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Quantum information encoded in a pure state of a single qubit is very fragile in a sense that under
the errors induced by the environment the original information is deteriorated. In this paper the
protection of unknown states of qubits via symmetrisation with the help of the universal quantum
entangler is discussed. It is shown, that for certain values of parameters px,py,pz of a Pauli channel
it is useful r̄st to entangle the original state with N ¡ 1 ancillas so that the output state is in a
completely symmetric state of N qubits and only then let the Pauli channel to act.

I. INTRODUCTION

In general, quantum information distribution is not for
free. Speci¯cally, in some situations (e.g. state swapping
or quantum teleportation) a state can be transferred from
one system to another system without being changed at
all. But these are very special cases. Usually, any con-
trol over distribution of quantum information (encoded
in unknown states of quantum systems) is accompanied
by degradation of the information. This is due to the
fact that the control of °ow (distribution) of quantum
information can only be performed by quantum devices
(e.g. ancillas) which during the process of information
distribution become entangled with the carriers of quan-
tum information. This entanglement between the quan-
tum information distributors and quantum information
carriers is the reason why the information encoded in
unknown states of quantum systems can be deteriorated.
This source of degradation has no classical analogue and
has to be considered in the quantum information process-
ing.

To illustrate possible consequences of the fundamen-
tal problem of information degradation in speci¯c proto-
cols of quantum information distribution let us consider
a quantum system in an unknown state. It can be a
result of a quantum computation, or any other type of
information. The crucial assumption is, that we have no
prior knowledge about it.

Suppose, that we are asked to transmit this state to
an other party, which is separated by a distance. And
we keep in our disposal a quantum channel between both
parties, which is however not error-free.

And just errors,caused by external in°uences or by the
device itself, are one of the very important problems in
handling quantum states and performing computation
with them. In comparison with the classical systems,
the error correcting schemes are more complicated. One
of the reasons is, that in quantum systems there are more
types of errors, which can occur.

The classical bit can only °ip 0 $ 1, there are no
more possibilities. This error is big, or discretized, it ei-

ther happens or not, there is nothing between. Quantum
states can rotate by an arbitrary angle, big or small, in
di®erent directions on the Bloch sphere, there are bit °ip
errors and phase errors (for further information see Ref.
[1]).

Another di±culty in protection of quantum states is,
that there is no possibility to measure and determine an
unknown state [2] without disturbing it. Therefore it is
also not possible to create more copies of a state, i.e. it
isn't possible to clone unknown quantum states [3] which
would obviously solve the problem of protection of quan-
tum information. On the other hand perfect cloning of
unknown states would lead to violation of another fun-
damental properties of quantum theory. For instance, it
would allow to utilize quantum entanglement for super-
luminal communication [4].

For small errors there are many well developed and
used schemes, called Quantum Error Correction schemes.
A good review of them can be found in Ref. [5]. However,
these schemes work e±ciently when the probability of a
disturbance of a qubit is small. If the errors are large
these schemes might not be e±cient enough to protect
quantum information processing. Therefore it is justi¯ed
to study other schemes for stabilization of quantum in-
formation in a noisy environment. In particular, Barenco
et al. [6] proposed a method which is based on using of
the symmetric subspace of the full space of the original
state and N ¡ 1 reference states - ancilla.

In this paper, we want to concentrate on this idea. We
encode an unknown quantum state (from which we pos-
sess only one copy), to a symmetric state of N copies of
the system. The new symmetric state should be more
robust against stochastic in°uence of the environment.
Besides this, in most cases an error will lead our state out
from the symmetrized subspace (since the dimension of
the symmetric subspace is rather small, especially for big
N , in comparison to the dimension of the whole space).
So a projection back to the symmetric subspace, if suc-
cessful, will restore the original state.
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In the case of a single qubit we can consider an arbi-
trary input state in the form

jÃi = ®j0i + ¯j1i = cos
µ

#
2

¶
j0i + ei' sin

µ
#
2

¶
j1i:

(1.1)

