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Probabilistic implementation of universal quantum processors
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We present a probabilistic quantum processor for qudits on a single qudit of dimensionN. The processor
itself is represented by a fixed array of gates. The input of the processor consists of two registers. In the
program register the set of instructions~program! is encoded. This program is applied to the data register. The
processor can perform any operation on a single qudit of dimensionN with a certain probability. For a general
unitary operation, the probability is 1/N2, but for more restricted sets of operators the probability can be higher.
In fact, this probability can be independent of the dimension of the qudit Hilbert space of the qudit under some
conditions.
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I. INTRODUCTION

Schematically we can represent a classical computer
device with a processor, which is a fixed piece of hardwa
that performs operations on adata register according to a
program encoded initially in theprogramregister. The action
of the processor is fully determined by the program. T
processor is universal if we can realize any operation on
data by entering the appropriate program into the prog
register.

In this paper we shall examine a quantum version of t
picture. Specifically, in close analogy with recent papers
Nielsen and Chuang@1# and Vidal and Cirac@2#, we will
study how a quantum program initially put into a progra
register can cause a particular operation to be applied
data register initially prepared in an unknown state. We s
first consider the case in which the data consists of a sin
qubit, and the program of two qubits. We shall then exam
higher-dimensional systems.

Nielsen and Chuang@1# originally formulated the problem
in terms of a programmable array of quantum gates, wh
can be described as a fixed unitary operator,Pdp , that acts
on both the program and the data. The initial state,uJU&p , of
the program register stores information about the one-q
unitary transformationU that is going to be performed on
single-qubit data register initially prepared in a stateuc&d .
The total dynamics of the programmable quantum gate a
is then given by

Pdp@ uc&d^ uJU&p] 5~Uuc&d) ^ uJ̃U&p , ~1!

where only pure data states were considered. The prog

register at the output of the gate is in the stateuJ̃U&p, which
was shown to be independent of the input data stateuc&d .

Nielsen and Chuang proved that any two inequivalent
erationsU and V require orthogonal program states, i.
^JUuJV&50. Thus, in order to perfectly implement a set
inequivalent operations,$U j u j PJ%, the state space for th
program register must contain the orthonormal set of p
gram states,$uJU j

&u j PJ%. This means that the dimension o
1050-2947/2002/65~2!/022301~7!/$20.00 65 0223
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the program register must be at least as great as the nu
of unitary operators that we want to perform. Since the se
unitary operations is infinite, the result of Nielsen a
Chuang implies that no universal gate array can be c
structed using finite resources, that is, with a fini
dimensional program register. They did show, however, t
if the gate array is probabilistic, a universal gate array
possible. A probabilistic array is one that requires a meas
ment to be made at the output of the program register,
the output of the data register is only accepted if a particu
result, or set of results, is obtained. This will happen with
probability, which is less than 1.

Because a finite gate array can only implement a finite
of unitary operations with certainty, we are forced to co
sider probabilistic gate arrays if we want to be able to exac
perform any one of an infinite number of unitary operation
For example, we might want to have a gate array, let us
it G, that will perform any SU~2! operation on an input qubit
but exactly which one we do want to perform will depend
the results of previous computations, which we do not kn
when the array is constructed. Because our processor
quantum one, when faced with deciding which operation
want G to perform, we will have two choices. We can me
sure the quantum state produced by the previous stage o
calculation, and then use the result of the measurement to
some external parameters inG, with the parameter setting
determining that operationG will perform. The other possi-
bility is for G to be a programmable probabilistic gate arra
and to have the previous computation produce a prog
state that determines, which operationG will perform. How-
ever, the measurement strategy suffers from a serious p
lem; if our overall system is finite, the measurement can o
have a finite number of outcomes, which means that it
implement only a finite number of operations. Therefore
we want to be able to condition computations on the res
of previous ones, probabilistic gate arrays need to be con
ered. Because we know when these arrays succeed and
they fail, we only continue the calculation when they su
ceed. If they fail, we repeat the previous part of the calcu
tion to produce another program state and input qubit,
try again. This type of the probabilistic approach is wide
©2002 The American Physical Society01-1
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applied in the field of quantum information processing.
mention just a few examples: probabilistic quantum telep
tation @3#, probabilistic state discrimination@4#, probabilistic
quantum cloning@5#, and probabilistic quantum memorie
@6#, etc. Obviously, one of the main tasks in the probabilis
quantum information processing is to achieve the maxim
possible probability of the success.

