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Reconstruction of motional states of neutral atoms via maximum entropy principle
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We present a scheme for a reconstruction of states of quantum systems from incomplete tomographiclike
data. The proposed scheme is based on the Jaynes principle ofmaximum entropy. We apply our algorithm for
a reconstruction of motional quantum states of neutral atoms. As an example we analyze the experimental data
obtained by Salomon and co-workers and we reconstruct Wigner functions of motional quantum states of Cs
atoms trapped in an optical lattice.
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I. INTRODUCTION

A reconstruction of states of quantum systems from
perimental data represents an important tool for a verifica
of predictions of quantum theory. It also allows us to che
the fidelity of quantum state preparation as well to study
fidelity of processing of information encoded in states
quantum systems. Complementary discrepancies betwee
timated ~reconstructed! states based on the measured d
and theoretical predictions can serve as an indicator of v
ous noise sources that occur during the quantum informa
processing or in the measurement of quantum states. Wit
a priori assumptions about the character of physical p
cesses and properties of reconstruction schemes the re
struction cannot distinguish between imperfections relate
an incoherent quantum state processing and nonideal m
surements@1#. Determination of limits for coherent contro
of quantum degrees of freedom or identification of source
decoherence are essential for systems that are considere
quantum computing and information processing@2#.

In atomic optics a highly coherent control of motion
degrees of freedom has been achieved for trapped ions@3#
and recently also for neutral atoms@4,5#. Cold atoms can be
cooled into specific quantum states within microwells of
optical lattice that is induced by laser beams. Cold neu
atoms in optical lattices represent a promising system
quantum information processing. To verify a degree~fidelity!
of coherent control over motional degrees of freedom of n
tral atoms a reconstruction of their motional quantum sta
from measured data has to be considered. We develop
construction procedure based on the Jaynes principle
maximum entropy~maxent! @6–8# to achieve this goal. This
scheme allows us to perform a state reconstruction from
experimental data obtained by Salomon and co-workers.

In Sec. II we present a brief description of the reconstr
tion procedure of a density operator of a quantum sys
based on the Jaynes principle of maximum entropy. In S
III we utilize the maxent principle for development of th
reconstruction scheme of motional states of atoms and
perform numerical tests of our approach. Our reconstruc
scheme is applied to the experimental data in Sec. IV.
1050-2947/2002/65~5!/053410~8!/$20.00 65 0534
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II. MAXENT PRINCIPLE AND RECONSTRUCTION
OF DENSITY OPERATORS

Let us assume a set of observablesĜn (n51, . . . ,n) as-
sociated with the quantum system under consideration. T
system is prepared in an unknown stater̂. Let us assume tha
from a measurement performed over the system mean va
Ḡn of the observablesĜn are found. The task is to determin
~estimate! the unknown state of the quantum system ba
on the results of the measurement. Providing the set of
observablesĜn is not equal to thequorum~i.e., the complete
set of system observables@9#!, then the measured mean va
ues do not determine the state uniquely. Specifically, ther
a large number of density operators that fulfill the conditio

Tr r̂ $Ĝ%51,

Tr ~ r̂$Ĝ%Ĝn!5Ḡn , n51,2, . . . ,n, ~2.1!

that is, the normalization condition and the constraints i
posed by the results of the measurement. To estimate
unknown density operator in the most reliable way we util
the Jaynes principle of maximum entropy~maxentprinciple!
@6–8,10# according to which among those operators that f
fill the constraints~2.1! the most reliable reconstruction~es-
timation! r̂ r is the one with the maximal value of the vo
Neumann entropyS( r̂)52Tr( r̂ ln r̂):

S~ r̂ r !5max@S~ r̂$Ĝ%;; r̂ $Ĝ%#. ~2.2!

