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A quantum processor is a device with a data register and a program register. The input to the program
register determines the operation, which is a completely positive linear map, that will be performed on the state
in the data register. We develop a mathematical description for these devices, and apply it to several different
examples of processors. The problem of finding a processor that will be able to implement a given set of
mappings is also examined, and it is shown that, while it is possible to design a finite processor to realize the
phase-damping channel, it is not possible to do so for the amplitude-damping channel.
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[. INTRODUCTION superposition of0) and|1), and that we are only interested
in the target qubit at the output of the device, so that we trace
The coherent control of individual quantum systems isout the control qubit to obtain the reduced density matrix of
one of the most exciting achievements in physics in the lasthe target qubit. The action of thenoT gate on the target
decadd 1]. The possibility of controlling quantum dynamics qubit can then be described as a completely positive, linear
has far reaching consequences for quantum technologies, lRap acting on the initial density matrix of the target qubit,
particular, for quantum computing2]. One of the best Wwith the actual map being determined by the state of the
known applications of coherent control in quantum physicscontrol qubit. We take this device to be a model for a pro-
is the state preparation of amdividual quantum system. For grammable quantum gate array, or quantum processor. Gen-
example, a particular state of the vibrational motion of aerally speaking, a programmable quantum processor is a de-
trapped ion can be prepared by using a well-defined sevice thatimplements a completely positive linear map, which
quence of external laser pulses. Another possibility is to foiS determined by the state of one quantum system, on a sec-
cus on controlling the dynamics, that is, the unitary evolutionond quantum system. These processors have two registers,
operator. One way of doing this is to realize a particularthe data register and the program register. The data register
evolution operator by means of a sequence of “elementary’contains the quantum system on which the map is going to
interactions, which are sequentially turned on and (&6f  be applied, and the program register contains the quantum
more details see RefE3,4], and for a specific application to System whose state determines the map. The third element of
trapped ions see Rdf5] and references thergin this device is a fixed array of quantum gates that act on both
In the theory of quantum coherent control it is assumedhe program and the data state. The virtue of this arrange-
that the control of the dynamics is realized via external clasment is that we do not have to build a different processor
sical parameters, such as the intensity of a laser pulse or tfvery time we want to realize a new map, we simply change
duration of an interaction. In this case, the information thatthe program state. This allows us greater flexibility than a
controls the quantum system is classical, and it is set by aflevice in which the map is determined by setting external
experimentalist to achieve a single, fixed outcome. This igarameters. For example, it could be the case that we do not
analogous to programming a computer to perform a singl€ven know what the program state is. This would occur when
task by setting dials or switches to particular positions, eache state of the program register is the output of another
task requiring different positions. guantum device. We will refer to the selection of the program
In this paper we will study a different type of quantum state to perform a desired operation gsantum program-
control. We will assume that the information about the quanming
tum dynamics of the system under consideration is not rep- Programmable quantum process@ate arrayswere first
resented by classical external parameters, but rather is efonsidered by Nielsen and Chuai@j. They were interested
coded in the state of another quantum system. A typicaPnly in the case in which a unitary operation, rather than a
example of such an arrangement is a controled-(c-NoT) ~ more general completely positive linear map, is performed
operation(or in general a controllet} operation. In this ~ 0n the state in the data register] #f) 4 is the state of the data
case, the specific operation performed on the system, th@gister,|=y), a program state that implements the operator
target, depends on the state of a second quantum system, tHeon the data state, an@ the overall unitary operation
control. If the control qubit is in the stat@) the target qubit implemented by the fixed gate array, then their processor
is left unchanged, but if it is in the statd), then anoT  carries out the transformation
operation is applied to the target qubit. This means that this
device can perform at least two operations on the target qu-
bit, the identity andNoT. There are, however, further possi- _ —,
bilities. Let us suppose that the control qubit is initially in a G(|1//>d®|=u>p):U|‘/’>d®|=u,¢>p’ (1.1)
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where|E|; ,), is the state of the program register after theregister encodes an operation we want to perform on the data
transformationG has been carried out. The subscriptend  register. We would first like to show that the action of the
i indicate that this state can depend on both the operation processor can be fully described by a specific set of linear
and the statéy)y of the data registed. They were able to operators.

