurement-based (®classical¯) scheme is

ρ(est) = T (σ) =
∫

dΦp(Φ, σ) (1 − |Φ〉〈Φ|). (3)

The ˇdelity required for the computation of ∆ from Eq. (1) is then equal to (see also [8, 9])

∆ = (N + 1)
∫

dΦ |〈Φ, Ψ〉|2N (1 − |〈Φ, Ψ〉|2) =
1

N + 2
, (4)

where we have used the fact that the two integrals have exactly the same form (differing only
in the choice of N ), and that the ˇrst integral is just the normalization integral. Since this
expression does not depend on ρ, we can drop the maximization in the deˇnition (1) of ∆
and ˇnd ∆(T ) = 1/(N +2), from which we ˇnd that the ˇdelity of creation of a complement
to the original state ρ is

F =
N + 1
N + 2

. (5)

Finally, we note that the result of the operation (3) can be expressed in the form

ρ(out) = s
N

ρ⊥ +
1 − s

N

2
1, (6)

with the ®scaling¯ parameter s
N

= N/(N + 2). From here it is seen that in the limit
N → ∞, perfect estimation of the input state can be performed, and, consequently, the
perfect complement can be generated. For ˇnite N , the mean ˇdelity is always smaller
than unity. The advantage of the measurement-based scenario is that once the input qubit(s)
is measured and its state is estimated, an arbitrary number M of identical (approximately)
complemented qubits can be produced with the same ˇdelity, simply by replacing the output
function f(Φ) = (1 − |Φ〉〈Φ|) by fM (Φ) = (1 − |Φ〉〈Φ|)⊗M.

1.2. Quantum Scenario. Let us now present a transformation which produces complements
whose ˇdelity is the same as those produced by the measurement-based method. Assume we
have N input qubits in an unknown state |Ψ〉, and we are looking for a transformation
which generates M qubits at the output in a state as close as possible to the orthogonal
state |Ψ⊥〉. The universality of the proposed transformation has to guarantee that all input
states are complemented with the same ˇdelity. If we want to generate M approximately
complemented qubits at the output, the U-NOT gate has to be represented by 2M qubits
(irrespective of the number, N , of input qubits), M of which serve as ancilla, and M of
which become the output complements. We will indicate these subsystems by subscripts
®a¯ = input, ®b¯ = ancilla, and ®c¯ = (prospective) output. The U-NOT gate transformation,
UNM , acts on the tensor product of all three systems. The gate is always prepared in some
state |X〉bc, independently of the input state |Ψ〉. The transformation is determined by the
following explicit expression, valid for every unit vector |Ψ〉 ∈ H:

UNM |NΨ〉a ⊗ |X〉bc =
M∑

j=0

γ
(N,M)
j |Xj(Ψ)〉ab ⊗ |{(M − j)Ψ⊥; jΨ}〉c (7)
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with

γ
(N,M)
j = (−1)j

(
N + M − j

N

)1/2(
N + M + 1

M

)−1/2

, (8)

where |NΨ〉a = |Ψ〉⊗N is the input state consisting of N qubits in the same state |Ψ〉.
In the right-hand side of Eq. (7), |{(M − j)Ψ⊥; jΨ}〉c denotes symmetric and normalized
states with (M − j) qubits in the complemented (orthogonal) state |Ψ⊥〉 and j qubits in the
original state |Ψ〉. Similarly, the vectors |Xj(Ψ)〉ab consist of N + M qubits and are given
explicitly by

|Xj(Ψ)〉ab = |{(N + M − j)Ψ; jΨ⊥}〉ab. (9)

Note that with this choice of the coefˇcients γ
(M,N)
j , the scalar product of the right-hand side

with a similar vector, with Ψ replaced by Φ, becomes 〈Ψ, Φ〉N. This is consistent with the
unitarity of the operator UNM .

Each of the M qubits at the output of the U-NOT gate is described by the density operator
(6) with s

N
= N/(N +2), irrespective of the number of complements produced. The ˇdelity

of the U-NOT gate depends only on the number of inputs. This means that this U-NOT gate
can be thought of as producing an approximate complement and then cloning it, with the
quality of the cloning independent of the number of clones produced. The universality of the
transformation is directly seen from the ®scaled¯ form of the output operator (6).

We stress that the ˇdelity of the U-NOT gate (7) is exactly the same as in the measurement-
based scenario. Moreover, it also behaves as a classical (measurement-based) gate in a sense
that it can generate an arbitrary number of complements with the same ˇdelity. We have also
checked that these cloned complements are pairwise separable.