As shown by Jaynes@6# the operator that fulfills the con
straints ~2.1! and simultaneously maximizes the von Ne
mann entropy can be expressed in the generalized cano
form

r̂ r5
1

Z$Ĝ%
expS 2(

n
lnĜnD , ~2.3!

where
©2002 The American Physical Society10-1
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GABRIEL DROBNÝ AND VLADIMI´R BUŽEK PHYSICAL REVIEW A 65 053410
Z$Ĝ%~l1 , . . . ,ln!5TrFexpS 2(
n

lnĜnD G ~2.4!

is the generalized partition function andln are the Lagrange
multipliers. The Lagrange multipliersln are chosen so tha
the density operator~2.3! fulfills the constraints~2.1! im-
posed by the results of the measurement. It is then obv
that the mean valuesḠn that determine the density operat
are related to the Lagrange multipliers via the derivatives
the partition function

Ḡn5Tr~ r̂ r Ĝn!52
]

]ln
ln Z$Ĝ%~l1 , . . . ,ln!. ~2.5!

If we solve the last equation with respect to the Lagran
multipliers we can express them in terms of the measu
mean values

ln5ln~Ḡ1 , . . . ,Ḡn!. ~2.6!

When we substitute the Lagrange multipliers~2.6! into the
expression for the generalized canonical density oper
~2.3! we obtain the explicit expression for the reconstruc
~estimated! density operator.

As a typical example of the application of the maxe
principle we can consider a measurement of a single-m
electromagnetic field, modeled as a harmonic oscilla
Imagine, that as a result of the measurement we know
mean photon numbern̄ in the given field mode. Certainly
there are~infinitely! many quantum states of a single-mo
electromagnetic field~e.g., a Fock state, a coherent state
squeezed state, etc.! with the given mean photon number. S
the question is: Which is the best~most reliable! estimation
of the measured state given the mean photon numbe
known? The mean photon number is in some sense the
available information about the measured state. Con
quently, the state is least determined. On the other hand,
states are completely determined, which is reflected by
fact that they have a zero von Neumann entropy. Theref
we expect that the most reliable reconstruction in the gi
case is a statistical mixture that is determined just by a sin
parameter—the mean photon number. It is well known tha
statistical mixture, which is parametrized just by a sing
parameter, is a thermal state. This statistical mixture of F
states is characterized by a temperature, or the correspon
mean photon number. In addition, for a given temperat
~mean photon number! the thermal state exhibits the large
von Neumann entropy. Consequently, from the Jaynes p
ciple of the maximum entropy it follows that if from a mea
surement only a mean photon number is known that the m
reliable estimation of the measured state is the thermal s

The maxent principle is not the only criterion how
choose an appropriate density operator among thoser̂ $Ĝ% that
fulfill the constraints~2.1!. Based on an intuition or som
additiona priori knowledge one can apply other criteria. F
example, themaximum likelihoodprinciple has been adopte
successfully for estimation of quantum states@12#. Although
this reconstruction scheme can result in nonphysical esti
05341
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tions ~e.g., density operators that are not properly norm
ized, etc.!. In general, a consistent reconstruction scheme
to avoid nonphysical results~e.g., occurrence of negativ
probabilities!. In the maxent reconstruction a physical es
mate is guaranteed by the canonical form of the density
erator ~2.3!. The maxent principle isthe most conservative
assignment in the sense that it does not permit one to d
any conclusions not warranted by the data. From this point
of view the maxent principle has a very close relation~or can
be understood as the generalization! of Laplace’s principle of
indifference, which states that where nothing is known o
should choose a constant valued function to reflect this ig
rance. Then it is just a question how to quantify a degree
this ignorance. If we choose an entropy to quantify the ign
rance, then the relation between the Laplace’s indiffere
principle and the Jaynes principle of the maximum entropy
transparent, i.e., for a constant-valued probability distrib
tion the entropy takes its maximum value.

The maxent reconstruction has been applied for vari
quantum systems, such as light field mode, spin syst
@11#. In what follows we adopt it for the reconstruction o
vibrational states of neutral atoms. We assume the exp
mental setup realized Salomon and co-workers@4,5#.

