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Dynamics of open quantum systems initially entangled with environment:
Beyond the Kraus representation
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We present a general analysis of the role of initial correlations between the open system and an environment
on quantum dynamics of the open system.
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I. INTRODUCTION

Proper understanding of quantum dynamics of open s
tems is a very important task in many areas of physics ra
ing from quantum optics to quantum information process
and to quantum cosmology@1#. In general, one can assum
an interaction between the open system denoted asA with
the environmentB. This environment is a quantum syste
with the Hilbert space of an arbitrary dimension. The who
A plus B system evolves unitarily. In most of the studies
dynamics of open systems it is assumed that the open sy
and its environment are at the initial moment of their jo
evolution factorized@1,2#, that is they are described by th
density operator of the form

rAB5rA^ rB , ~1.1!

whererA is the initial state of systemA andrB is the initial
state of the environment. While the initial state of the op
systemA may vary the initial state of the environmentB is
considered to be determined by external conditions. In
context it is natural to ask what is the time evolution of t
open systemA? Or in other words, what is the explicit form
of the map $A :rA→rA8 . In order to answer this question on
might follow the arguments presented in Ref.@2# and to find
the explicit expression for the density operatorrA8

rA85TrB~UABrABUAB
† !

5(
m

^muUABrA^ S (
n

pnun&^nu DUAB
† um&

5(
m,n

^muApnUABun&rA^nuApnUAB
† um&

5(
m,n

MmnrAMmn
† , ~1.2!

where

Mmn5^muApnUABun&. ~1.3!

This is the well-known Kraus representation@3# of a super-
operator $A that has been studied and used in the literat
broadly. On the other hand, dynamics of open system
which initial correlations between the system and the en
1050-2947/2001/64~6!/062106~5!/$20.00 64 0621
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ronment is taken into account has not been analyzed in d
yet. Taking into account recent interest in quantum entan
ment within the context of quantum-information processi
it is appropriate to study in detail the role of~quantum! cor-
relations on dynamics of open quantum systems. Some
ticular aspects of this problem have been discussed in
@4#.

In the present paper, we present a general analysis o
role of initial correlations between the open system and
environment on quantum dynamics of the open system.

II. THE ROLE OF INITIAL CORRELATIONS

In this section we will investigate the evolution of an op
systemA that is initially correlated with the environmentB.
Let us denote bys i the generators of the group SU(N) @5#
whereN is the dimension of the Hilbert space of the syste
A. In addition we denote byt j the generators of the grou
SU(M ) whereM is the dimension of the Hilbert space of th
environmentB. Using this notation the most general dens
matrix of the systemA and the environmentB reads as

rAB5
1

NM
~1AB1a is i ^ 1B1b j1A^ t j1g i j s i ^ t j !

~2.1!

while the density operator of the open systemA is obtained
via ‘‘tracing’’ over the environment

rA5TrB~rAB!5
1

N
~1A1a is i !. ~2.2!

So let us assume that the state~2.1! is the initial state of the
whole A plus B system that evolves according to the giv
unitary matrixUAB . Can we describe in this case the evol
tion of the subsystemA in the form analogous to Eq.~1.2!?
In order to answer the question we have to insert into
equation

rA85TrB~UABrABUAB
† ! ~2.3!

the expression~2.1! for the density operatorrAB that results
in
©2001 The American Physical Society06-1
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rA85(
m

^muUAB

1

N
~1A1a is i ! ^

1

M
~1B1b jt j !UAB

† um&

1(
m

^muUAB

~g i j 2a ib j !

NM
s i ^ t jUAB

† um&

5(
m

^muUAB~rA^ rB!UAB
† um&

1(
m

^muUAB

~g i j 2a ib j !

NM
s i ^ t jUAB

† um&. ~2.4!

After rewriting g i j as g i j 5NMg i j8 1a ib j we obtain from
Eq. ~2.4! the expression

rA85(
m,n

MmnrAMmn
† 1(

m
^muUABg i j8 s i ^ s jUAB

† um&,

~2.5!

where the operatorsMmn are given by Eq.~1.3!. We see that
the resulting density operator describing the open systeA
during the time evolution consists of two terms. The fi
term corresponds to the standard Kraus representation
no initial correlations as discussed in Sec. I. The second t
in the right-hand side of Eq.~2.5! dependsonly on the cor-
relation parametersg i j8 that do notexplicitly depend on the
particular choice of the initial state of the open systemA ~see
below!. In other words, these parameters cannot be de
mined by performing a local measurement on the initial st
of the systemA.