Vidal and Cirac@2# have recently presented a probabilis
programmable quantum gate array with a finite-program r
ister, which can realize a one-parameter family of operatio
where the parameter is continuous, with arbitrarily hi
probability. The higher the probability of success, the grea
the dimensionality of the program register, but the numbe
transformations that can be realized is infinite. They ha
also consideredapproximateprogrammable quantum gate a
rays, which perform an operationEU very similar to the
desiredU, that isF(EU ,U)>12e for some transformation
fidelity F.

Another aspect of the encoding of quantum operation
the states of program registers has been discussed by H
and co-workers@7#. In this paper the implementation of a
arbitrary unitary operationU upon a distant quantum syste
has been considered. This so-called teleportation of uni
operations has been formally represented as a comple
positive, linear, trace preserving map on the set of den
operators of the program and data registers

T @ uj&ab^ uJU&p^ uc&d] 5u j̃U&ap^ ~Uuc&d). ~2!

Hereuj&ab represents a specific entangled state that is sh
by two parties, Alice and Bob, who want to teleport t
unitary operationU from Alice to Bob. Huelgaet al. @7# have
investigated protocols that achieve the teleportation ofU us-
ing local operations, classical communication, and shared
tanglement.

In the present paper we will address the problem of imp
menting an operationU, encoded in the state of a progra
registeruJU&p , on the data stateuc&d . The gate arrays we
present are probabilistic; the program register must be m
sured at the end of the procedure. In Sec. II we prese
simple example of how to apply an arbitrary operation to
single qubit initially prepared in a stateuc&. The gate array
consists of four controlled-NOT ~C-NOT! gates, and can
implement four programs perfectly. These programs ca
the one of the operations1, sx , 2 isy , or sz to be per-
formed on the data qubit. Here1 is the identity ands j ,
wherej 5x,y,z is a Pauli matrix. By choosing programs th
are linear combinations of the four basic ones, it is poss
to probabilistically perform any linear operation on the da
qubit. In Sec. III we generalize the idea to an arbitrary
mensional quantum system, a qudit.

II. OPERATIONS ON QUBITS

We wish to construct a device that will do the followin
The input consists of a qubit,uc&d , and a second state
uJU&p , which may be a multiqubit state, that acts as a p
gram. The output of the device will be a stateUuc&d , where
U is an operation that is specified byuJU&p . In order to
02230
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make this a little less abstract, we first consider an exam
Let uf& and uf'& be two orthogonal qubit states, and su
pose that we want to perform the operation

Az5uf'&^f'u2uf&^fu5122uf&^fu, ~3!

on uc&d . The action of this operator is analogous to that
sz in the basis$u0&,u1&%, except that it acts in the basi
$uf'&,uf&%. That is,sz does nothing tou0& and multiplies
u1& by 21, whileAz does nothing touf'& and multipliesuf&
by 21. Can we find a network and a program vector
implement this operation onuc&d?

We can, in fact, do this by using the network for a qua
tum information distributor~QID! as introduced in Ref.@8#
~this is a modification of the quantum cloning transformati
@9,10#!. In this network the program register is represen
by a two-qubit stateuJA&p . Before we present the networ
for the programmable gate array, we shall introduce nota
for its components. A controlled-NOT gateD jk acting on qu-
bits j andk performs the transformation,

D jkum& j un&k5um& j um% n&k , ~4!

wherej is the control bit,k is the target bit, andm andn are
either 0 or 1. The addition is modulo 2. The QID netwo
consists of four controlled-NOT gates, and acts on three qu
bits ~a single data qubit denoted by a subscript 1 and t
program qubits denoted by subscripts 2 and 3, respective!.
Its action is given by the operatorP1235D31D21D13D12. As
our first task, we shall determine how this network acts
input states where qubit 1 is in the stateuc&, and qubits 2
and 3 are in Bell basis states. The Bell basis states are
fined by

uF1&5
1

A2
~ u01&1u10&)[uJ01&,

uF2&5
1

A2
~ u01&2u10&)[uJ11&,

uC1&5
1

A2
~ u00&1u11&)[uJ00&,

uC2&5
1

A2
~ u00&2u11&)[uJ10&. ~5!

We find that

P123uc&1uF1&235~sxuc&1)uF1&,

P123uc&1uF2&235~2 isyuc&1)uF2&,

P123uc&1uC1&235uc&1uC1&,

P123uc&1uC2&235~szuc&1)uC2&. ~6!

