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Abstract: We present an overview of two models of quantum random walk. In the

 rst model, the discrete quantum random walk, we present the explicit solution for the

recurring amplitude of the quantum random walk on a one-dimensional lattice. We also

introduce a new method of solving the problem of random walk in the most general case

and use it to derive the hitting amplitude for quantum random walk on the hypercube.

The second is a special model based on a local interaction between neighboring spin-

1/2 particles on a one-dimensional lattice. We present explicit results for the relevant

quantities and obtain an upper bound on the speed of convergence to limiting probability

distribution.
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1 Introduction

Random walks constitute an important tool used in computational mathematics to solve

various problems, mostly connected to exploring large combinatorial structures. The

randomized methods (Monte Carlo methods) provide some insight into problems which

could not otherwise be handled using the brute computational force, such as ¯nding the

Hamiltonian or Eulerian cycle in a given graph, or ¯nding the shortest Hamiltonian cycle

in a weighted graph (the travelling salesman problem). Other examples include 2- and

3-SAT problems, to name a few. For more on problems of this sort, see [12], p. 141®.

With the advent of quantum information theory a new way of running algorithms

on physical hardware has emerged: by encoding the information in qubits, the two-level

quantum systems, we can manipulate the qubits using unitary operations, and readout
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the result of this manipulation thereafter. If we can simulate all the logic gates from

classical computers, we can (in principle) run the classical software on this new basis.

The fundamental di®erence is, that while the classical computer accepts only one input

at a time, we can feed the quantum computers with the coherent superposition of many

input states, and run the computation simultaneously, thus attaining exponential speedup

(with respect to the length of bit string used at the input) over the classical computer.

Unfortunately, there is no simple way to actually check all the parts of the superposition

at the output: the projection postulate forbids this! However, some successful attempts

have been made to ¯nd an e®ective quantum algorithm: the best known is the Shor

algorithm for factoring of integers [4].

Still, the community of researchers is lacking good new algorithms. One direction of

research is toward the investigation of random walks and the e®ort is made to implement

them on the quantum level, and possibly to devise some real new algorithm. Quantum

random walks (which is the term used to denote the yet unspeci¯ed process which mimic

the classical random walks) have interesting properties, which may eventually turn out

to be the basis of possible improvements in the performance with respect to classical

algorithms.

Some distinct types of quantum random walk have been proposed in the literature.

They may be discrete or continuous in time, i.e. their evolution may be governed either by

a sequence of unitary operators, or a Hamiltonian. The ¯rst method has been proposed

in [2].

1.1 Discrete quantum random walk

It may be conceived as a particle bound to a line (or any graph, in general), which may

occupy a set of nodes, or vertices of the graph. The vertices are e®ectively the position

states of the particle, denoted jxi. The elements x form an additive group G. Now we may

apply the unitary operator Sa on the position states to obtain new ones: Sajxi = jx+ eai.
The set of elements feag generates the group G, i.e. any element x may be written as

the sum of some ea-s. For a random walk, it should be a matter of chance, which unitary

operator Sa will be applied to the state jxi at a time. By including any random factor

in the evolution, the state of the particle would be described by a density matrix rather

than by a vector of Hilbert space { the coherence of the state would be lost. Instead, we

augment the state of the particle by some internal degrees of freedom, which a®ect the

route it will take in the next step: let jÂi =
P

°ajeai be the superposition of the states

associated with the generators of G. Now if the particle is in the state jxijÂi, the step of

the quantum random walk will be

Sjxi =
X

a

°ajx + eaijai

that is, we move (in superposition) in each direction, determined by feag. The Hilbert

space spanned by fjeaig is sometimes called the coin space, since it e®ectively acts as
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the coin on which the result of the evolution in the next step depends. To include some

quasi-randomness in the whole process, we shu²e the amplitudes of jÂi at each step: we

simply apply some unitary operator C like jÂi ! CjÂi. Now one step of this type of

random walk is generated by the unitary operator

U = S(I « C)

This type of quantum random walk is sometimes referred to as the coined quantum

random walk.

The quantum random walk induces a probability distribution over the vertices, given

by the expectation value of the observables jxihxj « I . It has been shown [2] that the

time-averaged probability distribution of the coined quantum random walk on Cayley

graph, based on commutative group G converges to a limit, which is independent of the

initial state of the particle. On the other hand, the probability distribution as such does

not converge to a limit, unless hÃjU jÃi = 0 for some initial state jÃi of the particle. On

the contrary, the classical random walk on an undirected graph, where the probability of

a step along an edge which emanates from a vertex with degree d is 1
d
, always has a limit

for the probability distribution. Moreover, the limiting distribution is uniform over the

vertices of the graph, if the graph is d-regular, i.e. all its vertices have the same degree d.

