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Implementation of quantum maps by programmable quantum processors
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A quantum processor is a device with a data register and a program register. The input to the program
register determines the operation, which is a completely positive linear map, that will be performed on the state
in the data register. We develop a mathematical description for these devices, and apply it to several different
examples of processors. The problem of finding a processor that will be able to implement a given set of
mappings is also examined, and it is shown that, while it is possible to design a finite processor to realize the
phase-damping channel, it is not possible to do so for the amplitude-damping channel.
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I. INTRODUCTION

The coherent control of individual quantum systems
one of the most exciting achievements in physics in the
decade@1#. The possibility of controlling quantum dynamic
has far reaching consequences for quantum technologie
particular, for quantum computing@2#. One of the best
known applications of coherent control in quantum phys
is the state preparation of anindividual quantum system. Fo
example, a particular state of the vibrational motion o
trapped ion can be prepared by using a well-defined
quence of external laser pulses. Another possibility is to
cus on controlling the dynamics, that is, the unitary evolut
operator. One way of doing this is to realize a particu
evolution operator by means of a sequence of ‘‘elementa
interactions, which are sequentially turned on and off~for
more details see Refs.@3,4#, and for a specific application to
trapped ions see Ref.@5# and references therein!.

In the theory of quantum coherent control it is assum
that the control of the dynamics is realized via external cl
sical parameters, such as the intensity of a laser pulse o
duration of an interaction. In this case, the information t
controls the quantum system is classical, and it is set by
experimentalist to achieve a single, fixed outcome. This
analogous to programming a computer to perform a sin
task by setting dials or switches to particular positions, e
task requiring different positions.

In this paper we will study a different type of quantu
control. We will assume that the information about the qu
tum dynamics of the system under consideration is not r
resented by classical external parameters, but rather is
coded in the state of another quantum system. A typ
example of such an arrangement is a controlled-NOT ~c-NOT!
operation~or in general a controlled-U operation!. In this
case, the specific operation performed on the system,
target, depends on the state of a second quantum system
control. If the control qubit is in the stateu0& the target qubit
is left unchanged, but if it is in the stateu1&, then aNOT

operation is applied to the target qubit. This means that
device can perform at least two operations on the target
bit, the identity andNOT. There are, however, further poss
bilities. Let us suppose that the control qubit is initially in
1050-2947/2002/66~4!/042302~9!/$20.00 66 0423
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superposition ofu0& andu1&, and that we are only intereste
in the target qubit at the output of the device, so that we tr
out the control qubit to obtain the reduced density matrix
the target qubit. The action of the c-NOT gate on the targe
qubit can then be described as a completely positive, lin
map acting on the initial density matrix of the target qub
with the actual map being determined by the state of
control qubit. We take this device to be a model for a p
grammable quantum gate array, or quantum processor. G
erally speaking, a programmable quantum processor is a
vice that implements a completely positive linear map, wh
is determined by the state of one quantum system, on a
ond quantum system. These processors have two regis
the data register and the program register. The data reg
contains the quantum system on which the map is going
be applied, and the program register contains the quan
system whose state determines the map. The third eleme
this device is a fixed array of quantum gates that act on b
the program and the data state. The virtue of this arran
ment is that we do not have to build a different proces
every time we want to realize a new map, we simply chan
the program state. This allows us greater flexibility than
device in which the map is determined by setting exter
parameters. For example, it could be the case that we do
even know what the program state is. This would occur wh
the state of the program register is the output of anot
quantum device. We will refer to the selection of the progra
state to perform a desired operation asquantum program-
ming.

Programmable quantum processors~gate arrays! were first
considered by Nielsen and Chuang@6#. They were interested
only in the case in which a unitary operation, rather tha
more general completely positive linear map, is perform
on the state in the data register. Ifuc&d is the state of the data
register,uJU&p a program state that implements the opera
U on the data state, andG the overall unitary operation
implemented by the fixed gate array, then their proces
carries out the transformation

G~ uc&d^ uJU&p)5Uuc&d^ uJU,c8 &p , ~1.1!
©2002 The American Physical Society02-1
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where uJU,c8 &p is the state of the program register after t
transformationG has been carried out. The subscriptsU and
c indicate that this state can depend on both the operatioU
and the stateuc&d of the data registerd. They were able to
prove a number of results about this device. First, th
showed that the output of the program register does not
pend on the data register, a fact that follows from the uni
ity of G. Second, they proved that the number of possi
programs is equal to the dimension of the program regis

Let us assume the first of these results and show how
prove the second. Consider two program statesuJU&p and
uJV&p that cause the operatorsU andV, respectively, to act
on the data register. This implies that

G~ uc&d^ uJU&p)5Uuc&d^ uJU8 &p ,

G~ uc&d^ uJV&p)5Vuc&d^ uJV8 &p . ~1.2!