Any operation on qubits can be expanded in terms
Pauli matrixes and the identity. The above equations m
1-2
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PROBABILISTIC IMPLEMENTATION OF UNIVERSAL . . . PHYSICAL REVIEW A 65 022301
that the Bell basis vectors are ‘‘programs’’ for a complete
of operations. In order to see how to make use of this, le
expand our proposed operation in terms of this complete
Expressinguf& as uf&5mu0&1nu1&, we have that

Az5122uf&^fu5S unu22umu2 22mn*

22m* n umu22unu2D ,

52~mn* 1m* n!sx1~mn* 2m* n!~2 isy!

1~ unu22umu2!sz . ~7!

We can now apply the operationA to uc& by sending in the
‘‘program’’ vector

uJA&2352~mn* 1m* n!uF1&231~mn* 2m* n!uF2&23

1~ unu22umu2!uC2&23, ~8!

and measuring the program outputs in order to determin
they are in the state (uF1&1uF2&1uC2&)/A3. If they are,
our operation has been accomplished. Note that the mea
ment is independent of the vectoruf& so that no knowledge
of this vector is necessary to make the measurement an
determine whether the procedure has been successful. A
see, the probability of success is 1/3 for the implementa
of the operationAz that is parameterized in general by tw
continuous parameters~i.e., the stateuf&).

Let us examine the program vector more carefully. If w
define the unitary operation,Uinit , by

Uinit u00&52u10&, Uinit u10&52u11&,

Uinit u11&5u01&, Uinit u01&5u00&, ~9!

we have that

uJA&125Uinit

1

A2
~ uf&uf'&1uf'&uf&). ~10!

Finally, we can summarize our procedure. The steps
~1! start with the state 1/A2(uf&uf'&1uf'&uf&); ~2! apply
Uinit ; ~3! send the resulting state into the control ports~in-
puts 2 and 3) anduc& into port 1; ~4! measure (uF1&
1uF2&1uC2&)/A3 at the output of the control ports
~5! if the result is yes, then the output of port 1
(122uf&^fu)uc&.

Before proceeding to a more general consideration of
network, let us make an observation. Suppose that we c
out the same procedure, but instead of starting with the p
gram vector (uf&uf'&1uf'&uf&)/A2, we start instead with
the program vector (uf&uf&2uf'&uf'&)/A2. At the end of
the procedure the output of the data register isAxuc&, where

Ax5uf&^f'u1uf'&^fu. ~11!

The operationAx interchangesuf& and uf'&. Its action is
analogous to that ofsx , which interchanges the vectorsu0&
andu1&. The probability of success for this procedure is a
1/3.
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We now need to determine whether there is a program
any operator that could act onuc&. The operator need not b
unitary; it could be a result of couplinguc& to an ancilla,
evolving the coupled system~a unitary process!, and then
measuring the ancilla. Therefore, ifA is now any linear op-
erator acting on a two-dimensional quantum system,
transformations in which we are interested are given by

uc&→
1

iAci Auc&. ~12!

Let us denote the operators, which can be implemented
Bell state programs, byS0051, S015sx , S105sz , andS11
52 isy . Any 232 matrix can be expanded in terms
these operators, so that we have

A5 (
j ,k50

1

ã jkSjk . ~13!

We now defineajk5ã jk /Ah, where

h5 (
j ,k50

1

uã jku2, ~14!

so that

15 (
j ,k50

1

uajku2. ~15!

Now let us go back to our network and consider the p
gram vector given by

uJA&5 (
j ,k50

1

ajkuJ jk&, ~16!

and at the output of the program register we shall meas
the projection operator corresponding to the vec
(1/2)( j ,k50

1 uJ jk&. If the measurement is successful, the st
of the data register is, up to normalization, given by

uc&→S (
j ,k50

1

ajkSjkD uc&. ~17!

After this state is normalized, it is just (1/iAci)Auc&. This
means that for any transformation of the type given in E
~12!, we can find a program for our network that will carry
out.