This state is symmetrized with N ¡ 1 reference qubits in
a known state j0i, which results in the state

j©i = jÃi j000:::0i| {z }
N¡1

+j0ijÃij000:::0i + ::: + j000:::0ijÃi

´ jfÃ; 0(N¡1)gi (1.2)

Unfortunately, for an unknown state jÃi perfect sym-
metrisation jÃ ij0i(N¡1) ! jfÃ; 0(N ¡1)gi is not possi-
ble [7]. Nevertheless, approximate symmetrisation with
help of the universal quantum entanglers, see Ref. [7] is
allowed. Therefore one might ask, whether this approx-
imate covariant symmetrisation (i.e. the ¯delity of the
symmetrisation is constant and does not depend on the
input state) would stabilize the quantum information en-
coded in the input qubit.

In what follows we will address this problem in de-
tail. As a model of quantum errors we will consider the
Pauli channel. So the scenario of stabilization via sym-
metrisation looks as follows: Firstly, the input qubit is
entangled symmetrically (with help of universal entan-
glers) with (N ¡ 1) ancillas prepared in a reference state
j0i. Then the set of N qubits (or, just a fraction of them)
is sent through the Pauli channel. Finally, at the output
the projection back in to the symmetric subspace is per-
formed. The question is whether this process is better
than just sending a single qubit through the Pauli chan-
nel.

There exists another motivation for further investiga-
tion of symmetrising. And this is the preparation and ex-
ecution of general POVM's. According to the Neumarks
theorem, every POVM can be carried out by a suit-
able transformation of the relevant state and ancilla and
a subsequent projective measurement on part of whole
space (of the state and ancilla together). Results of this
article can be, apart from the error correction, viewed
also as possible preparation of non-ideal POVM. We bind
our unknown state jÃ i togethe with the ancilla of known
qubits and investigate, how well this can bee done, if
errors in the form of Pauli channel are present.

II. A MODEL

The Pauli channel is a very good approximation of
most of errors, that can happen to a single qubit in an en-
vironment. Consider a quantum bit in an arbitrary state
jÃi which is processed by a Pauli channel. The qubit
is rotated by one of the three Pauli matrices or remains
unchanged: it undergoes a phase-°ip (¾z), a bit-°ip (¾x)
or their combination (¾y) with respective probabilities

px , py and pz . Thus we can write the resulting density
matrix

jÃ i ! ½ = (1 ¡ p)jÃihÃj + px¾x jÃihÃj¾x +
+py¾yjÃihÃj¾y + pz¾z jÃ ihÃj¾z : (2.1)

For the special cases like depolarizing channel (pi= p
3 )

or dephasing channel (pi = p; pj = pk = 0) is the density
matrix very simple,

½depol = (1 ¡ 4
3
p)jÃihÃj +

2
3
pI (2.2)

and

½dephase = (1 ¡ pi)jÃihÃ j + pi¾i jÃihÃj¾i
(2.3)

where i = x; y; z respectively. All our results will be
presented for this four particular cases, even though the
calculations allow to handle all possibilities.

More complications arise for the 2 qubit state. Pauli
channel does not cover collective e®ects, it in°uences
every qubit independently of the state of other qubits
in the system. The explicit form of the resulting den-
sity matrix is too complex to be presented here, but the
logic of construction is exactly the same as in the 1 qubit
state. With probabilities p1

x,p1
y ,p1

z and p2
x,p2

y ,p2
z the rel-

evant sigma matrices act on the ¯rst or second qubit
respectively, leaving the other one unchanged.