The unitarity ofG implies that

p^JVuJU&p5 d^cuV21Uuc&d p^JV8 uJU8 &p , ~1.3!

and if p^JV8 uJU8 &p5” 0, then

d^cuV21Uuc&d5
p^JVuJU&p

p^JV8 uJU8 &p

. ~1.4!

The left-hand side of this equation depends onuc&d while the
right does not. The only way this can be true is if

V21U5eif1, ~1.5!

for some realf. This means that the operatorsU andV are
the same up to a phase. If we want these operators to
different, we must have thatp^JV8 uJU8 &p50, which by Eq.
~1.3! implies that p^JVuJU&p50. Therefore, the program
states corresponding to different unitary operators mus
orthogonal. This implies that the dimension of the progr
register must be greater than or equal to the number of
ferent unitary operators that can be performed on the d
register.

In this paper we would like to consider the more gene
problem of quantum processors that realize completely p
tive linear maps, not just unitary operators. The paper is
ganized as follows. In Sec. II we derive a formalism f
describing and analyzing quantum processors, and apply
both pure and mixed program states. In Sec. III we pres
several classes of quantum processors, while Sec. IV wil
devoted to the problem of processor ‘‘design,’’ that is, w
will discuss specific processors that are able to implem
various classes of quantum processes. In the concluding
tion we will briefly discuss probabilistic quantum processo
which are based on dynamics conditioned on the result
measurements.

II. QUANTUM PROCESSORS

A general quantum processor consists of two register
data register and a program register, and a fixed arra
quantum gates. The input state that goes into the prog
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register encodes an operation we want to perform on the
register. We would first like to show that the action of th
processor can be fully described by a specific set of lin
operators.

A. Pure program states

Let uc&d be the input state of the data register,uJ&p be the
input program state, andG be the unitary operator that de
scribes the action of the array of quantum gates. If$u j &pu j
51, . . . ,N% is a basis for the space of program states, th
we have that

G~ uc&d^ uJ&p)5(
j 51

N

u j &p p^ j uG~ uc&d^ uJ&p). ~2.1!

If we define the operatorAj (J), which acts on the data
register, by

Aj~J!uc&d5p^ j uG~ uc&d^ uJ&p), ~2.2!

then we have that

G~ uc&d^ uJ&p)5(
j 51

N

Aj~J!uc&d^ u j &p . ~2.3!

This means that the output density matrix of the data regi
is given by

rd
out5(

j 51

N

Aj~J!uc&d d^cuAj
†~J!. ~2.4!

The operatorAj (J) depends on the program state, but it c
be expressed in terms of operators that do not. Define
operators

Ajk5Aj~ uk&)5p^ j uGuk&p , ~2.5!

whereuk& is one of the basis states we have chosen for
space of program states. We have that for any program s
uJ&,

Aj~J!5 (
k51

N

p^kuJ&pAjk . ~2.6!

This means that the operatorsAjk completely characterize
the processor in the case of pure program states. We s
call these operators the basis operators for the proce
These operators have the following property:

(
j 51

N

Ajk1

† Ajk2
5(

j 51

N

^k1uG†u j &^ j uGuk2&51ddk1k2
, ~2.7!

where we have used the decomposition( j u j &^ j u51p .
An obvious question to ask at this point is whether any

of operators satisfying Eq.~2.7! corresponds to a quantum
processor. The following construction allows us to show t
this is the case@7#. Given a set ofN2 operators acting onHd ,
2-2
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we can construct an operatorG acting on the product spac
Hd^ Hp , whereHp is an N-dimensional space with bas
$uk&puk51, . . . ,N%. We set

G5 (
j ,k51

N

Ajk ^ u j &p p^ku. ~2.8!

It is now necessary to verify thatG constructed in this way is
unitary. Noting that

G†5 (
j ,k51

N

Ajk
†

^ uk&p p^ j u, ~2.9!

we see that Eq.~2.7! implies thatG†G51, so thatG pre-
serves the length of vectors and is unitary.