III. RECONSTRUCTION OF MOTIONAL STATES
OF NEUTRAL ATOMS

Recently, experimental manipulations of motional qua
tum states of neutral atoms have been reported by Salo
and co-workers@4,5#. Cold Cs atoms can be cooled into sp
cific quantum states of a far detuned one-dimensional~1D!
optical lattice. The optical lattice is induced by the interfe
ence of two laser beams. Along the verticalz axis a periodic
potential of ‘‘harmonic’’ microwells is produced with a pe
riod of 665 nm and with an amplitude of about 0.2mK @5#.
The vertical oscillation frequency in a microwell at the ce
ter of the trap isvz/2p585 kHz. The corresponding groun
state has the rms sizeDz05A\/2mvz'21 nm andDp0 /m
5A\vz/2m'11 mm/s is its rms velocity width. The
trapped cloud of neutral Cs atoms has a nearly Gaus
shape with a vertical rms sizeDj0553 mm. With the help
of deterministic manipulations the neutral atoms can be p
pared in nonclassical 1D motional states along the vert
axis such as squeezed states, number states, or specifi
perpositions of number states@5#. The measurement of th
prepared quantum stater̂ is performed as follows: The sys
tem is evolved within the harmonic potential during the tim
t. Then the lasers are turned off and the system underg
the ballistic expansion~BE!. After the time of flight T
58.7 ms a 2D absorption image of the cloud is taken
50 ms with a horizontal beam@5#. Integration of 2D absorp-
tion images in the horizontal direction gives us the spa
distribution along the verticalz axis. Therefore, we will con-
sider only 1D quantum-mechanical system along the vert
axis.

To confirm that a desired quantum state has been obta
~engineered! one can compare the spatial distributions alo
the vertical axis with the predicted ones. The coincidence
these spatial distributions is a necessary but not the suffic
0-2
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RECONSTRUCTION OF MOTIONAL STATES OF . . . PHYSICAL REVIEW A 65 053410
requirement. A complete verification of the fidelity of th
preparation of desired quantum states requires a quan
state reconstruction procedure. In order to perform this t
we adopt the maxent principle@11#. To do so we utilize a
close analogy between quantum homodyne tomography@14#
and the BE absorption imaging for the case of the pointl
cloud ~with the rms size equal to zero!.

A. Quantum tomography via the maxent principle

Quantum tomography is based on the inverse Ra
transformation of the measured probability density distrib
tions wr̂(xu) for rotated quadraturesx̂u5(1/A2)(âe2 iu

1â†eiu) @13,14#. These distributions can be represented a
result of the measurement of the continuous set of projec
uxu&^xuu. Based on the measurement of the distributio
wr̂(xu) for all values ofuP@0,p# we can formally recon-
struct the density operator according to the formula@15#

r̂ r5
1

Z0
expF2E

0

p

duE
2`

`

dxu uxu& ^xu ul(xu)G , ~3.1!

where the Lagrange multipliersl(xu) are given by an infi-
nite set of equations,

wr̂~xu!5A2p^xuur̂ r uxu&, ;xuP~2`,`!. ~3.2!

If the distributionswr̂(xu) are measured for all values ofxu

and all anglesu then the density operatorr̂ r is reconstructed
precisely and is equal to density operator obtained with
help of the inverse Radon transformation or with the help
the pattern functions~for more details see@15#!.

In practical experimental situations~e.g., see the experi
ments by Smitheyet al. @16# and by Schilleret al. @17#! it is
impossible to measure the distributionswr̂(xu) for all values
of xu and all anglesu. What is measured are distribution
~histograms! for finite numberNu quadrature anglesu and
the finite numberNx of ‘‘bins’’ for quadrature operators. This
means that practical experiments are associated with an
servation level specified by afinite number of observables

F̂ jk5uxuk

( j )&^xuk

( j )u , ~3.3!

with the number of quadrature angles equal toNu and the
number of bins for each quadrature equal toNx . We can,
therefore, assume that from the measurement of the obs
ablesF̂ jk the mean valuesF̄ jk are determined~these mean
values correspond to ‘‘discretized’’ quadrature distribution!.
In addition it is usually the case that the mean excitat
number of the state is known~measured! as well.