The N + M qubits at the output of the gate, which do not represent the complements, are
individually in the state described by the density operator

ρ
(out)
j = sρ +

1 − s

2
1, j = 1, . . . , N + M, (10)

with the scaling factor s =
N

N + 2
+

2N

(N + M)(N + 2)
; i. e., these qubits are the clones

of the original state with a ˇdelity of cloning larger than the ˇdelity of estimation. This
ˇdelity depends on the number, M , of clones produced out of the N originals, and in the
limit M → ∞ the ˇdelity of cloning becomes equal to the ˇdelity of estimation. These
qubits represent the output of the optimal N → N + M cloner introduced by Gisin and
Massar [11Ä13]. This means that the U-NOT gate, as presented by the transformation in
Eq. (7), serves also as a universal cloning machine.

1.3. Optimality of U-NOT Gate. At this point, the question arises whether the transfor-
mation (7) represents the optimal U-NOT gate via quantum scenario. If this is so, then it
would mean that the measurement-based and the quantum scenarios realize the U-NOT gate
with the same ˇdelity. In what follows we present a proof due to Werner in Refs. [4, 5].

Theorem. Let H be a Hilbert space of dimension d = 2. Then among all completely
positive trace preserving maps T : S

(
H⊗N

+

)
→ S(H), the measurement-based U-NOT

scenario (3) attains the smallest possible value of the error measure deˇned by Eq. (1),
namely, ∆(T ) = 1/(N + 2).
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We have already shown (see Eq. (4)) that for the measurement-based strategy the error
∆ attains the value 1/(N + 2). The more difˇcult part, however, is to show that no other
scheme (i. e., quantum scenario) can do better. Here, we will largely follow the arguments
in [14].

Note ˇrst that the functional ∆ is invariant with respect to unitary rotations (basis
changes) in H. When T is any admissible map, and U is a unitary on H, the map
TU (σ) = U∗T (U⊗NσU∗⊗N )U is also admissible and satisˇes ∆(TU ) = ∆(T ). More-
over, the functional ∆ is deˇned as the maximum of a collection of linear functions in T ,
and is therefore convex. Putting these observations together, we get

∆(T ) ≤
∫

dU∆(TU ) = ∆(T ), (11)

where T =
∫

dUTU is the average of the rotated operators TU with respect to the Haar
measure on the unitary group. Thus, T is at least as good as T and has the additional
®covariance property¯ TU = T . Without loss we can therefore assume from now on that
TU = T for all U .

An advantage of this assumption is that a very explicit general form for such covariant
operations is known by a variant of the Stinespring Dilation Theorem (see [14] for a version
adapted to our needs).

The form of T is further simpliˇed in our case by the fact that both representations
involved are irreducible: the deˇning representation of SU (2) on H, and the representation
by the operators U⊗N restricted to the symmetric subspace H⊗N

+ . Then T can be represented
as a discrete convex combination T =

∑
j λjTj , with λj ≥ 0,

∑
j λj = 1, and Tj admissible

and covariant maps in their own right, but of an even simpler form. Covariance of T already
implies that the maximum can be omitted from the deˇnition (1) of ∆, because the ˇdelity
no longer depends on the pure state chosen. In a convex combination of covariant operators
we therefore get

∆(T ) =
∑

j

λj∆(Tj). (12)

Minimizing this expression is obviously equivalent to minimizing with respect to the discrete
parameter j.

We write the general form of the extremal instruments Tj in terms of expectation values
of the output state for an observable X on H:

Tr (T (σ)X
)

= Tr [σV ∗(X ⊗ 1)V
]
, (13)

where V : H⊗N
+ → H ⊗ C2j+1 is an isometry intertwining of the respective representations

of SU (2), namely, the restriction of the operators U⊗N to H⊗N
+ (which has spin N/2), on the

one hand, and the tensor product of the deˇning representation (spin-1/2) with the irreducible
spin-j representation, on the other. By the triangle inequality for ClebschÄGordan reduction,
this implies j = (N/2) ± (1/2), so only two terms appear in the decomposition of T . It
remains to compute ∆(Tj) for these two values.

