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Quantum homogenization for continuous variables: Realization with linear optical elements
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Recently Zimanet al. @Phys. Rev. A65, 042105~2002!# have introduced a concept of auniversalquantum
homogenizer which is a quantum machine that takes as input a given~system! qubit initially in an arbitrary
stater and a set ofN reservoir qubits initially prepared in the statej. The homogenizer realizes, in the limit
sense, the transformation such that at the output each qubit is in an arbitrarily small neighborhood of the state
j irrespective of the initial states of the system and the reservoir qubits. In this paper we generalize the concept
of quantum homogenization for qudits, that is, ford-dimensional quantum systems. We prove that the partial-
swap operation induces a contractive map with the fixed point which is the original state of the reservoir. We
propose an optical realization of the quantum homogenization for Gaussian states. We prove that an incoming
state of a photon field is homogenized in an array of beam splitters. Using Simon’s criterion, we study
entanglement between outgoing beams from beam splitters. We derive an inseparability condition for a pair of
output beams as a function of the degree of squeezing in input beams.

DOI: 10.1103/PhysRevA.66.062307 PACS number~s!: 03.67.2a, 03.65.Yz
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I. INTRODUCTION

One of the most complex phenomena in quantum the
is dynamics of open systems@1#. In general, one can assum
an interaction between the open system denoted asSwith the
environmentR. This environment is a quantum system wi
the Hilbert space of an arbitrary dimension. The wholeS
1R system evolves unitarily and the question of irreversib
ity of dynamics of open systems is then a great issue. H
does irreversible dynamics of the systemS emerge from a
unitary evolution of theS1R system? For instance, when
system interacts with a reservoir which is in thermal equil
rium then after some time the system is thermalized—it
laxes towards the thermal equilibrium. This implies that t
information about the original state of the system is~irrevers-
ibly! ‘‘lost’’ and its new state is determined exclusively b
the parameters~temperature! of the reservoir. If the reservoi
is composed of a large numberN of physical objects of the
same physical origin as the system itself, then the therm
zation process can be understood as homogenization: o
N objects~the reservoir! prepared in the same thermal sta
and a single system in an arbitrary state, we obtainN11
objects in the same thermal state. This intuitive picture
based on certain assumptions about the interaction betw
the system and the reservoir, about the physical nature o
reservoir itself and the concept of the thermal equilibriu
Such a model is very important for the understanding
many processes in quantum physics as well as the fundam
tal problem of the irreversibility@1,2#. For this reason it is
important to analyze rigorously the process of informat
transfer in this simple model which has been first analyze
a recent work@3# for qubits. In this paper we present a rig
orous analysis of the above picture within the framework
quantum information theory ford-dimensional quantum
systems—qudits.

Specifically, we will consider a systemS represented by a
1050-2947/2002/66~6!/062307~11!/$20.00 66 0623
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single qudit initially prepared in an unknown state%S
(0) , and

a reservoirR composed ofN qudits all prepared in the stat
j, which is arbitrary but same for all reservoir qudits. W
will enumerate the qudits of the reservoir and denote
state of thekth qudit asjk @4#. From the definition of the
reservoir it follows that initiallyjk5j for all k, so the state
of the reservoir is described by the density matrixj ^ N.

Let U be a unitary operator representing the interact
between a system qudit and one of the reservoir qud
In addition, let us assume that at each time step the sys
qudit interacts with just a single qudit from the reservo
~see Fig. 1!. Moreover, the system qudit can interact wi
each of the reservoir qudits at most once. After the inter
tion with the first reservoir qudit the system is chang
according to the following rule~which is a completely
positive—CP—map!,

%S
(1)5Tr1@U%S

(0)
^ j1U†#. ~1.1!

Let us repeat the interactionN times, that is, via a se
quence of interactions the system qudit interacts withN res-
ervoir qudits all prepared in the statej. The final state of the
system is then described by the density operator

FIG. 1. A simple collisionlike model of homogenization wit
just three reservoir qudits involved.
©2002 The American Physical Society07-1
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%S
(N)5TrR@UN•••U1~%S

(0)
^ j ^ N!U1

†
•••UN

† #, ~1.2!

whereUkªU ^ ( ^ j Þk1j ) describes the interaction betwee
the kth qudit of the reservoir and the system qudit. Th
model of homogenization is very similar to thecollision
model since the system becomes homogenized via a
quence of individual interactions with the reservoir qudi
The interactions are assumed to be localized in time~i.e.,
they act like elastic collisions! @5#.

Our aim is to investigate possible CP maps induced by
transformation~1.2! and describe the process of homoge
zation. Homogenization means that due to the interactionU,
the states of the qudits in reservoir change only little wh
after N interactions the system’s state become close to
initial state of the reservoir qudits. Formally,

; k, 1<k<N;D~jk8 ,j!<d; ~1.3!

; N>Nd;D~%S
(N) ,j!<d, ~1.4!

whereD(.,.) denotes some distance~e.g., a trace norm! be-
tween the states,d.0 is a small parameter which is chose
a priori to determine the degree of the homogeneity andjk8
ªTrS@U%S

(k21)
^ jU†# is the state of thekth reservoir qudit

after the interaction with the system qudit.
We note that homogenization is closely related tother-

malization@6#. There are, however, two main differences:
thermalization,~i! the statej of the reservoir qudits is no
completely unknown, but is a thermal state, that is, a s
diagonal in agiven basis ~interpreted as the basis of th
eigenstates of a single-qudit Hamiltonian!; and~ii ! the num-
ber of qudits in the reservoir is considered to be infinite
any practical purpose.