There are not only qualitative, but also quantitative di®erences between classical and

quantum random walks. While the classical random walk on the line is well known

(its probability distribution is the Gaussian distribution with variance proportional to

the number of steps), the coined quantum random walk on the line has been studied

in [11] and [3]. Roughly speaking, they discovered, that the quantum random walk

spreads quadratically faster than its classical counterpart (measured by the variance

of the probability distribution); that, unlike the Gaussian distribution, the probability

distribution of quantum random walk has sharp peaks near the front (whence the previous

statement is more understandable), and that the probability distribution of quantum

random walk may be asymmetric, depending on the initial state of the augmentation

vector (in [6] the conditions for the symmetry are formulated).

1.2 Continuous quantum random walk

Another approach was sketched in [13]. The evolution of the particle depends on a

continuously varying time parameter, and is generated by a Hamiltonian, which is chosen

so as to mimic the stochastic matrix for a continuous classical random walk. We do

not need any auxiliary degrees of freedom; we only need to identify the vertices of some

graph on which the walk happens to be with position states of a quantum particle. In

the original article [13] the authors have investigated how fast the particle will reach a

given vertex, starting from a certain vertex, for a special graph. In general, this model

has not been studied yet, though it seems more promising from the point of view of its

physical implementation.
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1.3 Our results

We will be dealing with both types of quantum random walks. For the discrete case, we

will investigate (in the section 2) the walk on the line and give an explicit formula for

the projection of the state of the particle on the vertex where the walk starts. We also

present a new and simple formula (sec. 2.1), based on the path integral approach, which

enables us to compute the state of the particle for any graph and any coin. Using this

formula we show that the quantum random walk on the hypercube is in some respects

faster than the corresponding one in classical case. For the continuous case, we present a

new model based on the Ising-type interaction analogy (sec. 3), and give explicit formulas

for its evolution. We show that the probability distribution associated with it converges

to a limit, which (unlike the classical case) is biased, depending on the initial conditions.

We also give an upper bound on the speed of convergence to the limiting distribution.

2 Discrete quantum random walk

We are going to deal with coined discrete quantum random walk on the line. We start

with some rigorous notation.

Let HX = spanfjxi : x 2 Zg be the Hilbert space of the position of a particle

(which is bounded to a line, and can only occupy a countable number of vertices), and

HA = spanfjai : a = L; Rg be the Hilbert space of the internal degrees of freedom of the

particle (the chirality ). We also will refer to HA as the coin-space. Now the state of the

particle is jÃi 2 HX « HA, and it evolves in steps by application of the unitary operator

U = S(I « C), where C is some unitary operator acting on HA (we call it the coin) and

S =
X

x2Z

X

a2fL;Rg

jx ¡ 1ihxj « jLihLj + jx + 1ihxj « jRihRj :

Hence, the particle moves to the left (jxi ! jx ¡ 1i) if its internal state is L, and to

the right (jRi ! jx + 1i), if its internal state is R. Let jÃni = UnjÃ0i, if jÃ0i is the

initial state of the particle. We choose the operator C to be the Hadamard matrix, the

2-dimensional Fourier transform. In the basis (jLi; jRi), its matrix form is

C =
1p
2

0
B@

1 1

1 ¡ 1

1
CA (1)

Since the operator U is translationally invariant (UT = T U , where T is translational

matrix, T =
P

x jxihx + 1j « I), we may use the Fourier transform [11]: ¯rst, if jÃi =P
x jxijÂxi then let

jÂxi =
1

2¼

Z ¼

¡¼

dµ eiµxj~Âµi : (2)
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Then the action of U on any state looks like

U jÃi = S
X

x

jxiCjÂxi

= S
X

x

jxi
µ

hLjCjÂxijLi + hRjC jÂxijRi
¶

=
X

x

µ
jx ¡ 1ihLjC jÂxijLi + jx + 1ihRjCjÂxijRi

¶

=
X

x

jxi
µ

hLjCjÂx+1ijLi + hRjC jÂx¡1ijRi
¶

:

(3)

Substituting (2) into (3) we get

U jÃi =
X

x

jxi 1

2¼

Z ¼

¡¼

dµ

µ
eiµhLjC j~ÂµijLi + e¡iµhRjCj~ÂµijRi

¶
eiµx : (4)

E®ectively, one step of quantum random walk rotates the transformed chirality j~Âµi of

the particle with the operator, which in the basis (jLi; jRi) is the matrix

M =
1p
2

0
B@

eiµ eiµ

e¡iµ ¡ e¡iµ ;

1
CA (5)

hence to determine the operator Un, we need to evaluate M n and then to integrate over

[ ¡ ¼; ¼] with respect to dµ eiµx to obtain the probability distribution p(n; x) = hÃnjjxihxj«
IjÃni. Unless stated otherwise, we understand the initial state of the particle to be

jÃ0i = j0ijÂi, i.e. the particle is localized at the 0th vertex at the beginning, and has

some chirality jÂi. We obtain M n in a straightforward manner using the eigenvector

expansion of M . Denoting

Mn =

0
B@

®1 ®2

®3 ®4

1
CA ;

we obtain the coe±cients in the above expression as follows:

®1 = 2¡1

½¡
( ¡ 1)ne¡in! + ein!