prove a number of results about this device. First, they

showed that the output of the program register does not de- A. Pure program states

pend on the data register, a fact that follows from the unitar-

ity of G. Second, they proved that the number of possible Lft"/’)d be th? itnput Séaée otfhthe d_::ua registﬁ;)p tt)ﬁ tthg
: . . .. Input program state, an@ be the unitary operator that de-
programs is equal to the dimension of the program register. cribes the action of the array of quantum gates{.ljl)plj

Let us assume the first of these results and show how t8_ ; i< for th p h
prove the second. Consider two program st:i&g)p and _1’h' . ’N% is a basis for the space of program states, then
|Ev)p that cause the operatosandV, respectively, to act we have that
on the data register. This implies that

G(|)a®|Eu)p) =U[¥)e®|E()p,

G(|)a®Ev)p)=VI)a®|EV)p- (1.2 If we define the operatoA;(E), which acts on the data
register, by

A(E)N P a=pliIG([)e®|E)p), (2.2

then we have that

N
Glw)ae E)p) =2, [DpiIC(1e®[=)p). (2D

The unitarity of G implies that
o(EVIEU)p= a(UIV ' U[$)a (EVIE)p, (1.3

and if ,(Ey|E()p#0, then

VU1 9)g= w 14
p

=viEulp

N
G<|w>d®|5>p)=j§1A;<E>|¢>d®|j>p. 2.3

This means that the output density matrix of the data register

The left-hand side of this equation dependd ®yy while the is given by

right does not. The only way this can be true is if

. N
vViu=e, a9 p§=3 AEIDevIAlE). 24

for some reakp. This means that the operatdgsandV are
the same up to a phase. If we want these operators to behe operatoA(Z) depends on the program state, but it can

different, we must have thai =y |=(,),=0, which by Eq.  be expressed in terms of operators that do not. Define the

(1.3 implies that (Ey|Ey),=0. Therefore, the program operators

states corresponding to different unitary operators must be

orthogonal. This implies that the dimension of the program Aik=A;([k)) =p(iIG|K)p, (2.5

register must be greater than or equal to the number of dif-

ferent unitary operators that can be performed on the datwhere|k) is one of the basis states we have chosen for the

register. space of program states. We have that for any program state
In this paper we would like to consider the more general E),

problem of quantum processors that realize completely posi-

tive linear maps, not just unitary operators. The paper is or- _ _

ganized as follows. In Sec. Il we derive a formalism for Aj(ﬂ):gl o(KIE) pAji - (2.6)

describing and analyzing quantum processors, and apply it to

both pure and mixed program states. In Sec. Ill we presenfpis means that the operatofg, completely characterize
several classes of quantum processors, while Sec. IV will bg,o processor in the case of pure program states. We shall

devoted to the problem of processor “design,” that iS, We .|| these operators the basis operators for the processor.
will discuss specific processors that are able to implementpqoge operators have the following property:
various classes of quantum processes. In the concluding sec-

tion we will briefly discuss probabilistic quantum processors, N N
which are based on dynamics conditioned on the results of Z A].TklA].kZZZ <k1|GT|j><j|G|k2>:1d5k1k21 (2.7
measurements. j=1 j=1

N

where we have used the decompositiouj )(j|=1,.
An obvious question to ask at this point is whether any set
A general quantum processor consists of two registers, af operators satisfying Eq2.7) corresponds to a quantum
data register and a program register, and a fixed array girocessor. The following construction allows us to show that
quantum gates. The input state that goes into the progranhis is the casg7]. Given a set oN? operators acting ofit,

II. QUANTUM PROCESSORS
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we can construct an operatGracting on the product space

Hq®H,, whereH, is an N-dimensional space with basis Qp:; M xid(xul
{Ik)plk=1, ... N}. We set
N —[®)pr=2 Wdxidp®IK), (2.13
G:%1 Ai®|iYp (KI- (2.9

whereg, has been written in terms of its spectral decompo-
sition. We define the unitary operator corresponding to the

It is now necessary to verify th& constructed in this way is .
y y y new processor, which acts on the spatgvH, , by

unitary. Noting that
G':=G®l. (2.19

N

GT:jgl A}k®|k>p p<J|- 29 The conjecture is that the processaf with the pure pro-
' gram state}tb)p, will produce the same mapping as the pro-
cessorG with the mixed program statg,. If this is true,
then we will have shown that by using only pure program
tates with the process@’ we can implement the entire
lass of superoperatot; .