Our paper is organized as follows: in Sec. II we show t
quantum homogenization can be realized with the help o
partial-swapoperation. In Appendix A we show that the pa
tial swap for qudits generates a contractive CP map on
system qudit with the fixed point being the initial state of t
reservoir. This ensures the required convergence of the
mogenization process. In Sec. III we address a feasible o
cal realization~via a sequence of beam splitters! of the ho-
mogenization map for continuous variables. In Sec. IV
study the dynamics of the input signal light field homo
enized by an array of beam splitters, while Sec. V is devo
to the problem of entanglement between the modes invo
in the homogenization process.

II. PARTIAL-SWAP OPERATION

Let us start with the definition of the so-calledswapop-
erationS acting on the Hilbert space of two qudits which
given by the relation@7#

Suc& ^ uf&5uf& ^ uc&. ~2.1!

With the transformation

S % (0)
^ j S†5j ^ % (0), ~2.2!
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after just a single interaction, the state of the systemS is
equal to the statej of the reservoir qudit; and the interactin
qudit from the reservoir is left in the initial state of system
This means that condition~1.4! is fulfilled, while condition
~1.3! is not.

In order to fulfill both conditions~1.4! and~1.3! we have
to find some unitary transformation which is ‘‘close’’ to th
identity on the reservoir qudit, while it performs apartial-
swap operation, so that the system qudit at the outpu
closer to the reservoir statej than before the interaction. Th
swap operator is Hermitian, and therefore we can define
unitary partial-swapoperation

P~h!5~cosh!11 i ~sinh!S ~2.3!

that serves our purposes. In what follows we denote sh
5s and cosh5c.

In the process of homogenization, the system qudit in
acts sequentially with one of theN qudits of the reservoir
through the transformationP(h). The states of the system
qudit and of the reservoir qudit are obtained as partial trac
Specifically, after the first interaction the system qudit is
the state described by the density operator

%S
(1)5c2%S

(0)1s2j1 ics@j,%S
(0)#, ~2.4!

while the first reservoir qudit is now in the state

j185s2%S
(0)1c2j1 ics@%S

(0) ,j#. ~2.5!

We can recursively apply the partial-swap transformat
and after the interaction with thenth reservoir qudit, we have

%S
(n)5c2%S

(n21)1s2j1 ics@j,%S
(n21)#, ~2.6!

as the expression for the density operator of the system q
while thenth reservoir qudit is in the state

jn85s2%S
(n21)1c2j1 ics@%S

(n21) ,j#. ~2.7!

In the Appendix A we show that%S
(N) monotonically con-

verges toj for all parametershÞ0. This means, in particu
lar, that condition~1.4! does not impose any constraint onh.
To show this convergence, we utilized theBanach theorem
@8# that concerns the fixed point of a contractive transform
tion. Specifically, letS be a metric space with a distanc
functionD(.,.). ThetransformationT is calledcontractiveif
it fulfills the inequality D(T@%#,T@j#)<kD(%,j) with 0
<k,1 for all %,jPS. The fixed point of the transformation
T is an element ofS for whichT@j#5j. The Banach theorem
states that a contractive map has a unique fixed point@9#, and
that the iteration of the map converges to it, i.e.,T N@%#
→j for each%PS.

III. HOMOGENIZATION OF LIGHT FIELDS

In the preceding section we have presented a sim
model of an open system interacting with reservoir particl
We have shown that a partial-swap operation induces a c
tractive map on a system qudit, with the initial state of re
ervoir qudits as the fixed point. This model can serve fo
7-2
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QUANTUM HOMOGENIZATION FOR CONTINUOUS . . . PHYSICAL REVIEW A 66, 062307 ~2002!
detailed analysis of an information transfer and the prob
of reversibility from the point of view of quantum informa
tion theory. As shown in Ref.@3#, the process of homogen
zation can be reversed and the original state of the sys
%S

(0) and the reservoirj can be recovered only when theN
11 qubits of the output state interact, via the inverse of
original partial-swap operation, in the ‘‘correct’’ order. Th
classical information about the sequence of interaction
vital for reversibility of the quantum process under cons
eration.

Our results are valid not only for qudits but also for co
tinuous variables. That is, the model can be used for a
scription of an interaction of optical fields in appropria
settings. In particular, the partial-swap operation can be r
ized with the help of a beam splitter, so that the whole p
cess of the homogenization can be represented as a tran
mation of a signal mode via a sequence of interactions w
reservoir modes on highly transitive beam splitters. In
idler port of each of the beam splitter we launch a mo
playing the role of the reservoir ‘‘particle.’’ All reservoi
modes are initially in the same statej. It can be shown tha
at the output of the sequence of the beam splitters, the si
mode is in the state which~in the limit senseN→`) is the
state of the reservoir modes, provided that the reser
modes are initially prepared in a Gaussian state with z
mean amplitude~e.g., a thermal state, a squeezed vacu
state, and a squeezed thermal state!.

Beam splitters for partial swap

Two input fields are mixed at a beam splitter to give tw
output fields. We can model a simple interaction of two ph
tons by the use of a beam splitter—a linear optical dev
The input states described by bosonic operatorsâ and b̂ are
mixed at the beam splitter. The output field annihilation o
erators are given byĉ5B̂âB̂† and d̂5B̂b̂B̂†, where the
beam-splitter operatorB̂ is ~see Ref.@10#!