III. GENERALIZATION TO QUDITS

In order to extend the network presented in the preced
section to higher dimensions, we must first introduce a g
eralization of the two-qubit C-NOT gate @8# ~see also Ref.
@11#!. As we noted previously, it is possible to express t
action of a C-NOT gate as a two-qubit operator of the form

Dab5 (
k,m50

1

uk&a^ku ^ um% k&b^mu. ~18!
1-3
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MARK HILLERY, VLADIMI ´R BUŽEK, AND MÁRIO ZIMAN PHYSICAL REVIEW A 65 022301
In principle one can also introduce an operatorDab
† defined

as

Dab
† 5 (

k,m50

1

uk&a^ku ^ um*k&b^mu. ~19!

In the case of qubits these two operators are equal, but
will not be the case when we generalize the operator to
bert spaces whose dimension is larger than 2@8,11#. In par-
ticular, we can generalize the operatorD for dimensionN
.2 by defining

Dab5 (
k,m50

N21

uk&a^ku ^ u~m1k!modN&b^mu, ~20!

which implies that

Dab
† 5 (

k,m50

N21

uk&a^ku ^ u~m2k!modN&b^mu. ~21!

From this definition it follows that the operatorDab acts on
the basis vectors as

Dabuk&um&5uk&u~k1m!modN&, ~22!

which means that this operator has the same action as
conditional adder and can be performed with the help of
simple quantum network discussed in@12#. Now we see that
for N.2 the two operatorsD andD† do differ; they describe
conditional shifts in opposite directions. Therefore, the g
eralizations of the C-NOT operator to higher dimensions a
just conditional shifts.

In analogy with the quantum computational network d
cussed in the preceding section, we assume the networ
the probabilistic universal quantum processor to be

P1235D31D21
† D13D12. ~23!

The data register consists of system 1 and the program
ister of systems 2 and 3. The stateuJU&23 acts as the ‘‘soft-
ware’’ for which the operation to be implemented on t
qudit data stateuC&1. The output state of the three-qud
system, after the four controlled shifts are applied, reads

uV&1235D31D21
† D13D12uC&1uJU&23. ~24!

FIG. 1. A logic network for the universal quantum processor
given by the unitary transformation~24!. The action of the con-
trolled shift operatorD jk is represented as follows. The contr
qudit is represented by • while the target qudit is represented b%

with the right arrow. The action of the operatorD jk
† is represented

by left arrow.
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A graphical representation of the logical network~24! with
the conditional shift gatesDab is shown in Fig. 1.

The sequence of four operators acting on the basis vec
un&1um&2uk&3 gives

D31D21
† D13D12un&1um&2uk&3

5u~n2m1k!modN&1u~m1n!modN&2

3u~k1n!modN&3 . ~25!

We now turn to the fundamental program states. A ba
consisting of maximally entangled two-particle states~the
analogue of the Bell basis for spin-1

2 particles! is given by
@13#

uJmn&5
1

AN
(
k50

N21

expS i
2p

N
mkD uk&u~k2n!modN&,

~26!

wherem,n50, . . . ,N21. If uJmn&p is the initial state of the
program register, anduC&5( ja j u j &d ~here, as usual
( j ua j u251) is the initial state of the data register, it the
follows that

P123uC&1uJmn&23

5(
jk

a j

AN
expS 2p ikm

N D P123u j &uk&uk2n&

5(
jk

a j

AN
expS 2p ikm

N D u j 2n&uk1 j &uk1 j 2n&

5(
jk

a j expS 22p i jm

N D u j 2n&uJmn&

5~U (mn)uC&)uJmn&, ~27!

where we have introduced the notation

U (mn)5 (
s50

N21

expS 22ipsm

N D us2n&^su. ~28!

This result is similar to the one we found in the case o
single qubit. We shall now examine, which transformatio
we can perform on the state in the data register by usin
program consisting of a linear combination of the vecto
uJmn& followed by the action of the processorP123 and a
subsequent measurement of the program register.

The operatorsU (mn) satisfy the orthogonality relation

Tr@~U (m8n8)!†U (mn)#5Ndmm8dnn8 . ~29!

The space of linear operatorsT(H) defined on some Hilber
spaceH with the scalar product given by Eq.~29! we know
as Hilbert-Schmidt space. Thus the unitary operatorsU (mn)

form an orthogonal basis in it and any operatorAPT(H) can
be expressed in terms of them:

s

1-4
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A5 (
m,n50

N21

qmnU
(mn). ~30!

The orthogonality relation allows us to find the expans
coefficients in terms of the operators

qmn5
1

N
Tr@~U (mn)!†A#. ~31!

Equations~29! and ~30! imply that

(
m,n50

N21

uqmnu25
1

N
Tr~A†A!. ~32!