¢
+

cos µp
1 + cos2 µ

¡
¡ ( ¡ 1)ne¡in! + ein!

¢¾

®2 =
2¡1eiµ

p
1 + cos2 µ

©
¡ ( ¡ 1)ne¡in! + ein!

ª

®3 =
2¡1e¡iµ

p
1 + cos2 µ

©
¡ ( ¡ 1)ne¡in! + ein!

ª

®4 = 2¡1

½¡
( ¡ 1)ne¡in! + ein!

¢
¡ cos µp

1 + cos2 µ

¡
¡ ( ¡ 1)ne¡in! + ein!

¢¾
:

(6)

with ! ² arctan
p

2 sin µp
3+cos 2µ

.
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Now we need to evaluate the integral 1
2¼

R ¼

¡¼
eiµx®j dµ; j = 1; : : : ; 4 (we omit the

explicit dependence of ®j; ! on µ in the notation). This is hard to do except for x = 0.

If the initial state is jÃ0i = j0ijÂ0i, then p(n; 0) = kMnjÂ0ik2, since the inverse Fourier

transform is j~Âµi =
P

x e¡iµxjÂxi.
The terms in (6) contain odd and even functions. The functions cos n!; 1p

1+cos2 µ
are

even, while sin n! is odd. Their products may vanish if we integrate over [¡ ¼; ¼]. Then,

we are left with the e®ective coe±cients of M (®1 ! ®0
1, etc., and ®0

j(e) [®0
j(o)] means

that ®j takes the given value for n even [odd])

®0
1(e) = cos n!

®0
1(o) =

cos µp
1 + cos2 µ

cos n!

®0
2(e) =

¡ sin n!p
1 + cos2 µ

sin µ

®0
2(o) =

cos n!p
1 + cos2 µ

cos µ

®0
3(e) = ¡ ®0

2(e)

®0
3(o) = ®0

2(o)

®0
4(e) = ®0

1(e)

®0
4(o) = ¡ ®0

1(o) :

(7)

This already seems to be fairly simple. Now all we need to do is to integrate two functions

fA(µ) = cos n! (8)

fB(µ) =
sin n!p

1 + cos2 µ
sin µ = sin n! tan ! (9)

We may expand the formula (8) using several identities. First note that y

i

2
(ln(1 ¡ ix) ¡ ln(1 + ix)) = arctan x

From the complex expansion of cos(n arctan x) we get

cos(n arctan x) =
(1 ¡ i x)n + (1 + i x)n

2 (1 + x2)
n
2

: (10)

Substituting x = sin µp
1+cos2 µ

in (10) and from

p
1 + x2 =

r
2

1 + cos2 µ
; (11)

we may transform the integral of fA(µ) to the sum of integrals of the form

Z
fA(µ) dµ =

Z
R

³
sin µ; cos µ;

p
1 ¡ r2 sin2 µ

´
dµ ; (12)

y We remind ourselves that the complex logarithm is ln(rei³ ) = ln r + i³
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where R is the rational function of the respective coe±cients. These integrals have

analytical solutions in many cases. The exact form of R ² RA is (with n even)

RA = 2¡1¡n=2
n³p

2 ¡ sin2 µ ¡ i sin µ
´n

+
³p

2 ¡ sin2 µ + i sin µ
´no

= 2¡1¡n=2

nX

k=0

µ
n

k

¶³p
2 ¡ sin2 µ

´n¡k

sinkµ
£
( ¡ i)k + ik

¤

= 2¡1¡n=2

n=2X

k=0

µ
n

2k

¶³p
2 ¡ sin2 µ

´n¡2k

sin2kµ 2( ¡ 1)k

= 2¡n=2

n=2X

k=0

µ
n

2k

¶
( ¡ 1)k

¡
2 ¡ sin2 µ

¢(n¡2k)=2
sin2kµ :

(13)

On integration we get

®0
1(e) =

1

2¼

Z ¼

¡¼

RA dµ
21¡n=2

¼

Z ¼=2

0

dµ

n=2X

k=0

µ
n

2k

¶
( ¡ 1)k

¡
2 ¡ sin2 µ

¢(n¡2k)=2
sin2kµ

=
21¡n=2

¼

n=2X

k=0

µ
n

2k

¶
( ¡ 1)k

Z ¼=2

0

dµ
¡
2 ¡ sin2 µ

¢(n¡2k)=2
sin2kµ

=
21¡n=2

¼

n=2X

k=0

µ
n

2k

¶
( ¡ 1)k

Z ¼=2

0

dµ

n=2¡kX

j=0

µ
n
2

¡ k

j

¶
2n=2¡k¡j sin2jµ ( ¡ 1)j sin2kµ

=
2

¼

n=2X

k=0

n=2¡kX

j=0

µ
n

2k

¶µ
n
2

¡ k

j

¶
( ¡ 1)k+j

2k+j

[2(k + j) ¡ 1]!!