The operatorsF̂ jk together withn̂ form a specific obser-
vation level corresponding to theincomplete tomographic
measurement. In this case we can express the generaliz
canonical density operator in the form

r̂ r5
1

Z
expS 2lnn̂2(

j 51

Nx

(
k51

Nu

l j ,kF̂ jkD . ~3.4!
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The knowledge of the mean photon number is essential
themaxentreconstruction because it formally regularizes t
maxent reconstruction scheme~the generalized partition
function is finite in this case!.

B. Motional states of atoms via the maxent principle:
Formalism

In the quantum homodyne tomography the probabi
distributions are measured for the rotated quadrature op
tors x̂u . The annihilation and creation operators of motion
quanta,â and â†, are related to the position and momentu
operators,ẑ and p̂, via expressionsẑ5(1/A2)(â1â†) and
p̂5(1/A2)i (â2â†), respectively. The angleu of the quadra-
ture operator corresponds tovzt and vertical ‘‘cuts’’ of the
absorption images~taken after the BE! can be associated
with quadrature probability distributions. However, for a re
physical situation with a nonzero rms size of the cloud
vertical ‘‘cuts’’ of absorption images correspond to a coar
grained quadrature probability distributions. In particular, t
vertical cuts of measured absorption images~taken in 2D!
give us~after integration along the horizontal direction! the
spatial distribution along the vertical axis. The spatial dis
bution along the verticalz axis can be expressed as

F̄t~z!5T21E F0~j0!Pt@~z2j0!/T#dj0 , ~3.5!

whereF0(j0) is the initial spatial distribution of the cloud in
thez direction~i.e., a Gaussian distribution with the rms siz
Dj0). The functionPt(v) denotes the velocity probability
distribution of the measured quantum state that has b
evolved for timet in the harmonic potential before the BE
i.e.,

Pt~v !5u^vuc~t!&u2, uc~t!&5Û~t!uc~0!&. ~3.6!

Here Û(t)5exp(2iĤt/\) represents the time-evolution op
erator for the harmonic oscillator with the HamiltonianĤ

5 p̂2/2m1mvz
2ẑ2/2. Now we can treat the measured ‘‘cuts

as the mean values of specific observables:F̄t(z)
5Tr@ r̂F̂t(z)#. In practice just a few discrete timest j ( j
51, . . . ,Nt) are considered and thez coordinate is dis-
cretized into the binszk(k52Nz , . . . ,Nz) of a given reso-
lution Dz. The set of operators that enters the Eq.~3.4! for
the maxent reconstruction then takes the form

F̂t j
~zk!5T21E F0~j0!Û†~t j !Uzk2j0

T L
3 K zk2j0

T UÛ~t j !dj0

~ j 51, . . . ,Nt ;k52Nz , . . . ,Nz!. ~3.7!

We have already commented that the operator of mean p
non numbern̂ is added to the set of observables$F̂t j

(zk)%.

Knowledge of the mean excitation numbern̄ is essential in
the case of an incomplete set of observables@11#. Knowledge
0-3
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GABRIEL DROBNÝ AND VLADIMI´R BUŽEK PHYSICAL REVIEW A 65 053410
of the mean excitation number leads to a natural ‘‘trun
tion’’ of the Hilbert space. The inclusion of the mean phon
number into the maxent reconstruction scheme does not
resent its limitation as the mean energy represents on
basic characteristics of any system that should be infe
from the measurement.

