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Quantum-controlled measurement device for quantum-state discrimination
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We propose a ‘‘programmable’’ quantum device that is able to perform a specific generalized measurement
from a certain set of measurements depending on a quantum state of a ‘‘program register.’’ In particular, we
study a situation when the programmable measurement device serves for the unambiguous discrimination
between nonorthogonal states. The particular pair of states that can be unambiguously discriminated is speci-
fied by the state of a program qubit. The probability of successful discrimination is not optimal for all
admissible pairs. However, for some subsets it can be very close to the optimal value.
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I. INTRODUCTION

Quantum measurements are inevitable parts of all qu
tum devices. Specific sets of quantum measurements ar
sential for optimal quantum-state estimation@1,2#. Quantum
measurements also represent the final step of any qua
computation@3#. In many situations the choice of an optim
measurement depends on the task to be performed. Fo
stance, in the case of quantum-state discrimination the ch
of the measurement is given by the specific pair of states
are supposed to be discriminated.

A selection of a specific measurement can be perform
on a ‘‘classical’’ level. That is, the parameters of the me
surement~e.g., the orientation of the Stern-Gerlach appa
tus! are completely described classically. On the other h
the parameters determining the character of quantum m
surement can be encoded in a state of a quantum ‘‘progr
register. Certainly, in this situation one could perform a m
surement on a program register and estimate the param
specifying the measurement to be performed on the sys
With these parameters one can then ‘‘classically’’ adjust
measurement apparatus and perform the measurement
the system. The other option is that the quantum prog
register directly determines the measurement to be
formed on the system. This purely quantum control can
realizedwithout an intermediate intervention of an observ

Therefore it is interesting to understand whether it is p
sible to construct a universal~multipurpose! quantum-
measurement device~‘‘quantum multimeter’’!. That is, an
apparatus that could perform a specific class of general
measurements@positive operator valued measure~POVM!#
in such a way that each member of this class could be
lected by a particular quantum state of a ‘‘program registe
The key property of this approach is a possibility to cont
the choice of the measurement~e.g., the measurement bas
in case of a projective measurement! by a ~in principle, un-
known! quantum state of the program register. This state
be determined, for instance, as a result of some quant
information process.

The generalized measurement is defined by the fact
the probability of each of its results~the number of results
may be, in general, larger than the dimension of the Hilb
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space of the measured system! is given by the expression
pm5TrS(AmrS), whererS is the state of the system andAm
are positive operators that constitute the decomposition
the identity operator ((mAm51). This is the reason why it is
called positive operator valued measure@1,2,4#. Each POVM
can be implemented using an ancillary quantum system
specific state and realizing a projective von Neumann m
surement on the composite system@5#. In other words, if one
has an ‘‘input’’~measured! staterS in the Hilbert spaceHS it
is always possible to find some staterA in a spaceHA and a
set of orthogonal projectors$Em% acting on HS
^ HA ((mEm51) such that

Am5TrA~EmrA! ~1!

are positive operators as discussed above.
In general, we can assume that the initial state of

ancilla can be prepared with an arbitrary precision. The
cilla can be considered as a part of the ‘‘program registe
Further, we note that the general projection measuremen
the composite system can be represented by a unitary tr
formation on the composite system followed by a fixed p
jection measurement~e.g., independent projective measur
ments on individual qubits!. Therefore the problem o
designing the programmable quantum multimeter reduce
the question of whether an arbitrary unitary operation~on the
Hilbert space with a given dimension! can be encoded in
some quantum state of a program register of a finite dim
sion. It was shown that the answer to this question is ‘‘No
Nielsen and Chuang proved that any two inequivalent ope
tions require orthogonal program states@6#. Thus the number
of encoded operations cannot be higher than the dimen
of the Hilbert space of the program register. Since, in g
eral, the set of all unitary operations can be infinite, the re
of Nielsen and Chuang implies that no universal progra
mable gate array can be constructed using finite resour
They showed, however, that if the gate array is probabilis
a universal gate array is possible. A probabilistic array is o
that requires a measurement to be made at the output o
program register, and the output of the data register is o
accepted if a particular result, or set of results, is obtain
This will happen with a probability, which is less than on
©2002 The American Physical Society12-1
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Vidal and Cirac@7# have presented a probabilistic program
mable quantum gate array with a finite program regis
which can realize a family of operations with one continuo
parameter. Recently, Hilleryet al. @8# have proposed a mor
general quantum processor that can perform probabilistic
any operation~not only unitary! on a qubit. Another aspect o
encoding quantum operations in states of a program reg
has been discussed by Huelgaet al. @9#. They dealt with the
so-called teleportation of unitary operations. Unfortunate
the probabilistic realization of unitary operations cannot h
to build a programmable quantum multimeter in the w
mentioned above. The reason is that the probabilistic im
mentation of a given operation leads, at the end, to adifferent
POVM than the deterministic implementation of the sa
operation would lead to.~The newN11 component POVM
with one more output corresponding to a ‘‘failure’’ is diffe
ent from the desiredN component one. For example, if th
desired POVM already contains an inconclusive output t
if it is implemented probabilistically the total probability o
the ‘‘failure’’ increases in general.!