B̂5expFu2 ~ â†b̂eif2âb̂†e2 if!G , ~3.1!

with the transmitivity and reflexivity of the beam splitte
given by expressionst5cosu/2 andr 5sinu/2, respectively.

Our task is to examine how a state of a photon chan
after many weak interactions with photons from reserv
We assume the interactions are weak, thus the transmit
of the beam splitters will be approaching unity. In this ca
the signal photon is left almost undisturbed by each inter
tion. Nevertheless, with the increasing number of inter
tions, the input signal is slowly transformed under the infl
ence of the reservoir modes. On the other hand
interacting reservoir states are only slightly changed. We
show that this process ofquantum homogenization@3# can be
realized in an array of beam splitters. A beam splitter is
the general partial-swap operation, but it realizes the hom
enization for the reservoir modes prepared in Gaussian s
with the zero mean amplitude~see below!.

The beam splitter is also one of few experimentally a
cessible devices, which may act as an entangler@11#. In the
06230
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array of beam splitters the original signal is homogeniz
and is simultaneously correlated with reservoir modes. D
ing the process of homogenization, the information that
been originally encoded in the state of the signal mode
gradually transferred into the correlations between intera
ing modes. Depending on the character of quantu
statistical properties of the incoming modes, these corr
tions might have purely quantum nature. That is, at
output the light modes are entangled. In what follows we w
use it Simon’s criterion@12# to determine whether the mode
at the output are indeed entangled.

IV. DYNAMICS OF HOMOGENIZED LIGHT FIELD

In this section we turn our attention to a particular optic
realization of quantum homogenization with the help of
beam-splitter array. We note that the beam-splitter trans
mation, in general, does not realize a partial-swap operat
It is easy to show that in general the beam splitter does
obey the conditions for homogenization: Let us assume
the two inputs of a beam splitter are in a Fock stateu1&. In
this case the two output modes of the 50:50 beam splitter
in the state (u2,0&1u0,2&)/A2. On the other hand we expec
the output of the partial swap in this case to beu1,1&.

However, we will show the beam-splitter array realiz
quantum homogenization with reservoir modes prepared
Gaussian states with zero displacement. Quantum homog
zation is a process, in which an initial quantum statez is
changed into the reservoir stateh by many small sequentia
interactions with reservoir states initially prepared in t
same stateh. Modeling of reservoirs by beam splitters ha
been previously studied in Ref.@13#.

We can describe a single-mode photon field prepared
stateuC& by its Wigner functionWuC&(j), which is a qua-
siprobability function in phase space. This function is a Fo
rier transform of the Weyl characteristic functionCuC&

(w) (h),

WuC&~j!5
1

pE CuC&
(w)~h!exp~jh* 2j* h! d2h.

The characteristic functionCuC&
(w) (h) of a system described b

the density operatorr̂ is defined as

CuC&
(w)~h![Tr@ r̂D̂~h!#,

where D̂(h)[exp@hâ†2h* â# is the displacement operato
We will choose the characteristic function notation, main
because the computations will be relatively simple in t
form. When the two input states are represented by the W
characteristic functionCa

(w)(z)Cb
(w)(h), the Weyl character-

istic function of the two-mode output field after a beam
splitter operation reads@11#

Cout
(w)~z,h!5Ca

(w)~ tz1reifh!Cb
(w)~ th2reifz!. ~4.1!

Let us consider only the output of the signal modec
mode as labeled in Fig. 2! and its evolution. That is, this time
we are not interested in what happens to the disturbed re
voir modes. It is convenient to consider only the one-mo
7-3
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NAGAJ et al. PHYSICAL REVIEW A 66, 062307 ~2002!
characteristic function of the main output after each bea
splitter interaction. The characteristic function of the outp
signal from a beam splitter takes a very simple form@we are
choosingf50 in Eq. ~3.1!, so that the transmitivity and
reflexivity are real#

Cc~z!5@Ca~ tz1rh!Cb~ th2r z!#h50

5Ca~ tz!Cb~2r z!. ~4.2!

Let us now assume that the incoming photon is in a Gaus
state with the Weyl characteristic function

Ca~z!5exp@ iA0z r22iB0z i2
1
2 C0z r

22 1
2 D0z i

2#, ~4.3!

and that the reservoir modes are prepared in Gaussian s
with zero displacement~squeezed thermal states! with the
Weyl characteristic function

Cb~h!5exp@2 1
2 Eh r

22 1
2 Fh i

2#. ~4.4!

The output from a single beam-splitter operation is als
Gaussian state. Therefore it keeps the form ofCa , while the
coefficientsA, B, C, andD change.

Cc
(1)~z!5exp@2i ~At!z r22i ~Bt!z i #3exp@2 1

2 ~Ct21Er2!z r
2

2 1
2 ~Dt21Fr 2!z i

2#. ~4.5!

After a given numberk of beam-splitter operations~see Fig.
3!, Cc

(k) has still the Gaussian form~4.5!. When we perform
a geometrical sum, we obtain the following results for t
coefficients in the characteristic function of the output af
the kth beam-splitter interaction:

Ak5tkA0 ,

Ck5t2kC01~12t2k!E,
~4.6!

Bk5tkB0 ,

Dk5t2kD01~12t2k!F.