In order to prove this we have to show that

we see that Eq(2.7) implies thatG'G=1, so thatG pre-
serves the length of vectors and is unitary.

It is possible to express the basis operators for closel)§
related processors in terms of each other. For example, it
{Bjlj,k=1,... N} are the bas);s operators f@", then
from Eq. (2.9 we see thaB;,=A.. If G; andG, are two t_ / 't
processors (unitary operjatonjs \with  basis operators TrpGea®epG =Tr, Geq® ey G (2.19
{AfRlik=1,... N} and {A{J|j,k=1,... N}, respec- for all p,. The right-hand side of this equation can be re-
tively, then the basis operato;, for the processor corre- yritten as
sponding to the operatds;G, are

TryG'04® 0, G'"

N
Ciu=2>, ADAD . (2.10
s :Tfp'[% V)\kM(GQd@|Xk><X||GT)®|k><||}

This follows immediately if bothG; andG, are expressed in

the form given in Eq(2.8) and then multiplied together. If _ NN TG chs
we apply this equation to the cag =G andG,=G", and % MTTL(Geg® bl G dic]

note thatGG'=1, we have that

ITrp[GQd(@

N Ek: )\k|Xk><Xk|)GT}
jZl Aklelzj = 1d 5k1k2' (21])
=Tr,Gey®e,G", (2.16

It is clearly possible to generalize E@.10 to the case when

there is a product of more than two operators which proves Eq(2.15. Therefore, we can conclude that it

is possible to “mimic” mixed program states for a given
processor by introducing a larger program spagg and a

Suppose the program is represented by a mixed state
=3 R|k)(l]. Then for the induced mapping we have C. Correspondence between programs and mappings

_ We have just seen that two different programs on two
e3"'= > RyAm@i Al Tro(Im)o(n))=> RqAm@qAL,.  different processors can lead to the same mapping, and now
kimn kim we would like to examime whether different programs on the
(2.12 same processor can produce identical mappings. We shall
o show that this can occur by means of a simple example. Let
We shall denote by the set of completely positive linear Q. be a projection operator on the program space whose
maps realizable by using the fixed processbrand any raﬁlge has dimensioB, where :<D<N, and letU; andU,

mixed state in the program space as a program. _be two different unitary operators on the data space. Con-
Let us now address the question of whether it is possiblgiger the processor given by

to find a second processGr’ that can realize any map in the

setCg using only pure state programs. Any mixed staté{(jn G=U1®Qp+U,®(1,—Qp). (2.17

can be purified, but the purification is not uniquz8]. We

begin by defining a new program spaky, =H,®H, and  Any program state in the range Qf, produces the mapping
choosing the purification in the following way: U, on the data state, and there are clearly an infinite number
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of these. Therefore, we can conclude that there are proceser 2. This will produce the mappin“@2 on the data state of
sors for which many program states produce the same opergrocessor 2. The relation between the program operators

tion on the data state. AMN(E,) andAP(E,) is
We shall now show that the opposite can also occur, i.e., !
that there exists a processor for which every program state N
(mixed or pure¢ encodes a different superoperator We will AJ(Z)(EZ): 2 (Upl)jkA(ll)(El)- (2.2
present an example which illustrates that. To do so, we uti- k=1

lize results of Ref[9] where the unitary transformation
The operatoré{Y(Z,) are Kraus operators for the mapping

G=cospl+i sin$S (218 Tz, and the operatorA{*)(=,) are Kraus operators for the
_ _ _ mappingTEZ. The above equation implies that the mappings
was introduced. The swap opera®r 3| kl)(Ik| is defined 5 jgentical, Tz =T=. [7]. Therefore, any superoperator
in any dimension. The so-callgghrtial swaptransformation R .
. . ) : that can be realized by processor 1 can be realized by pro-
G acts on two quditsd-dimensional systemsLet us restrict e .
cessor 2. Similarly, it can be shown that any superoperator

our attention to qubits, and identify one of the qubits with the at can be realized by processor 2 can also be realized b
data register and the other with the the program system. IW . yp : y
rocessor 1. This shows that the two processors implement

Ref.[9] it was shown that if the program system is preparea?