In general, we can describe a quantum multimeter a
~fixed! unitary operation acting on the measured system~or a
‘‘data register’’! and an ancillary system~‘‘program regis-
ter’’ ! together and a~fixed! projective measurement realize
afterwards on the same composite system. Clearly, su
device can perform only a restricted set of POVMs. One c
therefore, ask what is the optimal unitary transformation t
enables us to implement ‘‘the largest set of POVMs’’~in
comparison with the set of POVMs that would be obtaina
when we allowed any unitary transformation on the sa
Hilbert space!. One can also ask what unitary transformati
can help to approximate all the POVMs~generated by an
arbitrary unitary transformation! with the highest precision
~fidelity! on average. Clearly, the last task requires definit
of the distance measure between two POVMs. This is
interesting problemper se, however, it goes far beyond th
scope of our considerations here. Both optimization pr
lems mentioned above are rather nontrivial. Moreover,
introduced scheme is perhaps too general from a prac
point of view. Therefore in the present paper we will conce
trate our attention on a more specific case: On the problem
state discrimination.

We stress once again that a quantum multimeter as
cussed in the present paper is a device which, in contra
its classical counterpart, is controlled~switched, pro-
grammed! by the quantum states of a program register t
are allowed to be mutually nonorthogonal.

II. DISCRIMINATION OF QUANTUM STATES

In the following we will study a particular example of
‘‘quantum multimeter’’ serving for a programmable unam
biguous state discrimination. So, it is in place to say a f
words about quantum-state discrimination now.

A generalunknownquantum state cannot be determin
completely by a measurement performed on a single cop
the system. But the situation is different ifa priori knowl-
edge is available@1,2,4#, e.g., if one works only with state
from a certain discrete set. Even quantum states that are
02211
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tually nonorthogonal can be distinguished with a cert
probability provided they are linearly independent~for a re-
view see Ref.@10#!. There are, in fact, two different optima
strategies@11#: First, the strategy that determines the sta
with the minimum probability for the error@1,2# and, second,
unambiguous or error-free discrimination~the measuremen
result never wrongly identifies a state! that allows the possi-
bility of an inconclusive result~with a minimal probability in
the optimal case! @12–16#. We will concentrate our attention
to the unambiguous state discrimination. It has been fi
investigated by Ivanovic@12# for the case of two equally
probable nonorthogonal states. Peres@14# solved the problem
of discrimination of two states in a formulation with POVM
measurement. Later Jaeger and Shimony@15# extended the
solution to arbitrarya priori probabilities. Chefles and Bar
nett @16# have generalized Peres’s solution to an arbitr
number of equally probable states which are related b
symmetry transformation. Unambiguous state discriminat
was already realized experimentally. The first experime
designed for the discrimination of two linearly polarize
states of light, was done by Huttneret al. @17#. There are also
some newer proposals of optical implementations@18#. The
interest in the quantum state discrimination is not only ‘‘ac
demic,’’ unambiguous state discrimination can be used, e
as an efficient attack in quantum cryptography@19#.

III. ‘‘UNIVERSAL’’ DISCRIMINATOR

Let us suppose that we want to discriminate unambi
ously between two known nonorthogonal states. Howe
we would like to have a possibility to ‘‘switch’’ the apparatu
in order to be able to work with several different pairs
states.