[2(k + j)]!!

¼

2
;

(14)

where we have used the fact that

Z ¼=2

0

sin2mµ dµ =
(2m ¡ 1)!!

(2m)!!

¼

2
(15)

The reduction of formula (9) is analogous:

sin(n arctan x)x =
i
2

((1 ¡ i x)n ¡ (1 + i x)n) x

(1 + x2)
n
2

: (16)

Setting x ! sin µp
1+cos2 µ

we get

RB = i2¡1¡n=2 sin µp
2 ¡ sin2 µ

n³p
2 ¡ sin2 µ ¡ i sin µ

´n

¡
³p

2 ¡ sin2 µ + i sin µ
´no

= 2¡n=2 sin µp
2 ¡ sin2 µ

n=2X

k=0

µ
n

2k + 1

¶
( ¡ 1)k

¡
2 ¡ sin2 µ

¢(n¡2k¡1)=2
sin2k+1µ

= 2¡n=2

n=2X

k=0

µ
n

2k + 1

¶
( ¡ 1)k(2 ¡ sin2 µ)(n¡2k¡2)=2 sin2k+2µ :

(17)
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Then we obtain upon integration

®0
2(e) =

1

2¼

Z ¼

¡¼

RB dµ

=
21¡n=2

¼

n=2X

k=0

µ
n

2k + 1

¶
( ¡ 1)k

Z ¼=2

0

dµ(2 ¡ sin2 µ)(n¡2k¡2)=2 sin2k+2µ

=
21¡n=2

¼

n=2X

k=0

µ
n

2k + 1

¶
( ¡ 1)k

Z ¼=2

0

dµ

£
n=2¡k¡1X

j=0

µ
n
2

¡ k ¡ 1

j

¶
2n=2¡k¡j¡1 sin2jµ( ¡ 1)j sin2k+2µ

=
1

¼

n=2X

k=0

n=2¡k¡1X

j=0

µ
n

2k + 1

¶µ
n
2

¡ k ¡ 1

j

¶
( ¡ 1)k+j

2k+j

[2(k + j) + 1]!!

[2(k + j) + 2]!!

¼

2
:

(18)

The coe±cients

®0
1(e)

®0
2(e)

®0
3(e) = ¡ ®0

2(e)

®0
4(e) = ®0

1(e)

9
>>>>>>>=
>>>>>>>;

(19)

are the elements of the matrix M , which transform the initial chirality of the particle

at the 0-th vertex in n steps of Hadamard walk, where n is even number. Now the

probability distribution p(n; x) of the quantum random walk on the line with coin (1),

and initial chirality (°L; °R)T is

p(n; 0) =

8
>>>>><
>>>>>:

°°°°°

Ã
®0

1(e) ®0
2(e)

®0
3(e) ®0

4(e)

!Ã
°L

°R

!°°°°°

2

: n even

0 : n odd

(20)

where the respective coe±cients are from the equations (14), (18) and (19). This is the

main result in this section.

Conclusion

We have given the explicit solution for the probability, that the zeroth vertex is occupied

after n steps of the discrete quantum random walk on the line with Hadamard coin, when

the initial state is of j0ijÂi (the particle is initially localized at the 0-th vertex, with any

chirality jÂi). The formula p(n; 0) is that of (20).
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2.1 Path integral and discrete quantum random walk

The above method of computing the relevant amplitudes of quantum random walk is too

cumbersome to generalize to other graphs and other coins. In [11] the formulas which

resulted from the Fourier transform (such as in (6)) have been approximately integrated

using the method of stationary phase, which gave some asymptotic results for large n.

In particular, it revealed the existence of peaks in the probability distribution shifted

towards the boundaries of the probability distribution (the vertices §n for the nth step).

Other authors ([6, 3], also [8] in a di®erent context) have also used the path integral

method to derive similar results. While their methods have presupposed concrete graphs

(the line) and 2-dimensional coin, we now give the general formula for the path integral

of the discrete quantum random walk on any d-regular graph, with any unitary coin.