. _ ; he same set of superoperators.
in the stateg ,=¢, then the induced mafsuperoperatorT . . .
is contractive with its fixed point equal $©[10]. Since each A special case of this type of equivalence occurs when the

contractive superoperator has only a single fixed point, w \WO Processors are si_mply related by_ai cha_nge of t_he basis in
can conclude that different program stages¢’ induce dif- '€ Program space, i.e., whés,, =Uy,. It is possible to

ferent superoperators, i.d,# T, . As a result we can con- derive conditions that the basis operators of the two proces-
clude that in the proce’ssorggivén by E8.18), for any value sors must satisfy if the processors are to be equivalent in this

tricted sense. These follow from the fact that the
of the parametegp, the correspondence between program ore res L S
and mappings is one to one. Finally, we note that while herizaci |s_|1nd(:]pendent of_the basis 'Q. vr\]/h_|ch|_|t |shtaken. If
we considered only qubits the results in this section also hold p1=Yp2» then Tp(G1) =Try(Gz), which implies that
for qudits[10].

N N
> A=> A&, (2.22
D. Equivalent processors =1 =1

We shall regard two processdB, and G, as essentially We also have that I(G“)zTr (GD), which for the casa
equivalent if one can be converted into the other by inserting:2 gives us ! P2l

fixed unitary gate arrays at the input and output of the pro-
gram register, that is, if N N

(L)L) = (2)p(2)
Gy=(14@Up1)G1(14@ Upy), (2.19 jzl Alic Ak ;1 AjCAG - (2.23

whereU,; andU,, are unitary transformations on the pro- Clearly, by taking higher values of, we can derive addi-
gram space. If this equation is satisfied, then the processotfnal equivalence conditions.

defined by the two gate arrays will perform the same set of e end this section by summarizing some of our results
operations on data states, but the program states required &g far.

perform a given operation are different, and the outputs of (|) For a given process@ any member of the class of all
the program registers will be different as well. If E@.19  possible completely positive linear maps realizable by
holds, then for the basis operatokﬂ) (i=1,2) associated G, Cs, can be expressed in terms of the operafg(s

with the two processors we have (i) We can mimic the action induced by any mixed pro-
gram state by a pure program state in a larger program space.
) W (iii) For any two mappings realized by the procesGor

Ajk :m;ﬂ (Upn)jm(U p2) niAmn- (220 and the pure state prograrfig,), and|=,), the identity

N

Therefore, we can regard two processors whose set of opera- > ANEDALER) =(E41|E)qg (2.24

torsA](L) are related by the above equation as equivalent. K
If processors 1 and 2 are equivalent, then they will imple-

ment the same set of superoperators, C@i; Co,- In order

to see this, suppose that, when the sfatg), is sent into the

program register of processor 1, the mag,, with program lll. CLASSES OF PROCESSORS

O_DeratorsA}”(E 1), is performed on the data state. Now con- |n this section we will examine several different kinds of
sider what happens when we send the st§f,), quantum processors. These will serve to illustrate some of
= ngllEQp into the input of the program register of proces- the general considerations in the previous sections.

holds. This follows directly from Eqg2.6) and(2.7).
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A. U processors Ajk:p<j |G|k)p
Let us suppose that the eigenvectors of the unitary opera-
tor G that describes the fixed array of gates are tensor prod- = > [mY{(m|(j|Umk)=>, (U j/my(m|.
ucts. In particular, suppose that we have a single orthonormal m m
basis forH,, {|k),/k=1,... N} and a collection of ortho- .
normal bases fotty, {|émdalk=1,... Nm=1,... M}, The maps produced Byprocessors are unital, as can be seen
whereM is the dimension oft{y. For each value ok, the from
vectors{| ¢ glm=1, ... M} form an orthonormal basis
for Hyq. We call a processor d processorif the eigenvec- Al = . Ty,
tors of G, |®ydqp, are of the form 21: PPy EJ: % (Ui, (Unikmy{min)(nl
|q)mk>dp:|¢mk>d®|k>p- (3.9