It is possible to express the basis operators for clos
related processors in terms of each other. For exampl
$Bjku j ,k51, . . . ,N% are the basis operators forG†, then
from Eq. ~2.9! we see thatBjk5Ak j

† . If G1 andG2 are two
processors ~unitary operators! with basis operators
$Ajk

(1)u j ,k51, . . . ,N% and $Ajk
(2)u j ,k51, . . . ,N%, respec-

tively, then the basis operatorsCjk for the processor corre
sponding to the operatorG1G2 are

Cjk5 (
n51

N

Ajn
(1)Ank

(2) . ~2.10!

This follows immediately if bothG1 andG2 are expressed in
the form given in Eq.~2.8! and then multiplied together. I
we apply this equation to the caseG15G andG25G†, and
note thatGG†51, we have that

(
j 51

N

Ak1 jAk2 j
† 51ddk1k2

. ~2.11!

It is clearly possible to generalize Eq.~2.10! to the case when
there is a product of more than two operators.

B. General program states

Suppose the program is represented by a mixed state%p
5(klRkluk&^ l u. Then for the induced mapping we have

%d
out5 (

klmn
RklAmk%d

inAnl
† Trp~ um&p^nu!5(

klm
RklAmk%dAml

† .

~2.12!

We shall denote byCG the set of completely positive linea
maps realizable by using the fixed processorG and any
mixed state in the program space as a program.

Let us now address the question of whether it is poss
to find a second processorG8 that can realize any map in th
setCG using only pure state programs. Any mixed state inHp
can be purified, but the purification is not unique@2,8#. We
begin by defining a new program spaceHp85Hp^ Hp and
choosing the purification in the following way:
04230
ly
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%p5(
k

lkuxk&^xku

→uF&p85(
k

Alkuxk&p^ uk&, ~2.13!

where%p has been written in terms of its spectral decomp
sition. We define the unitary operator corresponding to
new processor, which acts on the spaceHd^ Hp8 , by

G8ªG^ 1. ~2.14!

The conjecture is that the processorG8 with the pure pro-
gram stateuF&p8 will produce the same mapping as the pr
cessorG with the mixed program state%p . If this is true,
then we will have shown that by using only pure progra
states with the processorG8 we can implement the entire
class of superoperatorsCG .

In order to prove this we have to show that

TrpG%d^ %pG†5Trp8G8%d^ %p8G8† ~2.15!

for all %d . The right-hand side of this equation can be r
written as

Trp8G8%d^ %p8G8†

5Trp8F(
kl

Alkl l~G%d^ uxk&^x l uG†! ^ uk&^ l uG
5(

kl
Alkl lTrp@~G%d^ uxk&^x l uG†!dkl#

5TrpFG%d^ S (
k

lkuxk&^xku DG†G
5TrpG%d^ %pG†, ~2.16!

which proves Eq.~2.15!. Therefore, we can conclude that
is possible to ‘‘mimic’’ mixed program states for a give
processor by introducing a larger program spaceHp8 and a
new processor mappingG85G^ 1.

C. Correspondence between programs and mappings

We have just seen that two different programs on t
different processors can lead to the same mapping, and
we would like to examime whether different programs on t
same processor can produce identical mappings. We s
show that this can occur by means of a simple example.
Qp be a projection operator on the program space wh
range has dimensionD, where 1,D,N, and letU1 andU2
be two different unitary operators on the data space. C
sider the processor given by

G5U1^ Qp1U2^ ~1p2Qp!. ~2.17!

Any program state in the range ofQp produces the mapping
U1 on the data state, and there are clearly an infinite num
2-3
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HILLERY, ZIMAN, AND BUŽ EK PHYSICAL REVIEW A 66, 042302 ~2002!
of these. Therefore, we can conclude that there are pro
sors for which many program states produce the same op
tion on the data state.

We shall now show that the opposite can also occur,
that there exists a processor for which every program s
~mixed or pure! encodes a different superoperator We w
present an example which illustrates that. To do so, we
lize results of Ref.@9# where the unitary transformation

G5cosf11 i sinfS ~2.18!

was introduced. The swap operatorS5(klukl&^ lku is defined
in any dimension. The so-calledpartial swaptransformation
G acts on two qudits (d-dimensional systems!. Let us restrict
our attention to qubits, and identify one of the qubits with t
data register and the other with the the program system
Ref. @9# it was shown that if the program system is prepa
in the state%p[j, then the induced map~superoperator! Tj

is contractive with its fixed point equal toj @10#. Since each
contractive superoperator has only a single fixed point,
can conclude that different program statesj5” j8 induce dif-
ferent superoperators, i.e.,Tj5” Tj8 . As a result we can con
clude that in the processor given by Eq.~2.18!, for any value
of the parameterf, the correspondence between progra
and mappings is one to one. Finally, we note that while h
we considered only qubits the results in this section also h
for qudits @10#.