The path integral formula

Let G be a Cayley graph on an additive commutative group (G; +), which is generated

by a subset A » G. That is, G is the set of vertices of G and there is an edge between

the vertices x1; x2, if and only if there is a 2 A such that x2 = ax1. Let the initial state

of discrete quantum random walk on this graph be jx0ija0i, and the coin be an unitary

operator C . The coin space is HA = spanfjai : a 2 Ag. Now we resort to intuitive

reasoning: Consider the particle in the state jÃi = jxai. Backtracking jÃi to the previous

step we see that S¡1jÃi = jx ¡ aijai. By another backtrack step we get (I «C)¡1S¡1jÃi =P
a0 jx ¡ aihajCja0ijai Finally, the amplitude corresponding to the random walk starting

at jx0ija0i and following the sequence of edges (a0a1); (a1a2); : : : ; (an¡1an) in n steps, is

¡(a0; a1; : : : ; an) = hanjC jan¡1ihan¡1jCjan¡2i : : : ha1jCja0i (21)

whence the particle moves from the vertex x0 to the vertex x = x0 + a1 + a2 + ¢ ¢ ¢ + an

and ends up with the chirality jani. The overall amplitude that the particle will move

from x0 to x is given by the sum along all the paths, which connect x0 and x, weighed

by (21), i.e. if U is the operator of one step of the random walk, then

(jxihxj « I)Unjx0ija0i = jxi «
X

paths x0 ! x
in n steps

x = x0 + a1 + ¢ ¢ ¢ + an

¡(a0; a1; : : : ; an)jani (22)

Of course, the probability distribution is p(n; x) = khxjÃnik2, where hxjÃni is the projec-

tion of jÃni on jxihxj « I . We show an example of how this sum can be evaluated for a

simple (non-unitary) coin.

The example: Hypercube

The hypercube of dimension d is the graph, where each vertex is connected with d adjacent

vertices. In mathematical terms, it is the Cayley graph on the additive group f0; 1gd =
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Z2d , with the generating set A = fea : ea = 2a; a = 1; : : : dg. The vertices may be

conceived as the bit strings x with length d, and the generators as the bit strings ea with

length d, which have zeros everywhere but at the a-th position, a = 1; : : : ; d. Each vertex

x has its Hamming weight wH(x) (the number of ones in the bit string) and each two

vertices have Hamming distance dH(x; y) (the minimum number of bits we need to °ip

to change x to y). Let the discrete quantum random walk start at the position x0 = 0d.

Then every other vertex x has Hamming distance from x0 equal to its Hamming weight.

How many paths of length n are there between x0 and x? It is easier to consider only

the recurring paths (which start and end at the same vertex) and hitting paths (which

reach some ¯xed vertex with wH = n from vertex with wH = 0 in n steps). The number

of hitting paths (length n) is clearly W hit(n) = n!. For the number of recurring paths

starting at vertex 0d we are free to apply 2kj °ips on each jth bit (kj = 0; 1; : : : ) , such that

k1 + ¢ ¢ ¢ + kd = n
2
. An elementary combinatorial result states that given d non-negative

integers, which sum up to m, we can assign values to the integers in
¡

m+d¡1
d¡1

¢
ways, if the

order of the integers matters. Applying this result to our problem, we determine that

there are

W recur(n) =

µ
n=2 + d ¡ 1

d ¡ 1

¶
(23)

ways to get from x0 = 0d back to x0 in n steps. For the classical random walk on the

hypercube, where the probability of moving from a given vertex to an adjacent one is 1
d
,

the factor associated with each path of length n is 1
dn . For the quantum random walk, the

phase associated with each of the paths may di®er, due to the mixing properties of the

coin matrix C. Quantum random walks on the hypercube have been analyzed in [5, 7]

for a special coin, the Grover coin:

Gd =

0
BBBB@

2
d

¡ 1 2
d

: : : : : :

2
d

2
d

¡ 1 2
d

: : :

...
...

. . . : : :

1
CCCCA

(24)

and the eigenstate of the evolution operator was found. In the following, a shall denote

the diagonal terms, and b the non-diagonal ones. Using the path integral method, we

may obtain a direct insight into the structure of the walk: let the initial state be jÃ0i =

j0di « 1p
d
(je1i + ¢ ¢ ¢ + jedi), where ej; j = 1; : : : ; d are the vertices with Hamming weight

unity. The walk will be symmetric over the layers `1; : : : ; `d, where `j is the set of all

vertices with Hamming weight j. The ¯rst step of quantum random walk will transform

the initial state jÃ0i = j0dijÂ0i, where jÂ0i = 1p
d
(1; : : : ; 1) in the basis (je1i; : : : ; jedi):

jÃ0i !
dX

k=1

jekihekjGdjÂ0ijeki (25)

=

dX

k=1

jeki 1p
d

(a + (d ¡ 1)b)jeki : (26)
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Now the particle occupies each vertex with Hamming weight unity (in coherent superposi-

tion); its chirality is jeki, where ek is the respective vertex; its amplitude is 1p
d
(a+b(d ¡ 1)).