Therefore, the program vector that implements the oper
A is given by

uvA&235F N

Tr~A†A!
G 1/2

(
m,n50

N21

qmnuJmn&23. ~33!

Application of the processor to the input stateuC&1uvA&23
yields the output state

uV&1235(
mn

qmnU
(mn)uC&1^ uJmn&23. ~34!

To obtain the final result we perform a projective measu
ment of the program register onto vectoruM &23

uM &5
1

N (
m,n50

N21

uJmn&. ~35!

If the outcome of the measurement is positive, then we
the required transformationA acting on an unknown, arbi
trary input stateuC&1.

Let us consider an example. Suppose we choose forA the
unitary operator122uf&^fu, where the normalized stateuf&
can be expressed as

uf&5 (
k50

N21

bkuk&. ~36!

The expansion coefficients for this operation are given b

qmn5dm0dn02
2

N (
k50

N21

e2p ikm/Nbk* bk2n , ~37!

and the program vector for this operation is

uF&235uJ00&232
2

AN
(

k,n50

N21

b2k* b2(k1n)uk&2uk2n&3 .

~38!

The program vector can be obtained from a state m
closely related touf& if we introduce a new unitary operato
and a ‘‘complex conjugate’’ vector. Define the operatorW by

Wuk&5u2k&, ~39!
02230
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and the vectoruf* & by

uf* &5 (
k50

N21

bk* uk&. ~40!

We then have that

uF&235~W2^ 13!~D23
† !2S uJ00&232

2

AN
uf* &2uf&3D .

~41!

A network that performs the operation (W2^ 13)(D23
† )2 could

be added to the input of the program register so that
simpler state that appears on the right-hand side of Eq.~41!
could be used as the program. At the output of the proce
we have to perform the projective measurement discusse
the preceding paragraph, and the probability of achieving
desired result is the same as the probability of successf
implementing the transformation,A. In this case the prob-
ability is 1/N2.

IV. SUCCESS PROBABILITY

The probability,p, of successfully applying the operatorA
to the stateuC&1 in our example is rather small. This i
because the operator we chose was a linear combinatio
all of the operatorsU (mn). This means that if the data registe
consists ofl qubits, i.e.,N52l , then the probability of a
successful implementation of a general transformationA de-
creases exponentially with the size of the data register. H
ever, if we were to choose an operator, or set of operat
that was a linear combination of only a few of theU (mn),
then the success probability can be significantly improv
This would entail making a different measurement at
output of the program register. Instead of making a proj
tive measurement onto the vectoruM &, one would instead
make a measurement onto the vector

uM 8&5
1

N 1/2 (
m,n:qmnÞ0

uJmn&, ~42!

whereN is the total number of nonzero coefficientsqmn , in
the decomposition in Eq.~30!. If the operation being imple-
mented is unitary, then, the probability of implementing it

p5
1

N . ~43!

There are, in fact, large classes of operations that can
expressed in terms of a small number of operatorsU (mn)

@14#. For these operators, the probability of success can
relatively large and, in principle, independent of the size
the Hilbert space of the data register.

Example 1.Let us consider the one-parameter set of u
tary transformationsUw

Uw5~cosw!11 i ~sinw!F11 i

2
U (01)1

12 i

2
U (03)G , ~44!
1-5
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where the unitariesU (mn) are given by Eq.~28!. These uni-
taries forN54 can be explicitly written as

U (01)5(
s50

3

~2 i !sPs , U (03)5(
s50

3

~ i !sPs , ~45!

wherePs5us&^su. From here we find the expression for th
operator~44! in the form

Uw5~cosw!11 i ~sinw!@P01P12P22P3#. ~46!

We note that if we rewrite the parameterss as binary num-
bers,s5 j 121 j 0, where j k is either 0 or 1, and express th
statesus& as tensor products of qubits, i.e.,us&5u j 1& ^ u j 0&,
we find that the operator in brackets on the right-hand sid
Eq. ~44! can be expressed as

F11 i

2
U (01)1

12 i

2
U (03)G5s3^ 1. ~47!

From Eq.~46! it is clear thatUw has eigenvalues of magn
tude 1, which implies thatUw is unitary. It can be realized by
the universal quantum processor~23! with a probability of
successful implementation equal to 1/3. This example ill
trates that it is possible to realize large classes of uni
operations with a probability that is greater than the recip
cal of the dimension of the program register.