Now we can take a limitk→`, considering the transmitivity
0,t,1 ~there is no interaction between the input states
the extreme values of transmitivity, i.e.,t51 and 0). It is
now obvious that the beam-splitter array homogenizes
incoming state and changes it towards the reservoir state
that limk→` Cc

(k)5exp@21
2Ehr

221
2Fhi

2#. Both displacements

FIG. 2. Schematic description of a beam splitter.
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Ak and Bk are approaching zero in this process and coe
cientsCk andDk are gaining the properties of the reservo
state~they are approachingE andF, respectively!.

From above we can derive two important conclusions:
~1! If the reservoir modes are initially prepared in Gaus

ian states with zero displacement, then the state of the re
voir is invariant under the action of a sequence of bea
splitter transformations. This means that this state is the fi
point of the corresponding CP map and the reservoir
‘‘stable.’’ This can be easily verified when we consider in E
~4.3! for the characteristic function of the signal mode, t
expression equal to the characteristic function of the re
voir mode, i.e.,A5B50, C5E, and D5F. In this case
expression~4.4! for the characteristic function of the outpu
of the signal is the same as the characteristic function of
input state of the reservoir. The beam-splitter operation
indeed the partial-swap operation restricted on the clas
Gaussian states with zero displacement.

~2! Due to the fact that coherent states form an ov
complete basis, an arbitrary input state of the signal m
can be decomposed into coherent states~the so-calledP rep-
resentation!. Taking into account the linear superpositio
principle and the above result, we find that an arbitrary st
of the signal mode is properly homogenized on the array
beam splitters providing reservoir modes initially prepared
Gaussian states with zero displacement.

In Fig. 4 we show an example of homogenization of

FIG. 3. Schematic description of an array of beam splitters.

FIG. 4. Wigner functionsW(j) of the signal mode afterm
beam-splitter interactions with the reservoir modes. We denotx
5Re(j); y5Im(j) and we use physical units such that the pha
space coordinatesx andy are dimensionless. We consider the inp
state of the signal mode to be a squeezed vacuum. This mod
homogenized in the array of beam splitters with transmitivityt
50.95. The reservoir modes are prepared in the same sque
vacuum state except that the orientation of squeezing is rotate
90 deg.~The complementary quadrature is squeezed.! We see that in
the process of homogenization the signal mode is gradually tr
formed into the original state of the reservoir. The degree of sque
ing of the input signal and the reservoir modes is determined by
parameterq5 ln 2 ~for explanation see Sec. V!.
7-4
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QUANTUM HOMOGENIZATION FOR CONTINUOUS . . . PHYSICAL REVIEW A 66, 062307 ~2002!
squeezed Gaussian state. The reservoir states are squee
a direction perpendicular to the direction of squeezing of
signal state. We see that at the output the signal mod
transformed into the state of the reservoir mode which nic
illustrates the homogenization process as discussed abo

V. ENTANGLEMENT IN THE BEAM-SPLITTER ARRAY

In this section we will show how quantum correlation—
entanglement between pairs of output beams arises via
beam-splitter interactions of squeezed Gaussian states
interactions under consideration are unitary, so the wh
process is reversible. If we knew the exact sequence of
ervoir photons with which our signal photon had interact
we could reverse the process by running it ‘‘backwards’’
that the initial state of the signal mode is completely rec
ered@3#.

The beam splitter can serve as an entangler@11#. It mixes
the input states and can produce inseparable output. W
two coherent states are incident on a beam splitter, the ou
is given by

uC (out)&5B̂D̂a~a!D̂b~b!u0,0&

5D̂a~ ta1rb!D̂b~ tb2ra!u0,0&. ~5.1!

Yet this output is clearly not entangled. Kimet al. @11#
found that simply displacing the input fields does not
crease entanglement of the output fields, because the im
of the displacement of the input fields can always be c
celed by local unitary operations on the output fields. In
der to generate entanglement via a beam splitter which
linear optical device we need to have inputs exhibiti
purely quantum-statistical features such as sub-Poisso
photon statistics or quadrature squeezing@11#. Let us con-
sider that the two inputs~i.e., the signal and the reservo
modes! are initially prepared in squeezed states. Both sta
are squeezed by the same amount, but the squeezing d
tion is not the same. These single-mode states are gene
by the squeezing operatorŜ(z)5exp@(z* â22zâ†2)/2#. It has
been shown earlier~see, e.g., Ref.@11# and references
therein! that in the case the output modes of a beam spli
can be entangled. The degree of entanglement depend
specific direction of squeezing of two inputs@14#. Moreover,
if the inputs are thermal squeezed states~i.e., the squeezing
operator does not act on the vacuum state but on a the
state! then the creation of entanglement depends on
amount of the thermal noise in the inputs.

In the case of continuous variables it is not a trivial task
determine whether two modes that are in a mixed state
entangled. That is, the general inseparability condition is
known. On the other hand, for Gaussian states the insep
bility condition has been derived recently@12,15#. In particu-
lar, Simon@12# has derived the inseparability condition th
is simple to use since it is directly related to properties o
two-mode characteristic function. Simon’s criterion is a ge
eralization of the Peres-Horodecki partial-transposition cr
06230
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rion @16# into infinite-dimensional systems, where it has
geometrical interpretation as a mirror reflection in t
Wigner space.