We will investigate the probability that the particle will hit the farthest vertex of the hy-

percube (Hamming weight d) in d steps. After the ¯rst step, every other step in the

\correct" direction (increasing the Hamming weight by one) will add the factor b to the

path integral (total factor of bd¡1). The number of possible paths from a ¯xed vertex

with wH = 1 to a ¯xed vertex with wH = d in (d ¡ 1) steps is (d ¡ 1)!. From symmetry

we see that, after d steps the state of the particle projected on the vertex with Hamming

weight d will be

hx ¹wH =d jÃdi =

dX

k=1

1p
d

(a + (d ¡ 1)b)bd¡1(d ¡ 1)!jeki : (27)

Now the probability that the particle is localized at the farthest vertex after d steps of

quantum random walk driven by the Grover coin, with initial state j0di 1p
d
(1; : : : ; 1) is

pquant,Grov,hit(d) = b2d [(d ¡ 1)!]2 (a
b

+ d ¡ 1)2. Compare this to the hitting probability

of the classical random walk on the hypercube: pclas,hit(d) = d!
dd . We get a striking

result: the hitting probability of quantum random walk on the hypercube driven by the

Grover coin is exponentially greater than in classical case, the ratio (d ! 1) beingz:

r = p q u a n t,Grov,h it(d)
pcla s ,h it(d)

¹ e®d
p

d, with ® º 0:386 A similar result on the same theme was

already derived in [5], but our method is much simpler.

Conclusion

We have shown that discrete quantum random walk on the hypercube driven by Grover

coin traverses the hypercube exponentially faster then in the classical case. It can also

be shown, that its recurring properties are stronger than for the classical counterpart:

namely, the probability that a localized particle with chirality 1p
d
(1; : : : ; 1) will return to

the original position after two steps will be 4(1 ¡ 1
d2 ) times the classical probability. This

two-fold speedup is a paradoxical feature of quantum random walk.

3 Spin model of quantum random walk

3.1 Introduction

Randomized algorithms provide an e®ective way of exploring large combinatorial struc-

tures, using only limited computational resources. Examples of these algorithms are

various Monte Carlo methods and random walks. Random walks are put to use when-

ever the task is to check a vast number of paths to give a de¯nite result. For instance,

the travelling salesman problem (the problem of ¯nding the shortest route between two

points, given all the possible routes) is superpolynomial in its complexity, thus hardly

solvable using brute force.

z We have used the Stirling approximation n! º
p

2 º n nn e¡n.
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Since the advent of quantum computing, it has been shown that some problems which

have exponential complexity with respect to classical methods of solving, can be e®ectively

computed on quantum computers. Shor’s celebrated algorithm for factorizing integers and

Grover’s search algorithm are the best known. More recently, quantum random walks

have been proposed as new means of implementing new algorithms. There are two basic

approaches, sketched in [2, 11, 13]. In both cases the states of Hilbert space are identi¯ed

with vertices of a graph, which underlies a combinatorial problem. We may traverse

the graph using discrete sequence of unitary transformations, which apply on the whole

graph, or setting an interaction between adjacent vertices and evolving the state vector

using a suitable chosen Hamiltonian. In the ¯rst case, we need an additional Hilbert

space (the coin space), which gives additional information on the direction of the walk.

We shu²e the amplitudes of the coin belonging to di®erent vertices at each step, to

simulate random choice of path (without this modi¯cation, the walk would reduce to a

trivial process, see [8] and the No-go Lemma therein). These walks have proved to lead

to quadratic to exponential speedup with respect to various measures, compared to their

classical counterparts [2, 5], and an oracle-based search algorithm on the hypercube has

been proposed [10]. The second approach is based on the evolution which is continuous

in time, governed be the Hamiltonian which is e®ectively the adjacency matrix of the

graph [13, 9]. In some cases it has turned out that the quantum random walk penetrates

the graph exponentially faster than in the classical case. We will discuss a model which

is somewhat similar to this one.

We propose a model which is composed of qubits conceived as spin 1
2
-particles arranged

on a lattice, which interact locally; the interaction °ips the orientations of two neighboring

qubits whenever they are antiparalell. This interaction is somewhat similar to the Ising

model interaction,

HIsing =
X

a

¾(a)
x « ¾(a+1)

x

where a runs through the vertices of a 1-dimensional lattice. In our case, we will be

working in the basis of eigenstates of ¾z, ¾zjji = ( ¡ 1)jjji; j = 0; 1, If we prepare the

system on an n-cycle in the state j10 : : : 0i, it will evolve in an oscillatory manner, relaxing

to the state j00 : : : 0i in time average. There is approximately twice as great average

probability for the ¯rst qubit to be in the state j1i than for the rest of the qubits, which

initially were polarized in the state j0i. The residual polarization in the state j1i drops

to zero as time T ! 1, with upper bound O(n2

T
).