This second term makes the Eq.~2.5! inhomogeneous
though linear—we will discuss this consequence of initi
correlations between the system and the environment in
following section.

Example 1. We may regardg i j8 as additional parameter
that together with the initial state of the environmentrB and
the unitary operatorUAB determine the time evolution of th
open system initially prepared in the staterA .

To illustrate the possible significance ofg i j8 we will study
a simple model describing dynamics of two qubits~spin-1/2
particles!. In this model one of the qubits~A! plays the role
of the open system while the second qubit~B! plays the role
of the environment. Let the unitary evolution operatorUAB
acting on the joint system of these two qubits is given by
expression

U5e2 iHt51 cost2 iH sint, ~2.6!

whereH is the Hamiltonian

H5sx^
1

2
~12sz!11^

1

2
~11sz!, ~2.7!

with s j being Pauli matrices. The interaction described
the Hamiltonian ~2.7! corresponds to the well-know
controlled-NOT gate@2#.

Let us consider two initial conditionsrAB
(1) andrAB

(2) for the
two-qubit state, which in the computer basis$u0&,u1&% read
06210
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rAB
(1)5uau2u00&^00u1ubu2u11&^11u,

rAB
(2)5~au00&1bu11&)~a* ^00u1b* ^11u!. ~2.8!

Obviously, the qubitsA andB in these two-qubit states are i
the same state, i.e.,

rA
(1)5TrB@rAB

(1)#5TrB@rAB
(2)#5rA

(2) ,

rB
(1)5TrA@rAB

(1)#5TrA@rAB
(2)#5rB

(2) . ~2.9!

On the other hand, the parametersg i j8 in the two-qubit states
~2.8! are different. Therefore, this simple model with iden
cal states of subsystems but different correlations will il
minate the role of the correlations on dynamics of op
quantum systems.

With the unitary evolution~2.6! the two-qubit systems
with the two initial conditions~2.8! evolve at timet5p/2
into states such that the systemA is described by the two
density operators

rA
(1)~ t5p/2!5

1

2
~11s3!,

rA
(2)~ t5p/2!5

1

2
@11~ uau22ubu2!s3#, ~2.10!

respectively. We stress here that the open system has be
both cases in the same initial state, i.e.,rA

(1)5rA
(2)

5uau2u0&^0u1ubu2u1&^1u, the environment itself was in both
cases, initially, in the same state as well. But due to differ
initial correlations between the system and the environm
the open system has evolved into two different sta
rA

(1)(p/2) andrA
(2)(p/2).

This example illustrates that the initial correlations b
tween the system and its environment may play import
role in the dynamics of open systems. Moreover, in mos
physical situations such correlations are present and th
fore they have to be taken into account.

III. MASTER EQUATION

As follows from our previous discussion, both the state
the environment and the initial correlations between the
vironment and the open system play significant roles in
dynamics of the open system. Therefore, in order to cha
terize completely the evolution, it is necessary to determ
~fix! the set of the parameters$b j%, i.e., the staterB of the
environment, and the parameters$g i j8 % describing the corre-
lations. The parametersa i , b j , andg i j8 arearbitrary condi-
tioned that the matrixrAB describe a real physical state o
the systemAB, that is, it is a density matrix. Specifically, i
we represent one particular choice of parameters$a i ,b j ,g i j8 %
as a point in a (N2M221)-dimensional spaceR(N2M221),
then the set of physically relevant parameters$a i ,b j ,g i j8 %
form a convex subsetS in the spaceR(N2M221). For ex-
ample, in the case ofa i ~the same holds forb j andg i j8 ) there

is only a subsetOA in the spaceR(N221) from which we
6-2
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can choose the parameters$a i% for which the matrixrAB is a
physical density matrix. Moreover this subsetOA depends on
the choice of the remaining parameters$b j% and $g i j8 %. In
other words, the subsetOA might be different for different
choices of$b j% and $g i j8 %. For example, if the systemA is
initially maximally entangled with the environment then i
density operator has to be of the form1/N. On the other
hand, if the systemA is in a pure state then the only possib
initial density matrix of the systemA and the environmen
must have the formrAB5rA^ rB , so that allg i j8 have to be
zero. Or, equivalently, if some of the parametersg i j8 are not
zero then the staterA cannot be a pure state.

Sometimes it is very useful to describe the evolution
the open system in a form of a master equation. In orde
do so we, firstly, rewrite the evolution~2.5! in terms of the
left-right superoperator acting on the density operatorrA

rA~ t !5T̂ ~ t !rA~0!1j~ t !, ~3.1!

wherej(t) is the inhomogeneous term that has its origin
the presence of initial correlations between the open sys
and the environment, i.e., from Eq.~2.5! we have

j~ t !5(
m i j

^muUABg i j8 s i ^ s jUAB
† um&.