For construction of the best approximation of the sym-
metrized state (1.2) we use the quantum universal entan-
gler [7]:

j0ijN ¡ 1; 0ije0i ! [°N jN ; 0ije1i + ±N jN ;1ije2i]
j1ijN ¡ 1; 0ije0i ! [±N jN ; 0ije3i + °N jN ;1ije1i] (2.4)

where ek are three orthogonal states of the entangler,
jN ; ki is a fully symmetric state of N qubits with k of
them in state j1i. ±N and °N are given:

°N =

vuut N + 1

2
³
N + 1 ¡

p
N

´ ; ±N =
q

1 ¡ °2
N :
(2.5)

For the input state jÃi, after tracing through the states
of entangler, we get as a result the density matrix

½in =
¡
j®j2°2

N + j¯j2±2
N

¢
jN ; 0ihN ; 0j

+
¡j®j2±2

N + j¯j2°2
N

¢ jN ;1ihN ;1j +

+®¯¤°2
N jN ; 0ihN ; 1j + ®¤¯°2

N jN ; 1ihN ; 0j: (2.6)

This state is (in the sence of ¯delity, de¯ned in the next
paragraph) as close as possible the to ideal symmetrised
state (1.2). The ¯delity is state independent and acieves
the value F = °2

N .
To compare results of di®erent methods for preventing

errors on qubits, we need a suitable measure of success,
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evaluating the distance between the states. In this arti-
cle, we use ¯delity, de¯ned for pure states as a squared
scalar product of these states. For two states jÃ i and jÁi
we de¯ne

F = jhÃjÁij2: (2.7)

Sometimes, it is useful to compute the average ¯delity
for a certain region of parameters. If we take state jÃi as
the input state and the superoperator P as the operator
of the Pauli channel, then the mean ¯delity between the
original and output state ½ = P (jÃihÃ j) is:

¹F =
1
4¼

Z 2¼

0
d'

Z ¼

0
d#hÃjP (jÃihÃj) jÃ i;

(2.8)

where ' and # are parameters of the input state.
Now we have de¯ned a measure of success for the one-

qubit states. This can be extended to the many-qubit
states, consisting of the original qubit and ancilla, by
many ways. The easiest one is to extract the informa-
tion, encoded in the many-qubit state, back to one qubit.
Then we can compute the ¯delity of this qubit with the
original one (as it is done in the section IV B). But, re-
sults using this methos depend also on the extracting
procedure, what is not really what we want.

Other possibility is to compare directly many-qubit
states. We de¯ne the mean ¯delity

¹F =
1
4¼

Z 2¼

0
d'

Z ¼

0
d#h©jP (½) j©i; (2.9)

where j©i is de¯ned in (1.2) and ½ is the density matrix
resulted from the universal entangler. Superoperator P
now covers the action of the Pauli channel and also the
projection back to the symmetric subspace. In this case,
we compute the ¯delity between our result and the ideal
symmetrised state. We beleave, that this measure indi-
cates better the success of the symmetrisation, since it is
purged of the in°uence of the extraction process. This is
the reason to use it throughout the most of the paper.

Part of the process of computing the ¯delity is the pro-
jection to the symmetric subspace, as mentioned higher.
Probability of a succesfull projection (it is a binary
process, we can succeed or not) is given by the trace
of the reduced resulting density matrix (containing only
symmetric elements) and is rather high in all cases. In
further calculations, we consider only the case of succes.
As we will show, even so the resulting ¯delities are to
small to regard this method as useful.

III. PAULI CHANNEL ACTING ON 2 QUBITS

This scenario can represent a situation, when a qubit
has to be transported from one place to another. We can
either send it as it is (by sending we mean acting of the

Pauli channel), or ¯rstly project it on the symmetric sub-
space of a 2 qubit space, and then send this two qubits
through the same channel - therefore we use a symmetric
Pauli channel with equal probabilities p1

i = p2
i . After it,

the ¯delities compared and the region of parameters is
searched, where the 2-qubit state has better result.

The "ideal" symmetrized state of 2 qubits would be

j©ideali =
(2®j00i +

p
2¯j+i)

(4j®2j + 2j¯2j)1=2
; (3.1)

where j+i = 1p
2

(j01i + j10i). But since we have no prior
knowledge about the input state and want to keep con-
stant ¯delity for the whole space of states, we have to
use the universal entangler. As the input state we use a
density matrix in the form (2.6) for N = 2.