The basic idea is to use the intertwining property of the isometry V for the generators
Sα, Jα, and Lα, α = 1, 2, 3 of the SU (2)-representations on H,C2j+1 and H⊗N

+ , respectively.
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We will show that

V ∗(Sα ⊗ 1j)V = µjLα, (14)

where µj is some constant depending on the choice of j. That such a constant exists is
clear from the fact that the left-hand side of this equation is a vector operator (with compo-
nents labeled by α = 1, 2, 3), and the only vector operators in an irreducible representation
of SU (2) are multiples of angular momentum (in this case Lα). The constant µj can be
expressed in terms of a 6j symbol, but can also be calculated in an elementary way us-
ing the intertwining property, V Lα = (Sα ⊗ 1 + 1 ⊗ Jα)V , and the fact that the angular
momentum squares J2 =

∑
α J2

α = j(j + 1), S2 = 3/4, and L2 = N/2(N/2 + 1) are
multiples of the identity in the irreducible representations involved, and can be treated as
scalars:

µjL2 =
∑
α

V ∗(Sα ⊗ 1j)V Lα = S2 +
∑
α

V ∗(Sα ⊗ Jα)V. (15)

The sum in the right-hand side can be obtained as the mixed term of a square, namely,
as

1
2

(∑
α

V ∗(Sα ⊗ 1 + 1⊗ Jα)2V − S2 − J2
)

= (L2 − S2 − J2). (16)

Combining these equations, we ˇnd

µj =
1
2

+
S2 − J2

2L2




1
N

for j =
N

2
+

1
2

−1
N + 2

for j =
N

2
− 1

2

. (17)

We combine equations (13) and (14) to get the error quantity ∆ from equation (1), with the
pure one-particle density matrix ρ = 1/2 1 + S3:

∆(T ) = Tr (V ∗(ρ ⊗ 1)Vρ⊗N ) =
1
2
(1 + Nµj). (18)

With equation (17) we ˇnd

∆(T ) =




1 for j =
N

2
+

1
2

1
N + 2

for j =
N

2
− 1

2

. (19)

The ˇrst value is the largest possible ˇdelity for getting the state ρ from a set of N copies of
ρ. The ˇdelity 1 is expected for this trivial task, because taking any one of the copies will do
perfectly. On the other hand, the second value is the minimal ˇdelity, which we were looking
for. This clearly coincides with the value (4), so the Theorem is proved.

The Theorem as it stands concerns the task of producing just one particle in the U-NOT
state of the input. From the results of the previous section we see that it is valid also in the
case of many outputs. We see that the maximum ˇdelity is achieved by the classical process
via estimation: in equation (3) we just have to replace the output state (1 − |Φ〉〈Φ|) by the
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desired tensor power. Hence, once again the optimum is achieved by the scheme based on
classical estimation. Incidentally, this shows that the multiple outputs from such a device are
completely unentangled, although they may be correlated.

We can conclude this section by saying that in the quantum world governed by unitary
operations anti-unitary operations can be performed with the ˇdelity which is bounded by the
amount of classical information potentially available about states of quantum systems.

2. EXPERIMENT

In our experiment we will consider a �ipping of a single qubit. In this case the �ipping
transformation reads

U11|Ψ〉a ⊗ |X〉bc =

√
2
3
|ΨΨ〉ab|Ψ⊥〉c −

√
1
3
|{Ψ, Ψ⊥}〉ab|Ψ〉c. (20)

To be speciˇc, Eq. (20) describes a process when the original qubit is encoded in the
system a, while the �ipped qubit is in the system c. The density operator describing the state
of the system c at the output is

σ(out)
c =

1
3
|Ψ⊥〉〈Ψ⊥| + 1

3
1. (21)

The ˇdelity of the spin �ipping is F = 2/3.
A natural way to encode a qubit into a physical system is to utilize polarization states of a

single photon. In this case, the Universal NOT gate can be realized via the stimulated emission.
The key idea of our experiment is based on the proposal that universal quantum machines [15]
such as quantum cloner can be realized with the help of stimulated emission in parametric
down conversion [16,17]. In particular, let us consider a qubit to be encoded in a polarization
state of a photon. This photon is injected as the input state into an optical parametric ampliˇer
(OPA) physically consisting of a nonlinear (NL) BBO (β-barium-borate) crystal cut for Type
II phase matching and excited by a pulsed mode-locked ultraviolet laser UV, having pulse
duration τ ≈ 140f s and wavelength (wl) λp = 397.5 nm, associated to pulse duration [18].
The relevant modes of the NL three-wave interaction were the spatial modes with wave-vector
(wv) k1 and k2 each supporting the two horizontal (H) and vertical (V ) linear polarizations
(Π) of the interacting photons, e. g., Π1H is the horizontal polarization unit vector associated
with k1. The OPA was frequency degenerate; i. e., the interacting photons had the same wl's
λ = 795 nm. The action of OPA under suitable conditions can be described by a simpliˇed
Hamiltonian