This example can be easily generalized. Consider a o
parameter set of unitary operators acting on a Hilbert sp
consisting ofl qubits, which is given by

Uw5~cosw!1^ l1 i ~sinw!s3^ 1^ ( l 21). ~48!

The operators3^ 1^ ( l 21) is diagonal and, therefore, only th
diagonal unitaries from our setU (mn), i.e., U (m0), appear in
its expansion, Eq.~30!. Moreover the coefficientsqm0 in the
expansion are nonvanishing only for oddm. It follows that

Uw5~cosw!1^ l1 i ~sinw! (
odd m

qm0U (m0), ~49!

and the probability of a successful implementation of t
unitary transformation isp52/(2l12).

Example 2.For some sets of operators it is possible to
even better than we were able to do in the preceding
ample. Consider the one-parameter set of unitary opera
given by

Uq5~cosq!11 i ~sinq!U (0,N/2), ~50!

whereN is assumed to be even. That this operator is unit
follows from the fact thatU (0,N/2) is self-adjoint. A program
vector that would implement this operator is

uF&235cosquJ00&231 i sinquJ0,N/2&23, ~51!

and at the output of the program register we make a pro
tive measurement corresponding to the vector
02230
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uM &235
1

A2
~ uJ00&231uJ0,N/2&23. ~52!

The probability for successfully achieving the desired res
i.e., the vectorUquC&1 in the data register, is 1/2 irrespectiv
of the valueN, i.e., the number of qubits.

V. CONCLUSION

We have presented here a programmable quantum pro
sor that exactly implements a set of operators that form
basis for the space of operators on qudits. This processor
a particularly simple representation in terms of element
quantum gates. It is, however, by no means unique. I
possible, in principle, to build a processor that exactly imp
ments any set of unitary operators that form a basis for
set of operators on qudits of dimensionN, and uses any
orthonormal set ofN2 vectors as programs. Explicitly, if the
set of operators is$Vnun51, . . . ,N2% and the program vec
tors are$uyn&un51, . . . ,N2%, the processor transformation
given by

Pdp5 (
n51

N2

Vn
(d)

^ uyn&p p^ynu, ~53!

where the superscript~d! on the operatorVn indicates that it
acts on the data register.

As an example, consider a data register consistingl
qubits. We could use the processor discussed in Sec. I
perform operations on states in this register, but we can
do something else; we can usel single-qubit processors, on
for each qubit of the data register. Specifically, our unita
basis for the set operations on the data register would b

UJK5U j 1k1 , . . . ,j l kl
5 ^ m51

l Sj mkm
, ~54!

whereJ5( j 1 , . . . ,j l) andK5(k1 , . . . ,kl) are sequences o
zeros and ones, and the operatorsSj mkm

are defined immedi-
ately after Eq.~12!. The program register would consist ofl
pairs of qubits, 2l qubits in all, with each pair controlling the
operation on one of the qubits in the data register. Each
the operators in our basis can be implemented perfectly b
program consisting of the tensor product sta
)m50

l uJ j mkm

(m) &, where uJ j mkm

(m) & is a two-qubit state tha

implements the operationSj mkm
on themth qubit of the data

register.
We are then faced with the problem of which processo

use. This very much depends on the set of operations
want to apply to the data. How to choose the processo
that a given set of operations can be implemented with
greatest probability, for a fixed size of the program registe
an open problem. An additional issue is simplicity. O
would like the processor itself and the program states it u
to be as simple as possible. The simplicity of the processo
related to the number of quantum gates it takes to const
it. We would maintain that the processors we have presen
here are simple, though whether there are simpler ones w
not know. Judging the simplicity of the program states
1-6
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somewhat more difficult, but they should be related in a re
tively straightforward way to the operation that they enco
In many cases these states will have been produced
previous part of a quantum algorithm, and complicated p
gram states will mean more complexity for the algorithm th
produces them. The program states proposed by Vidal
Cirac and the ones proposed by us in Sec. II are, in
opinion, simple.

A final open problem that we shall mention, is finding
systematic way of increasing the probability of successfu
carrying out a set of operations by increasing the dimens
G
7.
r,

ys

02230
-
.
a

-
t
nd
r

y
n-

ality of the space of program vectors. Vidal and Cir
showed how to do this in a particular case, but more gen
constructions would be desirable@2#. Doing so would give
one a method of designing programs for a quantum co
puter.
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