= (Um)jkl(UrTn)jk2|m><m|
In this case the operatofsy are given byA;, = 6;,U; where Im
U; is unitary (its eigenstates are just{|dm;)qlm
=1,... M}) . This is the type of processor that was studied _ _

by Chuang and Nielsel], and we recall that the dimension B 5“1“22 [l = Gy 3.6
of H, is equal to the number of unitary operators that this

type of processor can perform. The processor acts on the The action of &Y processor is particularly simple if all of

state|)4®|j), as the operatordJ,, have some common eigenstates, and the
. . program state is one of them. Suppose thﬂa,gIM)p
G(|#)a®li)p)=(Ujl)a)®1i)p, 32  =e'YnE),, then
where| )4 is an arbitrary data state.
For a general pure program staf),=3;a;j), the en- G % CrlM¢®|E) )=(2 Cmel¢m|m>d> ®|E)p-

coded mapping, or superoperatib'ri, is given by the ex- 37
pressionTz[04]=2 |||l UJQdUT In the case of a mixed '

program stat@,= JkR1k|J><k| the data state is transformed |, symmary, we can say that both teandY processors are
asT, [04]=2; iRjjUjeqU]. Comparing these two cases we controlledd gates; in theJ processor, the control system is
conclude that we can always mimic a mixed program staté¢he program and the target is the data, and invtipeocessor,

by a pure one, in particular, it is enough to sgt= \/R_“ it is the target that is the program and the control that is the
Hence, for this type of processor we can consider only purelata.

program states without any loss of generality.

Finally, we note that for all program stat&s), C. U’ processors
1 1 1 Let us consider a simple modification of thieprocessor,
T= ald =Z |j|2U; aldu;r=ald. (3.3  which we shall call theJ’ processor. Suppose we have two
i

different orthonormal bases 61,,, {|k),}, and{|xy)p}. We
define aU’ processor to have a unitary operatérof the

This implies that each element 6§ is unital, i.e., it maps form

the identity operator into itself.

B. Y processors G= Ek Ui® [K) p{ Xl - (3.9

A second possibility is to consider a situation that is in _ _ o
some ways the reverse of the one we just examined. We havehis looks like a new kind of processor, but it is actually

a single orthonormal basis faky, {|m)qm=1,... M}, equivalent to &J processor. This can be seen immediately if
and a set of orthonormal bases fak,, {|ka>p|k we realize that there exists a unitary operdtgy acting on
=1,... N}, wherem=1,... M labels the bases and the H, such that xi),=U,|k),. Therefore, we have that

index k labels the individual basis elements. We again as-

sume that the eigenvectors & |® 04, are tensor prod- _ +

ucts, but now they are given by G E |k>p<k| (la®Up), 3.9

[P midap=IMa® | Xmidp- (3.4 so thatG is, in fact, equivalent to & processor.

In this case the processor can be expressed Gas

=3 myg(m|®U,,, whereU,, is unitary and has eigenvec- D.Y" processors

tors{|ka)p|k= 1,... N}. We find the operatord, by first Now let us try a modification of th& processor in the
choosing a single orthonormal basistfy, {|k),}, and com- same spirit as the one we just made to theprocessor.
puting Suppose we have two different orthonormal base$igf
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{Im)p}, and{|¢m)q}. We define aY’ processor to have a wherec is a constant. Taking the trace of both sides of Eq.

unitary operatoiG of the form

G=2 [M)a(bm|®Un (3.10
For the operatorg;, we obtain
Aj=pi1GIK)p= 2 Im)(bml (Um)ji- (312

This type of processor is not equivalent torgrocessor. It

(3.15 we find

N
r 2}1 A(E)A(E)

N=cTr(1)=cN, (3.1

so thatc=1. Because this relation holds for any program
state, we have that

N
2 Aji,Alk,= S, la

(3.17

does, however, share the property of producing unital mapghich implies that the maps produced by a processor that is

as can be seen from

zj: AiklAkaZZj%:n [M) bl ¢n><n|(um)jkl(ul)k2j
:J_Em [m)(MI(U D), (Um)je,
:5k1k2% [m)(m|
=k k,ld (3.12

which implies that for any program state the identity kp
is mapped into itself.

E. Covariant processors

covariant with respect to SWX) are unital.