The experimental ‘‘cuts’’ of the BE absorption image

@ F̂t j
(z)# can be taken at few selected times, for examp

vzt j50,p/4,p/2,3p/4 (Nt54). To perform the reconstruc
tion we have to determine the Lagrange multipliers$l j ,k%
andln associated with$F̂t j

(zk)% and n̂, respectively, in the
expression for the generalized canonical density oper
~3.4!. The Lagrange multipliers can be determined via
minimization of a deviation functionDF with respect to the
measured data, i.e.,

DF5(
j ,k

wj ,k$F̄t j
~zk!2Tr@ r̂ r F̂t j

~zk!#%
2

1wn̄$n̄2Tr~ r̂ r n̂!%2. ~3.8!

Here$wj ,k% andwn̄ represent positive weight factors for pa
ticular observables. Without any prior knowledge about
state we can take for simplicitywi , j51. The weight factor
wn̄ associated with the mean phonon number can be ch
according to our preference either to fit better the ‘‘cuts’’
the BE images or the mean phonon number. In the cas
the perfect measurement and the complete reconstructio
result has to be independent of the choice of the weight
tors ~in this case we can takewn̄51). The weight factors
could be also associated with theprior information about the
dispersion of the measured observables. In particular,
weight factors can be taken aswn;sn

22 to reflect the knowl-

edge of variancessn for the measured observablesĜn .
When the mean values of the observables for the ma
estimater̂ r fit within desired intervalḠn6sn then contribu-
tions of the observables to the deviation functionDF are of
the same order (;1). However, in our case we do not a
sume the knowledge of variances for the measured
cretized probability distributions~taking wn51).

Once the Lagrange multipliers are numerically fitted, t
result of the reconstruction—the generalized canonical d
sity operatorr̂ r—can be visualized, for example, via the co
responding Wigner function@18# that can be defined as
particular Fourier transform of the density operatorr̂ of a
harmonic oscillator expressed in the basis of the eigenvec
uq& of the position operatorq̂,

Wr̂~q,p![E
2`

`

dz^q2z/2ur̂uq1z/2&eipz. ~3.9!

C. Numerical simulation

To test our reconstruction procedure let us consider
reconstruction of the Wigner function of the motional qua
tum stateuc(0)&5(u0&1u1&)/A2 of Cs atoms trapped in th
optical lattice. This kind of state has been demonstrated
05341
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recent experiments@5#. We assume the following setup pa
rameters:vz/2p580 kHz, the rms size of the ground sta
Dz0522 nm, the rms velocity widthDp0 /m511 mm/s and
the rms width of the cloud of the atoms about 60mm. Be-
fore BE ~with BE timeT58.7 ms) the atoms evolve within
the harmonic trapping potential fort50,1.6,3.2,4.8ms. As
the input for the reconstruction via the maxent principle fo
vertical ‘‘ideal’’ cuts of the BE absorption images are tak
as shown in Fig. 1~b!. In addition, for the phonon numbe
operatorn̂ that is included in the set of measured observab
~see discussion above! we assume the mean valuen̄50.5.
The result of the ideal reconstruction is shown in Fig. 1. T
fidelity of the measured and the reconstructed quantum st
is close to unity that means a perfect reconstruction w
DF510210, entropy S51027, Dr51028 has been
achieved. HereDr5(m,nu( r̂2 r̂ r)mnu2 denotes a deviation
of the original and reconstructed density operators.

Obviously, in a real measurement the measured values
always fluctuating around the exact ones due to an exp
mental noise. Therefore, we simulate a nonideal meas
ment introducing random fluctuations to the measured va
of observables. It means that instead of the ideal val
F̄t j

(zk) we use for the maxent reconstruction procedure
fluctuating~‘‘noisy’’ ! values

F̄t j
8 ~zk!5F̄t j

~zk!1hj j ,k@ F̄t j
~zk!#

1/2. ~3.10!

Here h is a relative-error parameter that characterizes
quality of the measurement and$j j ,k% represents a Gaussia
noise for observables. The result of the reconstruction
shown in Fig. 2 forh50.1. Noisy mean values of the ob
servables are shown in Fig. 2~b!. Despite a significant rela
tive error the reconstruction is almost perfect with the fidel
of the measured and the reconstructed states still close to
(DF50.16, entropy S50.01, Dr50.05). The minimum
value of the deviation functionDF50.16 can serve also as
measure of the imperfection of the given measurement~due
to a technical noise! @20#.