We now \apply" the Pauli channel on it and then we
make a projection back to the symmetric subspace, which
actually means, that we keep only symmetric states in the
density matrix and renormalize it back to unity. Result-
ing ¯delities are presented in Fig. 1. The region, where
the ¯delity after symmetrisation is bigger than that one,
obtained by sending the original qubit through the Pauli
channel, are gray, the others are white.

FIG. 1. Fidelity of the stabilization for depolarizing, ¾x; ¾y
and ¾z channel. On the y axis is the parameter of the Pauli
channel, on the x axis the parameter ® from the input state.

We have to mention, that only real parameter ® has
been used, therefore the results for x and y channels are
so di®erent. However, still, the results are not to opti-
mistic. They are strongly state dependent, and for the
depolarizing channel only for a very small region of para-
meters we get better results using 2 qubits as the naive
scenario of sending the one qubit information, as it is.
The reason is simple: loss due to stabilization and the
loss caused by errors on both qubits are bigger than the
gain of projection on the symmetrized subspace.
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IV. PAULI CHANNEL ACTING ON ONE QUBIT

This case represents an other situation as in the pre-
vious section. The di®erence is, that the Pauli channel
acts only on the ¯rst qubit every time. We can imagine,
that the original qubit is exposed to the in°uence of the
environment, whereas the ancilla is in a store with no
errors acting on it. The density matrix after the action
of Pauli channel (for N > 1) is

½out =
¡
j®j2°2

N + j¯j2±2
N

¢
(1 ¡ p + pz) jN ; 0ihN ; 0j +

+
¡
j®j2°2

N + j¯j2±2
N

¢ px + py

N
jN ; 1ihN ; 1j +

+
¡
j®j2±2

N + j̄ j2°2
N

¢ px + py

N
jN ; 0ihN ; 0j +

+
¡
j®j2±2

N + j̄ j2°2
N

¢µ
1 ¡ p + pz

µ
1 ¡ 4

N
+

4
N 2

¶¶

jN ; 1ihN ; 1j +

+
µ

®¯¤°2
N

µ
1 ¡ p + pz ¡ 2pz

N

¶
+ ®¤¯°2

N
px ¡ py

N

¶

jN ; 0ihN ; 1j +

+
µ

®¤¯°2
N

µ
1 ¡ p + pz ¡ 2pz

N

¶
+ ®¯¤°2

N
px ¡ py

N

¶

jN ; 1ihN ; 0j +

+(px + py)
¡j®j2±2

N + j̄ j2°2
N

¢ 2
N 2

jN ; 2ihN ; 2j
+ : : : (4.1)

In the density matrix 4.1 only symmetric elements are
displayed. The rest, denoted as dots, is non-symmetrical
and we can project it out by a suitable measurement. In
practice that means, we have to renormalize (4.1) to 1.

A. Quantum scenario

We compute now the mean ¯delity of this matrix with
the ideal symmetrized state (1.2). In Figs. 2,3 and 4 we
can see the results.

FIG. 2. Fidelity as the function of the probability of de-
polarasing Pauli channel and the number of qubits used. For
N=1 it is a simple acting of the Pauli channel on one qubit.

FIG. 3. The same as ¯gure 2 but for ¾z channel.

FIG. 4. The same as ¯gure 2 but for ¾x. We do not intro-
duce ¾y, since the results are completely the same as those
for ¾x.

N p pz px
2 0:22 0:10 {
3 0:29 0:44 0:35
4 0:48 0:86 0:41
5 0:63 { 0:52
6 0:76 { 0:60
7 0:86 { 0:66
8 0:95 { 0:71