We stress once again that the operatorj(t) does not depend
explicitly on the initial state of the open systemA, only the
range of possible values of correlations is determined by
choice ofrA andrB ~see the discussion above!. As follows
from Eq. ~2.5! the left-right action of the superoperatorT̂(t)
is equal to the following normal action

T̂ ~ t !rA~0!5(
m,n

MmnrA~0!Mmn
† .

From our previous comments it follows that the choice
the initial correlations restricts a set of density operatorsrA
for which Eq.~3.1! can be used. For instance, for pure sta
the termj(t) is always zero. Therefore, if we would use E
~3.1! with nonzeroj(t) for describing dynamics of an ope
system initially prepared in a pure state, we might end
with a completely unphysical situation. As discussed ab
this subset is determined by the condition, that dynam
~1.2! has a physical meaning. This restriction reflects qu
tum nature of correlations between the system and the e
ronment and have to be taken into account in the deriva
of dynamics of open quantum systems that are initially c
related with the environment.

We have to keep in mind that there is always only a sub
OA of all the density matrices of the systemA for which the
Eq. ~3.1! with a given j(t) is valid. If, for example,j(t)
50 then the Eq.~3.1! is valid for all rA andOA5SA where
SA is a set of all density matrices of the systemA. Unless
j(t) equals to zeroOA is a subset ofSA .

After this preliminary comment we derive the mast
equation following the formalism presented in Ref.@6#. Dif-
ferentiating Eq.~3.1! according to time we obtain
06210
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]

]t
rA~ t !5

]

]t
T̂ ~ t !rA~0!1

]

]t
j~ t !. ~3.2!

When we substituterA(0), which formally can be deter-
mined with the help of Eq.~3.1! @7# into Eq. ~3.2! we find

]

]t
rA~ t !5S ]

]t
T̂ ~ t ! D 1

T̂ ~ t !
@rA~ t !2j~ t !#1

]

]t
j~ t !.

~3.3!

If we introduce a notation for the Liouvillian superoperato

X̂5S ]

]t
T̂ ~ t ! D 1

T̂ ~ t !
, ~3.4!

then the master equation can be rewritten in the follow
form

S ]

]t
2X̂D @rA~ t !2j~ t !#50. ~3.5!

If the initial correlations were zero, then the master eq
tion ~3.5! reduces to the well-known form~see for instance,
Ref. @6#!

S ]

]t
2X̂D rA~ t !50 ~3.6!

where the operatorX̂ is the same as in Eq.~3.5!. Taking into
account the fact, thatj(t) does not depend on the initial sta
rA(0) we can introduce the operator

F~ t !5S ]

]t
2X̂D j~ t ! ~3.7!

and rewrite the master equation~3.5! in an inhomogeneous
form

S ]

]t
2X̂D rA~ t !5F~ t !. ~3.8!

The superoperatorX̂ depends only on the initial state of th
environmentrB and the parameters of the unitary evolutio
UAB ,while the whole information about the initial correla
tions between the open system and the environment is in
operatorF(t). Finally, we stress once again, that the initi
correlations between the open system and the environm
determine a class of possible density operators of the o
system that can be considered in Eq.~3.8!.

IV. DISCUSSION

Till now we have studied how initial correlations betwee
the open system and the environment can influence the
evolution of the open system. We have found that these
relations play an important role that cannot be neglected
this section we will investigate properties of superoperat
~evolutions! $ A acting on an open system that is a part of t
composite system~open system and environment!. It is as-
sumed that two parts of the composite system can be initi
6-3
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correlated. The composite system is considered to be clo
so that it evolves unitarily according to a given unitary o
eratorUAB . In what follows we will assume this evolution o
the ‘‘Universe’’ to be given.

First, we define the most general superoperator~evolu-
tion! that originates from a givenUAB .

Definition IV.1. Let A is the system of interest,B is the rest
of the Universe~the environment!, andUAB is a given uni-
tary evolution on the whole system. Let us consider a m

P:rA→rAB , ~4.1!

which means that for eachrA we choose onerAB from a set
of all-possible density matrices of the Universe such tha

TrB~rAB!5rA . ~4.2!

The superoperatorthat describes the most general evoluti
of the systemA is given by the expression

$:rA→rA8 , ~4.3!

rA8[TrB~UABrABUAB
† !. ~4.4!