Ĥint = κ(â†
Ψb̂†

Ψ⊥ − â†
Ψ⊥ b̂†Ψ) + h. c. (22)

A property of the device, of key importance in the context of the present work, is its
amplifying behaviour with respect to the polarization Π of the interacting photons. It has
been shown by theory [16,19] and in a recent experiment on ®universal quantum cloning¯ [17]
that the ampliˇcation efˇciency of this type of OPA under injection by any externally injected
quantum ˇeld, e. g., consisting of a single photon or of a classical ®coherent¯ ˇeld, can be
made independent of the polarization state of the ˇeld. In other words, the OPA ®gain¯ is
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independent of any (unknown) polarization state of the injected ˇeld. This precisely represents
the necessary universality (U) property of the U-NOT gate. For this reason in Eq. (22) we
have denoted the creation â†

Ψ (b̂†Ψ) and annihilation âΨ (b̂Ψ) operators of a photon in mode
k1 (k2) with subscripts Ψ (or Ψ⊥) indication of the invariance of the process with respect to
polarization states of the input photon.

Let us consider the input photon in the mode k1 to have a polarization Ψ. We will describe
this polarization state as â†

Ψ|0, 0〉k1 = |1, 0〉k1 , where we have used notation introduced by
Simon et al. [16]; i. e., the state |m, n〉k1 represents a state with m photons of the mode
k1 having the polarization Ψ, while n photons have the polarization Ψ⊥. Initially, there
are no excitations in the mode k2. The initial polarization state of these two modes reads
|1, 0〉k1 ⊗ |0, 0〉k2 , and it evolves according the Hamiltonian (22):

exp (−iĤintt)|1, 0〉k1 ⊗ |0, 0〉k2  |1, 0〉k1 ⊗ |0, 0〉k2−

− iκt
(√

2|2, 0〉k1 ⊗ |0, 1〉k2 − |1, 1〉k1 ⊗ |1, 0〉k2

)
. (23)

This approximation for the state vector describing the two modes at times t > 0 is sufˇcient
since the values κt are usually very small (see below). The zero-order term corresponds to
the process when the input photon in the mode k1 does not interact in the nonlinear medium,
while the second term describes the ˇrst-order process in the OPA. This second term is
formally equal (up to a normalization factor) to the right-hand side of Eq. (20). Here, the
state |2, 0〉k1 describing two photons of the mode k1 in the polarization state Ψ corresponds
to the state |ΨΨ〉. This state-vector describes the cloning of the original photon [16,17]. The
vector |0, 1〉k−2 describes the state of the mode k2 with a single photon with the polarization
Ψ⊥. That is, this state vector represents the �ipped version of the input.

To see that the stimulated emission is indeed responsible for creation of the �ipped qubit,
let us compare the state (23) with the output of the OPA when the vacuum is injected into
the nonlinear crystal. In this case, to the same order of approximation as above, we obtain

exp (−iĤintt)|0, 0〉k1 ⊗ |0, 0〉k2  |0, 0〉k1 ⊗ |0, 0〉k2−
− iκt(|1, 0〉k1 ⊗ |0, 1〉k2 − |0, 1〉k1 ⊗ |1, 0〉k2). (24)

We see that the �ipped qubit described by the state vector |0, 1〉k2 in the right-hand sides
of Eqs. (23) and (24) does appear with different amplitudes corresponding to the ratio of
probabilities to be equal to 1 : 2. This ratio has been measured in our experiment.

2.1. Universality. On the ®microscopic¯ quantum level the justiˇcation of this U -property
of the OPA ampliˇer resides in the SU (2) rotational invariance of the NL interaction Hamil-
tonian when the spatial orientation of the OPA NL Type II crystal makes it available for
the generation of two-photon entangled ®singlet¯ states by Spontaneous Parametric Down
Conversion (SPDC), i. e., by injection of the ®vacuum ˇeld¯ [16, 19]. However we should
note that in the present context the universality property, i. e., the Π-insensitivity of the para-
metric ampliˇcation ®gain¯ g, is a ®macroscopic¯ classical feature of the OPA device. As
a consequence, it can be tested equally well either by injection of ®classical¯, e. g., coherent
(Glauber) ˇelds or of a ®quantum¯ states of radiation, e. g., a single-photon Fock state. We
have carried out successfully both tests, leading to identical results. We only report here the
ones corresponding to the injection by attenuated ®coherent¯ laser ˇeld (see Fig. 2).
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Fig. 2. Schematic description of the experimental veriˇcation of the universality of the �ip operation