D. Equivalent processors

We shall regard two processorsG1 andG2 as essentially
equivalent if one can be converted into the other by inser
fixed unitary gate arrays at the input and output of the p
gram register, that is, if

G25~1d^ Up1!G1~1d^ Up2!, ~2.19!

whereUp1 andUp2 are unitary transformations on the pr
gram space. If this equation is satisfied, then the proces
defined by the two gate arrays will perform the same se
operations on data states, but the program states requir
perform a given operation are different, and the outputs
the program registers will be different as well. If Eq.~2.19!
holds, then for the basis operatorsAjk

( i ) ( i 51,2) associated
with the two processors we have

Ajk
(2)5 (

m,n51

N

~Up1! jm~Up2!nkAmn
(1) . ~2.20!

Therefore, we can regard two processors whose set of op
tors Ajk

( i ) are related by the above equation as equivalent
If processors 1 and 2 are equivalent, then they will imp

ment the same set of superoperators, i.e.,CG1
5CG2

. In order

to see this, suppose that, when the stateuJ1&p is sent into the
program register of processor 1, the mapTJ1

, with program

operatorsAj
(1)(J1), is performed on the data state. Now co

sider what happens when we send the stateuJ2&p

5Up2
21uJ1&p into the input of the program register of proce
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sor 2. This will produce the mappingTJ2
on the data state o

processor 2. The relation between the program opera
Aj

(1)(J1) andAj
(2)(J2) is

Aj
(2)~J2!5 (

k51

N

~Up1! jkA1
(1)~J1!. ~2.21!

The operatorsAj
(1)(J1) are Kraus operators for the mappin

TJ1
and the operatorsAj

(2)(J2) are Kraus operators for th

mappingTJ2
. The above equation implies that the mappin

are identical,TJ1
5TJ2

@7#. Therefore, any superoperato

that can be realized by processor 1 can be realized by
cessor 2. Similarly, it can be shown that any superoper
that can be realized by processor 2 can also be realize
processor 1. This shows that the two processors implem
the same set of superoperators.

A special case of this type of equivalence occurs when
two processors are simply related by a change of the bas
the program space, i.e., whenUp15Up2

21. It is possible to
derive conditions that the basis operators of the two proc
sors must satisfy if the processors are to be equivalent in
more restricted sense. These follow from the fact that
trace is independent of the basis in which it is taken.
Up15Up2

21, then Trp(G1)5Trp(G2), which implies that

(
j 51

N

Aj j
(1)5(

j 51

N

Aj j
(2) . ~2.22!

We also have that Trp(G1
n)5Trp(G2

n), which for the casen
52 gives us

(
j ,k51

N

Ajk
(1)Ak j

(1)5(
j 51

N

Ajk
(2)Ak j

(2) . ~2.23!

Clearly, by taking higher values ofn, we can derive addi-
tional equivalence conditions.

We end this section by summarizing some of our resu
so far.

~i! For a given processorG any member of the class of a
possible completely positive linear maps realizable
G, CG , can be expressed in terms of the operatorsAjk .

~ii ! We can mimic the action induced by any mixed pr
gram state by a pure program state in a larger program sp

~iii ! For any two mappings realized by the processorG
and the pure state programsuJ1&p and uJ2&p the identity

(
k

Ak
†~J1!Ak~J2!5^J1uJ2&1d ~2.24!

holds. This follows directly from Eqs.~2.6! and ~2.7!.

III. CLASSES OF PROCESSORS

In this section we will examine several different kinds
quantum processors. These will serve to illustrate some
the general considerations in the previous sections.
2-4
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A. U processors

Let us suppose that the eigenvectors of the unitary op
tor G that describes the fixed array of gates are tensor p
ucts. In particular, suppose that we have a single orthonor
basis forHp , $uk&puk51, . . . ,N% and a collection of ortho-
normal bases forHd , $ufmk&duk51, . . . ,N,m51, . . . ,M %,
whereM is the dimension ofHd . For each value ofk, the
vectors $ufmk&dum51, . . . ,M % form an orthonormal basis
for Hd . We call a processor aU processorif the eigenvec-
tors of G, uFmk&dp , are of the form

uFmk&dp5ufmk&d^ uk&p . ~3.1!