Let us briefly consider an example in order to show that a
nontrivial covariant processor with respect to SU(2) exists.
We shall examine a processor provided by the quantum in-
formation distributor{12]. The program state of this device
consists of two qubits and the data state is one qubit. The
unitary operatorG can be implemented by a sequence of
four controlledNOT gates. A controlleddoT gate acting on
qubitsj andk, whergj is the control bit andk is the target bit,
is described by the operator

(3.18

wherem,n=0 or 1, and the addition is modulo 2. If we
denote the data qubit as qubit 1 and the two program qubits
as qubits 2 and 3, then the operat®ffor this processor is

(3.19

Djklm)jIn)=|m);|man),,

G=D3D21D13D 5.

Another class of processors that may be of interest are For the set of program stateS, we shall consider two-
covariantprocessors. Covariance has proven to be an imporqubit states of the form

tant property in the study of quantum machines. Covariant
processors have the property that if the processor maps the
|¥)q (|, which we shall assume is a
qudit, onto the output density matrpg,:, then it maps the

input data stat@;,=

input stateU | )4 onto the output density matrid p,,U 2,
for all Ue g, whereg is a subgroup of SUp), for some
subsetS of all possible program statd41]. This relation
implies that if|2) e S, then the operatora,(E) satisfy the
relation

N

N
JZl UAj(EmmA}(E)u—l:jgl A(E)Ug; U tAN(E),
(3.13

for all U € G. Let us now consider the cage=SU(D). If we
take p;, to bely/d, we find

N
21 UA(E)Al(E)U~ 1—2 A(E)AI(E). (3.14
c

Because this holds for all e SU(D), Schur’s lemma im-
plies that

N
Z (E)AI(E)=cl, (3.159

|E)=a|Eop 23t BlP)23, (3.20
where
2o = (10)210)s+ |11
~oo>—\/§( )210)3+[1)2[1)3),
|D —i|o |0)5+]|1 (3.21)
>_\/§ )2(10)3+[1)3), :

« andp are real, and®+ 8%+ aB=1. If the data register at
the input is described by the stateg,, then at the output of
the processor we find the data register in the state

2

Pout:(l_lgz)gin+%]d- (3.22

The action of this processor is clearly covariant with respect
to any transformation in S(2).

IV. PROCESSOR DESIGN

In the previous sections we have studied sets of superop-
erators that a given processor can perform. We would now
like to turn the problem around and suppose that we have a
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given set of superoperators, and our aim is to construct ahere gy is the input qubit state. We can design the corre-
processor that will be able to execute them. We already knowponding processor using E@.2), that is,

that it is impossible to find a processor that will perform all

superoperators. In particular, if the set of superoperators we Gph653¢>d®|k>p=(uk| ¢>d)®|k>pa (4.6)

are trying to implement contains an uncountable set of uni-

tary superoperators, then the set of superoperators cannot §ere k=1,2 andU,=1,U,=0,. The program state in
performed by a single processor. which the required transformatidFy, is encoded is given by

Here we will ask a more modest question: Under WhaﬂE(ﬁ)} :\@0) +\/m|1> _ Note that in this case the
circumstances are we able to find a processor that will per: P P P
program operatorg; () for j=1,2, are equal to the corre-

form some one-parameter set of superoperators? In partic‘ébonding Kraus operators, i.é,(6) = B;(6). Therefore, we

lar, suppose that we have the superoperaigrswhere the .5 execute the entire one-parameter set of superopefators
parametes varies over some range, and that these operatorSarely by changing the program state we send into the pro-

have a Kraus representati¢B;(6)[j=1,... M} such that  cossor, and the dimension of the program space is 2.

M
T pl= 2 B]-(H)ijT(a). 4.1 B. Amplitude-damping channel
=1

The amplitude-damping mag, is given by the Kraus
Our aim is to find a unitary operat@ and a set of program operators B;(6)=|0)(0|+y1—6|1)(1] and By(#6)

states E(6)), so that =/6/0)(1|, where again & #=<1. In designing a processor
_ _ + to realize this channel, we would again like to assume that
Tolpal=G(pa®|E(0)), (E(O)G". (42 the program operators are the same as the Kraus operators

B.(6) andB,(6). In this case, however, we have a problem.