3.2 The model

Let the Hilbert space H = [j0i; j1i]n be spanned by linear combination of vectors jxi; x =

0; : : : ; 2n ¡ 1. The vectors of H represent the states of arrangements of n qubits on a

n-cycle. The Hamiltonian for the evolution is

H =

nX

a=1

j0ih1ja « j1ih0ja©1 + h.c. (28)
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where © is modulo n and h.c. stands for Hermitian conjugate. That is, the neighboring

qubits interact, by °ipping their polarizations (in fj0i; j1ig basis). We say that the

position of the walk is at the a-th vertex, if there is a nonzero probability to ¯nd the

qubit at the a-th vertex in state j1i. If the initial state is jÃ(0)i = j10 : : : 0i, then

jÃ(t)i := e¡iHtjÃ(0)i =

nX

a=1

cajeai (29)

is the state at time t, where jeai = j0 : : : 1 : : : 0i with 1 but at the a-th position. The

state jÃ(t)i is the coherent sum of the states, where the walk is positioned exactly at

the a-th vertex. The whole evolution thus lives only on the subspace H1 » H, where

H1 := [e1; : : : ; en] =. Then a-th qubit alone will be in the state

½(a) = jcaj2j1ih1j + (1 ¡ jcaj2)j0ih0j (30)

where ½(a) := TrS(jÃ(t)ihÃ(t)j); S = [jeai]? is the density matrix of the a-th qubit, ob-

tained by tracing over the Hilbert subspace of H1, attributed to the remaining qubits.

We see that the vector on the Bloch sphere of ½(a) is parallel to the chord connecting the

extremal points j0i; j1i.
The measure pa := jcaj2 is the measure of polarization of the a-th qubit, and may

be thought of as the probability that the walk is positioned at the a-th vertex. The

coe±cients ca are easy to compute from the Schr}odinger equation:

i
:
ca = caª1 + ca©1 : (31)

Now from the translational invariance of the Hamiltonian, HD ¡ DH = 0, where Djeai =

jea©1i. We may use the Fourier transform:

ca =

nX

k=1

vkei2¼ka=n (32)

vk =
1

n

nX

a=1

cae¡i2¼ka=n : (33)

Substituting in (31) we obtain

ca(t) =
1

n

nX

k=1

e¡i¸k tei2¼ka=n (34)

where ¸k = 2 cos 2¼k
n

is the eigenvalue of the reduced Hamiltonian H 0 := P HP , where

P is the projection on the space [je1i; : : : ; jeni]. The evolution of pa(t) := jca(t)j2 is

oscillatory, as we see in FIG. 1 to FIG. 3. Obviously, the ¯rst qubit (initially in the

state j1i) relaxes to the opposite polarization, but after some time its original polarization

is partially restored. It is when the phase waves propagating in the opposite direction

form the ¯rst vertex start to interfere. In the long run, however, the evolution always

returns to the vicinity of the initial state, see FIG. 4 Interpreting pa as the probability
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Fig. 1 Evolution of the  rst qubit, with n = 40.
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Fig. 2 Evolution of the second qubit, with n = 40.

0 10 20 30 40

t

0

0.2

0.4

0.6

0.8

1

pa

Fig. 3 Evolution of the 20-th qubit, with n = 40.
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Fig. 4 Evolution of the  rst qubit, for n = 40 and longer times.

that in the random walk the a-th vertex is occupied, we see a sharp contrast with classical

behavior of the random walk, when we allow at each instant to move to the left or right

on the cycle. The generator matrix of this walk is

M =

0
BBBBBBB@

¡ 2 1 ¢ ¢ ¢ 1

1 ¡ 2 1 ¢ ¢ ¢
...

. . . ¢ ¢ ¢

1 ¢ ¢ ¢ 1 ¡ 2

1
CCCCCCCA

: (35)

Let the probability that the a-th vertex is occupied be denoted ~pa(t) and the probability

distribution over the vertices be denoted ~p(t) = (~p1(t); : : : ; ~pn(t))T . Then the equation of

motion for the classical random walk is

~p(t) = etM ¢ ~p(0) (36)

where etM =
P1

k=0
tk

k!
M k is the exponential of the matrix. The matrix M is virtually

identical with the reduced Hamiltonian H 0 which governs the evolution of quantum ran-

dom walk. The diagonal elements (which we need in the classical random walk because

of the normalization of the vector ~p) would only contribute to the evolution of jÃ(t)i with

an overall phase, and would not change the evolution of p(t). By means similar to what

we have used for the quantum random walk, we compute ~p:

~pa(t) =
1

n

nX

k=1

e¡¹k tei2¼ka=n (37)

where ¹k = 4 sin2 k¼
n

. Obviously, limt!1 ~pa(t) = 1
n
, which is the stationary distribution

of the classical random walk on the cycle. Since pa(t) is oscillatory, it makes no sense

to de¯ne its stationary distribution. Various alternative de¯nitions of the stationary
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distribution have been proposed, one of them being the average distribution

¼a(T ) :=
1

T

Z T

0

pa(t) dt : (38)

We show that there exists limT !1 ¼a(T ), which di®ers from 1=n as expected from the

classical random walk.