The mapP in Eq. ~4.1! is related to the preparation of th
staterA of the systemA. We note that while preparing th
staterA of the systemA the state of the Universe is change
as well. That is, in any act of the preparation of the systemA
we prepare a staterAB rather than an isolated staterA of only
the systemA without affecting the systemB. For this reason
rAB describes a~correlated! state of the open system and th
environment~Universe!. Moreover, since the preparation
an act in which a classical information is encoded into
quantum system the mapP is not necessarily linear. There
fore the staterB5TrA@rAB# might depend~even in a nonlin-
ear way! on the staterA . For instance we can imagine th
mapP of the formP(rA)5rA^ rA , which describe the ac
tion similar to quantum cloning that obviously is not possib
within the framework of linear quantum mechanics, but c
easily be performed at the level of preparation of quant
states. Analogously we can imagine a mapP(rA)5rA^ rA

T ,
whererT is a transposed state. Taking into account thatUAB
is fixed then the only ‘‘freedom’’ in controlling the dynamic
is the choice of the mapP.

It is clear from the construction that the superoperator $
a trace-preserving map and that the final operatorrA8 is Her-
mitian and positive, i.e., it is a valid density matrix. In wh
follows we will study some aspects of the evolutions of t
form IV.1.

~a! From the definition IV.1 it follows that for a given
UAB and an arbitrary mapP not all evolutions $A can be
realized. On the contrary there existsUAB andP such that a
given $A can be realized. To see this let us consider a
lowing example.

Example 2. Using the scenario~4.4! we can perform any
map $:rA→rA8 on a given~known! initial state rA of the
systemA. Specifically, let $:rA→rA8 is a given map. We
assume that the mapP acting during the preparation of th
systemA is such that the composite system has been
pared in the staterAB
06210
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rAB5rA^ rB ,

such thatrB5rA8 . The unitary transformation that realize
the desired map is then taken to be

UAB5(
i , j

u i &A^ j u ^ u j &B^ i u.

Obviously, there is nothing surprising here since if we kno
the initial state of the systemrA exactly then we can perform
an arbitrary map on the system. In some sense this situa
corresponds to a classical physics when a complete kno
edge about the state of the system is implicitly always
sumed. Knowing the initial state precisely we can perfo
any map we want@8#.

~b! Until now we had not considered the linearity cond
tion in association with the evolution $A . As we have al-
ready commented the unitary evolutionUAB is by the defi-
nition linear, but the preparation mapP might be nonlinear.
At this moment we can ask what conditions onP have to be
imposed so that $A is linear. In order to proceed we remin
us the definition of the linearity of the evolution $A .
Namely, $A is linear if

$ AS (
j

l jrA
( j )D 5(

j
l j$ ArA

( j ) . ~4.5!

Now it is clear that ifP is linear, in a sense that

PS (
i

l irA
( i )D 5(

i
l iP~rA

( i )! ~4.6!

then the evolution $A is linear. The linearity ofP is a suffi-
cient condition for the linearity of $A . On the other hand, it
is not the necessary condition. We might imagine a nonlin
mapP such that $A is linear. To understand this we formall
represent the evolution $A as $A5TrBUAB , where we use
notation such thatUAB(rAB)5UABrABUAB

† . Then the linear-
ity of $ A ~4.5! can be expressed as

TrBUABPS (
i

l irA
( i )D 5(

i
l i TrA UABP~rA

( i )!

5TrB UABF(
i

l iP~rA
( i )!G .

~4.7!

From this last equation it follows that if the mapP is linear,
then $A is linear as well. On the other hand, from the linea
ity of $ A does not follow thatP is linear. This is a conse
quence of the property of the partial trace operation TB .
Specifically, from the identity~4.7! the equality

UABPS (
i

l irA
( i )D 5(

i
l iUABP~rA

( i )!, ~4.8!

does not follow.
~c! Next, we will consider consequences of another p

sible restriction onP. Namely, let us consider a rather fre
6-4
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quent condition, that the state of the environmentrB does not
depend on the state of open systemrA . That is

TrA P~rA!5rB5const ~4.9!

for all rA . If rA is pure, then under the condition~4.9! the
map P is uniquely defined such thatP(rA)5rA^ rB . On
the other hand, ifrA is impure, then under the condition~4.9!
the mapP might not be uniquely specified, i.e., correlatio
betweenA andB can play a role.

If the condition~4.9! is fulfilled and inaddition the evo-
lution $A in the definition IV.1 is linear, then the mapP can
n

r-

06210
be chosen such thatP(rA)5rA^ rB for all rA . But this
means that the evolution $A can be represented in the Krau
representation@3#. Consequently, this map is complete
positive @2#.
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