In this case the operatorsAjk are given byAjk5d jkU j where
U j is unitary ~its eigenstates are just$ufm j&dum
51, . . . ,M %) . This is the type of processor that was studi
by Chuang and Nielsen@6#, and we recall that the dimensio
of Hp is equal to the number of unitary operators that t
type of processor can perform. The processor acts on
stateuc&d^ u j &p as

G~ uc&d^ u j &p)5~U j uc&d) ^ u j &p , ~3.2!

whereuc&d is an arbitrary data state.
For a general pure program stateuJ&p5( ja j u j &p the en-

coded mapping, or superoperator,TJ , is given by the ex-
pressionTJ@%d#5( j ua j u2U j%dU j

† . In the case of a mixed
program state%p5( jkRjku j &^ku the data state is transforme
asT%p

@%d#5( jRj j U j%dU j
† . Comparing these two cases w

conclude that we can always mimic a mixed program s
by a pure one, in particular, it is enough to seta j5ARj j .
Hence, for this type of processor we can consider only p
program states without any loss of generality.

Finally, we note that for all program statesuJ&p

TJF1

d
1dG5(

j
ua j u2U j

1

d
1dU j

†5
1

d
1d . ~3.3!

This implies that each element ofCG is unital, i.e., it maps
the identity operator into itself.

B. Y processors

A second possibility is to consider a situation that is
some ways the reverse of the one we just examined. We h
a single orthonormal basis forHd , $um&dum51, . . . ,M %,
and a set of orthonormal bases forHp , $uxmk&puk
51, . . . ,N%, wherem51, . . . ,M labels the bases and th
index k labels the individual basis elements. We again
sume that the eigenvectors ofG, uFmk&dp are tensor prod-
ucts, but now they are given by

uFmk&dp5um&d^ uxmk&p . ~3.4!

In this case the processor can be expressed asG
5(mum&d^mu ^ Um , whereUm is unitary and has eigenvec
tors $uxmk&puk51, . . . ,N%. We find the operatorsAjk by first
choosing a single orthonormal basis inHp , $uk&p%, and com-
puting
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Ajk5p^ j uGuk&p

5(
m

um&^mu^ j uUmuk&5(
m

~Um! jkum&^mu. ~3.5!

The maps produced byYprocessors are unital, as can be se
from

(
j

Ajk1
Ajk2

† 5(
j

(
mn

~Um! jk1
~Un

†! jk2
um&^mun&^nu

5(
jm

~Um! jk1
~Um

† ! jk2
um&^mu

5dk1k2(m um&^mu5dk1k2
1. ~3.6!

The action of aY processor is particularly simple if all o
the operatorsUm have some common eigenstates, and
program state is one of them. Suppose thatUmuJ&p
5eifmuJ&p , then

GS (
m

cmum&d^ uJ&pD 5S (
m

cmeifmum&dD ^ uJ&p .

~3.7!

In summary, we can say that both theU andY processors are
controlled-U gates; in theU processor, the control system
the program and the target is the data, and in theY processor,
it is the target that is the program and the control that is
data.

C. U8 processors

Let us consider a simple modification of theU processor,
which we shall call theU8 processor. Suppose we have tw
different orthonormal bases ofHp , $uk&p%, and$uxk&p%. We
define aU8 processor to have a unitary operatorG of the
form

G5(
k

Uk^ uk&p^xku. ~3.8!

This looks like a new kind of processor, but it is actua
equivalent to aU processor. This can be seen immediately
we realize that there exists a unitary operatorUp acting on
Hp such thatuxk&p5Upuk&p . Therefore, we have that

G5S (
k

uk&p^ku D ~1d^ Up
†!, ~3.9!

so thatG is, in fact, equivalent to aU processor.

D. Y8 processors

Now let us try a modification of theY processor in the
same spirit as the one we just made to theU processor.
Suppose we have two different orthonormal bases ofHd ,
2-5
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$um&p%, and $ufm&d%. We define aY8 processor to have a
unitary operatorG of the form

G5(
m

um&d^fmu ^ Um . ~3.10!

For the operatorsAjk we obtain

Ajk5p^ j uGuk&p5(
m

um&^fmu~Um! jk . ~3.11!

This type of processor is not equivalent to aY processor. It
does, however, share the property of producing unital m
as can be seen from

(
j

Ajk1
Ajk2

† 5 (
j ,m,n

um&^fmufn&^nu~Um! jk1
~Un

†!k2 j

5(
j ,m

um&^mu~Um
† !k2 j~Um! jk1

5dk1k2(m um&^mu

5dk1k2
1d , ~3.12!

which implies that for any program state the identity onHd
is mapped into itself.