A typical nonclassical state that we can utilize for a fu
ther test is the even coherent stateNe(ua&1u2a&) that is a
superposition of two coherent states with opposite pha
@19#. For the amplitudea5A2 we obtainedDF51028, the
entropyS50.026 andDr51024 @under assumption that th
exact mean phonon numbern̄51.928 is known~Fig. 3!#. In
the case of the imperfect measurement withh50.1 the re-
construction leads toDF50.14, entropyS50.13, andDr

50.06 for n̄52.09. The fidelity of the reconstructed and th
measured states is in this case also close to one~Fig. 4!.

In order to model a technical noise in the measurement
have been considered Gaussian fluctuations proportiona
the square root of the mean values. It means that tails of
‘‘cuts’’ of BE images do not introduce a significant erro
@compare Fig. 1~b! and Fig. 2~b!#. However, in the current
measurements the situation seems to be different and
fluctuations do not decrease with the amplitude of the
pected values.
0-4
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RECONSTRUCTION OF MOTIONAL STATES OF . . . PHYSICAL REVIEW A 65 053410
The fundamental question in the context of themaxent
reconstruction of states from incomplete tomographic dat
whether the quality of the reconstruction can be improv
using additional data from subsequent time momentst and
how many such time momentst are required for the com
plete reconstruction of the unknown stater̂. We have shown
recently @15# that for the quantum tomography justthree

FIG. 1. ~a! Numerical simulation of the reconstruction of th
Wigner function of the motional quantum state (u0&1u1&)/A2 of Cs
atoms trapped in the optical lattice~assumingvz/2p580 kHz, the
rms size of the ground stateDz0522 nm, and the rms velocity
width Dp0 /m511 mm/s). For the reconstruction via the maxe
principle four vertical cuts of the absorption images~with BE time
T58.7 ms) have been taken~b!. The histograms correspond to th
measured data while the solid lines are obtained from the re
structed Wigner function~i.e., they correspond to reconstructe
marginal distributions!. Before BE the atoms evolve within the trap
ping potential for the timest50,1.6,3.2,4.8ms. In addition, the

mean number of motional quantan̄50.5 and the rms width of the
cloud of the atoms about 60mm have been assumed.
05341
is
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quadrature distribution are sufficient for a complete rec
struction using the maxent principle~in the case of the per
fect measurement!. This corresponds to the ideal case wit
out the spatial dispersion of the cloud of atoms, i.e.,
choice withvzt j50,p/4,p/2 (Nt53) is sufficient forDj0
→0. Obviously, in experiments with neutral atoms the sp
tial size of the atomic cloud is nonzero. However, in the ca
of the ideal measurement three BE absorption images a
ciated with three ‘‘rotations’’vzt j are still sufficient for a
complete reconstruction of tested examples of quan
states. On the other hand, it seems that for higher mean
non numbers the spatial distributions along the vertical a

t

n-

FIG. 2. ~a! Numerical simulation of the reconstruction of th
Wigner function of the atomic motional quantum state (u0&
1u1&)/A2 for the same settings as in Fig. 1.~b! Four vertical cuts
of the absorption images taken for reconstruction are fluctua
randomly around their ideal values shown in Fig. 1~b! with the
relative errorh50.1. The histograms correspond to the measu
data while the solid lines are obtained from the reconstruc

Wigner function. In addition, the mean phonon numbern̄850.6 has
been considered.
0-5
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GABRIEL DROBNÝ AND VLADIMI´R BUŽEK PHYSICAL REVIEW A 65 053410
that are directly determined from absorption images sho
be known with improving precision~and on a wider interva
of values as well!. In the above examples we have cons
ered for convenience BE images for four ‘‘rotations’’ (Nt
54) that results in a very good reconstruction.