A coherent state of attenuated laser ˇeld with wl λ = 795 nm is used. The source is
Ti:Sa Coherent MIRA pulsed laser providing by Second Harmonic Generation (SHG) the
OPA ®pump¯ ˇeld associated with the spatial mode with wv kp and wl λp. A small portion
of the laser radiation at wl λ was directed along the OPA injection mode k1. The parametric
ampliˇcation, with calculated ®gain¯ g = 0.31, was detected at the OPA output mode k1

Fig. 3. Experimental veriˇcation of the universality of OPA
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by D′
1, a Si linear photodiode SGD100. The time superposition in the NL crystal of the

®pump¯ and of the ®injection¯ pulses was assured by micrometric displacements (Z) of a
two-mirror optical ®trombone¯. Various Π-states of the injected pulse were prepared by the
set (WP′

1 +Q) consisting of a Wave-plate (either λ/2 or λ/4) and of a 4.3-mm X-cut Quartz
plate. These states were then analyzed after ampliˇcation and before detection on mode k2

by an analogous optical set (WP′
2 + Q + Π-analyzer), the last device being provided by the

Polarizing Beam Splitter PBS′
2. In the two experiments reported in the present work, all

the 4.5-mm thick X-cut quartz plates (Q) provided the compensation of the unwanted beam
walk-off effects due to the birefringence of the NL crystal.

The universality condition is demonstrated by the plots of Fig. 3, showing the ampliˇcation
pulses detected by D′

2 on the OPA output mode, k2. Each plot corresponds to a deˇnite Π-
state, |Ψ〉 = [cos (ϑ/2)|H〉 + exp (iφ) sin (ϑ/2)|V 〉], either linear Å Π, i. e., ϑ = 0, π/2, π;
φ = 0, or circular Å Π, i. e., ϑ = π/2; φ = ±π/2, or elliptical Å Π, in the very general
case: ϑ = 5π/18; φ = −π/2. We may check that the corresponding ampliˇcation curves,
each corresponding to a standard injection pulse1 with an average photon number N ≈ 5 ·103,
are almost identical.

For more generality, the universality condition as well as the insensitivity of this condition
to the value of N is also demonstrated by the single experimental data reported, with differ-
ent scales, at the top of each ampliˇcation plot and corresponding to injection pulses with
N ≈ 5 · 102. Single-photon tests of the same conditions were also carried out with a different
experimental setup, as said.

2.2. Optimality. Let us move to the main subject of the present work, i. e., the quantum
U-NOT gate. In virtue of the tested universality of the OPA ampliˇcation, it is of course
sufˇcient to consider here the OPA injection by a single-photon in just one Π-state, for
instance in the vertical Π-state. Accordingly, Fig. 4 shows a layout of the single-photon,
N = 1, quantum-injection experiment with input state |Ψ〉 = |V 〉.

Fig. 4. Experimental realization of the quantum U-NOT
gate

Consider the kp pump mode, i. e.,
the ®towards R¯ excitation. An SPDC
process created single photon-pairs
with wl λ = 795 nm in entangled sin-
glet Π-states, i. e., rotationally invari-
ant, as said. One photon of each pair,
emitted over k1 was re�ected by a
spherical mirror M onto the NL crys-
tal where it provided the N = 1 quan-
tum injection into the OPA ampliˇer
excited by the UV ®pump¯ beam as-
sociated to the back re�ected mode
−kp. We consider �ipping of a sin-
gle photon in a state |Ψ〉 = |V 〉. In
this experiment, owing to a spherical
mirror Mp with 100 % re�ectivity and
micrometrically adjustable position Z,
the UV pump beam excited the same NL OPA crystal ampliˇer in both directions kp and
−kp, i. e., correspondingly oriented towards the right (R) and left (L) sides of the ˇgure.
Because of the low intensity of the UV beam, the two-photon injection probability N = 2
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has been evaluated to be ≈ 3.5 · 10−4 smaller that for the N = 1 condition. The twin photon
emitted over k2 was Π-selected by the devices (WP2+ PBS2) and then detected by D2, thus
providing the ®trigger¯ of the overall conditional experiment. All detectors in the present
experiment were equal active SPCM-AQR14 with quantum efˇciency: QE ≈ 55 %. Because
of the EPR nonlocality implied by the singlet state, the Π-selection on channel k2 provided
the realization on k1 of the state |Ψ〉 = |V 〉 of the injected photon. As for the previous
experiment, all the X-cut quartz plates Q provided the compensation of the unwanted beam
walk-off effects due to the birefringence of the NL crystal. Consider the ®towards L¯ ampliˇ-
cation, i. e., the ampliˇcation process excited by the mode −kp, and do account, in particular,
for the OPA output mode k2. The Π-state of the ˇeld on that mode was analyzed by the
device combination (WP∗