E. Covariant processors

Another class of processors that may be of interest
covariantprocessors. Covariance has proven to be an im
tant property in the study of quantum machines. Covari
processors have the property that if the processor maps
input data state% in5uc&d d^cu, which we shall assume is
qudit, onto the output density matrixrout , then it maps the
input stateUuc&d onto the output density matrixUroutU

21,
for all UPG, whereG is a subgroup of SU(D), for some
subsetS of all possible program states@11#. This relation
implies that if uJ&PS, then the operatorsAj (J) satisfy the
relation

(
j 51

N

UAj~J!% inAj
†~J!U215(

j 51

N

Aj~J!U% inU21Aj
†~J!,

~3.13!

for all UPG. Let us now consider the caseG5SU(D). If we
taker in to be1d /d, we find

(
j 51

N

UAj~J!Aj
†~J!U215(

j 51

N

Aj~J!Aj
†~J!. ~3.14!

Because this holds for allUPSU(D), Schur’s lemma im-
plies that

(
j 51

N

Aj~J!Aj
†~J!5c1, ~3.15!
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wherec is a constant. Taking the trace of both sides of E
~3.15! we find

TrS (
j 51

N

Aj~J!Aj
†~J!DN5c Tr~1!5cN, ~3.16!

so thatc51. Because this relation holds for any progra
state, we have that

(
j 51

N

Ajk1
Ajk2

† 5dk1k2
1d , ~3.17!

which implies that the maps produced by a processor tha
covariant with respect to SU(D) are unital.

Let us briefly consider an example in order to show tha
nontrivial covariant processor with respect to SU(2) exis
We shall examine a processor provided by the quantum
formation distributor@12#. The program state of this devic
consists of two qubits and the data state is one qubit.
unitary operator,G can be implemented by a sequence
four controlled-NOT gates. A controlled-NOT gate acting on
qubitsj andk, wherej is the control bit andk is the target bit,
is described by the operator

D jkum& j un&k5um& j um% n&k , ~3.18!

where m,n50 or 1, and the addition is modulo 2. If w
denote the data qubit as qubit 1 and the two program qu
as qubits 2 and 3, then the operatorG for this processor is

G5D31D21D13D12. ~3.19!

For the set of program states,S, we shall consider two-
qubit states of the form

uJ&5auJ00&231buF&23, ~3.20!

where

uJ00&5
1

A2
~ u0&2u0&31u1&2u1&3),

uF&5
1

A2
u0&2~ u0&31u1&3), ~3.21!

a andb are real, anda21b21ab51. If the data register a
the input is described by the state% in , then at the output of
the processor we find the data register in the state

rout5~12b2!% in1
b2

2
1d . ~3.22!

The action of this processor is clearly covariant with resp
to any transformation in SU(2).

IV. PROCESSOR DESIGN

In the previous sections we have studied sets of supe
erators that a given processor can perform. We would n
like to turn the problem around and suppose that we hav
2-6
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given set of superoperators, and our aim is to constru
processor that will be able to execute them. We already kn
that it is impossible to find a processor that will perform
superoperators. In particular, if the set of superoperators
are trying to implement contains an uncountable set of u
tary superoperators, then the set of superoperators cann
performed by a single processor.

Here we will ask a more modest question: Under w
circumstances are we able to find a processor that will p
form some one-parameter set of superoperators? In par
lar, suppose that we have the superoperatorsTu , where the
parameteru varies over some range, and that these opera
have a Kraus representation$Bj (u)u j 51, . . . ,M % such that

Tu@r#5(
j 51

M

Bj~u!rBj
†~u!. ~4.1!

Our aim is to find a unitary operatorG and a set of program
statesuJ(u)&p so that

Tu@rd#5G~rd^ uJ~u!&p p^J~u!u!G†. ~4.2!

The operatorsAj (J) that represent the action of the pr
cessor on the data states when the program state isuJ& are
now functions ofu and we shall denote them asAj (u). Our
processor then transforms the input data staterd into the
output staterd

(out) :

rd
(out)5(

j 51

N

Aj~u!rdAj
†~u!. ~4.3!

We note that the operators$Aj (u)u j 51, . . . ,N% also consti-
tute a Kraus representation of the superoperatorTu . The
Kraus representation of a superoperator is not unique;
two different Kraus representations of the same superop
tor, $Bj u j 51, . . . ,M % and $Cj u j 51, . . . ,N%, whereN>M ,
are related as follows@7#:

Cj5 (
k51

N

Uk jBk , ~4.4!

where Uk j is a unitary matrix. It is understood that ifN
.M then zero operators are added to the set$Bj u j
51, . . . ,M % so that the two sets of operators have the sa
cardinality.