Let us have two~nonorthogonal! input states of a qubit.
We can always choose such a basis that they reada0u0D&
6b0u1D& with a05cos(w0/2) andb05sin(w0/2); the value
of w0 can be from 0 top/2 (w0 is the angle between the tw
states!. Let us have one additional ancillary qubit, initially i
a stateu0A&. On both the ‘‘data’’ and the ancilla we apply th
following unitary transformationUDA :

u0D0A&→cosuu0D0A&1sinuu0D1A&,

u1D0A&→u1D0A&,
~2!

u0D1A&→2sinuu0D0A&1cosuu0D1A&,

u1D1A&→u1D1A&,

where cosu5tan(w0/2). If we then make a von Neuman
measurement consisting of the projectorsP15u1&^1u, P2

5u2&^2u, andP0512P12P2 , where

u6&5~ u0D0A&6u1D0A&)/A2, ~3!

we can unambiguously determine the input state~with a cer-
tain probability of success! @17#. This measurement is opti
mal in the sense that the probability of an inconclusive res
2-2
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is the lowest possible~and it is the same for both states!. The
probability of the successful discrimination is 2 sin2(w0/2)
@14#.

Let us suppose now the set of pairs

uc1&5au0D&1bu1D&,
~4!

uc2&5au0D&2bu1D&,

wherea5cos(w/2) andb5sin(w/2), for all w from the in-
terval (0,p). That is, we consider all pairs of states that
on a real plane and that are located symmetrically around
stateu0D&; see Fig. 1. Further, let us suppose that the an
lary qubit is allowed to be in an arbitrary pure state

uJ&A5au0A&1bu1A&. ~5!

Thus the total input state reads

uC&DA5~au0D&6bu1D&) ^ ~au0A&1bu1A&)5aau0D0A&

1abu0D1A&6bau1D0A&6bbu1D1A&. ~6!

After the action of transformation~2! on this state one ob
tains the resulting state in the following form@the transfor-
mation is fixed for allw; still cosu5tan(w0/2)#

UDAuC&DA5~aa cosu2ab sinu!u0D0A&1~aa sinu

1ab cosu!u0D1A&6bau1D0A&6bbu1D1A&.

~7!

If the coefficientsa and b in the state of the ancilla ar
chosen in such a way that

~aa cosu2ab sinu!5baªq/A2 ~8!

then the expression~7! simplifies to the form

UDAuC&DA5qu6&1const1u0D1A&6const2u1D1A&, ~9!

where the statesu6& are defined by Eq.~3!. Clearly, applying
the projective measurement introduced above one is ab
discriminate unambiguously states~4! for any given w
P(0,p) provided he/she has prepared the proper state of
ancilla. The first term in Eq.~9! corresponds to the successf

FIG. 1. The statesuc1& and uc2& @defined by Eq.~4!# with real
coefficientsa and b can be visualized in a two-dimensional re
space. The anglew is related to the overlap of the two state
^f1uf2&5cosw5uau21ubu252uau221.
02211
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discrimination, while the last two terms correspond to inco
clusive results. The probability of success is

Psucc5uqu25PoptR~w,w0!52 sin2
w

2
R~w,w0!, ~10!

where

R~w,w0!5
cosw0~cosw11!

11cosw02sinw sinw0
~11!

is the ratio between the actual value of the probability
successful discrimination and its optimal value. This expr
sion is obtained from the condition~8! together with the
normalization relationuau21ubu251.

From above it follows that it is possible to implement
‘‘universal quantum multimeter’’ that is able to discrimina
probabilistically but unambiguously~with no errors! between
two nonorthogonal states for the large class of nonorthogo
pairs. The selection of the desired regime~i.e., the selection
of the pair of states that should be unambiguously discri
nate! is done by the choice of the quantum state of the
cillary qubit. This program state selects the measuremen
be performed on the system. The probability of the succe
ful discrimination can be optimal only for one such pair
states.