When testing the separability of a bipartite~two-mode!
Gaussian state, it is convenient to express the characte
function C(a,b) as follows:

C~a,b!5exp~2 1
2 jMjT!, j5~a r ,a i ,b r ,b i !,

where M is a symmetric 434 matrix. As linear displace-
ments do not affect separability of two modes, we have
glected them in the analysis of entanglement. After so
local unitary operations, any two-mode Gaussian state ca
expressed with only six nonzero coefficients,

M5S a 0 f 0

0 b 0 g

f 0 c 0

0 g 0 d

D . ~5.2!

The Simon separability criterion then reads

S5~ac2 f 2!~bd2g2!2ab2cd22u f gu11>0. ~5.3!

If the function S is non-negative then the bipartite state
separable. Otherwise it is entangled.

A. Two-mode output characteristic function

Let us consider that the signal mode is initially describ
by a Gaussian characteristic function~4.3! with the initial
parameters:A05a re

q, B05a ie
2q, C05(2n̄11)e2q, D0

5(2n̄11)e22q. The parameterq is related to the degree o
quadrature squeezing in the signal mode, whilen̄ describes a
number of thermal photons in the mode. The reservoir is
the squeezed thermal state with the mean number of the
photonsm̄ and squeezing parameterP. The reservoir is then
represented by its characteristic function in the form of E
~4.4! with E5(2m̄11)e2p and F5(2m̄11)e22p. Using
Eq. ~4.1!, it is possible to find the (m11)-mode characteris
tic function of the whole output of the beam-splitter arra
However, we do not need all this information. For our pu
poses it suffices to analyze only two modes—the chosen
ervoir modeh (k) and the final output modez, or two chosen
reservoir modesh (k) andh (,).

Using Eq.~4.1! we find the two-mode output characteri
tic function from thekth beam splitter

Cout~z,h!5Lk~h!exp@2iAk~h!z r22iBk~h!zk#

3exp@2 1
2 Ckz r

22 1
2 Dkz i

2#, ~5.4!

with Ak , Bk , and Lk being functions of theh mode. The
parametersAk and Bk are related to possible entangleme
between the two modes under consideration. The exact
ues of the coefficients in Eq.~5.4! are found using Eq.~4.6!,

Ak5tkA01
rt 2k21

2k
@E2C0#h r , ~5.5!
7-5
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Ck5t2kC01E~12t2k!,

Bk5tkB01
rt 2k21

2k
@F2D0#h r ,

Dk5t2kD01F~12t2k!,

with Lk given by the expression

Lk5exp@2iAk21rh r22iBk21rh i #

3exp@2 1
2 ~Ck21r 21t2E!h r

2

2 1
2 ~Dk21r 21t2F !h i

2#. ~5.6!

The terms containingA0 and B0 are linear inz and do not
depend onh. Thus they will not affect entanglement so it
not needed to use them in further computation. We have
ways to continue, depending on which two-mode charac
istic function we want to obtain.

1. Characteristic function of the signal and kth reservoir mode

In what follows we present the characteristic function
the final output signal mode and thekth reservoir modeh (k).
After thekth beam splitter the output interacts with reserv
states on the remainingm2k beam splitters. We obtain th
characteristic function in the form

C~z,h (k)!5exp@2 1
2 ~az r

21bz i
21ch r

21dh i
2!#

3exp@2 1
2 ~ f h rz r1gh iz i !#

3exp@2~ terms linear inz and h!#,

~5.7!

with the coefficients in theM matrix found from Eqs.~5.5!
and ~4.6!,

a5t2mC01~12t2m!E,

b5t2mD01~12t2m!F,

c5r 2t2(k21)C01@12r 2t2(k21)#E,

d5r 2t2(k21)D01@12r 2t2(k21)#F,

f 52tm1k21r @E2C0#,

g5tm1k21r @F2D0#. ~5.8!

2. Characteristic function of two reservoir modes

Let us consider a characteristic function of two reserv
modes after they interact with the signal. Assume that
modes are labeled ask and ,. That is, there are,2k21
beam splitters in between. Let us denotej5h (,) and h
5h (k). The remainingm2, beam splitters to the end of th
beam-splitter array cannot change the separability of thek,,
pair, because they affect only the terms containingz in the
characteristic function and those are not quadratic inh,j.
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Thus for examination of the entanglement of thek,, pair we
only need to considerC(h,j)5C(h (k),h (,)) at the,th beam
splitter,

C~h,j!5exp@2 1
2 ~az r

21bz i
21cj r

21dj i
2!#

3exp@2 1
2 ~ f h rj r1gh ij i !#

3exp@2~ linear terms!#. ~5.9!

The terms in the matrixM are found analogically as in th
previous case;

a5r 2t2(k21)C01@12r 2t2(k21)#E,

b5r 2t2(k21)D01@12r 2t2(k21)#F,

c5r 2t2(,21)C01@12r 2t2(,21)#E,

d5r 2t2(,21)D01@12r 2t2(,21)#F,

f 5r 2t,1k22@E2C0#,

g5r 2t,1k22@F2D0#. ~5.10!

B. Simon’s criterion

We are now ready to test the separability of the outp
using Simon’s criterion~5.3!. Let us assume that our inpu
states are squeezed in directions perpendicular to each
~see Fig. 4!, which maximizes the possible entangleme
@11#. We thus expect that the two output beams from a be
splitter can be inseparable, even if the interaction is we
(t→1), assuming the inputs are sufficiently squeezed.