The operator\j(=) that represent the action of the pro- The program operators must satisfy E2.24), but

cessor on the data states when the program stafe)isre

now functions off and we shall denote them &s(¢). Our 2

processor then transforms the input data siatento the 21 BjT(al)Bj(ez):|O>(O|+[\/0102
=

output statep{P!?:
N +(1-600)(1-62)1]1)(1], (4.7
p{U=2, Ai(6)pgA(6). (4.3 | | , o ,
=1 and the right-hand side of this equation is not, in general,
o . proportional to the identity.
We note that the operatof#\;(0)|j=1, ... N} also consti- What we now must do is try to find a Kraus representation

tute a Kraus representation of the superoperdtpr The o this channel that does satisfy E&.24). In particular, we
Kraus representation of a superoperator is not unique; anyseme that

two different Kraus representations of the same superopera-

tor, {Bj[j=1,... M} and{C;|j=1, ... N}, whereN=M, N
are related as followf7]: Cu(0)= z Uii(0)B;(0), 4.8
" k=1
Ci:gl UiiBi (4.4 whereU(6) is an NX N unitary matrix, andB;(¢)=0 for

j>2. In addition, we want
where Uy is a unitary matrix. It is understood that M

>M then zero operators are added to the $Bjj N
=1,... M} so that the two sets of operators have the same >, C(01)C;(62)=1(01,6,)], (4.9
cardinality. =1

In what follows we will study two single-qubit quantum _ ) ) )
channels, the phase-damping channel and the amplitudétheref(6y,65) is a function whose magnitude is less than or
damping channel. We will show that the first can be realizequal to 1. The operatofS;(6) would then be candidates for

by a finite quantum processor, while the second cannot.  the program operatoré;(6). What we will show is that
there is no Kraus representation withfinite that satisfies

these conditions. Because the number of program operators

is equal to the dimension of the program space, this will
The phase-damping channel is described by the Map show that there is no finite quantum processor that can real-

that is determined by the Kraus operat@&g 6)= /61 and ize the family of superoperators that describes the amplitude-

B,(6)=+1-6o,, where botho, and 1 are unitary opera- damping channel.

tors, and @< #<1 [13,2]. Hence for the phase-damping map If Eq. (4.9 is to hold, then the coefficients ¢®)(0| and

we find |1)(1| must be the same. Inserting the explicit expressions

N for C;(#) in terms ofB,;(#) andB,(#), this condition be-
Telegl=0legl+ (1—-0)o,040,, (4.9 comes

A. Phase-damping channel
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9(6y,0,)= 0102
016y

N
[1—«1—01)(1—02)];1 U3;(61)U1;(6,) (4.19

N
Using the fact that if <1, theny1—0<1-(6/2), we
-V 0192121 U2i(61)U5(62). 410 have that for &4<1, j=12,
We can now make use of the fact that the rows of a unitary g(6,,0,)< 2\ 6162 . (4.16)
matrix constitute orthonormal vectors and the Schwarz in- 61+ 62— (6016,/2)

equality to show that the magnitude of the sum on the right-_. I ing that f d6. b d
hand side of this equation is less than or equal to 1. This givEnally, noting that foré; and 6, between 0 and 1

us that 6,+ 6, 4
<-, (4.17)
N \/ﬁ 01+ 6,—(0,6,/12) 3
* 1Y2
> U7j(01)U4j(62)| < .
=1 1-V(1—-6.)(1—0,) we see that
(4.11)
61,0, < 0102 4.1
We now need the result that§b;|j=1, ... N} are vec- 9(01,02)= 3(6,+6,)° (4.19
tors of length 1, and|(vjlv,)|<1/(N—1), then {vjlj _ _
=1,... N} are linearly independefit4]. The proof is quite We can make use of this bound, if we czhoose, for any
short, so we give it here. If the vectors are linearly depenfositive integerM, the sequence,=[1/(16M<)]", where
dent, then there are constaeis at least some of which are N=1,.... If 6,=¢, and 6,={, wherem>n, then
not zero, such that 8
1
01,0)<=———. 4.1
N 9(61,62) 3 (am)m (4.19
Zl ¢ilvj)=0. (4.12
= The vectors{ug({m)|m=1,... M} have pairwise inner

products whose magnitudes are less thavl,1and, there-
fore, they are linearly independent. As these vectors e
components, if we chooskl>N we have a contradiction.
This, as we stated before, implies that the number of Kraus
operators is infinite, and that the amplitude-damping channel
cannot be realized by a finite quantum processor.