In what follows we will study two single-qubit quantum
channels, the phase-damping channel and the amplit
damping channel. We will show that the first can be realiz
by a finite quantum processor, while the second cannot.

A. Phase-damping channel

The phase-damping channel is described by the mapTu

that is determined by the Kraus operatorsB1(u)5Au1 and
B2(u)5A12usz , where bothsz and 1 are unitary opera-
tors, and 0<u<1 @13,2#. Hence for the phase-damping ma
we find

Tu@%d#5u1%d11~12u!sz%dsz
† , ~4.5!
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where%d is the input qubit state. We can design the cor
sponding processor using Eq.~3.2!, that is,

Gphaseuf&d^ uk&p5~Ukuf&d) ^ uk&p , ~4.6!

where k51,2 and U151,U25sz . The program state in
which the required transformationTu is encoded is given by
uJ(u)&p5Auu0&p1A12uu1&p . Note that in this case the
program operatorsAj (u) for j 51,2, are equal to the corre
sponding Kraus operators, i.e.,Aj (u)5Bj (u). Therefore, we
can execute the entire one-parameter set of superoperatoTu
merely by changing the program state we send into the p
cessor, and the dimension of the program space is 2.

B. Amplitude-damping channel

The amplitude-damping mapSu is given by the Kraus
operators B1(u)5u0&^0u1A12uu1&^1u and B2(u)
5Auu0&^1u, where again 0<u<1. In designing a processo
to realize this channel, we would again like to assume t
the program operators are the same as the Kraus oper
B1(u) andB2(u). In this case, however, we have a proble
The program operators must satisfy Eq.~2.24!, but

(
j 51

2

Bj
†~u1!Bj~u2!5u0&^0u1@Au1u2

1A~12u1!~12u2!#u1&^1u, ~4.7!

and the right-hand side of this equation is not, in gene
proportional to the identity.

What we now must do is try to find a Kraus representat
for this channel that does satisfy Eq.~2.24!. In particular, we
assume that

Ck~u!5 (
k51

N

Uk j~u!Bj~u!, ~4.8!

whereU(u) is an N3N unitary matrix, andBj (u)50 for
j .2. In addition, we want

(
j 51

N

Cj
†~u1!Cj~u2!5 f ~u1 ,u2!1, ~4.9!

wheref (u1 ,u2) is a function whose magnitude is less than
equal to 1. The operatorsCj (u) would then be candidates fo
the program operatorsAj (u). What we will show is that
there is no Kraus representation withN finite that satisfies
these conditions. Because the number of program opera
is equal to the dimension of the program space, this w
show that there is no finite quantum processor that can r
ize the family of superoperators that describes the amplitu
damping channel.

If Eq. ~4.9! is to hold, then the coefficients ofu0&^0u and
u1&^1u must be the same. Inserting the explicit expressio
for Cj (u) in terms ofB1(u) and B2(u), this condition be-
comes
2-7
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@12A~12u1!~12u2!#(
j 51

N

U1 j* ~u1!U1 j~u2!

5Au1u2(
j 51

N

U2 j* ~u1!U2 j~u2!. ~4.10!

We can now make use of the fact that the rows of a unit
matrix constitute orthonormal vectors and the Schwarz
equality to show that the magnitude of the sum on the rig
hand side of this equation is less than or equal to 1. This g
us that

U(
j 51

N

U1 j* ~u1!U1 j~u2!U< Au1u2

12A~12u1!~12u2!
.

~4.11!

We now need the result that if$v j u j 51, . . . ,N% are vec-
tors of length 1, andz^v j zvk&u,1/(N21), then $v j u j
51, . . . ,N% are linearly independent@14#. The proof is quite
short, so we give it here. If the vectors are linearly dep
dent, then there are constantscj , at least some of which ar
not zero, such that

(
j 51

N

cj uv j&50. ~4.12!

Taking the inner product of both sides withuvk& we find that

ucku5U(
j 5” k

cj^vkuv j&U
,

1

N21 (
j 5” k

ucj u. ~4.13!

Summing both sides of the above inequality overk gives us
that

(
k51

N

ucku,
1

N21 (
k51

N

(
j 5” k

ucj u5 (
k51

N

ucku, ~4.14!

which is clearly impossible. Therefore, the vectors must
linearly independent.