It is interesting to examine the entanglement between
signal and reservoir modes. In particular, it is of importan
to understand how the entanglement~if created! deteriorates
in the presence of thermal noise in reservoir modes. It is a
of great interest to understand whether the signal mode
act as a mediator in entangling reservoir modes which h
never interacted directly. In what follows we will illuminat
these issues.

1. Inseparability between signal and ith reservoir mode

Let us return to our assumptions. We will consider that
signal mode is initially in the squeezed thermal state
scribed by a characteristic function~4.3! with C05Ne2q,
D05Ne22q, whereN5(2n̄11). The reservoir modes are i
Gaussian states~4.4! with E5Me2p, F5Me22p, whereM

5(2m̄11). For simplicity we will assume a situation whe
the signal and the reservoir are equally squeezed with
direction of squeezing perpendicular to each other.

Let us use the coefficients and express the Simon’s c
rion with x5t2m, y5r 2t2k22, andz5rt m1k21. It is useful
to expressz2 in terms of x and y as z25xy, which later
simplifies the expression
7-6
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S522xy~11j!@2MN cosh 4q2N22M2#1~M221!

3@M2~12x2y!2211N2~x1y!212MN~x1y!

3~12x2y!cosh 4q#. ~5.11!

If we collect the corresponding terms, the coefficient in fro
of cosh 4s is equal to

Q52MNF ~x1y!~12x2y!~M221!

22xy~11j!
G ,

wherej is the sign of (2MN cosh 4q2N22M2) @it resolves
the absolute valueu f gu in Eq. ~5.3!#.

If the squeezing parameterq is small, so thatj521, S is
non-negative. If there are nonsqueezed states on the inp
a beam splitter, the output modescannotbe entangled. On
the other handS is growing withq until the signj changes,
because cosh 4q is increasing andQ is positive. Afterwards,
the possible negative sign ofS depends on the sign of th
coefficientQ in front of cosh 4s. If it changes into a negative
number,S will be negative for high enoughq. Testing the
coefficient on negativity yields a boundary forM and thus
for m̄,

M2,11
4xy

~x1y!~12x2y!
5Kt ,

m̄,
AKt21

2
, ~5.12!

otherwise the sign in front of cosh 4q would remain positive
and thusS would increase again and remain positive, so
state would be always separable. This holds for nonzero
2x2y). However, this is true if 0,t,1 and m>2, be-
cause

~12x2y!5~12t2k22!1~ t2k2t2m!.

The first term is nonzero~and positive! for k>2 and the
second term is positive form.k. Together it results in the
conditionm>2.

The thresholdKt decreases with growingm and also with
larger k, thus, as expected, tightening the constraint on
valuem̄. Because of the inequalityKt.1, we can never find
entanglement between the considered output beams.

In Fig. 5 we show the violation of the Simon’s separab
ity criterion in dependence on the number of total reserv
modesm interacting with the signal and the transmitivityt
for fixed values of squeezingq and the mean numbers o
thermal photonsn̄ and m̄. We see that the first reservo
mode is still entangled to the signal state even after
interactions for high values of transmitivity. We also see t
thermal noise~nonzero values ofm̄) leads to deterioration o
entanglement between the involved modes.

It is also interesting to analyze how inseparability of
particular pair of modes (m52, k51) depends on the
amount of thermal noise in the reservoir and the signal~Fig.
6!. The squeezing and the transmitivity are fixed now. We
06230
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that for large overall values of thermal noise, the two outp
modes under consideration are separable. It is a natura
servation that thermal noise leads to deterioration of qu
tum entanglement.

It is also interesting to consider no thermal noise in t
reservoir. If m̄50 ~or M51), expression~5.11! is very
simple and certainly negative for anyx andy, if the squeez-
ing is higher than the threshold given by the change of
sign j511,

q.
1

4
arccoshS 11

2n̄2

2n̄11
D . ~5.13!

If this condition is satisfied, then any pair (k,m) of states
becomes entangled! This is possible only because there
additional noise introduced with every beam-splitter inter
tion. The amount of entanglement is, however, decreas
with increasingm or k.

2. Inseparability of two reservoir modes

The calculation is analogous to the previous case. We
x5r 2t2k22, y5r 2t2,22, and z5r 2t,1k22. We use the
equalityz25xy here too, and we obtain the same express
for S ~5.11! and the constraint onm̄ ~5.12! in terms of x
andy.

FIG. 5. Inseparability of the signal afterm beam splitters and the
first reservoir state (k51) in dependence on the transmitivityt of
the beam splitters for various values of thermal noise in the re

voir m̄. The pair is inseparable in the region to the left of t
corresponding line.

FIG. 6. Inseparability of the (m52, k51) pair in dependence

on the amount of thermal noise in the reservoirm̄ and the signal

staten̄. The pair is inseparable to the left of the line.
7-7
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Let us check the sign of the expression (12x2y) in Eq.
~5.12! in this case,

~12x2y!5~12t2k22!1~ t2k2t2,22!1t2,.

The first two terms are non-negative (k>0, ,>k), the last
term is always positive, so the whole expression is nonz

In Fig. 7 we see the region of inseparability of thek,,-
reservoir state pairs. Transmitivity, squeezing, and m
numbers of particlesn̄,m̄ are fixed. The inseparability of th
reservoir pairs is much more sensitive to the thermal nois
the reservoir. It is though obvious, because the reservoir p
have become entangled through a mediator that gains m
and more noise with each interaction. The signal state s
loses the ability to entangle more distant pairs of reserv
modes, but still becomes entangled with a single-reser
state~compare Fig. 5!.