IV. RECONSTRUCTION FROM EXPERIMENTAL DATA

In what follows we will apply the maxent reconstructio
scheme to the data obtained by Salomon and Bouch
@21#. First we note that the unknown quantum state sho
belong to a Hilbert subspace that can be determined ea
Thus we can limit ourselves to the subspace spanned
Fock ~number! statesu0&,u1&, . . . ,uN21&. The upper bound
on the accessible phonon numberN is given by experimenta

FIG. 3. Numerical simulation of the reconstruction of th
Wigner function of the motional quantum stateNe(ua&1u2a&)
with a5A2 for the case of the ideal measurement. The mean n

ber of motional quantan̄51.928. Other settings are the same as
Fig. 1.
05341
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limitations such as, for example, a feasible depth of micro
ells of the optical lattice and the validity of the harmon
potential approximation. For recent experimentsN has been
typically of the order of 10. This value is large enough
demonstrate the preparation of many nonclassical states
on the other hand excludes highly squeezed states fro
coherent processing.

Let us consider the experimental arrangement used
Salomon and Bouchoule@21# with the parameters:vz/2p
580 kHz, the rms size of the ground stateDz0522 nm, the
rms velocity widthDp0 /m511 mm/s, the rms width of the
cloud of the atoms about 60mm and BE timeT58.7 ms.
Initially the atoms are prepared in a well-defined motion
stateuc0& ~e.g., in the vacuum stateu0&). Then the optical
lattice is switched off for the time periodt1 during which the

-

FIG. 4. Numerical simulation of the reconstruction of th
Wigner function of the motional quantum stateNe(ua&1u2a&)
with a5A2 for the case of noisy measurement withh50.1. The

‘‘measured’’ mean number of the motional quantan̄852.09. Other
settings are the same as in Fig. 2.
0-6
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atoms evolve freely towards the stateuc1&5exp

(2it1p̂
2/2m)uc0&. Next, the optical lattice is again switche

on for the timet during which the atoms evolve within th
harmonic trapping potential. The measurement is perform
after the BE time. The first two stages can be considere
the preparation of the stateuc1&. After its ‘‘rotation’’ by vzt
~within the phase space of the harmonic oscillator! and the
subsequent BE the absorption images are taken.

The considered data are for the initial vacuum sta
which means that under ideal conditions a squeezed s

uc1&5exp(2it1p̂
2/2m)u0& should be prepared. The vertic

spatial distributions obtained from the measured 2
absorption images are discretized into pixels~bins! with the
pixel width 5.45 mm. The optical density of each pixel i
averaged in the horizontal direction in which the absorpt
images are divided into 50 rows, each 3.9mm wide ~these
rows cover the size of the cloud in the horizontal directio!.
For the reconstruction via the maxent principle four verti
spatial distributions for ‘‘rotation’’ timest50, 1.6, 3.2, and
4.8 ms are taken. The selected times roughly correspon
rotations within the phase space byvzt50,p/4,p/2 and
3p/4, respectively. Unfortunately, the mean excitation nu
ber n̂ for measured stateuc1& was not measured explicitly in
the experiment, therefore, we have to estimate it as follo
During the free expansion period the rms size of the clo
increases byDx5p0t1 /m. The corresponding increase o
the potential energy12 mvz

2(Dx)2 in units \vz gives us the
increase of the number of excitation quanta with respec
the initial stateuc0&. For t154 m and the initial vacuum it
meansn̄'1. Experiments can be realized also for highert1.
For example,t158 m leads to n̄'4. However, as men
tioned above, such ‘‘squeezed’’ states with a significant c
tribution of higher phonon number states violate the und
lying harmonic approximation for the potential. To keep
coherent control an anharmonic part of the potential ha
be taken into account.