This can now be applied to the first row of the unita
matrix U(u), which we can think of as anN-component
normalized vector, which we shall callu0(u). What we will
show is that we can find arbitrarily many of these vect
whose inner products can be made arbitrarily small. The
sult in the previous paragraph then implies that these vec
are linearly independent, but this contradicts the fact t
they lie in anN-dimensional space. Hence, there must be
infinite number of Kraus operators, and the program sp
must be infinite dimensional.

In order to study the inner products of the vectorsu0(u)
for different values ofu, we need to examine the functio
appearing on the right-hand side of Eq.~4.11!:
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g~u1 ,u2!5
Au1u2

12A~12u1!~12u2!
. ~4.15!

Using the fact that if 0<u<1, thenA12u<12(u/2), we
have that for 0<u j<1, j 51,2,

g~u1 ,u2!<
2Au1u2

u11u22~u1u2/2!
. ~4.16!

Finally, noting that foru1 andu2 between 0 and 1

u11u2

u11u22~u1u2/2!
<

4

3
, ~4.17!

we see that

g~u1 ,u2!<
8Au1u2

3~u11u2!
. ~4.18!

We can make use of this bound, if we choose, for a
positive integerM, the sequencezn5@1/(16M2)#n, where
n51, . . . . If u15zn andu25zm wherem.n, then

g~u1 ,u2!<
8

3

1

~4M !m2n
. ~4.19!

The vectors $u0(zm)um51, . . . ,M % have pairwise inner
products whose magnitudes are less than 1/M , and, there-
fore, they are linearly independent. As these vectors havN
components, if we chooseM.N we have a contradiction
This, as we stated before, implies that the number of Kr
operators is infinite, and that the amplitude-damping chan
cannot be realized by a finite quantum processor.

V. CONCLUSION

In this paper we have presented a theory of programma
quantum processors that allows us to realize comple
positive maps on quantum systems. We have introduced
eral classes of quantum processors and have discusse
design of processors to realize particular classes of supe
erators. In our discussion we focused on the situation w
no measurements are performed on the program registe

In concluding this paper let us briefly comment on the fa
that, if we allow dynamics conditioned on the results of me
surements on the program register, additional classes of m
can be realized. One version of quantum processors w
conditional dynamics, whose operating principle is that
quantum teleportation, was discussed by Nielsen and Chu
@2#. Here we shall present a different example. Conside
processor consisting or a single c-NOT gate in which the pro-
gram register consists of the control qubit, and the data r
ister consists of the data qubit. If the program qubit is i
tially in the state

uJ&p5au0&1bu1&, ~5.1!

and the data qubit in the stateuc&d , then the output of our
simple processor is the state
2-8
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uFout&dp5auc&du0&p1bsxuc&du1&p . ~5.2!

If we trace out the program register we obtain the out
density matrix

rout
(1)5uau2r in1ubu2sxr insx , ~5.3!

wherer in5uc&d^cu. If, on the other hand, we measure th
output of the program register in theu6x& basis, where

u6x&5
1

A2
~ u0&6u1&), ~5.4!

and accept the output of the data register only if we
u1x&, then we find for the output state of the data regist

rout
(2)5K~a11bsx!r in~a* 11b* sx!, ~5.5!

whereK is a normalization constant. We note that the sets
mappings realized by the two different procedures are not
same.

While the addition of conditional measurements to qu
tum processors allows us to realize a different set of m
pings, there is, however, a cost. The procedure has a ce
probability of failing, although we do know whether it ha
succeeded or not. The failure probability depends on both
program and on the data state.

It was shown by Vidal and Cirac that it is possible
increase the probability of success by increasing the dim
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sionality of the program register@14#. They started with a
single c-NOT processor~in their case the control qubit wa
the data qubit and the target qubit was the program qu!
that implemented the one-parameter set of unitary operat
U(a)5exp(iasz) on the data qubit. The probability of suc
cess is 1/2. By increasing the size of the program to t
qubits and adding a Toffoli gate, they were able to incre
this probability to 3/4. Adding yet more qubits to the pr
gram and gates to the processor allowed them to make
success probability as close to 1 as they wished.

Another type of probabilistic quantum processor, based
the quantum cloning circuit, was studied by us in an ear
paper@15#. Its qubit version~it can be generalized to qudits!
can implement any linear operator~up to normalization! on
the input qubit state. There are still many open questi
with respect to probabilistic quantum processors, and we
study some of them in a forthcoming publication@16#.
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