However, if there is no thermal noise in the reservoir,
situation is very much the same as in the case of a sig
reservoir pair. If the squeezing is high enough~5.13!, every
pair of reservoir photons becomes entangled.

VI. CONCLUSIONS

In this paper we have presented a model of theuniversal
quantum homogenizer for qudits that is realized via a
quence of partial-swap operations between the system~sig-
nal! qudit and the set of reservoir qudits. The universality
the device means that the process can be realized for
trary initial states of the system as well as the reservoir
dits. We have shown that our results are valid not only
qudits but also for continuous variables~e.g., qudits are re-
placed by modes of an electromagnetic field!. We have
shown that a sequence of partial-swap operations induc
contractive map with the fixed point being the initial state
the reservoir qudits. In this scenario the original qudit at
end of the homogenization process is in the same state a
reservoir qudits. Since the whole process of homogeniza
is governed by unitary transformations then it is a legitim
question to ask: Where is the original information encoded
the initial state of the system qudit? It turns out that t
quantum information is transferred into correlations betwe
interacting qudits. It is interesting to note that the quant
information that is transferred~redistributed! into the corre-

FIG. 7. Inseparability of pairs (k,,) of reservoir states for dif-
ferent values of thermal noise in the reservoir. The pair is inse
rable in the region to the left of the corresponding line.
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lations between interacting qudits can be recovered. The
covery can be done via a sequence of inverse partial-s
operations. The necessary condition for the recovery is
the classical information about the sequence of the intera
tions between the system and reservoir qudits is availab

In this paper we have also shown that in the case of c
tinuous variables~e.g., modes of the electromagnetic fiel!
quantum homogenization can be realized with the help
linear optical elements. Specifically, we have shown t
when the input signal mode is in a Gaussian state while
reservoir modes are in the Gaussian state with the zero
plitude, then an array of quantum beam splitters with ve
high transmitivity realizes the quantum homogenization. I
an open question whether the quantum homogenization
electromagnetic fields can be realized with linear optical
ements also for non-Gaussian states.
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APPENDIX A: HOMOGENIZATION IS
A CONTRACTIVE MAP

In this appendix we show that%S
(N) monotonically con-

verges toj for all parametershÞ0. In order to prove this
convergence, we use theBanach theorem@8# that concerns
the fixed point of a contractive transformation. LetS be a
metric space with a distance functionD(.,.). Thetransfor-
mation T is called contractive if it fulfills the inequality
D(T@%#,T@j#)<kD(%,j) with 0<k,1 for all %,jPS. A
fixed point of the transformationT is an element ofS for
whichT@j#5j. The Banach theorem states that a contract
map has a unique fixed point@9#, and that the iteration of the
map converges to it, i.e.,T N@%#→j for each%PS. We note
that contractive transformations within the context of qua
tum information processing have been recently discus
also in Ref.@17#.

1. Definition of the distance

A natural way of how to define a distance in a Hilbe
space is to use the norm induced by the scalar product o
Hilbert space. Let us consider a separable~not necessarily
finite-dimensional! Hilbert spaceHA . We say that an opera
tor A: HA→HA is a Hilbert-Schmidt operator if the operato
is bounded, and there exists orthonormal basis$uw i&% in the
Hilbert spaceHA such that

(
i 51

`

iAuw i&i2,`. ~A1!

The set of all Hilbert-Schmidt operatorsA: HA→HA form a
Hilbert space, denoted asB, with scalar product defined as

a-
7-8
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~A,B!B5Tr~A†B!, ~A2!

whereA andB are two elements of the Hilbert spaceB. The
norm of an elementA of the Hilbert spaceB induced by the
scalar product(.,.)B is given by

iAiB5A~A,A!B. ~A3!

Let us note that the norm in Eq.~A3! may be infinite even
though the operatorA is a bounded operatorA: HA→HA .
For example, if the elementA is a unitary operator acting in
an infinite-dimensional Hilbert spaceHA the norm ofA in
Eq. ~A1! is infinite ~and consequently no unitary operato
belong to the Hilbert spaceB). One should not forget tha
the norm ofA considered as an element of the Hilbert spa
B may not equal to the norm of the same elementA consid-
ered as a bounded operatorA: HA→HA . It can be shown
~see Ref.@18#! that the convex set of all density operatorsS
is a subset ofB. Now the distance between two elemen
r,s of a given Hilbert spaceB can be defined with the hel
of the norm presented in Eq.~A3! as follows:

D~r,s![ir2siB . ~A4!

Using expression~A2! for the scalar product one may deriv
a more convenient form for the distance now expressed
the trace operation,

D2~r,s!5~r2s,r2s!B5Tr~r†r2r†s2s†r1s†s!.

2. Stability of the reservoir

The first condition of homogenization~1.3! requires that
all reservoir qudits after the interaction remain in thed
neighborhood of their initial statej. That is, states of the
individual qudits of the reservoir are ‘‘stable’’ during th
system-reservoir interactions. As we apply sequentially
same unitary transformationU for all reservoir qudits it
holds that if

D~j18 ,j!<d, ~A5!

for all initial statesr of the system then

D~j i8 ,j!<d; ; i 51•••N. ~A6!

Apparently more natural reasoning would be to exploit
convergencer (n)→j which follows from the contractivity of
the mapT demonstrated below. If the stater (n) converges
monotonously to the statej then

D~j18 ,j!<D~j28 ,j!<D~j38 ,j!••• ~A7!