The result of the reconstruction via the maxent princi
is shown in Fig. 5. The deviation of the fitted and measu
values isDF50.09 and the entropy of the reconstructed st
S51.0. It means that the reconstructed state is a statis
mixture. We see a two peak structure, which suggests
there is a mixture of two squeezed states coherently
placed from each other. It is caused by the fact that the
tical center of the cloud was not fixed in the experiment a
it has to be determined by our fit for each measured
absorption image separately. Assuminga priori knowledge
that the Wigner function has a symmetric shape with resp
to the origin of the phase space~i.e., there is no coheren
amplitude! a Gaussian fit can be used to determine the ce
of the cloud for each vertical distribution. For states with
nonzero coherent amplitude the center of the cloud shoul
fixed already in the experiment.

It turns out that the reconstruction results do not desc
the squeezed vacuum state as was originally expected@21#.
The main reason is that the mean phonon number was
measured directly in the experiment. It can be inferred o
indirectly from the ideal case without any incoherence d
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ing preparation or measurement. As we discussed above,
essential to include the information about the mean num
of vibrational quanta into the maxent reconstruction sche
In optical tomography the analogous information about me
photon number can be obtained from distributions of t
‘‘orthogonal’’ quadratures. In our case it could correspond
two absorption images such thatvz(t j2tk)5p/2. However,
it would require a precise timing of the evolution within th
harmonic trapping potential. Therefore the mean numbe

FIG. 5. The Wigner function reconstructed from the experime
tal data obtained by Salomon and co-workers. The experime
setting is the same as for Fig. 1. From the experimental data

have inferred the mean number of motional quantan̄'1.0, while

the reconstructed value isn̄8'1.1. Deviation of the measured an
predicted values of observables isDF50.09 and entropy of the
reconstructed mixture state isS51.0. Subtraction of a backgroun
from the measured marginals gives almost the same Wigner f
tion and reduces significantly a difference between measured
reconstructed marginals.
0-7
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GABRIEL DROBNÝ AND VLADIMI´R BUŽEK PHYSICAL REVIEW A 65 053410
vibrational quanta should be determined in an independ
measurement.

Another problem arises from a slow convergence of a
squeezed spatial distributions that are derived directly fr
the measured absorption images. In particular, the con
gence of tails is too slow for those ‘‘rotations’’ that corr
spond to antisqueezed phases, i.e.,t51.6, 4.8 ms @see Fig.
5~b!#. The slow convergence is reflected by the presenc
non-negligible backgrounds for Gaussian fits to these sp
distributions. If we eliminate~subtract! these background
from the measured distributions the maxent reconstruc
gives almost the same Wigner function as in Fig. 5~a! but
with a highly reduced deviation functionDF50.02~compar-
ing to DF50.09 in Fig. 5!. Such background in these ab
sorption images can be caused by an incoherence assoc
with a violation of the harmonic approximation. In fact,
our analysis we have neglected the change of the oscilla
frequency along thez axis. In recent experiments, the osc
lation frequency decreases 10% fromvz for microwells at
the edge of the initial cloud.

V. CONCLUSIONS

We have presented a very efficient reconstruction sch
for the reconstruction of motional states of atoms based
the maxentprinciple. The main advantage of the scheme
that it always results in reconstructions that are phys
states~unlike in the case of the maximum likelihood estim
-
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tion that can result in nonphysical estimations!. Moreover,
the scheme is very efficient in a sense that it requires ju
small number of tomographic phase-space cuts.

We have applied the scheme for a reconstruction of m
tional quantum states of neutral atoms. As an example
have analyzed the experimental data obtained by Salo
and co-workers and we reconstruct the Wigner function
motional quantum states of Cs atoms trapped in the opt
lattice. In our analysis we have neglected the change of
oscillation frequency alongz axis in recent experiments. Th
dispersion of the oscillation frequency is of the order of
few percent. This source of errors can significantly affect
quality of a quantum state preparation and its reconstruct
In addition, only up to the first ten bound states of micro
ells of the optical lattice can be approximated by a harmo
potential. It implies limits on coherent manipulations
quantum states. It means that states with a significant co
bution of higher number~Fock! states cannot be prepare
and manipulated in a controlled way.
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