Taking the inner product of both sides with,) we find that

|Ck|:‘j§k Cj<vk|vj>

1
<—=2> Icj|. (4.13 V. CONCLUSION
N 1j:ék

In this paper we have presented a theory of programmable
Summing both sides of the above inequality okegives us  quantum processors that allows us to realize completely
that positive maps on quantum systems. We have introduced sev-
eral classes of quantum processors and have discussed the
N 1 N design of processors to realize particular classes of superop-
2 |Ck|<m 2 |Cj|: E led, (4.14 erators. In our discussion we focused on the situation when
k=1 k=1 )%k k=1 no measurements are performed on the program register.
o . _ In concluding this paper let us briefly comment on the fact
which is clearly impossible. Therefore, the vectors must bgpa¢ if we allow dynamics conditioned on the results of mea-
linearly independent. _ _surements on the program register, additional classes of maps
This can now be applied to the first row of the unitary can pe realized. One version of quantum processors with
matrix U(6), which we can think of as al-component  cqngitional dynamics, whose operating principle is that of
normalized vector, which we shall calh(6). What we will - 4antum teleportation, was discussed by Nielsen and Chuang
show is that we can find arbitrarily many of these vectors[z]' Here we shall present a different example. Consider a
whose inner products can be made arbitrarily small. The repqcessor consisting or a singleveT gate in which the pro-
sult in the previous paragraph then implies that these vectoriram register consists of the control qubit, and the data reg-

are linearly independent, but this contradicts the fact thafgier consists of the data qubit. If the program qubit is ini-
they lie in anN-dimensional space. Hence, there must be afially in the state

infinite number of Kraus operators, and the program space

must be infinite dimensional. |E)p=a|0)+B|1), (5.2
In order to study the inner products of the vectag$6)

for different values ofg, we need to examine the function and the data qubit in the stalé)y, then the output of our

appearing on the right-hand side of E¢.11): simple processor is the state

N

042302-8



IMPLEMENTATION OF QUANTUM MAPS BY . .. PHYSICAL REVIEW A66, 042302 (2002
|‘Dout>dp=a|¢>d|0>p+,30x|lﬂ>d|1)p- sionality of the program registdil4]. They started with a

_ _ single cNOT processor(in their case the control qubit was
If we trace out the program register we obtain the outputhe data qubit and the target qubit was the program gubit
density matrix that implemented the one-parameter set of unitary operations
U(a)=explao,) on the data qubit. The probability of suc-
2 2 )
|al*pin+ | Bl oxpino. (5.3 cess is 1/2. By increasing the size of the program to two

where pi,=|#) (1. If, on the other hand, we measure the qubits and adding a Toffoli gate, they were able to increase

output of the program register in the:x) basis, where this probability to 3/4. Adding yet more qubits to the pro-
gram and gates to the processor allowed them to make the

1 success probability as close to 1 as they wished.
|=x)= E(|O>i|1>), (5.4 Another type of probabilistic quantum processor, based on
the quantum cloning circuit, was studied by us in an earlier

and accept the output of the data register only if we gepaper[15]. Its qubit version(it can be generalized to qudits
|+x), then we find for the output state of the data register can implement any linear operattrp to normalizatiop on
) the input qubit state. There are still many open questions
pR=K(al+ Brpin(a*1+ B0y, (55

with respect to probabilistic quantum processors, and we will
whereK is a normalization constant. We note that the sets o

?tudy some of them in a forthcoming publicatig6].
mappings realized by the two different procedures are not the
same.
While the addition of conditional measurements to quan-

tum processors allows us to realize a different set of map- ) ) ) _ )
pings, there is, however, a cost. The procedure has a certain We thank Matyas Koniorczyk for stimulating discussions.

probability of failing, although we do know whether it has This work was supported in part by the European Union
succeeded or not. The failure probability depends on both therojects EQUIP (Grant No. 1ST-1999-11053 QUBITS

(5.2

1) _
p((Ju)t_
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