In the limit case whenw050, i.e., u5p/2 ~this is the
fixed parameter of the employed unitary transformation!, the
probability of the successful discrimination for differentw ’s
~i.e., for different settings of the ancilla and different pairs
input states! is the same as in the ‘‘quasi-classical’’ cas
Psucc5

1
2 sin2w. By a quasiclassical approach we mean t

probabilistic measurement when one randomly selects@20#
the projective measurement in one of two orthogonal ba
that both span the two-dimensional space containing b
nonorthogonal states of interest~4!. One basis consists of th
stateuc1& and its orthogonal complementuc1

'&. If one finds
the result corresponding touc1

'& he/she can be sure that th
stateuc1& was not present. Analogously, the other basis c
sists of the stateuc2& and its orthogonal complement.

On the other hand whenw05p/2, i.e.,u50, there is no
way to fulfill the condition ~8! with a5” 0 ~and Psucc5” 0)
unlessa5b51/A2. That is, only two orthogonal states~3!
can be unambiguously discriminated.

If the parameterw0 is somewhere in between 0 andp/2
the probability of success~as a function ofw) is very close to
the optimal value in the relatively large vicinity ofw0; see
Fig. 2. However, for small values ofw it goes below the
success probability of the quasiclassical case and fow
5p/2 ~orthogonal states! the probability of successful dis
crimination is lower than unity.

One can ask for the optimal value ofw0 in the sense tha
the average probability of successful discrimination@or, al-
ternatively, functionR(w,w0)# over some chosen interval o
w ’s is maximal. For example, if we are interested in t
average value ofR(w,w0) over the interval ofw from 0 to
p/2 we find that it is maximized whenw0'0.235p ~the
corresponding average value ofR is 0.92).
2-3
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For pedagogical reasons, until now we have only work
with the states from a particular real subspace of the Hilb
space of the data qubit. However, it should be stressed
the method works for any two ‘‘input’’ states that are sym
metrically displaced with respect tou0D&. In other words, the
condition~8! can be fulfilled for any complexa andb. Sim-
ply,

b

a
5

1

sinu S cosu2
b

a D .

The probability of the successful discrimination of sta
then reads

Psucc5
2 sinuuabu2

122 cosu Re~ab!
, ~12!

where Re(ab) denotes the real part ofab.

IV. CONCLUSIONS

We have proposed a programmable quantum meas
ment device for the error-free discrimination of two nono
thogonal states of qubit that works with a large set of pairs
states. The device can be set to discriminate unambiguo

FIG. 2. The ratioR(w,w0) of the actual probability of success
ful discrimination to the optimal value of this probability as a fun
tion of the anglew between two considered state vectors. Curve
shows the ‘‘quasiclassical’’ limit (w050). Curve B represents th
case whenw05p/4.
ry
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any two states that are symmetrically located around so
fixed state@in the sense of Eq.~4!#. The setting is done
through the state of a program register that is represente
another qubit. This means that the particular pair of sta
that can be unambiguously discriminated is specified by
state of a ‘‘program’’ qubit. Two possible input states of th
‘‘data qubit’’ that are in correspondence with the progra
setting are never wrongly identified but from time to time w
can get an inconclusive result. The probability of success
discrimination is optimal only for one program setting. How
ever, the device can be designed in such a way that the p
ability of successful discrimination is very close to the op
mal value for a relatively large set of program settings. L
us stress thequantum natureof the ‘‘programming:’’ The
states of the program register that represent different p
grams can benonorthogonal.

We have also discussed some general questions con
ing the possibilities to build multipurpose quantum measu
ment devices~‘‘quantum multimeters’’! that could perform a
required POVM depending on a quantum state of their p
gram register. Most of these questions remain unanswe
For instance, let us suppose a set of all POVMs that can
obtained if we combine the measured system with an anc
of some fixed dimension in an arbitrary state and carry ou
arbitrary projective~von Neumann! measurement on the
composite system. This is equivalent to carrying out an a
trary unitary operation followed by some fixed projectiv
measurement. Imagine now that we can change only the s
of the ancilla but our projective measurement~or unitary
transformation! is fixed. The question is: What measureme
~operation! do we need to approximate all the POVMs fro
the set introduced above with the maximal average fidel
Apparently, this question raises the other interesting ta
How to define the distance between two POVMs? Su
problems are not trivial, however, they open perspective
investigation of programmable quantum devices.
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