Assuming n is odd, we have

pa(t) =
1

n2

nX

k;j=1

e¡i(¸k ¡¸j )tei2¼(k¡j)a=n

=
X

¸k =¸j

+
X

¸k 6=¸j

:=
X

k=j

+
X

k=n¡j
j 6=n

+R(t)

=
1

n
+

(
n¡1
n2 : a = n

¡ 1
n2 : a 6= n

using the identity ¸k ¡ ¸j ¹ sin( (k¡j)¼
n

) sin( (k+j)¼
n

) and the fact that the terms in both

sums are di®erent, since n is odd. The term R(t) is the residual part of pa(t). Integrating

R(t) as in (38) we obtain

¼a(T ) =

(
2
n

¡ 1
n2 : a = n

¡ 1
n

¡ 1
n2 : a 6= n

+
1

T

Z T

0

R(t) dt

| {z }
I(T )

On integrating I(T ) we get

I(T ) =
X

¸k 6=¸j

1

n2
ei2¼(k¡j)a=n e¡i(¸k ¡¸j )T ¡ 1

¡ iT (¸k ¡ ¸j)
: :

Obviously, the following inequality holds:

jI(T )j µ
X

¸k 6=¸j

1

n2

2

T j¸k ¡ ¸jj
(39)

and for T ! 1 the term I(T ) vanishes. This proves the existence of the stationary

distribution in time average probability. Giving the bound on the di®erence j¸k ¡ ¸jj ¶
j cos 2¼

n
¡ cos 0j we have from the intermediate value theorem j¸k ¡ ¸j j ¶ j sin #j 2¼

n
; # 2

(0; 2¼
n

). From the convexity of sin, for large n, we have j sin #j ¶ 2
¼
#. The monotonicity of

sin #; # 2 (0; ¼
2
) implies j¸k ¡ ¸jj ¶ 2

¼
( 2¼

n
)2. Substituting back in (39) we obtain the result

jI(T )j µ O(n2

T
). The rate of convergence of ¼a to the stationary distribution is linear

in time. By a similar argument we can show from (37) that ~¼a(T ), the time average of

~pa(t), converges to 1
n

as O(n2

T
).

The quantum and classical random walks do not di®er signi¯cantly in their speed of

convergence to the stationary distribution.
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3.3 Quantum walk on the line

Replacing the periodic boundary conditions with open boundary conditions, we may

transfer from the model of quantum random walk on the cycle to the quantum random

walk on the line. The equations (34) and (37) now take the form

c(line)
a (t) =

1

2¼

Z 2¼

0

e¡i2t cos keika dk (40)

and

~p(line)
a (t) =

1

2¼

Z 2¼

0

e¡2t sin2 (k=2)eika dk : (41)

These integrals can be explicitly evaluated in the form of Bessel functions:

c(line)
a (t) = ( ¡ i)aJa(2t) (42)

~p(line)
a (t) = e¡2tIa(2t) : (43)

Both (42) and (43) are properly normalized (see [1], (9.1.76), (9.6.33)). From the

asymptotic forms of Bessel functions for t =! 1, Ja(t) ¹
q

2
¼t

cos(t ¡ 1
2
a¼ ¡ ¼

4
) and

Ia(t) ¹ et
p

2¼t
(1 ¡ 4a2¡1

8t
+ ¢ ¢ ¢ ), we see that that in the limit of large t, the quantum random

walk relaxes to the state j0 : : : 0i, while classical random walk approaches the state when

there is negligible probability at each vertex to be occupied.

3.4 Generalization of the model and conclusion

We may generalize the model for an arbitrary interaction between adjacent vertices of

a lattice (or conveniently, a graph). Consider an unoriented graph with (vertices, edges),

G = (Gv; Ge), and a Hamiltonian

H =
X

a2Gv

X

a02E(a)

(!a « !¤
a0 + !¤

a « !a0) (44)

where E(a) is the set of vertices adjacent to a, such that (aa0) 2 Ge. The operator !a

acts on the qubit at the a-th vertex. Setting !a := j0ih1ja we get precisely the quantum

random walk we have discussed before. We may immediately translate the results from

the classical theory of random walks on graphs to the quantum domain, if we take the

Hamiltonian H as the generator of the walk, for complex valued time ¡ it.

Our model of quantum random walk on the cycle does not exhibit any signi¯cant

di®erence from the classical case in the speed of convergence (both are O(n2

T
), though

there is a qualitative di®erence between the two cases in their limiting distributions. In

the case of random walk on the line, the quantum walk converges quadratically faster to

the limiting distribution than classical one (see the asymptotical expansion of the Bessel

functions). This walk could in principle be easy to implement if the !a operator can be

decomposed using the spin-°ip operators j0ih1j; j1ih0j, which can be done for the Ising

model, for example.
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