TABLE I. In the Quantum scenario, the ¯delity for ¯xed
p (¯xed channel) reaches its maximum for a certain N . As
N is a natural number, in most cases the actual maximum is
not reachable. It is only possible to ¯nd the number, which
is closest to it. In the table we state the marginal parame-
ters p for three types of Pauli channel, where the maximum
of ¯delity is reached for two values of N . That means, e.g.
for p = 0:22 in depolarizing channel the maximum is reached
for one and two qubits, for 0:22 < p < 0:29 we shall use
two qubits etc. In depolarizing channel we use maximally
eight qubits (the maximum is never reached for more qubits),
in ¾z channel four qubits. In ¾x channel we never use two
qubits (for p = 0:35 the maximum is reached for one and three
qubits), but the maximal number of qubits was not reached
within the searched region.
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As we see, the ¯delity, especially for bigger probabili-
ties, is growing with the number of qubits N . For bigger
N , as expected, there is only a small dependence on the
probability, because the one qubit, on that the channel
acts, is more and more negligible in comparison to other
qubits. But, the error produced by entangling is also
growing with N . So, for de¯ned probabilities it is possi-
ble to ¯nd the optimal number of qubits in ancilla (see
Table I), which has to be used to obtain the optimal ¯-
delity.

B. Measurement scenario

The mean ¯delity helps us to see, how well we can
conserve the information encoded in many-qubit sym-
metrized state, but the extraction of the information is
problematic. We can, at least for the ¾z channel, use
the measurement scenario, as described in Ref. [8]. We
introduce two states

j¥0i = cos
µ 0

2
jN ; 0i + ei'0

sin
µ 0

2
jN ; 1i (4.2a)

j¥1i = ei'0
sin

µ 0

2
jN ; 0i ¡ cos

µ 0

2
jN ; 1i (4.2b)

where µ 0 and '0 are randomly chosen orientations. Now
we can compute a density matrix of a one-qubit state

%M = jh¥0j½out j¥0ij:jn0ihn0j + jh¥1j½out j¥1ij:jn1ihn1j
(4.3)

where jnj i are the same states as (4.2) with N = 1.

FIG. 5. Fidelity of the measurement density matrix, aver-
aged over all possible orientations of the input state and the
estimated state.

Now we are able to compute the real one-qubit state
mean ¯delity (integrating through angles of the input
state AND of the estimated state) between this density
matrix and the input state jÃi. The result are shown in
the ¯gure 5.

As we see, the shape of the plot is nearly the same as in
the quantum scenario. The di®erences between the ¯deli-
ties for di®erent parameters are much smaller and we lose
¯delity even when no ancilla and no errors are present.

This is due to the extraction procedure and shows, that
for detection of the e®ort of the stabilisation scheme is
this ¯delity not very suitable.

V. CONCLUSIONS

The scenario was as follows: we took an unknown
qubit and entangled it with the ancilla of N ¡ 1 qubits.
symmetrisation has been performed with the help of the
covariant (input-state independent) device. In the ¯rst
case, for N = 2, the obtained density matrix was sent
through a symmetric Pauli channel acting on both qubits.
This corresponds to a scenario of sending an information
from one place to another, where someone can, with local
measurements, gain the information back.

In the second case, we sent only one of the qubits
through the Pauli channel, the rest was considered as
to be in a perfect store without in°uence of the environ-
ment. This scenario corresponds to an authenti¯cation
protocol, where we send only one qubit there and back.
Again, we can with local measurements gain the infor-
mation.

In both cases, after the action of the Pauli channel
and before we have made any measurement, we projected
the density matrix on the symmetric subspace (since we
know, that everything non-symmetric is an error). The
results show us, in which region of parameters it is useful
to make this procedure of symmetrisation (in the ¯rst
case) or, tell us, how many qubits are optimal for the an-
cilla (in the second case). As we see, especially for small
values of the probability of Pauli channel, the optimal
number of qubits in both cases is 1, that means the uti-
lization of ancillas would not help us to protect quantum
information. The loss of the ¯delity due to the covariant
symmetrisation is bigger than the gain due to the better
stability of the symmetrized system.

We investigated a method for stabilization of quan-
tum information via symmetrisation. Although we found
some regions of parameters, where this method is giving
interesting results (see TABLE I), in general are the out-
comes rather negative. The reason is, that it is not pos-
sible, for an unknown input state, to produce a perfect
symmetrized state, as it was expected in the method.
Furthermore, in the case where we consider errors act-
ing on the original qubit AND ancilla, the probability of
errors is summing up for all the qubits.
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