2+ PBS∗
2) and measured by the detector D∗

2 . The detectors Da, Db

were coupled to the ˇeld associated with the mode k1. The experiment was carried out by
detecting the rate of the four-coincidences involving all detectors [D∗

2D2DaDb].
From the analysis presented by [16, 17], it follows that the state of the ˇeld emitted by

the OPA indeed realizes the U-NOT gate operation, i. e., the ®optimal¯ realization of the
®anticloning¯ of the authentic qubit originally encoded in the mode k1. The �ipped qubit at
the output is in the mode k2. As has been shown earlier, the state created by the U-NOT gate
is not pure. There is a minimal amount of noise induced by the process of �ipping which is
inevitable in order to preserve complete-positiveness of the Universal NOT gate. This mixed
state is described by the density operator (21). The polarization state of the output photon in
the mode k2 in our experiment is indeed described by this density operator.

Fig. 5. Experimental veriˇcation of the optimality
of the U-NOT gate

The plot of Fig. 5 reports our experimental
four-coincidence data as function of the time
superposition of the UV pump and of the in-
jected single-photon pulses. That superposition
was expressed as function of the micrometric
displacement Z of the back-re�ecting mirror
Mp. The height of the central peak expresses
the rate measured with the Π-analyzer of mode
k2 set to measure the ®correct¯ horizontal (H)
polarization, i. e., the one orthogonal to the (V )
polarization of the Π-state, |Ψ〉 = |V 〉 of the
injected, input single photon, N = 1. On turn-
ing by 90 ◦ the Π-analyzer, the amount of the
®noise¯ contribution is represented by a ®�at¯
curve. In our system, the ®noise¯ was provided
by the OPA ampliˇcation of the unavoidable
®vacuum¯ state associated with the mode k1.

Our main result consists of the determination of the ratio R∗ between the height of the
central peak and the one of the �at ®noise¯ contribution. To understand this ratio, we ˇrstly
note that the most efˇcient stimulation process in the OPA is achieved when a perfect match
(overlap) between the input photon and the photon produced by the source is achieved. This
situation corresponds to the value of the mirror position Z equal to zero (see Eq. (23)). As
soon as the mirror is displaced from the position, the two photons do not overlap properly,
and the stimulation is less efˇcient. Correspondingly, the spin-�ip operation is more noisy. In
the limit of large displacements Z the spin �ipping is totally random due to the fact that the
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process corresponds to injecting the vacuum into the crystal (see Eq. (24)). The theoretical
ratio between the corresponding probabilities is 2. In our experiment, we have found the
ratio to be R∗ = (1.66 ± 0.20). This corresponds to a measured value of the ˇdelity of
the U-NOT apparatus: F∗ = (0.623 ± 0.025) to be compared with the theoretical value:
F = 2/3 = 0.666. Note that the height of the central peak does not decrease towards zero for
large Z's. This effect is due to the ˇnite time-resolution of our four-coincidence electronic
apparatus, which is in the nanosecond range. It would totally disappear if the resolution could
be pushed into the subpicosecond range, i. e., of the order of the time duration of the OPA
pump and injection pulses. By taking a little time to think, it can be easily found that the
spurious out of resonance plateau of the central peak should indeed reproduce the size of the
®noise¯ condition measured on the mode k2. As we can see, this is indeed veriˇed by the
experiment.

CONCLUSIONS

In summary, we have realized and investigated experimentally the ˇrst quantum machine
which performs the best-possible approximation to an anti-unitary quantum operation. In par-
ticular, we have realized the universal spin �ipping of a qubit (U-NOT gate). The universality
of the performed operation is of the paramount importance since in general the ˇdelity of the
�ipping should not depend on the state of the input qubit. We have achieved almost optimal
ˇdelity of the gate which is determined by the complete positivity of quantum mechanics.
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