However, one does not need the convergence to prove
simply follows from the fact that relation~A5! must hold for
all initial states of the systemr and that we sequentially
apply the same unitary transformationU @see Eqs.~2.6! and
~2.7!#. The important point is that it is sufficient to estima
only the distanceD(j18 ,j). Using expression~2.5! for the
statej18 , one finds
06230
e

ia

e

e

It

D~j18 ,j!5is2r2s2s1 ics@r,j#iB . ~A8!

The last result can be further simplified. Recall that for a
two elementsA andB from B the equation

iA1 iBiB
25~A1 iB,A1 iB!B ~A9!

5~A,A!B1~B,B!B1 i @~A,B!B2~B,A!B#

5iAiB
21iBiB

21 i @~A,B!B2~B,A!B#

holds. If the scalar product (A,B)B is real, then the expres
sion in the brackets equals to zero and one obtains

iA1 iBiB
25iAiB

21iBiB
2 . ~A10!

The scalar product (s2r2s2s,cs@r,j#)B is apparently real
and from Eqs.~A9! and ~A10!, it follows that

D2~j18 ,j!5is2r2s2siB
21i ics@r,j#iB

2 . ~A11!

Using the ‘‘law of parallelogram’’~which holds for the norm
induced by a scalar product!

iA1Bi21iA2Bi252iAi212iBi2, ~A12!

the first term in Eq.~A11! can be rewritten as

is2r2s2siB
25s4~2iriB

212isiB
22ir1siB

2!. ~A13!

The elementsr and s are density matrices, i.e., positiv
operators with unit trace that gives certain bounds on
terms on the left side of Eq.~A13!,

iriB
25Tr~rr!<1,

isiB
2<1,

ir1siB
2>iriB

21isiB
2 . ~A14!

Inserting these results into Eq.~A13! we can estimate the
first term on the right side of Eq.~A11! as is2r2s2siB

2

<2s4. In the same way it can be shown thati ics@r,j#iB
2

<2c2s2, and we finally obtain

D2~j18 ,j!<2s412c2s252s2. ~A15!

3. Contractivity

Consider two elementsr,sPS, i.e., two density matrices
and denote their difference asr2s5A. The elementA is
Hermitian~this follows from the fact thatr ands are density
operators, that are bounded and self-adjoint!, and the dis-
tance between the two elementsr ands reads

D2~r,s!5iAiB
25(

i , j
u^ i uAu j &u2. ~A16!

Let us consider now two elementsr (1) and s (1), i.e., r (1)

5T@r# ands (1)5T@s#. Using expression~A4! for the dis-
tanceD(.,.) andexpression~2.4! for r (1) ands (1), the dis-
tance between the two elements is given by
7-9
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D~r (1),s (1)!25ic2r (0)2c2s (0)1 ics@j,r (0)2s (0)#iB
2 .

The last result can be again simplified by using Eqs.~A9!
and ~A10!. It is easy to check that

~c2r (0)2c2s (0),ics@j,r (0)2s (0)# !B5 ic3s3const

so that the scalar product (c2r (0)2c2s (0),cs@j,r (0)

2s (0)#)B is real and consequently

D2~r (1),s (1)!5c4ir (0)2s (0)iB
21c2s2i@j,r (0)2s (0)#iB

2 .
~A17!

Recall thatr (0) is in fact r ~in same ways5s (0)) so that
r (0)2s (0)5A and

D2~r (1),s (1)!5c4iAiB
21c2s2i@j,A#iB

2 . ~A18!

The second term in the last expression can be rewritten
the help of the scalar product@see Eq.~A3!# or directly using
a more convenient form in Eq.~A5!,

i@j,A#iB
252 Tr~j2A2!22 Tr~jAjA!. ~A19!

The operatorj is a density matrix, which implies that it is
compact operator. Every nonzero element of the spectrum
a compact operator is an eigenvalue. It means that e
density operatorj can be written asj5( il i u i &^ i u, wherel i
are nonzero eigenvalues of the operatorj and u i & are the
corresponding eigenvectors. Let us perform the trace usi
basis consisting of the eigenvectorsu i & of the density matrix
j @19#,
sh
ica
ea
om
ar

d
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i@j,A#iB
252(

i
^ i uj2A2u i &22(

i
^ i ujAjAu i &

52(
i , j

l i
2u^ i uAu j &u222(

i , j
l il j u^ i uAu j &u2.

Since the operatorA is Hermitian it follows thatu^ i uAu j &u2
5u^ j uAu i &u2 and

i@j,A#iB
25(

i , j
l i

2u^ i uAu j &u21(
i , j

l j
2u^ i uAu j &u2

22(
i , j

l il j u^ i uAu j &u2

5(
i , j

~l i2l j !
2u^ i uAu j &u2. ~A20!

Recall thatl i are nonzero eigenvalues of the density mat
j, i.e., they are positive andl i<1 for all i. It follows that:

ul i2l j u<1; ; i , j , ~A21!

and

i@j,A#iB
2<iAiB

2 . ~A22!

Inserting the last result into Eq.~A18! together with the ex-
pressionA5r2s for the elementA, we obtain the follow-
ing relation:

D2~r (1),s (1)!<c4ir (0)2s (0)iB
21c2s2ir (0)2s (0)iB

2

<c2D2~r (0),s (0)!, ~A23!

which implies that the mapT: r (0)→r (1) is contractive iff
ucu,1.
l
,
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